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Abstract

We construct a probabilistic coherence measure
for information sets which determines a partial
coherence ordering. This measure is applied in
constructing a criterion for expanding our beliefs
in the face of new information. A number of ide-
alizations are being made which can be relaxed
by an appeal to Bayesian Networks.

Introduction

Suppose that one receives information {R1, . . . ,Rn}
from n independent but less than fully reliable sources.
Is it rational to believe this information? Following a
tradition in epistemology that goes back to John Locke,
we let belief correspond to a sufficiently high degree of
confidence (Foley 1992, Hawthorne and Bovens 1999).
There are three factors that determine this degree of
confidence: (i) How surprising is the information? (ii)
How reliable are the sources? (iii) How coherent is
the information? First, suppose that the sources are
halfway reliable and the information is halfway coher-
ent. Then certainly the degree of confidence will be
greater when the reported information is less rather
than more surprising. Second, suppose that the in-
formation is halfway surprising and is halfway coher-
ent. Let truth-tellers provide fully reliable information
and let randomizers flip a coin for each proposition to
determine whether they will affirm or deny it. Then
certainly the degree of confidence will be greater when
the sources are more like truth-tellers than when they
are more like randomizers. Third, consider the follow-
ing story: a scientist runs two independent tests to
determine the locus of a genetic disease on the human
genome. In the first case, the tests respectively point to
two fairly narrow regions that just about overlap in a
particular region. In the second case, the tests respec-
tively point to fairly broad regions that have minimal
overlap in the very same region. Suppose that the tests
are halfway reliable and that this region is a somewhat
surprising locus for the disease. Then certainly the de-
gree of confidence that the locus of the disease is in
this region is greater in the former case, in which the

information is more coherent, than in the latter case,
in which the information is less coherent.
We define measures for each of these determinants of

the degree of confidence in a probabilistic framework.
The real challenge lies in developing a measure of co-
herence (cf. Lewis 1946, Bonjour 1985). This measure
defines a partial ordering over information sets. Sub-
sequently, we argue that belief expansion is a function
of the reliability of the sources and the coherence of
the new information with the information that we al-
ready believe. We construct an acceptance measure
which determines whether newly acquired information
can be added to our beliefs under alternative supposi-
tions about the reliability of the sources. Our calcu-
lations rest on some results in the theory of Bayesian
Networks. Throughout we have made some strong ide-
alizations. We show how these idealizations can be
relaxed by directly invoking Bayesian Networks.

The Model
For each proposition Ri (in roman script) in the in-
formation set, let us define a propositional variable
Ri (in italic script) which can take on two values,
viz. Ri and Ri (i.e. not-Ri) for i = 1, . . . , n. Let
REPRi be a propositional variable which can take on
two values, viz. REPRi, i.e. there is a report from
the proper source to the effect that Ri is true, and
REPRi, i.e. there is a report to the effect that Ri

is false. We construct a joint probability distribution
P overR1, . . . , Rn, REPR1, . . . , REPRn satisfying the
constraint that the sources are independent and less
than fully reliable.
We model independence by stipulating that P re-

spects the following conditional independences:

REPRi ⊥ Rj , REPRj|Ri for i 6= j; i, j = 1, 2, . . . , n
(1)

or, in words, REPRi is probabilistically independent
ofRj , REPRj , givenRi, for i 6= j and i, j = 1, 2, . . . , n.
What this means is that the probability that I will
receive a report that Ri given that Ri is the case or
given that Ri is not the case, is not affected by any
additional information about whether Rj is the case or
whether there is a report to the effect that Rj is the
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case. Each source tunes in on the item of information
that it is meant to report on: it may not always provide
an accurate report, but its report is not affected by
what other sources have to report or by other items
of information than the one it reports on (Lewis 1946,
Bovens and Olsson 1999).
We define a less-than-fully-reliable source as a source

that is better than a randomizer, but short of being a
truth-teller and make the simplifying idealization that
the information sources are equally reliable. We spec-
ify the following two parameters: P (REPRi|Ri) = p
and P (REPRi|Ri) = q for i = 1, . . . , n. If the informa-
tion sources are truth-tellers, then p = 1 and q = 0,
while if they are randomizers, then p = q > 0. We
model less-than-full-reliability by imposing the follow-
ing constraint on P :

P (REPRi|Ri) = p > q = P (REPRi|Ri) > 0 (2)

The degree of confidence in the content of the infor-
mation set is the posterior joint probability after all
the reports have come in:

P ∗(R1, . . . ,Rn) = P (R1, . . . ,Rn|REPR1, . . . ,REPRn)
(3)

The motivation for the definition of less-than-full re-
liability is that we are interested in cases in which in-
coming information raises our confidence in the con-
tent of the information set to different levels. When
the sources are randomizers, our confidence will be
unaffected (Huemer 1997, Bovens and Olsson 1999),
i.e. P ∗(R1, . . . ,Rn) = P(R1, . . . ,Rn); when they
are truth-tellers, our confidence will be raised to cer-
tainty, i.e. P ∗(R1, . . . ,Rn) = 1; and when they are
worse than randomizers, our confidence will drop, i.e.
P ∗(R1, . . . ,Rn) < P(R1, . . . ,Rn).

Expectation, Reliability and Coherence

It can be shown by the probability calculus, that, given
the constraints on P in (1) and (2),

P ∗(R1, . . . ,Rn) =
a0∑n

i=0 aix
i
, (4)

in which the likelihood ratio x = q/p (note that
0 < x < 1 for p > q > 0) and ai is the sum
of the joint probabilities of all combinations of val-
ues of the variables R1, . . . , Rn that have i negative
values and n − i positive values: e. g. for n = 3,
a2 = P (R1,R2,R3) + P (R1,R2,R3) + P (R1,R2,R3).
Note that

∑n
i=0 ai = 1.

We can directly identify the first determinant of the
degree of confidence in the information set. Note that
a0 = P (R1, . . . ,Rn) is the prior joint probability of the
propositions in the information set, i.e. the probabil-
ity before any information was received. This prior
probability is lower for more surprising information
and higher for less surprising information. Since more
surprising information is tantamount to less expected
information, let us call this prior probability the expec-
tation measure. It is easy to see that P ∗(R1, . . . ,Rn) is

a monotonically increasing function of a0. We can also
directly identify the second determinant, i.e. the reli-
ability of the sources. Note that P ∗(R1, . . . ,Rn) is a
monotonically decreasing function of x = q/p. Hence,
let us call r := 1 − x the reliability measure, since
P ∗(R1, . . . ,Rn) is a monotonically increasing function
of r and this measure ranges from 0 for sources that
are randomizers to 1 for sources that are truth-tellers.
It is more difficult to construct a coherence measure.

Consider the following analogy: to assess the impact
of a training program, we consider the rate of the stu-
dent’s actual performance level over the performance
level that he would have reached in an ideal training
program, all other things equal. Similarly, to assess the
impact of coherence, we consider the rate of the present
degree of confidence over the degree of confidence that
would have been obtained had the information set been
maximally coherent, all other things equal. The infor-
mation set would have been maximally coherent if and
only if R1, . . . ,Rn had all been coextensive. Let P be
the actual joint probability distribution. Construct a
joint probability distribution Pmax with the same ex-
pectation measure and the same reliability measure as
P , but R1, . . . ,Rn are all coextensive, i.e., on Pmax,
a0 is the same as on P , but an = 1− a0 =: a0, so that
ai = 0, for all i 6= 0, n. It follows from (4) that,

Pmax∗(R1, . . . ,Rn) =
a0

a0 + a0xn
. (5)

Hence, for a0 6= 0, the ratio

cx(R1, . . . ,Rn) =
P ∗(R1, . . . ,Rn)

Pmax∗(R1, . . . ,Rn)

=
a0 + a0x

n∑n
i=0 aix

i
(6)

is a measure of the impact of the coherence of the infor-
mation set on the degree of confidence in the content
of the information set. But note that this measure is
contingent on the value of the reliability measure: (6)
only provides us with a reliability-relative coherence
measure. This is unwelcome: there is a pretheoretical
notion of the coherence of an information set which has
nothing to do with the reliability of the sources that
provides us with their content. On the other hand,
this pretheoretical notion seems to be an ordinal rather
than a cardinal notion. And furthermore, it seems to
require a partial rather than a complete ordering over
information sets: for certain, though not for all pairs of
information sets, we are prepared to pass a judgment
that one set in the pair is more or less coherent than
the other.
It turns out that the reliability-relative coherence

measure indeed induces a partial ordering over infor-
mations sets which is not contingent on the reliabil-
ity of the sources. Consider two information sets of
size n. These sets can be represented by the marginal
probability distributions P and P ′ over R1, . . . , Rn. It
can be shown that for some P with 〈a0, . . . , an〉 and



P ′ with 〈a′0, . . . , a
′

n〉, the difference cx(R1, . . . ,Rn) −
c′x(R1, . . . ,Rn) has the same sign for any value of x
ranging from 0 to 1. Hence, the reliability-relative co-
herence measure cx(R1, . . . ,Rn) induces a partial co-
herence ordering over information sets that is not con-
tingent on the reliability of the sources. For infor-
mation pairs, i.e. for information sets containing ex-
actly two propositions, it can be shown that the fol-
lowing is a necessary and sufficient condition for in-
clusion in the partial coherence ordering: P and P ′

are such that (i) a0/a
′

0 ≤ a1/a
′

1 and a1 ≥ a′1, or, (ii)
a0/a

′

0 ≥ a1/a
′

1 and a1 ≤ a′1. For information sets in
general, it can be shown that the following is a suf-
ficient condition for inclusion in the partial coherence
ordering: P and P ′ are such that (i) ai/a

′

i < a0/a
′

0 < 1,
or, (ii) ai/a

′

i > a0/a
′

0 > 1, for i = 1, . . . , n− 1.
We provide an example of this condition for infor-

mation pairs. Suppose that we are trying to locate a
corpse of a murder somewhere in Tokyo. We draw a
grid of 100 squares over the map of the city so that it
is equally probable that the murder occurred in each
grid. We interview two independent less-than-fully-
reliable sources. Source 1 reports that the corpse is
somewhere in squares 41 to 60 and source 2 reports
that the corpse is somewhere in squares 51 to 70. In
this case, a0 = .10 and a1 = .20. This our base case.
Now consider alternate case A in which source 1 re-
ports squares 50 to 60 and source 2 reports squares 51
to 61. In this case, a′0 = .10 and a′1 = .02. The infor-
mation set in alternate case A is clearly more coherent
than in the base case. Notice that the condition for a
partial ordering is indeed satisfied. But now consider
alternate case B: source 1 reports squares 26 to 60 and
source 2 reports squares 41 to 75. In this case a′′0 = .20
and a′′1 = .30. Is the information set in alternate caseB
more coherent than in the base case? The proportion
of the reported squares that overlap in each report is
greater in the alternate case, which suggests that there
is more coherence. But on the other hand, the price
of getting more proportional overlap is that the over-
lapping area is less precise and that both sources make
a much broader sweep over the map, suggesting less
coherence. Indeed, in this case, we cannot pass judg-
ment whether the information set in alternate case B
is more coherent than in the base case. Notice that the
condition for a partial ordering is indeed not justified.

Belief Expansion

Suppose that we acquire various items of background
information from various sources and that our degree
of confidence in the content of the information set is
sufficiently high to believe the information. Now a new
item of information is being presented. Are we justified
to add this new item of information to what we already
believe? The answer to this question has something to
do (i) with the reliability of the information source as
well as (ii) with the plausibility of the new informa-
tion, given what we already believe, or in other words,

with how well the new information coheres with the
background information. The more reliable the source
is, the less plausible the new information needs to be,
given what we already believe, to be justified to add
the new information. The more plausible the new in-
formation is, given what we already believe, the less
reliable the source needs to be, to be justified to add
the new information. The challenge is: can a precise
account of this relationship be provided?

Our approach is markedly different from AGM be-
lief revision. In the AGM approach, the question is not
whether to accept new information or not, but rather,
once we have made the decision to accept the new in-
formation, how we should revise our beliefs in the face
of inconsistency (Makinson 1997, Olsson 1997). Our
approach shares a common motivation with the pro-
gram of non-prioritized belief revision. According to
Hansson (1997), we may not be willing to accept the
new information because “it may be less reliable (. . . )
than conflicting old information.” Makinson (1997)
writes that “we may not want to give top priority to
new information (. . . ) we may wish to weigh it against
old material, and if it is really just too far-fetched or
incredible, we may not wish to accept it.” However,
whereas the program of non-prioritized belief revision
operates within a logicist framework, we construct a
probabilistic model. The cost of this approach is that
it is informationally more demanding. The benefit is
that it is empirically more adequate, because it is sensi-
tive to degrees of reliability and coherence and to their
interplay in belief acceptance. In non-prioritized belief
revision, the reliability of the sources does not enter
into the model itself and the lack of coherence of an
information set is understood in terms of logical in-
consistency, which is only a limiting case in our model.
To introduce the approach, we address the question of
belief expansion. We believe that our model also car-
ries a promise to handle belief revision in general, but
this project is beyond the scope of this paper.

We need to make some simplifying assumptions
about the origin of the background information and
the new information: (a) the propositions in the
background information are provided by independent
sources, which are (b) less than fully reliable, (c)
equally reliable as the new source, and (d) indepen-
dent of the new source.

Our background information is contained in
{R1, . . . ,Rn}. Now suppose that we have a certain
threshold level for belief and that the degree of con-
fidence for the background information after having
received a report to this effect from independent less
than fully reliable sources is right at this level. (This
stipulation is not required if we model actual cases by
means of Bayesian Networks.) Now we are handed a
new item of information Rn+1 by an independent less
than fully reliable source. Then we will expand our
belief set from {R1, . . . ,Rn} to {R1, . . . ,Rn+1} if and



only if

P (R1, . . . ,Rn+1|REPR1, . . . ,REPRn+1) ≥

P (R1, . . . ,Rn|REPR1, . . . ,REPRn). (7)

Our sources are independent:

REPRi ⊥ Rj , REPRj|Ri for i 6= j; i, j = 1, . . . , n+ 1
(8)

(4) defines an acceptance measure for an information
set:

ex(R1, . . . ,Rm) = P ∗(R1, . . . ,Rm) =
a0∑m

i=0 aix
i

(9)

Considering (6) and (9), we can define this accep-
tance measure in terms of the reliability-relative co-
herence measure cx, provided that a0 6= 0:

ex(R1, . . . ,Rm) =
a0

a0 + a0xm
cx(R1, . . . ,Rm) (10)

¿From (7) and (9), it follows that we can expand our
belief set with a new item of information if and only if

ex(R1, . . . ,Rn+1) ≥ ex(R1, . . . ,Rn). (11)

We can make the following two observations:

(i) From (9) and (11), it is clear that whether we can
expand our beliefs or not, is a complex function of
the reliability of the sources and the dependence of
new on earlier information as expressed in the prob-
ability distribution over the variables R1, . . . , Rn+1.
The reliability of the sources is reflected in the like-
lihood ratio x and the dependence of new on earlier
information is reflected in the series 〈a0, . . . , an〉 for
ex(R1, . . . ,Rn) and in the series 〈a′0, . . . , a

′

n+1〉 for
ex(R1, . . . ,Rn+1).

(ii) From (10), it is clear that the acceptance mea-
sure is a weighted reliability-relative coherence mea-
sure. The weight tends to 1 for smaller values of x,
i.e. for more reliable sources, and for greater val-
ues of n, i.e. for larger information sets, so that
the acceptance measure will coincide with cx. We
have shown that this measure lets us construct a
coherence ordering over a pair of information n-
tuples, if certain conditions are met. We conjec-
ture that such an ordering can also be constructed
over pairs containing an information n-tuple and
an expansion of this n-tuple, i.e. over pairs of the
form {{R1, . . . ,Rn}, {R1, . . . ,Rn+1}}, if certain con-
ditions are met. Contingent on this conjecture, we
can make a substantial point: if there exists a deter-
minate answer to the relative coherence of the old
and the new information sets, then the more reliable
the sources are and the larger the information set is,
the more the question of belief expansion is deter-
mined by whether the new information set is or is
not more coherent than the old information set, and
not by the reliability of the sources.

The acceptance measure depends, at least to some
extent, on the value of the likelihood ratio x. But
what, one might ask, should we do when we have no
clue whatsoever about the reliability of the sources,
except that they are better than mere randomizers and
yet less than fully reliable? Let us model our limited
knowledge as a uniform distribution over the values p
and q under the constraint that p > q. Then we can
construct the following averaged acceptance measure:

E(R1, . . . ,Rm) =

∫ 1

0

∫ p

0

eq/p(R1, . . . ,Rm) dqdp

=

∫ 1

0

ex(R1, . . . ,Rm) dx (12)

We can formulate a general criterion for belief accep-
tance: when we have limited knowledge about the re-
liability of our information sources, we can expand our
belief set from {R1, . . . ,Rn} to {R1, . . . ,Rn+1} if and
only if

E(R1, . . . ,Rn+1) ≥ E(R1, . . . ,Rn). (13)

Bayesian Networks

Bayesian Networks represent (conditional) indepen-
dences between variables and when implemented on
a computer they perform complex probabilistic calcu-
lations at the touch of a keystroke. We are assuming
here that the reader has some familiarity with Bayesian
Networks (Cowell et. al. 1999, Jensen 1996, Neapoli-
tan 1990, Pearl 1988).
We construct a Bayesian Network that permits us

to read off the reliability-relative coherence measure of
an information set {R1, . . . ,Rn} in Figure 1. First, we
construct a Bayesian Network with nodes for the vari-
ables R1, . . . , Rn which represents the marginal prob-
ability distribution over these variables. Then we add
nodes for the variables REPR1, . . . , REPRn and draw
in an arrow from each node for the variable Ri to the
node for the variable REPRi and specify the con-
ditional probabilities in (2) for each arrow. By the
standard criterion of d-separation, we can now read
off the conditional independences in (1) from the net-
work. Subsequently, we construct a node for the vari-
able R1& . . .&Rn: we draw in the arrows and specify
conditional probabilities such that R1& . . .&Rn holds
if and only if R1, . . . , and Rn hold. We can now read off
P ∗(R1, . . . ,Rn): it is the probability of R1& . . .&Rn

after instantiating REPR1, . . . ,REPRn. To read
off Pmax∗(R1, . . . ,Rn), more construction is needed.
Notice that Pmax(Ri) = Pmax(R1& . . .&Rn) for
i = 1, . . . , n in the counterfactual case of maximal co-
herence, is equal to P (R1& . . .&Rn) in the actual case
where the information set may not be maximally co-
herent. Hence Pmax(R1, . . . ,Rn) is the posterior joint
probability of R1, . . . ,Rn, had we been informed in the
actual case by n less than fully reliable independent
sources that R1& . . .&Rn. So we add nodes for the
variables REPi&R (whose positive values states that
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 R 1  & . . . &  R n 

 R E P n & R  R E P 2 & R 
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 R E P R 1 

R E P R 2 

 R E P R n 
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Figure 1: Bayesian Network for coherence measure
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P ( R E P R i | R i )  =  p 
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Figure 2: Bayesian Network for belief expansion

the i-th source informs us that R1& . . .&Rn), draw in
the proper arrows and specify the proper conditional
probabilities. We can now read off Pmax∗(R1, . . . ,Rn):
it is the probability of R1& . . .&Rn after in-
stantiating REP1&R, . . . ,REPn&R. The measure
cx(R1& . . .&Rn) follows by (6).

We construct a Bayesian Network in Figure 2 to
determine whether belief expansion is warranted or
not. The construction of the nodes for the variables
R1, . . . , Rn+1 and REPR1, . . . , REPRn+1 should be
clear from our construction of the Bayesian Network
in Figure 1. This part of the Bayesian Network re-
spects the conditional independences in (8). Now we
add a node for the variable R1& . . .&Rn and a node
for the variable R1& . . .&Rn+1 and specify the condi-
tional probabilities so that R1& . . .&Rn holds if and
only if R1, . . . , and Rn hold and R1& . . .&Rn+1 holds
if and only if R1, . . . ,Rn and Rn+1 hold. We instan-
tiate REPR1, . . . ,REPRn and propagate the evidence
throughout the network. We can now read off the ac-
ceptance measure ex(R1, . . . ,Rn) which is the posterior
probability of R1& . . .&Rn. To raise the question of
belief expansion, this value should be greater than or
equal to our threshold value for belief. Subsequently,
we instantiate REPRn+1 and propagate the evidence

throughout the network. We can now read off the ac-
ceptance measure ex(R1, . . . ,Rn+1) which is the poste-
rior probability of R1& . . .&Rn+1. Depending on our
treshold value for belief, we can determine whether we
are justified to expand our beliefs with the proposition
Rn+1.
It is easy to see how the idealizations can be re-

laxed in the networks. We can stipulate alternative
reliability parameters for the sources. We can let one
source report on two items of information. We can
add arrows between the REPRi variables or between
some REPRi and Rj variables (for i 6= j) to model
certain types of dependence between the sources. It
suffices that P (R1, . . . ,Rn) is equal to or greater than
the threshold value for belief. Furthermore, even if
P (R1, . . . ,Rn+1) is below the threshold value for be-
lief, the model yields a marginal probability distribu-
tion over R1, . . . , Rn. Hence, the general question of
belief revision becomes a question of defining a func-
tion which maps joint probability distributions over a
set of propositional variables into sets of propositions
that are values of a subset of these variables and that
can reasonably be believed. Defining such a function
is beyond the scope of this paper.

Conclusion

(i) We have designed a procedure to determine a par-
tial coherence ordering over a set of information sets
of size n. If one information set is more coherent than
another on this ordering, then our degree of confidence
in the content of the former set will be greater than in
the content of the latter set, after having been informed
by independent and less than fully reliable sources, ce-
teris paribus. (ii) We have designed a probabilistic
criterion for (non-prioritized) belief expansion, which
determines whether it is rational to believe new infor-
mation, considering how reliable the sources are and
how well the new information coheres with the old in-
formation. (iii) If either the sources are sufficiently re-
liable or the information set sufficiently large, then the
question of belief expansion is largely determined by
whether the expanded information set is more coherent
than the original information set (provided that there
exists an ordering of this pair of information sets), and
only marginally by the reliability of the sources. (iv)
We have shown how a coherence ordering over infor-
mation sets can be constructed by means of Bayesian
Networks and how belief expansion can be modeled
by means of Bayesian Networks in an empirically ade-
quate manner.
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