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Bilattices with Implications

Abstract. In a previous work we studied, from the perspective of Abstract Algebraic

Logic, the implicationless fragment of a logic introduced by O. Arieli and A. Avron using

a class of bilattice-based logical matrices called logical bilattices. Here we complete this

study by considering the Arieli-Avron logic in the full language, obtained by adding two

implication connectives to the standard bilattice language. We prove that this logic is

algebraizable and investigate its algebraic models, which turn out to be distributive bi-

lattices with additional implication operations. We axiomatize and state several results

on these new classes of algebras, in particular representation theorems analogue to the

well-known one for interlaced bilattices.
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Introduction

Bilattices are algebraic structures introduced by M. Ginsberg [22] as a uni-
form framework for inference in Artificial Intelligence. Since then they have
found a number of applications, sometimes in quite different areas from the
original one. The interest in bilattices has thus different sources: among oth-
ers, computer science and AI (see especially the works of Ginsberg, O. Arieli
and A. Avron), logic programming (M. Fitting), lattice theory and algebra
[32, 23, 24] and, more recently, algebraic logic [10, 9]. An up-to-date review
of the applications of this formalism and also of the motivation behind its
study can be found in the PhD dissertation [30].

In the nineties bilattices have been investigated in depth by Arieli and
Avron, both from an algebraic [4, 5] and a logical point of view [1, 3]. In [2]
they introduced the first bilattices-based logical systems in the standard
sense, with the main aim to deal with paraconsistency and non-monotonic
reasoning in AI. The simplest of these logics (that we call LB) is defined
semantically from a class of matrices called logical bilattices and is a con-
servative expansion of the Belnap-Dunn four-valued logic [17, 6, 7] to the
standard language of bilattices. In [2] a Gentzen-style calculus is presented
as a syntactic counterpart of LB, and completeness and cut elimination are
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proved. In the same work the authors consider also an expansion of LB,
obtained by adding two (interdefinable) implication connectives (we denote
the logic in this expanded language by LB⊃). In [2] both a Gentzen- and
a Hilbert-style presentation of LB⊃ are given, and completeness and cut
elimination for the Gentzen calculus are proved.

The aim of the present work is to complete the algebraic analysis of LB
begun in [10]. While there we focused on the implicationless fragment of the
Arieli-Avron logic, here we are going to deal with the full language. Most
of the results that we are going to present here were originally obtained,
sometimes in a more limited setting, in the dissertation [30], to which we
refer for further details.

We proved in [10] that LB is non-protoalgebraic and non-selfextensional;
however, we managed to characterize its reduced models and reduced gen-
eralized models (see [8, 19, 15, 21] for all unexplained Abstract Algebraic
Logic terminology). In [30] it is proved that the full logic LB⊃ is alge-
braizable and its equivalent algebraic semantics is determined, axiomatized
and investigated. In the present paper we will take a slightly more general
approach, introducing a weaker logic than LB⊃ (that we will call B) and
studying its algebraic models, so that the already known results on LB⊃
and its associated class of algebras will be obtained as a particular case.

The paper is organized as follows. Section 1 introduces B by means of a
Hilbert-style calculus and proves that it is algebraizable.

In Section 2 we characterize and study the algebraic counterpart of B.
Section 2.1 contains some fundamental definitions and results on bilattices,
in particular a theorem stating that all bilattices satisfying certain addi-
tional conditions can be represented as a special kind of power of a lattice.
Section 2.2 introduces Brouwerian bilattices, that are obtained by adding
two new operations (implications) to the standard bilattice language; we
state some arithmetical properties of this class and a representation theorem
analogous to the one for bilattices. Section 2.3 contains the algebraizability
results for LB⊃ and B.

1. The logic B

In this section we will consider propositional calculi defined in the usual
way over the language 〈∧,∨,⊗,⊕,⊃,¬〉, with the addition of the defined
connectives ≡,→,↔. That is, the standard language of bilattice logics
〈∧,∨,⊗,⊕,¬〉, where ∧ and ⊗ are both interpreted as conjunctions, ∨ and
⊕ as disjunctions and ¬ as negation, expanded with a new connective ⊃
interpreted as implication. As usual, the algebra Fm of formulas is the free
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algebra generated by a countable set Var = {p, q, r, . . .} of variables using
the above-mentioned algebraic language. Lowercase greek letters ϕ,ψ,ϑ etc.
denote formulas, while uppercase Γ, ∆, etc. denote sets of formulas.

Definition 1.1 (Cf. [2]). Let B = 〈Fm,+B〉 be the sentential logic defined
by the Hilbert-style calculus with axioms:

(⊃ 1) p ⊃ (q ⊃ p)
(⊃ 2) (p ⊃ (q ⊃ r)) ⊃ ((p ⊃ q) ⊃ (p ⊃ r))
(∧ ⊃) (p ∧ q) ⊃ p (p ∧ q) ⊃ q

(⊃ ∧) p ⊃ (q ⊃ (p ∧ q))
(⊗ ⊃) (p ⊗ q) ⊃ p (p ⊗ q) ⊃ q

(⊃ ⊗) p ⊃ (q ⊃ (p ⊗ q))
(⊃ ∨) p ⊃ (p ∨ q) q ⊃ (p ∨ q)
(∨ ⊃) (p ⊃ r) ⊃ ((q ⊃ r) ⊃ ((p ∨ q) ⊃ r))
(⊃ ⊕) p ⊃ (p ⊕ q) q ⊃ (p ⊕ q)
(⊕ ⊃) (p ⊃ r) ⊃ ((q ⊃ r) ⊃ ((p ⊕ q) ⊃ r))
(¬∧) ¬(p ∧ q) ≡ (¬p ∨ ¬q)
(¬∨) ¬(p ∨ q) ≡ (¬p ∧ ¬q)
(¬⊗) ¬(p ⊗ q) ≡ (¬p ⊗ ¬q)
(¬⊕) ¬(p ⊕ q) ≡ (¬p ⊕ ¬q)
(¬ ⊃) ¬(p ⊃ q) ≡ (p ∧ ¬q)
(¬¬) p ≡ ¬¬p

where ϕ ≡ ψ abbreviates (ϕ ⊃ ψ) ∧ (ψ ⊃ ϕ), and with modus ponens (MP)
as the only inference rule:

p p ⊃ q

q

We are going to use the following abbreviations:

ϕ → ψ := (ϕ ⊃ ψ) ∧ (¬ψ ⊃ ¬ϕ)
ϕ ↔ ψ := (ϕ → ψ) ∧ (ψ → ϕ).

If we add to B the following axiom (Peirce’s law):

(⊃ 3) ((p ⊃ q) ⊃ p) ⊃ p

we obtain the calculus corresponding to the Arieli-Avron [2] logic of logical
bilattices with implications. As mentioned above, the dissertation [30] con-
tains a study of this extension, from now on called LB⊃, from an algebraic
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logic point of view. Many of the results that we are going to state here on
the logic B and its algebraic semantics were originally obtained in [30] for
LB⊃ and its associated class of algebras.

Remark 1.2. Let Γ ∪ {ϕ} ⊆ Fm be formulas in the language {∧,∨,⊃}.
Denote by +IPC the derivability relation of the corresponding fragment of
intuitionistic propositional logic, where the connectives {∧,∨,⊃} are inter-
preted, respectively, as intuitionistic conjunction, disjunction and implica-
tion. Then Γ +IPC ϕ implies Γ +B ϕ. This follows from the fact that
the axioms and rules of +B involving only {∧,∨,⊃} constitute an axiom-
atization of the {∧,∨,⊃}-fragment of intuitionistic logic (see for instance
the one given in [29, p. 236]). The same holds for formulas in the language
{⊗,⊕,⊃} when we interpret these connectives as, respectively, intuitionistic
conjunction, disjunction and implication. It is not difficult to prove that
the converse also holds, i.e., that Γ +B ϕ implies Γ +IPC ϕ, i.e. the two
fragments coincide. If we add (⊃ 3), then we have an axiomatization of the
{∧,∨,⊃}-fragment of classical logic (see for instance [14, p. 182]) and in this
case also it can be proven that the two fragments coincide.

Another remarkable feature that B shares with intuitionistic logic is the
classical Deduction-Detachment Theorem (DDT). Indeed, this is known to
hold [33, Theorem 2.4.2] for any calculus that has axioms (⊃ 1) and (⊃ 2)
and MP as the only rule.

Theorem 1.3 (DDT). Let Γ ∪ {ϕ,ψ} ⊆ Fm. Then

Γ, ϕ +B ψ iff Γ +B ϕ ⊃ ψ.

Thus, if we add (⊃ 3) to B, we still have the classical DDT. Moreover,
this logic has no consistent extensions, i.e., the only stronger logic in the
same language is the trivial one in which every formula is derivable [30,
Proposition 4.3.14]. This fact can easily be proved algebraically, for, as we
will see, the equivalent algebraic semantic of this logic is a variety that has
no proper non-trivial subquasivarieties.

Let us list some properties of our calculus [30, Proposition 4.2.2], which
will be used in our algebraizability proof.

Proposition 1.4. For all formulas ϕ,ψ,ϑ, ϕ1, ϕ2,ψ1,ψ2 ∈ Fm,

(i) ϕ +B ψ ∧ ϑ iff ϕ +B ψ and ϕ +B ϑ iff ϕ +B ψ ⊗ ϑ

(ii) ϕ ⊃ ψ, ψ ⊃ ϑ +B ϕ ⊃ ϑ

(iii) +B ϕ ⊃ ϕ
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(iv) +B ¬(ϕ ⊃ ϕ) ⊃ ¬ϕ

(v) ϕ +B ϕ ↔ (ϕ ⊃ ϕ)

(vi) ϕ ↔ (ϕ ⊃ ϕ) +B ϕ

(vii) +B ϕ ↔ ϕ

(viii) ϕ ↔ ψ +B ψ ↔ ϕ

(ix) ϕ ↔ ψ, ψ ↔ ϑ +B ϕ ↔ ϑ

(x) ϕ ↔ ψ +B ¬ϕ ↔ ¬ψ

(xi) ϕ1 → ψ1,ϕ2 → ψ2 +B (ϕ1 ∧ ϕ2) → (ψ1 ∧ ψ2)

(xii) ϕ1 → ψ1,ϕ2 → ψ2 +B (ϕ1 ∨ ϕ2) → (ψ1 ∨ ψ2)

(xiii) ϕ1 → ψ1,ϕ2 → ψ2 +B (ϕ1 ⊗ ϕ2) → (ψ1 ⊗ ψ2)

(xiv) ϕ1 → ψ1,ϕ2 → ψ2 +B (ϕ1 ⊕ ϕ2) → (ψ1 ⊕ ψ2)

(xv) ψ1 → ϕ1,ϕ2 → ψ2 +B (ϕ1 ⊃ ϕ2) → (ψ1 ⊃ ψ2)

(xvi) ϕ,ψ /+B ϕ ∧ ψ and ϕ ∧ ψ /+B ϕ ⊗ ψ

(xvii) if ϕ /+B ψ, then +B (ϕ ⊃ χ) ↔ (ψ ⊃ χ) for all χ ∈ Fm

(xviii) if ϕ1 +B ψ1 and ϕ2 +B ψ2, then ϕ1 ∨ ϕ2 +B ψ1 ∨ ψ2

(xix) if ϕ1 +B ψ1 and ϕ2 +B ψ2, then ϕ1 ⊕ ϕ2 +B ψ1 ⊕ ψ2

(xx) +B ϕ → ψ if and only if +B (ϕ ∧ ψ) ↔ ψ.

Proof. (i). The rightward implication is easily proved using (∧ ⊃). As to
the leftward one, note that by (⊃ ∧) we have ϕ +B ψ ⊃ (ϑ ⊃ (ψ ∧ ϑ)), so
applying MP twice we obtain ϕ +B ψ ∧ ϑ. The proof for the case of ⊗ is
similar, we just need to use (⊗ ⊃) and (⊃ ⊗) instead of (∧ ⊃) and (⊃ ∧).
(ii). By (⊃ 1) and MP we have ψ ⊃ ϑ +B ϕ ⊃ (ψ ⊃ ϑ) and by (⊃ 2) we
have +B (ϕ ⊃ (ψ ⊃ ϑ)) ⊃ ((ϕ ⊃ ψ) ⊃ (ϕ ⊃ ϑ)). So, applying MP, we have
ψ ⊃ ϑ +B (ϕ ⊃ ψ) ⊃ (ϕ ⊃ ϑ). Hence, by MP, ψ ⊃ ϑ,ϕ ⊃ ψ +B (ϕ ⊃ ϑ).
(iii). (ϕ ⊃ ((ψ ⊃ ϕ) ⊃ ϕ)) ⊃ ((ϕ ⊃ (ψ ⊃ ϕ)) ⊃ (ϕ ⊃ ϕ)) is an instance of
(⊃ 2) and (ϕ ⊃ ((ψ ⊃ ϕ) ⊃ ϕ)) and (ϕ ⊃ (ψ ⊃ ϕ)) are instances of (⊃ 1).
So applying MP twice we obtain +B ϕ ⊃ ϕ.
(iv). ¬(ϕ ⊃ ϕ) ⊃ (ϕ ∧ ¬ϕ) is an instance of (¬ ⊃) and (ϕ ∧ ¬ϕ) ⊃ ¬ϕ is an
instance of (∧ ⊃). So, by (ii), we obtain +B ¬(ϕ ⊃ ϕ) ⊃ ¬ϕ.
(v). Taking into account (i), it is sufficient to prove the following: ϕ +B ϕ ⊃
(ϕ ⊃ ϕ), ϕ +B ¬(ϕ ⊃ ϕ) ⊃ ¬ϕ, ϕ +B (ϕ ⊃ ϕ) ⊃ ϕ and ϕ +B ¬ϕ ⊃ ¬(ϕ ⊃ ϕ).
The first follows immediately from (⊃ 1), while the second follows from (iv).
The third amounts to ϕ,ϕ ⊃ ϕ +B ϕ, which is obvious, and the fourth to
ϕ,¬ϕ +B ¬(ϕ ⊃ ϕ), which easily follows from (¬ ⊃).
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(vi). It is sufficient to prove that (ϕ ⊃ ϕ) ⊃ ϕ +B ϕ, and this follows from
(iii) by MP.
(vii). Follows immediately from (iii).
(viii). Immediate.
(ix). Follows easily, using (i) and (ii).
(x). It is sufficient to prove that ϕ ⊃ ψ +B ¬¬ϕ ⊃ ¬¬ψ and ψ ⊃ ϕ +B
¬¬ψ ⊃ ¬¬ϕ, and this follows easily using (¬¬) and the transitivity of ⊃.
(xi). We will prove that ϕ1 ⊃ ψ1,ϕ2 ⊃ ψ2 +B (ϕ1 ∧ ϕ2) ⊃ (ψ1 ∧ ψ2) and
¬ψ1 ⊃ ¬ϕ1,¬ψ2 ⊃ ¬ϕ2 +B ¬(ψ1∧ψ2) ⊃ ¬(ϕ1∧ϕ2). The former is equivalent
to ϕ1 ⊃ ψ1,ϕ2 ⊃ ψ2,ϕ1 ∧ϕ2 +B (ψ1 ∧ψ2), which is easily proved. As to the
latter, by (⊃ ∨) and the transitivity of +B, we have ¬ψ1 ⊃ ¬ϕ1,¬ψ2 ⊃
¬ϕ2 +B ¬ψ1 ⊃ (¬ϕ1 ∨ ¬ϕ2) and ¬ψ1 ⊃ ¬ϕ1,¬ψ2 ⊃ ¬ϕ2 +B ¬ψ2 ⊃
(¬ϕ1 ∨ ¬ϕ2). Then, using (∨ ⊃), we obtain ¬ψ1 ⊃ ¬ϕ1,¬ψ2 ⊃ ¬ϕ2 +B
(¬ψ1 ∨¬ψ2) ⊃ (¬ϕ1 ∨¬ϕ2). By (¬∧) we have +B ¬(ψ1 ∧ψ2) ⊃ (¬ψ1 ∨¬ψ2)
and +B (¬ϕ1 ∨ ¬ϕ2) ⊃ ¬(ϕ1 ∧ ϕ2). So, applying (ii), we obtain the result.
(xii). We will prove that ϕ1 ⊃ ψ1,ϕ2 ⊃ ψ2 +B (ϕ1 ∨ ϕ2) ⊃ (ψ1 ∨ ψ2) and
¬ψ1 ⊃ ¬ϕ1,¬ψ2 ⊃ ¬ϕ2 +B ¬(ψ1 ∨ ψ2) ⊃ ¬(ϕ1 ∨ ϕ2). As to the first, we
have that ϕ1 ⊃ ψ1 +B ϕ1 ⊃ (ψ1 ∨ψ2) and ϕ2 ⊃ ψ2 +B ϕ2 ⊃ (ψ1 ∨ψ2). Now,
using (∨ ⊃) we obtain ϕ1 ⊃ ψ1,ϕ2 ⊃ ψ2 +B (ϕ1 ∨ϕ2) ⊃ (ψ1 ∨ψ2). As to the
second, using (xi) we have that ¬ψ1 ⊃ ¬ϕ1,¬ψ2 ⊃ ¬ϕ2 +B (¬ψ1 ∧ ¬ψ2) ⊃
(¬ϕ1 ∧ ¬ϕ2). Now using (¬∨) and transitivity we obtain the result.
(xiii). We will prove that ϕ1 ⊃ ψ1,ϕ2 ⊃ ψ2 +B (ϕ1 ⊗ ϕ2) ⊃ (ψ1 ⊗ ψ2) and
¬ψ1 ⊃ ¬ϕ1,¬ψ2 ⊃ ¬ϕ2 +B ¬(ψ1⊗ψ2) ⊃ ¬(ϕ1⊗ϕ2). A proof of the first one
can be obtained from that of (xi), just replacing any occurence of ∧ with ⊗
and using the corresponding axioms for ⊗. As to the second, it is easy to
prove ¬ψ1 ⊃ ¬ϕ1,¬ψ2 ⊃ ¬ϕ2,¬ψ1⊗¬ψ2 +B ¬ϕ1⊗¬ϕ2 and from this, using
(¬⊗), we obtain the result.
(xiv). We will prove that ϕ1 ⊃ ψ1,ϕ2 ⊃ ψ2 +B (ϕ1 ⊕ ϕ2) ⊃ (ψ1 ⊕ ψ2) and
¬ψ1 ⊃ ¬ϕ1,¬ψ2 ⊃ ¬ϕ2 +B ¬(ψ1⊕ψ2) ⊃ ¬(ϕ1⊕ϕ2). A proof of the first one
can be obtained from that of (xii), just replacing any occurence of ∨ with
⊕ and using the corresponding axioms for ⊕. As to the second, it is easy to
prove that ¬ψ1 ⊃ ¬ϕ1,¬ψ2 ⊃ ¬ϕ2 +B (¬ψ1 ⊕¬ψ2) ⊃ (¬ϕ1 ⊕¬ϕ2) and from
this, using (¬⊕) and transitivity, we obtain the result.
(xv). We will prove that ψ1 ⊃ ϕ1,ϕ2 ⊃ ψ2 +B (ϕ1 ⊃ ϕ2) ⊃ (ψ1 ⊃
ψ2) and ψ1 ⊃ ϕ1,¬ψ2 ⊃ ¬ϕ2 +B ¬(ψ1 ⊃ ψ2) ⊃ ¬(ϕ1 ⊃ ϕ2). The
former is equivalent to ψ1 ⊃ ϕ1,ϕ2 ⊃ ψ2,ϕ1 ⊃ ϕ2,ψ1 +B ψ2, which
is easily proved by transitivity. In order to prove the latter, note that
ψ1 ⊃ ϕ1,¬ψ2 ⊃ ¬ϕ2,ψ1,¬ψ2 +B ϕ1 ∧ ¬ϕ2, so ψ1 ⊃ ϕ1,¬ψ2 ⊃ ¬ϕ2 +B
(ψ1∧¬ψ2) ⊃ (ϕ1∧¬ϕ2). Now, by (¬ ⊃) we have +B ¬(ψ1 ⊃ ψ2) ⊃ (ψ1∧¬ψ2)
and +B (ϕ1 ∧ ¬ϕ2) ⊃ ¬(ϕ1 ⊃ ϕ2). So by transitivity we obtain the result.
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(xvi). Easy, using using (∧ ⊃), (⊃ ∧), (⊗ ⊃) and (⊃ ⊗). In the following
proofs we will sometimes make use of this property without notice.
(xvii). Assume ϕ /+B ψ. Using (i), we will prove that for all χ ∈ Fm:

+B (ϕ ⊃ χ) ⊃ (ψ ⊃ χ)
+B (ψ ⊃ χ) ⊃ (ϕ ⊃ χ)
+B ¬(ϕ ⊃ χ) ⊃ ¬(ψ ⊃ χ)
+B ¬(ψ ⊃ χ) ⊃ ¬(ϕ ⊃ χ).

The first two are equivalent to ϕ ⊃ χ,ψ +B χ and ψ ⊃ χ,ϕ +B χ, so they are
easily proved. As to the second two, they amount to showing that ¬(ϕ ⊃
χ) /+B ¬(ψ ⊃ χ). Now note that by (¬ ⊃) we have ¬(ϕ ⊃ χ) /+B ϕ ∧ ¬χ
and ¬(ψ ⊃ χ) /+B ψ∧¬χ. So, it is sufficient to prove that ϕ∧¬χ /+B ψ∧¬χ
and, using (i) and (xvi), this is easy.
(xviii). Assume ϕ1 +B ψ1 and ϕ2 +B ψ2. Note that

(ϕ1 ⊃ (ψ1 ∨ ψ2)) ⊃ ((ϕ2 ⊃ (ψ1 ∨ ψ2)) ⊃ ((ϕ1 ∨ ϕ2) ⊃ (ψ1 ∨ ψ2)))

is an instance of (∨ ⊃), and that using (⊃ ∨) one can easily derive +B
ϕ1 ⊃ (ψ1 ∨ ψ2) from the first assumption and +B ϕ2 ⊃ (ψ1 ∨ ψ2) from the
second. Hence, by MP, we have +B (ϕ1 ∨ ϕ2) ⊃ (ψ1 ∨ ψ2), which implies
ϕ1 ∨ ϕ2 +B ψ1 ∨ ψ2.
(xix). The proof can be easily obtained from that of (xviii), just using the
corresponding axioms for ⊕ instead of those for ∨.
(xx). Note that +B (ϕ ∧ ψ) → ϕ, because +B (ϕ ∧ ψ) ⊃ ϕ is an instance of
(∧ ⊃) and +B ¬ϕ ⊃ ¬(ϕ ∧ ψ) follows from the fact that, by (¬∧), we have
¬ϕ ∨ ¬ψ +B ¬(ϕ ∧ ψ) and, by (⊃ ∨), we have ¬ϕ +B ¬ϕ ∨ ¬ψ.
So, assuming +B ϕ → ψ, we only need to prove that +B ϕ → (ϕ∧ψ). It is not
difficult to prove that +B ϕ ↔ (ϕ ∧ ϕ), and by (vi) we also have +B ϕ → ϕ.
Now, using (xi) and the assumption, we obtain +B (ϕ∧ϕ) → (ϕ∧ψ). Finally,
using (ix), we obtain +B ϕ → (ϕ ∧ ψ).
Conversely, assume +B ϕ → (ϕ∧ψ). Clearly, the same proof of (ϕ∧ψ) → ϕ
shows that +B (ϕ ∧ ψ) → ψ, so we can apply (i) and the transitivity of ⊃
and the result follows easily.

Proposition 1.5. For all formulas ϕ,ψ,ϑ ∈ Fm,

(i) +B ϕ ↔ (ϕ ∧ ϕ)

(ii) +B (ϕ ∧ ψ) ↔ (ψ ∧ ϕ)

(iii) +B (ϕ ∧ (ψ ∧ ϑ)) ↔ ((ϕ ∧ ψ) ∧ ϑ)
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(iv) +B ϕ ↔ (ϕ ∨ ϕ)

(v) +B (ϕ ∨ ψ) ↔ (ψ ∨ ϕ)

(vi) +B (ϕ ∨ (ψ ∨ ϑ)) ↔ ((ϕ ∨ ψ) ∨ ϑ)

(vii) +B (ϕ ∧ (ϕ ∨ ψ)) ↔ ϕ

(viii) +B (ϕ ∨ (ϕ ∧ ψ)) ↔ ϕ

(ix) +B ϕ ↔ (ϕ ⊗ ϕ)

(x) +B (ϕ ⊗ ψ) ↔ (ψ ⊗ ϕ)

(xi) +B (ϕ ⊗ (ψ ⊗ ϑ)) ↔ ((ϕ ⊗ ψ) ⊗ ϑ)

(xii) +B ϕ ↔ (ϕ ⊕ ϕ)

(xiii) +B (ϕ ⊕ ψ) ↔ (ψ ⊕ ϕ)

(xiv) +B (ϕ ⊕ (ψ ⊕ ϑ)) ↔ ((ϕ ⊕ ψ) ⊕ ϑ)

(xv) +B (ϕ ⊗ (ϕ ⊕ ψ)) ↔ ϕ

(xvi) +B (ϕ ⊕ (ϕ ⊗ ψ)) ↔ ϕ

(xvii) +B ¬(ϕ ∧ ψ) ↔ (¬ϕ ∨ ¬ψ)

(xviii) +B ¬(ϕ ∨ ψ) ↔ (¬ϕ ∧ ¬ψ)

(xix) +B ¬(ϕ ⊗ ψ) ↔ (¬ϕ ⊗ ¬ψ)

(xx) +B ¬(ϕ ⊕ ψ) ↔ (¬ϕ ⊕ ¬ψ)

(xxi) +B ϕ ↔ ¬¬ϕ

(xxii) +B ((ϕ ⊃ ϕ) ⊃ ψ) ↔ ψ

(xxiii) +B ((ϕ ∧ ψ) ⊃ ϑ) ↔ (ϕ ⊃ (ψ ⊃ ϑ))

(xxiv) +B ((ϕ ∧ ψ) ⊃ ϑ) ↔ ((ϕ ⊗ ψ) ⊃ ϑ)

(xxv) +B ((ϕ ∨ ψ) ⊃ ϑ) ↔ ((ϕ ⊕ ψ) ⊃ ϑ)

(xxvi) +B ϕ → ((ϕ ⊃ ψ) ⊃ (ϕ ⊗ ψ))

(xxvii) +B (¬(ϕ ⊃ ψ) ⊃ ϑ) ↔ ((ϕ ∧ ¬ψ) ⊃ ϑ)

(xxviii) +B ((ϕ ∨ ψ) ⊃ ϑ) ↔ ((ϕ ⊃ ϑ) ∧ (ψ ⊃ ϑ)).

Proof. (i). We have to prove that +B ¬(ϕ∧ϕ) ⊃ ¬ϕ and +B ¬ϕ ⊃ ¬(ϕ∧ϕ).
As to the former, note that by (¬∧) we have ¬(ϕ ∧ ϕ) +B ¬ϕ ∨ ¬ϕ, so it
will be enough to prove ¬ϕ∨¬ϕ +B ¬ϕ, and this is easily done using (∨ ⊃).
As to the latter, by (⊃ ∨) we have +B ¬ϕ ⊃ ¬ϕ ∨ ¬ϕ and from this, using
(¬∧), we easily obtain the result.
(ii). To prove that +B ¬(ϕ ∧ ψ) ≡ ¬(ψ ∧ ϕ), using (¬∧), it suffices to show
that +B (ϕ ∨ ψ) ≡ (ψ ∨ ϕ), and this follows by Remark 1.2.
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(iii). To prove that +B ¬(ϕ ∧ (ψ ∧ ϑ)) ≡ ¬((ϕ ∧ ψ) ∧ ϑ), note that by
(¬∧) we have, on the one hand, +B ¬(ϕ ∧ (ψ ∧ ϑ)) ≡ ¬ϕ ∨ ¬(ψ ∧ ϑ) and,
using also Proposition 1.4 (xviii), +B ¬ϕ ∨ ¬(ψ ∧ ϑ) ≡ ¬ϕ ∨ (¬ψ ∨ ¬ϑ).
On the other hand we have +B ¬((ϕ ∧ ψ) ∧ ϑ) ≡ ¬(ϕ ∧ ψ) ∨ ¬ϑ and
+B ¬(ϕ ∧ ψ) ∨ ¬ϑ ≡ (¬ϕ ∨ ¬ψ) ∨ ¬ϑ. Hence, it suffices to prove that
¬ϕ ∨ (¬ψ ∨ ¬ϑ) ≡ (¬ϕ ∨ ¬ψ) ∨ ¬ϑ, and this follows from Remark 1.2.
(iv). To prove that +B ¬ϕ ≡ ¬(ϕ ∨ ϕ), we only need to use (¬∨) and (i).
(v). To prove that +B ¬(ϕ ∨ ψ) ≡ ¬(ψ ∨ ϕ), we only need to use (¬∨)
and (ii).
(vi). To prove that +B ¬(ϕ∨ (ψ ∨ϑ)) ≡ ¬((ϕ∨ψ)∨ϑ) we can use (¬∨) and
Proposition 1.4 (xviii).
(vii). To prove that +B ¬(ϕ ∧ (ϕ ∨ ψ)) ≡ ¬ϕ, note that by (¬∧) we have
+B ¬(ϕ ∧ (ϕ ∨ ψ)) ≡ ¬ϕ ∨ ¬(ϕ ∨ ψ)) and, using (¬∨) and Proposition 1.4
(xviii), we have +B ¬ϕ ∨ ¬(ϕ ∨ ψ)) ≡ ¬ϕ ∨ (¬ϕ ∧ ¬ψ). Now we may use
Remark 1.2 to obtain the result.
(viii). To prove that +B ¬(ϕ∨ (ϕ∧ψ)) ≡ ¬ϕ we may reason as in (vii), just
using (¬∧) instead of (¬∨).
(ix). To prove that +B ¬ϕ ≡ ¬(ϕ ⊗ ϕ), it is sufficient to observe that by
(¬⊗) we have +B ¬(ϕ ⊗ ϕ) ≡ ¬ϕ ⊗ ¬ϕ, so we may use again Remark 1.2.
(x). To prove that +B ¬(ϕ ⊗ ψ) ≡ ¬(ψ ⊗ ϕ), it is sufficient to observe that
by (¬⊗) we have +B ¬(ϕ⊗ψ) ≡ ¬ϕ⊗¬ψ, so we may use again Remark 1.2.
(xi). To see that +B ¬(ϕ ⊗ (ψ ⊗ ϑ)) ≡ ¬((ϕ ⊗ ψ) ⊗ ϑ), as in the previous
cases, we may use (¬⊗) and Remark 1.2.
(xii). We may proceed as in (ix), just using (¬⊕) instead of (¬⊗).
(xiii). We may proceed as in (x), just using (¬⊕) instead of (¬⊗).
(xiv). We may proceed as in (xi), using (¬⊕) instead of (¬⊗), together with
Proposition 1.4 (xix).
(xv). To prove +B ¬(ϕ ⊗ (ϕ ⊕ ψ)) ≡ ¬ϕ, we use (¬⊗) to obtain +B
¬(ϕ ⊗ (ϕ ⊕ ψ)) ≡ ¬ϕ ⊗ ¬(ϕ ⊕ ψ). Using (¬⊕), it is easy to obtain +B
¬ϕ⊗¬(ϕ⊕ψ) ≡ ¬ϕ⊗ (¬ϕ⊕¬ψ). Now we may apply Remark 1.2 again to
obtain the result.
(xvi). We may proceed as in (xv), using the property stated in Proposition
1.4 (xix).
(xvii). By (¬∧) we have +B ¬(ϕ∧ψ) ≡ (¬ϕ∨¬ψ). To prove +B ¬¬(ϕ∧ψ) ≡
¬(¬ϕ ∨ ¬ψ), observe that, by (¬¬), we have +B ¬¬(ϕ ∧ ψ) ≡ (ϕ ∧ ψ) and,
moreover, ϕ,ψ /+B ¬¬ϕ,¬¬ψ. By Proposition 1.4 (xvi), this means that
+B (ϕ∧ψ) ≡ (¬¬ϕ∧¬¬ψ). By (¬∨), we have +B (¬¬ϕ∧¬¬ψ) ≡ ¬(¬ϕ∨¬ψ).
Now, using Proposition 1.4 (ii), we obtain the result.
(xviii). We may proceed as in (xvii), just using (¬∨) instead of (¬∧) and
viceversa.
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(xix). By (¬⊗) we have +B ¬(ϕ ⊗ ψ) ≡ (¬ϕ ⊗ ¬ψ). To prove that
+B ¬¬(ϕ ⊗ ψ) ≡ ¬(¬ϕ ⊗ ¬ψ), note that by (¬¬) we have +B ¬¬(ϕ ⊗ ψ) ≡
(ϕ ⊗ ψ) and by (¬⊗) we have +B ¬(¬ϕ ⊗ ¬ψ) ≡ (¬¬ϕ ⊗ ¬¬ψ). Now we
apply (¬¬) to obtain the result.
(xx). By (¬⊕) we have +B ¬(ϕ⊕ψ) ≡ (¬ϕ⊕¬ψ). To prove +B ¬¬(ϕ⊕ψ) ≡
¬(¬ϕ ⊕ ¬ψ) we may proceed as in (xix), using Proposition 1.4 (xix).
(xxi). By (¬¬) we have +B ϕ ≡ ¬¬ϕ, and +B ¬ϕ ≡ ¬¬¬ϕ is also an instance
of (¬¬).
(xxii). In Proposition 1.4 (iii) we proved that +B ϕ ⊃ ϕ. From this it follows
immediately that

(ϕ ⊃ ϕ) ⊃ ψ +B ψ

therefore
+B ((ϕ ⊃ ϕ) ⊃ ψ) ⊃ ψ.

That +B ψ ⊃ ((ϕ ⊃ ϕ) ⊃ ψ) holds is also clear, since it is an instance of
(⊃ 1). To prove that +B ¬((ϕ ⊃ ϕ) ⊃ ψ) ⊃ ¬ψ, it is enough to note that,
by (¬ ⊃), we have

¬((ϕ ⊃ ϕ) ⊃ ψ) +B (ϕ ⊃ ϕ) ∧ ¬ψ.

So, by transitivity of +B, the result follows. Finally, to prove that +B ¬ψ ⊃
¬((ϕ ⊃ ϕ) ⊃ ψ), note that by (¬ ⊃) we have

(ϕ ⊃ ϕ) ∧ ¬ψ +B ¬((ϕ ⊃ ϕ) ⊃ ψ),

so the result again follows easily.
(xxiii). Using Proposition 1.4 (i), we will prove that

+B ((ϕ ∧ ψ) ⊃ ϑ) ⊃ (ϕ ⊃ (ψ ⊃ ϑ))
+B (ϕ ⊃ (ψ ⊃ ϑ)) ⊃ ((ϕ ∧ ψ) ⊃ ϑ)
+B ¬((ϕ ∧ ψ) ⊃ ϑ) ⊃ ¬(ϕ ⊃ (ψ ⊃ ϑ))
+B ¬(ϕ ⊃ (ψ ⊃ ϑ)) ⊃ ¬((ϕ ∧ ψ) ⊃ ϑ).

The first two are easily proved, for they amount to (ϕ ∧ ψ) ⊃ ϑ,ϕ, ψ +B ϑ
and ϕ ⊃ (ψ ⊃ ϑ),ϕ ∧ ψ +B ϑ. As to the second two, using (¬ ⊃), we will
prove that (ϕ∧ψ)∧¬ϑ /+B ϕ∧¬(ψ ⊃ ϑ). Applying (¬ ⊃) again, it is easy
to see that this follows from the fact that (ϕ ∧ ψ) ∧ ¬ϑ /+B ϕ ∧ (ψ ∧ ¬ϑ).
(xxiv). Follows immediately from Proposition 1.4 (xvi) and (xvii).
(xxv). Using Proposition 1.4 (xvii), it will be enough to prove that ϕ∨ψ /+B
ϕ ⊕ ψ for all ϕ, ψ ∈ Fm. We have that

(ϕ ⊃ (ϕ ⊕ ψ)) ⊃ ((ψ ⊃ (ϕ ⊕ ψ)) ⊃ ((ϕ ∨ ψ) ⊃ (ϕ ⊕ ψ)))
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is an instance of (∨ ⊃). Now, since ϕ ⊃ (ϕ⊕ψ) and ψ ⊃ (ϕ⊕ψ) are instances
of (⊃ ⊕), we may apply MP two times to obtain +B (ϕ∨ψ) ⊃ (ϕ⊕ψ), hence
ϕ ∨ ψ +B ϕ ⊕ ψ. The same reasoning, using (⊕ ⊃) and (⊃ ∨) instead of
(∨ ⊃) and (⊃ ⊕), allows us to conclude that ϕ ⊕ ψ +B ϕ ∨ ψ.
(xxvi). Clearly ϕ,ϕ ⊃ ψ +B ϕ and by MP we have ϕ,ϕ ⊃ ψ +B ψ. Now,
using (i), we obtain ϕ,ϕ ⊃ ψ +B ϕ ⊗ ψ, i.e., +B ϕ ⊃ ((ϕ ⊃ ψ) ⊃ (ϕ ⊗ ψ)).
To prove that +B ¬((ϕ ⊃ ψ) ⊃ (ϕ ⊗ ψ)) ⊃ ¬ϕ, note that by (¬ ⊃) we
have ¬((ϕ ⊃ ψ) ⊃ (ϕ ⊗ ψ)) +B (ϕ ⊃ ψ) ∧ ¬(ϕ ⊗ ψ). By (∧ ⊃) we have
(ϕ ⊃ ψ)∧¬(ϕ⊗ψ) +B ¬(ϕ⊗ψ) and by (¬⊗) we obtain ¬(ϕ⊗ψ) +B ¬ϕ⊗¬ψ.
Now, since ¬ϕ⊗¬ψ +B ¬ϕ by (⊗ ⊃), using the transitivity of +B we obtain
¬((ϕ ⊃ ψ) ⊃ (ϕ ⊗ ψ)) +B ¬ϕ.
(xxvii). Follows immediately from (¬ ⊃) and Proposition 1.4 (xvii).
(xxviii). To see that +B ((ϕ ∨ ψ) ⊃ ϑ) ⊃ ((ϕ ⊃ ϑ) ∧ (ψ ⊃ ϑ)), just note
that ϕ ⊃ (ϕ ∨ ψ) is an instance of (⊃ ∨), so by the transitivity of ⊃ we
have (ϕ ∨ ψ) ⊃ ϑ,ϕ +B ϑ and similarly (ϕ ∨ ψ) ⊃ ϑ,ψ +B ϑ. Hence, using
Proposition 1.4 (i), we obtain the result.

To prove that +B ¬((ϕ ⊃ ϑ) ∧ (ψ ⊃ ϑ)) ⊃ ¬((ϕ ∨ ψ) ⊃ ϑ), note that
((ϕ ∧ ¬ϑ) ⊃ ((ϕ ∨ ψ) ∧ ¬ϑ)) ⊃ (((ψ ∧ ¬ϑ) ⊃ ((ϕ ∨ ψ)) ∧ ¬ϑ) ⊃ ((ϕ ∧ ¬ϑ) ∨
(ψ ∧ ¬ϑ)) ⊃ ((ϕ ∨ ψ) ∧ ¬ϑ)) is an instance of (∨ ⊃). It is not difficult to
prove that +B (ϕ∧¬ϑ) ⊃ ((ϕ∨ψ)∧¬ϑ) and +B (ψ ∧¬ϑ) ⊃ ((ϕ∨ψ)∧¬ϑ),
so applying MP we obtain

(ϕ ∧ ¬ϑ) ∨ (ψ ∧ ¬ϑ)) +B (ϕ ∨ ψ) ∧ ¬ϑ.

Now observe that by (¬∧) we have

¬((ϕ ⊃ ϑ) ∧ (ψ ⊃ ϑ)) +B ¬(ϕ ⊃ ϑ) ∨ ¬(ψ ⊃ ϑ)

and, applying (¬ ⊃) and (xviii), we obtain

¬(ϕ ⊃ ϑ) ∨ ¬(ψ ⊃ ϑ)) +B (ϕ ∧ ¬ϑ) ∨ (ψ ∧ ¬ϑ).

Hence, by the transitivity of +B, we have

¬((ϕ ⊃ ϑ) ∧ (ψ ⊃ ϑ)) +B (ϕ ∨ ψ) ∧ ¬ϑ.

Now, by (¬ ⊃) we have (ϕ ∨ ψ) ∧ ¬ϑ +B ¬((ϕ ∨ ψ) ⊃ ϑ), so the result
immediately follows.

To see that +B ((ϕ ⊃ ϑ) ∧ (ψ ⊃ ϑ)) ⊃ ((ϕ ∨ ψ) ⊃ ϑ), note that using
(∨ ⊃) we obtain ϕ ⊃ ϑ,ψ ⊃ ϑ +B (ϕ ∨ ψ) ⊃ ϑ, Hence, by Proposition 1.4
(xvi), the result easily follows.
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It remains to prove that

+B ¬((ϕ ∨ ψ) ⊃ ϑ) ⊃ ¬((ϕ ⊃ ϑ) ∧ (ψ ⊃ ϑ)).

By (¬ ⊃) we have

¬((ϕ ∨ ψ) ⊃ ϑ) +B (ϕ ∨ ψ) ∧ ¬ϑ.

Using again (¬ ⊃) and Proposition 1.4 (xviii), we have

(ϕ ∧ ¬ϑ) ∨ (ψ ∧ ¬ϑ) +B ¬(ϕ ⊃ ϑ) ∨ ¬(ψ ⊃ ϑ).

By (¬∧) we have

¬(ϕ ⊃ ϑ) ∨ ¬(ψ ⊃ ϑ) +B ¬((ϕ ⊃ ϑ) ∧ (ψ ⊃ ϑ)).

Hence, by the transitivity of +B, it will be enough to prove that

(ϕ ∨ ψ) ∧ ¬ϑ +B (ϕ ∧ ¬ϑ) ∨ (ψ ∧ ¬ϑ).

To see this, note that by (⊃ ∨) it is easy to show that ϕ,¬ϑ +B (ϕ ∧ ¬ϑ) ∨
(ψ ∧ ¬ϑ) and ψ,¬ϑ +B (ϕ ∧ ¬ϑ) ∨ (ψ ∧ ¬ϑ). Hence we have

ϕ +B ¬ϑ ⊃ ((ϕ ∧ ¬ϑ) ∨ (ψ ∧ ¬ϑ))

and
ψ +B ¬ϑ ⊃ ((ϕ ∧ ¬ϑ) ∨ (ψ ∧ ¬ϑ)).

Now, using (∨ ⊃), we obtain

ϕ ∨ ψ +B ¬ϑ ⊃ ((ϕ ∧ ¬ϑ) ∨ (ψ ∧ ¬ϑ)),

hence
ϕ ∨ ψ,¬ϑ +B (ϕ ∧ ¬ϑ) ∨ (ψ ∧ ¬ϑ).

Now from this the result easily follows.

At this point we may observe that, while the “weak” implication ⊃ shares
perhaps more properties with the intuitionistic one, it is the “strong” impli-
cation → that is needed in order to define equivalence of formulas within the
logic. The presence in B of two implications may recall Nelson’s logic [25]:
the two logics are in fact closely related, as we are going to see below (Sec-
tion 2.2).

The properties stated in Proposition 1.4 (v) to (xv) are sufficient to
establish that the calculus introduced above is algebraizable (Cf. [30, Theo-
rem 4.2.4]):
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Theorem 1.6. The logic B is algebraizable with equivalence formula ϕ ↔ ψ
and defining equation ϕ ≈ ϕ ⊃ ϕ.

Proof. Using the intrinsic characterization given by Blok and Pigozzi [8,
Theorem 4.7], it is sufficient to check that the following conditions hold: for
all formulas ϕ,ψ, ϑ ∈ Fm,

(i) ϕ /+B ϕ ↔ (ϕ ⊃ ϕ)
(ii) +B ϕ ↔ ϕ

(iii) ϕ ↔ ψ +B ψ ↔ ϕ

(iv) ϕ ↔ ψ, ψ ↔ ϑ +B ϕ ↔ ϑ

(v) ϕ ↔ ψ +B ¬ϕ ↔ ¬ψ

(vi) ϕ1 ↔ ψ1, ϕ2 ↔ ψ2 +B (ϕ1 • ϕ2) ↔ (ψ1 • ψ2) for all formulas ϕ1,ϕ2,
ψ1,ψ2 and any connective • ∈ {∧,∨,⊗,⊕,⊃}.

And this follows directly from Proposition 1.4 (v) to (xv).

This obviously implies that any axiomatic extension of B, for instance
LB⊃, is also algebraizable with the same translations (see for instance [8,
21]). Notice that instead of the defining equation ϕ ≈ ϕ ⊃ ϕ we could
use ϕ ≈ ϕ → ϕ, and instead of the single equivalence formula ϕ ↔ ψ we
could use either of the following sets: {ϕ ⊃ ψ,ψ ⊃ ϕ,¬ϕ ⊃ ¬ψ,¬ψ ⊃ ¬ϕ}
or {ϕ → ψ,ψ → ϕ}. This indicates that both the {→}-fragment and the
{⊃,¬}-fragment of B are algebraizable; the equivalent algebraic semantics
of the {⊃,¬}-fragment of LB⊃ has been characterized and investigated in
[30, Section 5.5.] and [31]. The problem of axiomatizing the {→}-fragment
seems to be particularly challenging (as far as the authors are aware of, this
fragment does not coincide with any known logic).

2. Brouwerian bilattices

In this section we are going to introduce a class of algebras having a bilattice
reduct which will be proved to be the equivalent algebraic semantics of the
logic B. We start by recalling some preliminary definitions and results on
bilattices.

2.1. Bilattices

Definition 2.1 ([22]). A bilattice is an algebra B = 〈B,∧,∨,⊗,⊕,¬〉 such
that the reducts 〈B,∧,∨〉 and 〈B,⊗,⊕〉 are both lattices and the negation
¬ is a unary operation satisfying, for every a, b ∈ B,
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(neg 1) if a ≤t b, then ¬b ≤t ¬a

(neg 2) if a ≤k b, then ¬a ≤k ¬b

(neg 3) a = ¬¬a.

The order corresponding to the lattice 〈B,∧,∨〉, sometimes called the
truth lattice or t-lattice, is denoted by ≤t and is called the truth order,
while the order ≤k associated with 〈B,⊗,⊕〉, sometimes called the knowledge
lattice or k-lattice, is the knowledge order.

Usually in the literature it is required that the two lattices be complete
or at least bounded, but here none of these assumptions is made. The
minimum and maximum element of the lattice 〈B,∧,∨〉, in case they exist,
will be denoted, respectively, by f and t. Similarly, ⊥ and 3 will refer to the
minimum and maximum of 〈B,⊗,⊕〉 when they exist.

Perhaps the most interesting subclasses of bilattices are the interlaced
and the distributive ones. A bilattice is interlaced [18] whenever each one
of the four operations {∧,∨,⊗,⊕} is monotonic with respect to both orders
≤t and ≤k. That is, when the following quasi-equations hold:

x ≤t y ⇒ x ⊗ z ≤t y ⊗ z x ≤t y ⇒ x ⊕ z ≤t y ⊕ z

x ≤k y ⇒ x ∧ z ≤k y ∧ z x ≤k y ⇒ x ∨ z ≤k y ∨ z.

A bilattice is distributive [22] when all possible distributive laws concerning
the four lattice operations, i.e., all identities of the following form, hold:

x ◦ (y • z) ≈ (x ◦ y) • (x ◦ z) for every ◦, • ∈ {∧,∨,⊗,⊕}.

All the above-mentioned classes are varieties. Moreover, distributive bilat-
tices form a proper subvariety of the interlaced ones, which form a proper
subvariety of the class of all bilattices.

Figure 1 shows the double Hasse diagrams of some of the best-known
bilattices (the names adopted here have by now become more or less standard
in the literature). They should be read as follows: a ≤t b means that there
is a path from a to b which goes uniformly from left to right, while a ≤k b
means that there is a path from a to b which goes uniformly from the bottom
to the top. The four lattice operations are thus uniquely determined by the
diagram, while negation corresponds to reflection along the vertical axis
connecting ⊥ and 3.

The smallest non-trivial bilattice, FOUR, has a fundamental role among
bilattices, both from an algebraic and a logical point of view. FOUR is
distributive and is a simple algebra. It is in fact, up to isomorphism, the only
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Figure 1. Some examples of bilattices.

subdirectly irreducible distributive bilattice (this was proved for the bounded
case in [23], then generalized in [10] to the unbounded).

An important result about interlaced bilattices, proved in full generality
in [24, 10], is that they can be represented by means of a special kind of
product of two copies of one lattice. Let us introduce the construction (due
to Fitting [18]) involved in this result.

Let L = 〈L,6,7〉 be a lattice with associated order 8. The prod-
uct bilattice L 9 L = 〈L × L,∧,∨,⊗,⊕,¬〉 is defined as follows. For all
〈a1, a2〉 , 〈b1, b2〉 ∈ L × L,

〈a1, a2〉 ∧ 〈b1, b2〉 := 〈a1 6 b1, a2 7 b2〉
〈a1, a2〉 ∨ 〈b1, b2〉 := 〈a1 7 b1, a2 6 b2〉
〈a1, a2〉 ⊗ 〈b1, b2〉 := 〈a1 6 b1, a2 6 b2〉
〈a1, a2〉 ⊕ 〈b1, b2〉 := 〈a1 7 b1, a2 7 b2〉

¬〈a1, a2〉 := 〈a2, a1〉.

L9L is always an interlaced bilattice, and it is distributive if and only if L
is a distributive lattice. From the definition it follows immediately that

〈a1, a2〉 ≤k 〈b1, b2〉 iff a1 8 b1 and a2 8 b2

〈a1, a2〉 ≤t 〈b1, b2〉 iff a1 8 b1 and b2 8 a2.

The above-mentioned representation theorem states that any interlaced
bilattice can be represented as a product of this form [10, Proposition 3.13]:

Theorem 2.2. Let B be an interlaced bilattice. Then:

(i) there is a lattice L such that B ∼= L 9 L
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(ii) B is distributive if and only if L is a distributive lattice

(iii) the lattice of congruences of B is isomorphic to the lattice of congru-
ences of L.

Notice that item (iii) of the above theorem has a special interest from
a universal algebraic point of view, as it implies that questions on con-
gruence lattices of interlaced bilattices (congruence-permutability, subdirect
irreducibility etc.) can be reduced to questions concerning lattices. An ap-
plication of this is the following result [10, Theorem 3.19]: the variety of
distributive bilattices is generated by its four-element member FOUR.

The lattice-theoretic notion of filter also has a bilattice counterpart that
plays an important role on a logical level.

Given a bilattice B, we call a subset F ⊆ B a bifilter if F is a filter of
both lattice orders of B. It is easy to see that bifilters form a closure system,
so it is possible to define an operator of bifilter generation just as one does for
lattice filters. [10] contains several results on bifilters in interlaced bilattices,
among which we just cite the following [10, Proposition 3.18]:

Proposition 2.3. A subset F ⊆ L × L of an interlaced bilattice L9 L is a
bifilter if and only if there is a lattice filter F ′ ⊆ L of L such that F = F ′×L.

2.2. Brouwerian bilattices

In this section we are going to expand the bilattice language considered above
with a new binary operation that on a logical level will play the role of an
implication. The class of algebras thus obtained, that we define through
an equational presentation, will be proved to be the equivalent algebraic
semantics of the logic B.

Definition 2.4. An algebra B = 〈B,∧,∨,⊗,⊕,⊃,¬〉 is a Brouwerian bilat-
tice if the reduct 〈B,∧,∨,⊗,⊕,¬〉 is a bilattice and the following equations
are satisfied:

(B1) (x ⊃ x) ⊃ y ≈ y

(B2) x ⊃ (y ⊃ z) ≈ (x ∧ y) ⊃ z ≈ (x ⊗ y) ⊃ z

(B3) (x ∨ y) ⊃ z ≈ (x ⊃ z) ∧ (y ⊃ z) ≈ (x ⊕ y) ⊃ z

(B4) x ∧ ((x ⊃ y) ⊃ (x ⊗ y)) ≈ x

(B5) ¬(x ⊃ y) ⊃ z ≈ (x ∧ ¬y) ⊃ z.
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As we have done before for propositional formulas, we shall write x → y
as an abbreviation for (x ⊃ y)∧ (¬y ⊃ ¬x). Brouwerian bilattices obviously
form a variety. An interesting subclass of Brouwerian bilattices is the variety
of classical implicative bilattices1, defined as the Brouwerian bilattices that
additionally satisfy the following (Peirce’s) equation:

((x ⊃ y) ⊃ x) ⊃ x ≈ x ⊃ x.

As we shall explain below, the relation between the above classes is analogous
to the relation between (generalized) Heyting algebras and (generalized)
Boolean algebras. Let us note that within the context of classical implicative
bilattices the two implication operations are interdefinable, for the following
equation is valid in this variety [2, Proposition 3.31]:

x ⊃ y ≈ y ∨ (x → (x → y)).

We list below some interesting arithmetical properties of Brouwerian
bilattices. In order to simplify the notation, we use the following abbrevi-
ation: for any element a of a Brouwerian bilattice, we write E(a) to mean
that a = a ⊃ a holds.

The proof of the following proposition is quite long and uses several lem-
mas. In order to save space, we omit it and refer the interested reader to [30,
Propositions 4.3.2, 4.3.3] (some items are also proved in [9, Proposition 4.8]).

Proposition 2.5. Let B be an Brouwerian bilattice. Then, for all a, b, c ∈ B:

(i) a ⊃ (b ⊃ c) = (a ⊃ b) ⊃ (a ⊃ c)
(ii) a ⊃ (b ∧ c) = (a ⊃ b) ∧ (a ⊃ c)
(iii) a ⊃ (b ⊗ c) = (a ⊃ b) ⊗ (a ⊃ c)
(iv) a → b = (a ⊃ b) ⊗ (¬b ⊃ ¬a)
(v) a → (b → c) = b → (a → c)
(vi) (a ⊃ a) ⊕ ¬(a ⊃ a) = (b ⊃ b) ⊕ ¬(b ⊃ b) = 3
(vii) E(a) if and only if 3 ≤t a

(viii) if 3 ≤t a and 3 ≤t a ⊃ b, then 3 ≤t b

1These algebras were introduced through a different equational presentation and stud-
ied in [28] under the name of “implicative distributive bilattices with regular negation”. In
[30] they are called just “implicative bilattices”, but we consider the terminology adopted
in the present paper more adequate, as it suggests the relation between these algebras
and the classical implicative lattices of [14] established by our representation result (see
Theorem 2.6 below).
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(ix) a ≤t a ⊗ b if and only if 3 ≤t a ⊃ b

(x) a ≤t b if and only if E(a ⊃ b) and E(¬b ⊃ ¬a)
(xi) a ≤k b if and only if E(a ⊃ b) and E(¬a ⊃ ¬b).

Item (vi) of the previous proposition implies that in any Brouwerian
bilattice B there is an algebraic constant which is moreover the top element
of the k-lattice reduct of B. It also follows that any Brouwerian bilattice
has a minimal non-empty bifilter F (3) which is generated by 3, given by

F (3) = {a ∈ B : 3 ≤t a} = {a ∈ B : E(a)}.

The elements of F (3) play, from a logical point of view, the role of desig-
nated elements of our logic: this can be easily guessed if we read (viii) as
an algebraic counterpart of modus ponens. Finally, note that (x) and (xi)
indicate that both lattice orders are explicitly definable using just {⊃,¬}.

In [9] it is proved that the bilattice reduct of any Brouwerian bilattice
is interlaced (in fact, it is distributive). This result suggests that it may
be possible to represent Brouwerian bilattices by means of a product con-
struction similar to the one introduced above for product bilattices. This is
indeed the case and the required construction is just a slight modification of
the previous one.

Let L = 〈L,6,7, \, 1〉 be a Brouwerian lattice2, i.e., an algebra such that
〈L,6,7, 1〉 is a lattice with maximum element 1 and the following residuation
condition is satisfied: for all a, b, c ∈ L,

a 6 b ≤ c if and only if b ≤ a\c.

We denote by L9L the algebra 〈L×L,∧,∨,⊗,⊕,⊃,¬〉 whose bilattice reduct
is the usual product bilattice 〈L,6,7〉 9 〈L,6,7〉 and where the operation
⊃ is defined, for all a1, a2, b1, b2 ∈ L, as

〈a1, a2〉 ⊃ 〈b1, b2〉 = 〈a1\b1, a1 6 b2〉.

Then L9L is a Brouwerian bilattice3. Conversely, we have the following [9]:

2Also called generalized Heyting algebras [12], Brouwerian algebras [16], implicative
lattices [26] or relatively pseudo-complemented lattices [29]. Note also that some authors
call “Brouwerian lattices” structures that are dual to ours.

3The product Brouwerian bilattice construction is very similar to the “twist-structure”
used in [26, 27] to represent the algebras there called N4-lattices, that constitute an alge-
braic semantics for the paraconsistent version of Nelson’s logic, as special products of two
copies of a Brouwerian lattice. In fact, it can be proved that N4-lattices coincide with the
{∧,∨,⊃,¬}-subreducts of Brouwerian bilattices.
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Theorem 2.6. Let B be a Brouwerian bilattice. Then:

(i) there is a Brouwerian lattice L such that B ∼= L 9 L
(ii) the lattice of congruences of B is isomorphic to the lattice of congru-

ences of L.

The required Brouwerian lattice L can be constructed in several ways.
Here we describe one that will be especially useful in the following sections.

Given a Brouwerian bilattice B = 〈B,∧,∨,⊗,⊕,⊃,¬〉, we define the
relation ∼ ⊆ B × B as follows:

a ∼ b iff E(a ⊃ b) and E(b ⊃ a). (1)

This relation is compatible with all the operations of the Brouwerian bilattice
except the negation [30, Corollary 4.3.6], i.e., it is a congruence of the reduct
〈B,∧,∨,⊗,⊕,⊃〉. We may therefore consider the quotient algebra

〈B/∼,∧,∨,⊗,⊕,⊃〉 ,

in which ∧ = ⊗ and ∨ = ⊕, that turns out to be the Brouwerian lattice
we were looking for. Notice that the relation defined above can also be
characterized as follows: a ∼ b if and only if a and b generate the same
bifilter (cf. [10, Section 3.3]).

In the particular case in which B is a classical implicative bilattice, i.e.,
a Brouwerian bilattice satisfying Peirce’s equation, then the lattice L such
that B ∼= L 9 L is indeed a classical implicative lattice, i.e., L additionally
satisfies the following equation: (x\y)\x ≈ x.

The above representation results should clarify why we chose to call
the above classes of bilattices with implication “Brouwerian” and “classical
implicative”. Notice also that classical implicative lattices coincide, up to
algebraic signature, with bottom-less subreducts of Boolean algebras (some-
times called generalized Boolean algebras) or, equivalently, relatively comple-
mented lattices with top element; similarly, Brouwerian lattices correspond
to bottom-less subreducts of Heyting algebras.

In [9] it is proved that Theorem 2.6 may be used to establish a one-
to-one correspondence between subquasivarieties of Brouwerian lattices and
subquasivarieties of Brouwerian bilattices (the minimal non-trivial ones be-
ing classical implicative lattices and classical implicative bilattices), which
moreover extends to a categorical equivalence among the corresponding cat-
egories.

An easy consequence of Theorem 2.6 is that, since the lattice reduct of
any Brouwerian lattice is distributive, we may invoke Theorem 2.2 (ii) to
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conclude that the bilattice reduct of any Brouwerian bilattice is distribu-
tive as well. Notice also that, as happened with interlaced bilattices, the
algebraic properties that depend on the lattice structure of congruences are
exactly the same in Brouwerian lattices and Brouwerian bilattices. Thus,
for instance, the variety of Brouwerian bilattices is the variety of arithmeti-
cal, as is Brouwerian lattices. Also, a Brouwerian bilattice is subdirectly
irreducible if and only if the corresponding Brouwerian lattice is, and so on.

2.3. Algebraizability of B

In this section we state the announced algebraizability result and character-
ize the reduced models of our logic. We shall need the following:

Lemma 2.7. For every axiom ϕ of B, the equation ϕ ∧ 3 ≈ 3 (sometimes
abbreviated 3 ≤t ϕ) is valid in the variety of Brouwerian bilattices.

Proof. Let B be a Brouwerian bilattice. By Theorem 2.6, we can as-
sume without loss of generality that B = L 9 L, where L = 〈L,6,7, \, 1〉
is a Brouwerian lattice. In this case 3 = 〈1, 1〉 and, for any 〈a1, a2〉 ∈ B,
the condition that 〈a1, a2〉 ∧ 3 = 3 is equivalent to a1 = 1. So, for in-
stance, in order to prove the case of (⊃ 1), we need to show that, for any
〈a1, a2〉, 〈b1, b2〉 ∈ B,

〈1, 1〉 ≤t 〈a1, a2〉 ⊃ (〈b1, b2〉 ⊃ 〈a1, a2〉) = 〈a1\(b1\a1), a1 6 b1 6 a2〉

i.e., that a1\(b1\a1) = 1, which is true in any Brouwerian lattice (see
[29, p. 53]). Similarly, the case of (⊃ 2) amounts to proving that, for all
a, b, c ∈ L,

(a\(b\c))\((a\b)\(a\c)) = 1

which is also true in Brouwerian lattices, as indeed a\(b\c) = (a\b)\(a\c).
All the other cases follow easily from well-known properties of Brouwerian
lattices, so we omit the proof.

We now have the following:

Theorem 2.8. The logic B is algebraizable with respect to the variety of
Brouwerian bilattices, with equivalence formula ϕ ↔ ψ and defining equation
ϕ ≈ ϕ ⊃ ϕ.

Proof. We will prove that Alg∗B is precisely the class of Brouwerian bi-
lattices. By [8, Theorem 2.17], we know that the class Alg∗B is axiomatized
by the following equations and quasiequations:
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(a) ϕ ≈ ϕ ⊃ ϕ for any axiom ϕ of B
(b) x ≈ x ⊃ x & x ⊃ y ≈ (x ⊃ y) ⊃ (x ⊃ y) ⇒ y ≈ y ⊃ y

(c) x ↔ y ≈ (x ↔ y) ⊃ (x ↔ y) ⇒ x ≈ y.

In order to prove that the variety of Brouwerian bilattices is contained in
Alg∗B, it is then sufficient to prove that any Brouwerian bilattice B satisfies
(a) to (c). Note that by Proposition 2.5 (vii) we have that, in any Brouwerian
bilattice, x ≈ x ⊃ x is equivalent to 3 ≤t x. Hence we see that (a) has been
proven in Lemma 2.7. As to (b), it follows from Proposition 2.5 (viii), while
(c) follows from Proposition 2.5 (x).
In order to prove that Alg∗B is a subclass of Brouwerian bilattices, we have
to show that any A ∈ Alg∗B satisfies all equations defining the variety of
Brouwerian bilattices, i.e. all equations defining the variety of bilattices plus
(B1)-(B5). To see this, using (a) and (c), it is enough to prove that, for any
equation ϕ ≈ ψ axiomatizing the variety of Brouwerian bilattices, it holds
that +B ϕ ↔ ψ. And this was shown in Proposition 1.5.

As a consequence of the previous theorem, we obtain the following [30,
Theorem 4.3.10]:

Corollary 2.9. The logic LB⊃ is algebraizable with respect to the variety of
classical implicative bilattices, with equivalence formula ϕ ↔ ψ and defining
equation ϕ ≈ ϕ ⊃ ϕ.

A key notion in algebraic logic is that of logical filter of a logic on a
given algebra A. It is defined as a subset of A that, for all homomorphisms
from the formula algebra to A, contains all the interpretations of the axioms
and is closed under the rules of the logic. In the case of our logic B, this
amounts to the following: D ⊆ A is a logical filter if, for all homomorphisms
v : Fm → A,

(i) v(ϕ) ∈ D for any axiom ϕ of B
(ii) v(ψ) ∈ D whenever v(ϕ), v(ϕ ⊃ ψ) ∈ D.

This notion is usually compared with a purely algebraic one, that in our case
we define as follows:

Definition 2.10. Given a Brouwerian bilattice B, a subset F ⊆ B is a
deductive filter if and only if {a ∈ B : a ≥t 3} ⊆ F and, for all a, b ∈ B, if
a ∈ F and a ⊃ b ∈ F , then b ∈ F .

The relationships among these notions are synthesized in the following
[30, Proposition 4.3.9]:
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Proposition 2.11. Let B be a Brouwerian (or a classical implicative) bi-
lattice and F ⊆ B. The following conditions are equivalent:

(i) F is a non–empty bifilter.

(ii) F is a deductive filter.

(iii) F is a logical filter of B (or of B plus Peirce’s law).

(iv) F is a lattice filter of the t-order and 3 ∈ F .

(v) F is a lattice filter of the k-order and {a ∈ B : a ≥t 3} ⊆ F .

Proof. As before, we assume that B = L 9 L for some Brouwerian lattice
L = 〈L,6,7, \, 1〉. Then, we know from Proposition 2.3 that F ⊆ B is a
bifilter if and only if F = F ′ × L where F ′ is a lattice filter of L.
(i) ⇒ (ii). Using the above characterization of bifilters, we have that, for
any element 〈a1, a2〉 ∈ B, it holds that 〈a1, a2〉 ≥t 3 = 〈1, 1〉 if and only if
a1 = 1. Since 1 ∈ F ′ because F ′ is a lattice filter, we have that 〈a1, a2〉 ∈ F .
Now suppose that 〈a1, a2〉, 〈a1, a2〉 ⊃ 〈b1, b2〉 ∈ F . Applying the definitions,
the assumptions mean that a1, a1\b1 ∈ F ′. So a1 6 (a1\b1) = a1 6 b1 ∈ F ′.
This implies that b1 ∈ F ′ and so 〈b1, b2〉 ∈ F . Hence, F is a deductive filter.
(ii) ⇒ (iii). Let F be a deductive filter and v : Fm → B a homomorphism.
By Lemma 2.7, for any axiom ϕ of B, it holds that v(ϕ) ≥t 3. So, by the
definition of deductive filter, we have that v(ϕ) ∈ F. Similarly, if v(ϕ), v(ϕ ⊃
ψ) ∈ F , then since v(ϕ ⊃ ψ) = v(ϕ) ⊃ v(ψ), we easily conclude that
v(ψ) ∈ F as well. Hence, F is a logical filter of B.
(iii) ⇒ (iv). Assume F is a logical filter. It follows from the definition that,
for any theorem ϕ of B and any homomorphism v : Fm → B, we have that
v(ϕ) ∈ F . By Proposition 1.4 (iii), we have that ϕ ⊃ ϕ is a theorem of B.
From this and (⊃ ⊕) we conclude, by MP, that (ϕ ⊃ ϕ)⊕¬(ϕ ⊃ ϕ) is also a
theorem. Then v((ϕ ⊃ ϕ) ⊕ ¬(ϕ ⊃ ϕ)) ∈ F as well, and by Proposition 2.5
(vi) we conclude that v((ϕ ⊃ ϕ)⊕¬(ϕ ⊃ ϕ)) = 3. So 3 ∈ F. To prove that
F is a t-filter, assume a, b ∈ F . Since any interpretation of the axiom (⊃ ∧)
belongs to F , we have a ⊃ (b ⊃ (a∧ b)) ∈ F , so by MP we obtain a∧ b ∈ F .
Similarly, if a ∈ F and a ≤t b, then a ∨ b = b, so we can apply MP to (⊃ ∨)
to conclude that b ∈ F.
(iv) ⇒ (v). Let F be a t-filter such that 3 ∈ F . It is then immediate to
conclude that {a ∈ B : a ≥t 3} ⊆ F . Now assume a, b ∈ F . Then a ∧ b ∈ F
because F is a t-filter. By the interlacing conditions we have that a ∧ b ≤t

a⊗b. Since F is an up-set w.r.t. ≤t, we conclude that a⊗b ∈ F. If a ∈ F and
a ≤k b, then a ⊕ b = b. The interlacing conditions imply [5, Theorem 5.3]
that a ⊕ b = (a ∧ 3) ∨ (b ∧ 3) ∨ (a ∧ b). Since a ∧ 3 ∈ F , we conclude that



Bilattices with Implications 673

a ⊕ b = b ∈ F as well.
(v) ⇒ (i). Clearly we only have to prove that the assumptions imply that
F is a t-filter. As before, we have that if a, b ∈ F , then a ⊗ b ∈ F . By
the interlacing conditions, a ⊗ b ≤k a ∧ b, so we conclude that a ∧ b ∈ F.
Now let a ∈ F and a ≤t b. By Proposition 2.5 (x), we have that a ≤t b
implies a ⊃ b ≥t 3. So, from the assumptions it follows that a ⊃ b ∈ F
and a ⊗ (a ⊃ b) ∈ F . The desired result will then follow from the fact that
a⊗ (a ⊃ b) ≤k b. To see this, let a = 〈a1, a2〉 and b = 〈b1, b2〉. Then we have
that

〈a1, a2〉 ⊗ (〈a1, a2〉 ⊃ 〈b1, b2〉) = 〈a1, a2〉 ⊗ 〈a1\b1, a1 6 b2〉
= 〈a1 6 (a1\b1), a2 6 a1 6 b2〉
= 〈a1 6 b1, a2 6 a1 6 b2〉.

So the result immediately follows from the definition of ≤k.

This result allows to characterize the reduced models of B as follows:

Theorem 2.12. A matrix 〈A, D〉 is a reduced model of B (or of B plus
Peirce’s law) if and only if A is a Brouwerian (or a classical implicative)
bilattice and D = {a ∈ A : E(a)} = {a ∈ A : 3 ≤t a}.

Notice that the set D coincides with the minimal non-empty bifilter F (3)
considered in the previous section. In the light of the representation theorem
and of Proposition 2.3, we may conclude that, for any Brouwerian bilattice
B = L 9 L, where L = 〈L,6,7, \, 1〉, it holds that D = {1}× L.
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