
Fine Tuning Indexical Evidence 

Abstract: Proponents of the this-universe objection to fine-tuning arguments for a 

multiverse claim that while the multiverse hypothesis raises the probability that some 

universe is fine-tuned for life, it fails to raise the probability that this one is.  Because that is 

so, they further argue, those who take the fine-tuning of this universe as evidence for the 

multiverse hypothesis are guilty of a probabilistic fallacy.  I argue that a proper evaluation 

of the this-universe objection requires the development of a general, formal framework for 

reasoning probabilistically with evidence statements expressed using indexical terms (such 

as the statement This universe is fine-tuned).  I proceed to develop such a framework and 

then to apply it to the this-universe objection.  While my primary aim is to defend the this-

universe objection from recent rebuttals, a secondary aim is to exhibit the utility of the 

framework itself, which has the potential for wider application.  

Introduction 

Our best physical theories contain free parameters that had to take on extremely precise 

but apparently physically arbitrary values in order for our universe to be life permitting.  

Since our universe is one in which those parameters have such values, it is sometimes said 

to be “fine-tuned” for the existence of life.1  According to many physicists and philosophers, 

the fact our universe is fine-tuned provides evidence that it is part of a multiverse.2  

Because of the extraordinary degree of fine-tuning required, the argument goes, the 

 
1 For a recent overview of the evidence for fine-tuning, see (Barnes and Lewis 

2016). 

2 See for example (Leslie 1989), (Rees 2003), and (Tegmark 2014: 140, 362-363). 
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likelihood of the parameters taking on the life-permitting values in a single universe is 

extremely low.  But if there is a sufficiently large number of universes whose constants 

vary widely, almost certainly, some will be life permitting. 

Ian Hacking (1987) accused those who take fine-tuning as evidence for a multiverse 

of committing a probabilistic fallacy.  Roger White (2000; 2003) later took up and 

expanded upon a similar charge.  Those who take fine-tuning as evidence for a multiverse 

are, according to this charge, like a gambler who rolls a pair of dice and then infers it is 

more likely that many rolls have occurred upon observing that the outcome is a double six.  

The problem with that reasoning, of course, is that the outcome of any particular roll of a 

fair, standard pair of dice is independent of how many dice rolls occur.  Likewise, claim 

Hacking and White, the probability of this particular universe being fine-tuned is 

independent of how many universes there are. 

There is now a sizeable literature concerning whether the this-universe objection 

succeeds.3  In one of the most recent contributions, Yoaav Isaacs, John Hawthorne, and 

Jeffrey Sanford Russell (2022) argue that a proper evaluation of the this-universe objection 

requires us to turn our attention to the issue of how to reason probabilistically with so-

called “de se” or “self-locating” evidence.  That is, they argue, we need to turn our attention 

to how to reason probabilistically with evidence couched in terms of first-person indexical 

statements such as I exist in a fine-tuned universe.  When we do, they contend, things do 

not look promising for the this-universe objection.   

 
3 For an overview see (Manson 2022).  The label “this-universe objection” was 

introduced in (Manson and Thrush 2003). 
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In this paper, I argue, by contrast, that a proper evaluation of the this-universe 

objection requires the development of a more general framework for reasoning 

probabilistically with indexically couched evidence – not just with statements that employ 

the indexical ‘I’, but also with statements that employ indexical terms such as ‘here’, ‘now’, 

‘actually’, ‘this’, and the like.  I proceed to develop such a framework and then to deploy it 

in defense of the this-universe objection.  While my primary aim is to lend support to the 

this-universe objection, a secondary aim is to display the utility of the framework itself, 

which has the potential to shed light on other debates concerning how to reason with 

indexical evidence. 

1. The Problem of Indexical Evidence 

The this-universe objection, as stated above, centrally involves the claim that the 

multiverse hypothesis fails to raise the probability that this universe is fine-tuned.  How 

should we think, however, about the evidential impact of a statement such as This universe 

is fine-tuned? Is that statement epistemically equivalent to The universe I am in is fine-

tuned?  Does it have the status of a contingent a priori claim (at least relative to 

background information that includes the fact that our existence requires fine-tuning)?  

Does it essentially involve reference to the particular universe in which we actually find 

ourselves?  Isaacs, Hawthorne, and Russell (“IHR” from now on) maintain that our 

hesitancy concerning how to answer such questions casts doubt on the intuition upon 

which the this-universe objection relies.  As they put it, “We just don’t understand how 

singular evidence like this works nearly well enough to be confident in such judgements” 

(2022: 245). 
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White (2000: 262) himself did not originally cast his argument in terms of the 

indexical phrase ‘this universe’ but instead introduced the term ‘α’ as a rigid designator for 

our universe.  He further argued that since our background information informs us that, for 

any given possible universe that exists, whether it is fine-tuned is independent of how 

many universes there are, we are entitled to conclude that whether α is fine-tuned is 

independent of how many universes there are.   

But, as Kripke taught us, our background information concerning how a rigid 

designator was introduced can carry information about the non-essential properties had by 

its referent.  IHR (245-246) further argue that this can lead to cases in which epistemic 

probabilities pertaining to statements with rigid designators introduced in a manner 

similar to ‘α’ come apart from known objective probabilities. (I will consider one such 

purported case in Section 5). 

Similar difficulties eventually led White (2003: 243-244) to abandon relying on the 

use of terms such as ‘α’ and to focus instead on statements that employ first-person 

indexicals.  In particular, according to White, what is most important to think about when 

evaluating whether a given observation O supports a given statement M (from a first-

person perspective) is whether I am more likely to make O given M.  By focusing on I-

statements, however, White makes the fate of his argument turn on the question of how we 

should reason probabilistically with de se information, or with what has also come to be 

known as “self-locating evidence.”   

IHR demonstrate, furthermore, that three of the most commonly proposed rules for 

reasoning probabilistically with such evidence deliver the result that the statement I exist 

in a fine-tuned universe raises the probability of the multiverse hypothesis.  They also 
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provide powerful formal considerations in favor of the conclusion that any plausible rule of 

this sort delivers the same result.  On the basis of these preliminary investigations, they 

tentatively conclude that there are no plausible ways of thinking about how to reason 

probabilistically with self-locating evidence that vindicate the this-universe objection. 

2. On the Need to Bring Back ‘This Universe’ 

Even if IHR’s formal results are correct, however, it is not clear that they succeed in 

undermining the this-universe objection.  The problem is that the information I exist in a 

fine-tuned universe is accompanied by numerous other items of indexical information.  It is 

accompanied, for example, by the information I exist, This universe exists, and This 

universe is fine-tuned.  Perhaps some but not all these statements are evidentially relevant 

to the multiverse hypothesis.  The importance of teasing apart just which of these items of 

information are evidentially relevant was highlighted, furthermore, in some of the earliest 

discussions of the this-universe objection.   

Shortly after the publication of White’s original paper on this topic, Rodney Holder 

(2002) objected that the universe we call ours was more likely to exist (and therefore also 

more likely to be fine-tuned) given a multiverse hypothesis.  In a subsequent article, Kai 

Draper, Paul Draper, and Joel Pust (2007) responded to Holder on White’s behalf as 

follows:  

White takes the existence of our universe to be a part of the background information 

…  Further, he does this presumably for the good reason that he is interested in 

evaluating a fine-tuning argument for [the multiverse hypothesis].  He does not 

address the question of whether the mere existence of our universe confirms [the 

multiverse hypothesis over the single-universe hypothesis]. (9)  
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Thus, on the Draper-Draper-Pust reading of the this-universe objection, the crucial issue is 

not whether the statement I exist in a fine-tuned universe confirms the multiverse 

hypothesis on an empty body of background information, but whether it does so on 

background information that already includes the fact that this universe exists.  That is 

because we are not interested in evaluating a cosmological argument for the multiverse 

hypothesis but a fine-tuning one. 

If this is indeed the best way to understand the this-universe objection, however, 

then it is a mistake to attempt to state that objection without employing talk of “this 

universe.”  What needs to be done instead is to keep such talk while facing head on the 

problems associated with how to think about reasoning probabilistically with indexical 

information, not just with I-statements, but also with this-statements, here-statements, 

now-statements, statements expressed using actually operators, and the like.   

In the remainder, I proceed to develop a formal framework for reasoning with 

probabilities pertaining to such items of information, and then to deploy that framework in 

defense of the this-universe objection.  My defense comes primarily in the form of an 

existence proof.  Contrary to what IHR maintain, I demonstrate there is at least one 

plausible way of formally modeling reasoning with indexical evidence that vindicates the 

this-universe objection.  In the process, I also aim to exhibit the utility of the framework 

itself, which in turn lends further support to its results. 

3. A More General Framework for Reasoning Probabilistically with Indexical Evidence 

3.1. Basic Elements 

Like many other participants in this debate, I take for granted that evidential reasoning is 

best modeled in a Bayesian manner, in which evidential support is construed in terms of 
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the raising or lowering of epistemic probabilities.  I further take for granted that epistemic 

prior probabilities are well-defined even with respect to extremely sparse bodies of 

background information, in particular, with respect to background information that 

excludes a great deal of what we might consider “old evidence.”  Such background 

information must be allowed to exclude even such “Cartesian” facts as that there are 

conscious beings.4  The claim that there are epistemic probabilities defined relative to such 

sparse bodies of background information is controversial.5  But it is frequently taken for 

granted in debates concerning fine-tuning arguments. 

I will assume that the prior probability functions at issue take as their domain a 

class of statements.  Statements are construed as sentence types that are truth-evaluable at 

contexts.  When it comes to how we will think about the semantics of statements, we will 

help ourselves to David Kaplan’s (1989) distinction between a statement’s content and its 

character.  The content of a statement is the proposition it expresses at a given context.  

The character of a statement may be modeled as a (at least partial) function from contexts 

to contents.   

I will also assume that the correct account of how statements acquire their character 

is a compositional one in which statements are conceived of as ordered arrangements of 

subsentential components that also have characters (modeled as functions from contexts 

to referents for referring terms, from contexts to properties for predicates, etc.).  Thus 

 
4 See (Monton 2006) and (Meacham 2016) for further discussions of such 

conceptions of epistemic probabilities. 

5 See Pust (2007) for an argument against this claim.  
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statements may be conceived of as ordered arrangements of subsentential components, 

where the latter are (at least for modeling purposes) to be identified with their characters.   

While I will make no attempt to provide such a compositional account, I will at times 

take for granted certain intuitive claims about how such an account would go.  E.g. I will 

assume that at contexts at which a given individual, b, occupies the subject position, the 

referent of the first-person indexical term ‘I’ is b.  I will assume that statements have 

contents even at contexts in which their subjects fail to utter or even so much as entertain 

the statement in question.  E.g. I will assume that the statement I am hungry has, at 

contexts at which a given individual, b, occupies the subject position, the content that b is 

hungry, regardless of whether b utters or entertains that statement.   

There may well be some cases in which a statement fails to have a content at a 

context because that context fails to supply what is needed to select one.  E.g. the statement 

that object is red might fail to have a content at a context in which no object is being 

gestured toward, appropriately attended to, etc.  Nevertheless, in the remaining discussion 

I will restrict myself to statements that clearly do get assigned a content at every context 

found in the relevant model.6   

For modeling purposes, I will adopt the standard device of identifying contents with 

sets of possible worlds.  Characters are, therefore, to be modeled as functions from contexts 

 
6 I will also not fuss overly much about just what counts as an indexical term.  Even 

if our overall semantic theory ought to distinguish between indexicals and demonstratives, 

for example, I plan to ignore such distinctions, as they do not matter for my present 

concerns. 
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to sets of possible worlds.  Contexts may, in turn, be modeled as ordered triples containing 

a subject, a possible world in which that subject exists, and a time (or perhaps time 

interval) at which that subject exists in that world.  I do not insist that the worlds that 

figure into our models be regarded as metaphysically possible.  Some alternative modality, 

such as a species of epistemic possibility, might serve better.   

It is important for our modeling purposes, however, that possible worlds are not 

distinguished from one another for reasons having solely to do with contextual variation in 

or uncertainty about the contents of expressions.  Suppose, for example, that I am not 

identical to Jane (where the character of ‘Jane’ assigns the same referent to each context) but 

(owing to amnesia) find myself rightfully wondering whether I might be Jane.  There is a 

sense in which it is an epistemic possibility for me that I am Jane.  Even so, our models will 

have it that the set of possible worlds assigned by the character of I am Jane to any context 

at which I am the subject is the empty set. 

Each model will be assumed to contain at least one context (and therefore at least one 

subject, one world, and one time).  A significant limitation on the sort of models I will discuss 

is that they will all be assumed to contain only a finite number of possible worlds and a finite 

number of contexts.  A complete treatment of the issues at hand would involve finding a way 

of generalizing to the infinite case.  But that is a project for another occasion. 

3.2. Absolute Probabilities 

So far the models recognized by our framework contain individuals, times, and possible 

worlds, out of which are set-theoretically built contexts, contents, and characters (or at 

least model theoretic representations thereof).  We may now introduce probabilities into 
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these models by imposing an epistemic probability measure on the sets of worlds they 

contain.  This will be done as follows:  

Each set of worlds included in a model is assigned a measure.  The set of all possible 

worlds found in the model is assigned measure 1.  The empty set is assigned measure 0.  

Every other set is assigned some measure greater than 0 but less than 1.  These measures 

are to be assigned so as to ensure that for any given set of worlds, S, with a measure, m, the 

measures of the subsets included in any given partition of S add up to m.   

The absolute probability of a given set of worlds is to be identified with its measure.  

Note that (as our current terminology would have it) absolute probabilities are not to be 

conflated with unconditional probabilities.  As the discussion below will make clear, 

absolute probabilities come in both unconditional and conditional varieties.  Rather, 

absolute probabilities are to be contrasted with what (in the next section) we will refer to 

as “indexical probabilities”. 

Statements are also to be assigned absolute probabilities relative to contexts.  E.g. 

Contexts at which Jane occupies the subject position will assign to the statement I am Jane 

the absolute probability corresponding to the set of worlds at which Jane exists (at the time 

included in that context).  And contexts at which someone other than Jane occupies the 

subject position will assign an absolute probability to that statement corresponding to the 

measure of the empty set (i.e. they will assign an absolute probability of 0). 

More generally, for each context, Ci, there is an associated absolute probability 

function, Ai(…).  For any given statement, r, Ai(r) is the probability of the set of worlds that 

r’s character assigns to Ci.  For any statements r and k, Ai(r│k) = 
Ai(𝑟&𝑘)

Ai(𝑘)
.  Furthermore, the 

statement A(r) = ϕ is true at a given context, Ci, when Ai(r) = ϕ.  Likewise, the statement 
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A(r│k) = ϕ is true at a given context, Ci, when Ai(r│k) = ϕ.  We may say, metaphorically 

speaking, that each context has an “opinion” about what the referents of the relevant 

indexical terms are and thus an “opinion” about which assignments of probability are 

appropriate. 

3.3. Indexical Probabilities 

Absolute probabilities do not themselves encode any epistemic uncertainty about the 

referents of indexical terms.  Nevertheless, because such uncertainty can arise, one might 

find oneself rationally uncertain of the absolute probability of a given statement, even in 

the absence of other forms of uncertainty.  E.g. if I am uncertain about whether I am 

identical to Jane, then I will be aware that the absolute probability that I am Jane given that 

Jane exists at the current time is either 1 or 0, but I will be uncertain as to which is the case. 

What I am calling “indexical probabilities” correspond to epistemic (prior) 

probabilities that are capable of encoding such uncertainty.  I will use the notation ‘P(…)’ to 

represent the indexical probability function.  E.g. let ‘J’ stand for the statement Jane exists at 

the current time, let ‘IJ’ stand for the statement that I am Jane, and let ‘B’ stand for a 

statement that encapsulates my background information.  While it must be that A(IJ│J&B) 

= 1 or A(IJ│J&B) = 0, it can also be true that 0 < P(IJ│J&B) < 1.   

Note that here conditional absolute probabilities are being thought of as being 

defined by unconditional absolute probabilities.  Indexical probabilities are, in turn, being 

thought of as absolute probabilities with uncertainty concerning the referents of indexical 

terms layered into them.  Thus absolute unconditional probabilities serve as the most 

fundamental kind of epistemic probability recognized by the framework.   
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We have also seen that since different contexts make different assignments of 

referents to indexical terms, each context may be thought of as having its own “opinion” as 

to what the values of unconditional absolute probabilities happen to be.  A natural thought, 

then, is that the values of indexical probabilities are (somehow) to be extracted from these 

opinions.  But just exactly how should this be done?   

3.4. Averaging Rules 

If we had no reason to prefer the opinion of any given context over any other, then the most 

natural way of assigning an indexical probability to a given statement would be simply to 

take the average value of the absolute probability each context assigns to that statement.  If 

we do have reason to prefer the opinions of some contexts over others, then we might take 

the appropriately weighted average instead.  The result of this intuitive suggestion is that 

we arrive at a class of rules for extracting indexical probabilities that I will refer to as 

“averaging rules.” 

More formally, an averaging rule may be characterized as follows: For each context, 

Ci, there is a weighting function that assigns some real number, ѱi, to that context, where 0 

≤ ѱi ≤ 1, and  ∑ ѱii  = 1.  For any given statement, r, furthermore, its unconditional 

indexical probability is the ѱ-weighted sum of the opinions that each context has regarding 

its unconditional absolute probability.  I.e. P(r) = ∑ ѱiAi(𝑟)i .  Accordingly, for any given 

statements r and k, the conditional epistemic probability of r given k is given by P(r│k) = 

∑ ѱiAi(𝑟&𝑘)i

∑ ѱiAi(𝑘)i
.  Different averaging rules (for a given model) correspond to different weighting 

functions. 

Aside from being intuitively natural, averaging rules turn out to have many 

attractive properties.  We will see, for example, how various weighting functions 
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correspond to intuitively natural generalizations of standard rules for thinking about self-

locating evidence.  We will also see how averaging rules allow us to make fine-grained 

distinctions between just which items of indexical information are evidentially relevant to a 

given hypothesis.   

Other attractive features include the manner in which averaging rules vindicate 

intuitive relationships between indexical and absolute probabilities.  Given that indexical 

probabilities are being conceived of as absolute probabilities with additional uncertainty 

concerning the referents of indexical terms layered into them, we should expect the values 

of such probabilities to coincide for statements that contain no indexical terms.  That is, for 

any non-indexical statement, r, we should expect that P(r) = A(r).  Averaging rules 

vindicate this result.   

It is proven in Appendix A, furthermore, that averaging rules vindicate a deference 

principle regarding the relationship between conditional indexical probabilities and 

conditional absolute probabilities that is analogous to David Lewis’s (1980) famous 

Principal Principle.  This principle (“The Absolute to Indexical Probability Principle”) may 

be stated (schematically) as follows: 

(AIP) P(r│k&A(r│k) = ϕ) = ϕ, provided that P(k&A(r│k) = ϕ) > 0. 

In Section 5, we will also see how averaging rules allow us to naturally deflect alleged 

counterexamples to this principle. 

4. Simple Averaging and a Toy Model 

In order to help the reader become acquainted with how all of this apparatus works, as well 

as to obtain some interesting results in their own right, I will begin by applying a rule that I 

will refer to as “Simple Averaging” to the this-universe objection.  This will in turn help set 
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the stage for a consideration of how other rules apply in Sections 7 and 8.  According to 

Simple Averaging, the weighting function remains constant.  That is, it gives the opinion of 

each context exactly the same weight.  For conditional indexical probabilities, Simple 

Averaging yields the result that, for any statements r and k, P(r│k) = 
∑ Ai(𝑟&𝑘)i

∑ Ai(𝑘)i
.   

I will proceed by considering a simple, toy model.  I prove in Appendix B, however, 

that the results of my discussion generalize to more realistic models.  So as not to get 

distracted by some potentially irrelevant metaphysical and scientific questions, the toy 

model revolves around a modified version of one of White’s (2000: 268) own analogies, 

one that replaces universes with “rooms” and possible occupants with “sleepers” who may 

or may not wake up.   

Here is the setup: 

Possibly, either one (or both) of two rooms, Room 1 and Room 2, exist.  

Whether each room exists is determined as follows: Two fair coins are tossed 

simultaneously, Coin 1 and Coin 2.  Room 1 is brought into existence iff Coin 1 

lands heads.  Room 2 is brought into existence iff Coin 2 lands heads.  If Room 

1 exists, it is occupied by the sleeper Una.  If Room 2 exists, it is occupied by 

the sleeper Dua.  For each sleeper who exists, a pair of standard six-sided dice 

are then simultaneously rolled, and the sleeper is awakened iff the roll comes 

up a double six.  Any sleeper who awakens is aware of the details of this setup 

but unaware of whether she is Una or Dua.  The sleeper who is the central 

protagonist of our story — call  her “Jane” (as in “Jane Doe”) — finds herself 

awake. 
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There are two questions we may ask regarding this scenario.  First, does Jane acquire 

evidence for the existence of multiple rooms relative to background information that 

includes only the details of this setup?  Second, does Jane acquire evidence for the existence 

of multiple rooms relative to background information that includes not only these details 

but also the indexical statement This room exists (where this is a statement that Jane can 

express upon awakening)?   

For modeling purposes, we may regard this situation as one in which there are only 

nine possible worlds: (W1) Neither Room 1 nor Room 2 exist. (W2) Only Room 1 exists and 

Una wakes. (W3) Only Room 1 exists and Una does not wake.  (W4) Only Room 2 exists and 

Dua wakes. (W5) Only Room 2 exists and Dua does not wake. (W6) Both rooms exist and 

both sleepers wake.  (W7) Both rooms exist and only Una wakes.  (W8) Both rooms exist 

and only Dua wakes. (W9) Both rooms exist and neither sleeper wakes.  I will also assume 

that Una and Dua are the only possible subjects throughout these worlds.  

Below is a pictorial representation of the resulting model.  Each awakened sleeper in 

each world corresponds to a unique context.7   These contexts are labeled and numbered 

(with who occupies their subject position also indicated for further clarity). 

             Room 1  Room 2    Absolute Probability                 Contexts 

W1          X               X                     1/4                                             X 

 
7 I assume that unconscious individuals are not appropriate candidates to occupy 

the subject positions of contexts.  If one does not like this, one could modify the setup so 

that the individuals are not awakened but brought into existence from preselected 

gametes. 
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W2         [U]             X                    (1/4)(1/36)                           C1 (Una)     

W3         [X]             X                    (1/4)(35/36)                          X                                             

W4         X               [D]                  (1/4)(1/36)                           C2 (Dua) 

W5         X               [X]                  (1/4)(35/36)                         X 

W6         [U]            [D]                 (1/4)(1/36)(1/36)             C3 (Una), C4 (Dua) 

W7         [U]            [X]                  (1/4)(1/36)(35/36)          C5 (Una) 

W8         [X]            [D]                  (1/4)(1/36)(35/36)          C6 (Dua) 

W9         [X]            [X]                  (1/4)(35/36)(35/36)         X 

Let ‘K’ stand for a body of background information that encapsulates the details of 

the setup but nothing else of epistemic relevance.  Let ‘I’ stand for the statement I am awake 

in this room.  Let ‘T’ stand forThis room exists.  Let ‘M’ stand for There are multiple rooms.  

If we conceive of evidence as that which raises the indexical probability of a hypothesis, our 

two questions now become: 

(Q1) Is it the case that P(M│I&K) > P(M│K)? 

(Q2) Is it the case that P(M│I&T&K) > P(M│T&K)? 

Concerning the first question, it follows from Simple Averaging that P(M│I&K) = 

∑ Ai(M&I&K)6
i=1

∑ Ai(I&K)6
i=1

.  Note that the statement M&I&K’s character assigns the set {W6, W7} to 

contexts in which Una occupies the subject position, and the set {W6, W8} to those in which 

Dua occupies the subject position.  The absolute probability of each of these sets is 

(1/4)(1/36).  So ∑ Ai(M&I&K)6
i=1  = (6)(1/4)(1/36).  Similarly, for each context in which 

Una occupies the subject position, I&K’s character assigns {W2, W6, W7}.  And for each 

context in which Dua occupies the subject position, the corresponding set of worlds is {W4, 

W6, W8}.  The absolute probability of each of these sets is (2)(1/4)(36).  So ∑ Ai(I&K)6
i=1  = 
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(6)(2)(1/4)(36).  Thus P(M│I&K) = 1/2.  The reader may follow a similar procedure to 

verify that according to Simple Averaging, P(M│K) = 1/4.  Thus the answer to Q1, “Is it the 

case that P(M│I&K) > P(M│K)?”, is “Yes”. 

It is also true according to Simple Averaging that P(M│I&T&K)  = 
∑ Ai(M&I&T&K)6

i=1

∑ Ai(I&T&K)6
i=1

.  

Since, for each context, the set of worlds that M&I&T&K’s character assigns to that context 

is identical to the one assigned by M&I&K’s character, and likewise when it comes to the 

sets assigned by I&T&K’s and I&K’s characters, P(M│I&T&K) = P(M│I&K).  Thus (by what 

has already been established) P(M│I&T&K) = 1/2.  Simple averaging also has it that 

P(M│T&K) = 
∑ Ai(M&T&K)6

i=1

∑ Ai(T&K)6
i=1

.   M&T&K’s character assigns {W6, W7, W8, W9} to every 

context.  And the probability of that set is 1/4.  For contexts at which Una occupies the 

subject position, T&K’s character assigns {W2, W3, W6, W7, W8, W9}.  For contexts in 

which Dua occupies the subject position, T&K’s character assigns {W4, W5, W6, W7, W8, 

W9}.  The probability of each of these sets is 1/2.  So P(M│I&T&K)  = 
∑ Ai(M&T&K)6

i=1

∑ Ai(T&K)6
i=1

 = 

(6)(1/4)

(6)(1/2)
 = 1/2.  Thus the answer to Q2, “Is it the case that P(M│I&T&K) > P(M│T&K)?”, is 

“No”. 

Here we see that (at least for this toy model) Simple Averaging vindicates the this-

universe objection as construed by Draper, Draper, and Pust.  While the statement I am 

awake in this room as a result of a fortunate roll of the dice confirms the multiple-room 

hypothesis relative to background information that contains only the details of the setup, it 

does not do so relative to background information that also includes the indexical 

statement This room exists. 
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5. An Alleged Counterexample 

Above I noted that any averaging rule vindicates the Absolute to Indexical Probability 

Principle.  Some cases raised by IHR (2022: 245-246) can be used, however, to generate 

apparent counterexamples to that principle.  IHR point out that there are situations in 

which what I am calling “indexical probabilities” diverge from the values of known 

objective chances.  If we assume that absolute probabilities conform to something like 

David Lewis’s (1980) Principal Principle, such situations can also be employed to generate 

apparent counterexamples to AIP. 

Here is one such case: 

There are two rooms, Room 1 and Room 2.  In each room, a fair coin was tossed.  The 

lights in that room were turned on (i.e. “the room was lit”) iff the coin toss that 

occurred in it came up heads. Let ‘Alpha’ rigidly denote Room 1 iff Room 1 is lit.  Let 

‘Alpha’ rigidly denote Room 2 otherwise.  I am not in either of these rooms and have 

no information about whether their lights are on.  But my background information 

informs me of all of the above (including the manner in which the referent of ‘Alpha’ 

is fixed).  Question: What should be my credence that Alpha is lit?8 

Note that in this example ‘Alpha’ has the same content as the following rigidified 

description: The actual room that is identical to Room 1 iff Room 1 is lit but is identical to 

Room 2 otherwise.  

 
8 A case like this was mentioned by Yoaav Isaacs in a talk given at [omitted for 

purposes of blind review]. 
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Here is an intuitive picture of situation.  If a box in the diagram below has an ‘L’ in it, 

the room indicated is lit.  If a box has a ‘D’, the room is not lit (i.e. it is “dark”).  

Corresponding to each world, furthermore, is a context.  We may, as an idealization, assume 

there is only one context per world.  If the box has an ‘α’ subscript, the corresponding room 

is the referent of ‘Alpha’ at the context associated with that world.   

World    Room 1     Room 2 Context 

W1    [L]α            [L]               C1 

W2   [L]α            [D] C2 

W3   [D]             [L]α  C3 

W4   [D]             [D]α C4 

Note that each row corresponds to an epistemic possibility.  My evidence leaves each 

possibility equally likely.  In three out of four possibilities, Alpha is lit.  So the indexical 

probability that Alpha is lit given my background information appears to be 3/4.   

Averaging rules contradict this result.  Let ‘Lα’ stand for the statement Alpha is lit 

and ‘K’ for the relevant body of background information.  According to any averaging rule, 

P(Lα│K) is the (perhaps weighted) average probability of a set of worlds assigned to a 

context by Lα’s character.  For any given context, that set is either {W1,W2} or {W1,W3}, and 

the absolute probability of each of these sets is 1/2.  Therefore averaging rules have it that 

P(Lα│K) = 1/2.  Indeed this is just what we would expect given AIP, since our background 

information informs us that A(Lα│K) = 1/2.  Here both averaging rules and AIP seem to 

conflict with intuition. 

In fact, there is no conflict.  We can consistently maintain that averaging rules deliver 

the correct value of P(Lα│K), while also denying this value is the one most relevant to what 
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an ideally rational agent’s credence should be.  Any sufficiently self-reflective, rational 

agent, in the described scenario, will be aware not only of the information found in K, but 

also of the indexical statement I am in this context.  And so here another principle that 

Hacking (1987: 335-336) and White (2000: 264-265) have emphasized comes to the fore, 

namely, the Principle of Total Evidence, which requires that we make use of the logically 

strongest encapsulation of the evidence available to us.9   

If we let ‘I@’ stand for I am in this context, then (given the Principle of Total 

Evidence), the indexical probability most relevant to such an agent’s credence is not 

P(Lα│K) but rather P(Lα│I@&K). According to Simple Averaging, P(Lα│I@&K) = 

∑ Ai(Lα&I@&K)4
i=1

∑ Ai(I@&K)4
i=1

.  For each context, Ci, other than C4, Lα&I@&K’s character assigns the 

singleton set {Wi}.  In the case of C4, Lα&I@&K’s character assigns {}.  Since the probability 

of each of the first three sets is 1/4 and the probability of the last is 0, ∑ Ai(Lα&I@&K)4
i=1  = 

3/4.  For each of the four contexts, Ci, I@&K’s character assigns the singleton set {Wi}, and 

each of these sets has a probability of 1/4.  And so ∑ Ai(I@&K)4
i=1  = 1.  Thus, P(Lα│I@&K) = 

3/4, exactly in line with what intuition tells us.  This result holds not only for Simple 

Averaging, but for any averaging rule that makes the weighting function constant in this 

model. 

This analysis does cast some initial doubt on the relevance of the results in the 

previous section.  It suggests that the indexical probability most relevant to Jane’s 

 
9 For critiques of the Principle of Total Evidence, see (Manson and Thrush 2003: 74-

76) and (Epstein 2017).  For defenses of the Principle of Total Evidence, see (Draper, 

Draper, and Pust 2007: 293-295), (Barrett and Sober 2020), (Draper 2020). 
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credences is not P(M│I&T&K) but rather P(M│I@&T&K).  Fortunately, it turns out, 

according to Simple Averaging, that (for the toy model considered in the previous section), 

P(M│I@&T&K) = P(M│I&T&K) = 1/2.10   

6. Revisiting the This-Universe Objection 

We are now in a position to see that Simple Averaging, combined with the Principle of Total 

Evidence, becomes a generalization of a rule for updating on self-locating information 

which IHR (2022: 256), following standard nomenclature, refer to as “Self-Indication.”  

When updating on self-locating information, Self-Indication instructs one to assign each 

context not ruled out by one’s evidence the probability of the singleton set of the world it is 

in, to add those probabilities together, and then to renormalize so that all of the relevant 

probabilities add up to 1.  

The fact that Simple Averaging ends up being a generalization of Self-Indication 

renders unsurprising the result that it deems fine-tuning evidentially irrelevant to the 

multiverse hypothesis.  As IHR themselves point out, while Self-Indication yields the result 

that the statement I exist in a fine-tuned universe raises the probability of the multiverse 

hypothesis, it also has it that the statement I exist does the same, and exactly to the same 

degree, with or without fine-tuning. 

 
10 Note that M&I@&T&K’s character assigns {W6},{W6}, {W7}, {W8} to C3, C4, C5, 

and C6 (respectively) and {} to each of C1 and C2.  Also keep in mind that I@&T&K simply 

assigns to each context the singleton set of the world it is in.  Thus, ∑ Ai(M&I@&T&K)6
i=1  = 

(2)(1/4)(1/36) and ∑ Ai(I@&T&K)6
i=1  = (4)(1/4)(1/36).  So P(M│I@&T&K) = 1/2. 
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IHR (2022) do not regard this outcome as a victory for the this-universe objection 

however.  They write: 

We should distinguish two ideas.  One is that being in a universe that contains fine-

tuned life is strong evidence for a multiverse.  The second idea is that the fine-tuning 

part of this evidence plays a crucial role, over and above being in a universe that 

contains life… But the second idea is less robust: it is supported by [some] rules, but 

not Self-Indication… But at least we can see that if fine-tuning does not provide 

support for the multiverse, it is not for the reason that Hacking and White defended.  

For their main arguments attack the first idea: both of them contend that our 

universe contains fine-tuned life does not provide evidence for the multiverse at all. 

(267-268) 

But the above analysis tells a different story.  Since we are interested in a fine-tuning 

argument for the multiverse hypothesis and not a cosmological one, we are to evaluate the 

Hacking-White point relative to background information that already includes the fact that 

this universe exists.  When we do, we find that, according to Simple Averaging, the 

statement I exist in a fine-tuned universe fails to confirm the multiverse hypothesis, and it 

does so for exactly the sort of reason that Hacking and White suggest.   

Thus I take myself to have achieved the goal of offering the existence proof that I set 

out to provide at the end of Section 2.  I have shown that there is at least one plausible, 

systematic way of modeling how to reason probabilistically with indexical information that 

vindicates the this-universe objection. 

7. A Comparison with Other Rules 
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Aside from Self-Indication, IHR countenance two other commonly proposed rules for 

thinking about self-locating belief, which they (following common nomenclature) refer to 

as “Self-Sampling” and “Compartmentalized Conditionalization.”  In this section I offer 

natural generalizations of these as averaging rules and then explore some of their 

implications. 

According to Self-Sampling, when updating on self-locating information, for any 

world that contains contexts at all, one first divides the probability of the singleton set of 

that world evenly between those contexts.  Then one reassigns a probability 0 to all those 

contexts whose subject’s purely qualitative evidential situation does not match one’s own.  

Finally, one renormalizes so the final probabilities assigned to each context add up to 1 

(IHR 2022: 258).   

According to Compartmentalized Conditionalization, one is to take any world that 

contains contexts with subjects whose purely qualitative evidential situation matches one’s 

own and divide the probability of the singleton set of that world evenly between those 

contexts.  One is to assign all other contexts a probability 0.  Finally, one should 

renormalize so the resulting probabilities add up to 1 (254). 

We may construct a weighting function for an averaging rule that serves as an 

intuitively natural generalization of Self-Sampling as follows: Let Ψ be a non-normalized 

weighting function such that for each context, Ci, Ψi equals 1 over the total number of 

contexts found in the same world as Ci.  Then normalize by taking each Ψi and dividing it by 

∑ Ψii  in order to obtain the value of each ѱi.   

In order to generalize Compartmentalized Conditionalization, for each Ci, let Ψ be a 

non-normalized weighting function such that each Ψi equals 1 over the total number of 
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contexts found in the same world whose subjects share the same qualitative evidence as 

does the subject of Ci.  Then normalize to obtain each ѱi. Note that since the subjects in 

each context of the toy model are assumed to have exactly the same qualitative evidence, 

Compartmentalized Conditionalization yields the same results for that model as does Self-

Sampling.   

When it comes to the toy model, all three rules considered so far agree that P(M│K) 

= 1/4 and P(M│T&K) = 1/2.  All three further agree that P(M│I&T&K) = 1/2.  So all three 

agree that (in the toy model) the indexical statement This room exists raises the indexical 

probability of the multi-rooms hypothesis and, furthermore, that the indexical statement I 

exist in this room offers no additional confirmation of that hypothesis.  But they diverge 

when it comes to how they treat the impact of adding the extra indexical information I exist 

in this context. 

We have already seen that the generalization of Self-Indication has it that 

P(M│I@&T&K)  = P(M│T&K) = 1/2.  Self-Sampling and Compartmentalized 

Conditionalization, by contrast, both have it that P(M│I@&T&K) = 71/143 ≈ .4965.  Thus, 

according to these rules, while P(M│I@&T&K) > P(M│K), it is also true that P(M│I@&T&K) 

< P(M│T&K).  Transposing the analogy over to the multiverse case, we have the suggested 

result that, relative to background information that includes the indexical fact that this 

universe exists, the further indexical information that one exists in this particular context 

provides some evidence against the multiverse hypothesis! 

If we eliminate fine-tuning from the model (i.e. if we make the awakening of each 

occupant guaranteed on the condition that her room comes into existence), this effect 

becomes more dramatic.  In that case, there are only four worlds, each with 1/4 absolute 
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probability: (i) the empty world, (ii) the world in which Una exists and there is a single 

room, (iii) the world in which Dua exists and there is a single room, and (iv) the world in 

which both Una and Dua exist in their respective rooms.  For this model, all three rules 

continue to agree that P(M│K) = 1/4 and that P(M│I&T&K) = P(M│T&K) = 1/2.  But Self-

Sampling and Compartmentalized Conditionalization deliver the result that P(M│I@&T&K) 

= 1/3.  This is of course greater than 1/4, but dramatically less than 1/2 than is .4965.   

Indeed, 1/3 just is the prior probability of the multiple-rooms hypothesis (with or without 

fine-tuning) given background information that already includes the fact that some room 

or other exists.  Thus (the analogy suggests), according to these other two rules, without 

fine-tuning, the extra indexical information found in the statement I am in this context 

exactly cancels out the positive evidential contribution that learning This universe exists 

adds to the multiverse hypothesis (above and beyond the contribution made by the 

information that some universe exists).  What explains these results?   

What we have here is a synchronic version of the much-discussed doomsday 

argument: There are fewer contexts at which the single-universe hypothesis is true than 

there are at which the multiverse hypothesis is true.   So (the reasoning supported by these 

rules goes), assuming that the single-universe hypothesis is true, for any given context in 

which I might find myself, the indexical probability that I am in that context is relatively 

high.  Whereas, assuming the multiverse-hypothesis is true, for any given context in which I 

might find myself, the indexical probability that I am in that context is relatively low.  Thus 

(according to these rules) the extra indexical information that I am in this context (on top 

of the indexical facts that this universe exists and that I exist) tends to favor the single-

universe hypothesis over the multiverse hypothesis. 
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8. A More General Consideration Against Fine-Tuning Arguments for a Multiverse 

All the rules considered so far are motivated by something in the neighborhood of a 

principle of indifference: when there are several possibilities and no good reason to favor 

one or another, weigh them all equally.  Contexts may be thought of as de se possibilities.  

And each candidate for a weighting function countenanced by each of the above rules 

corresponds in its own way to an egalitarian division of probability.  It is this intuitive 

principle that motivates rules according to which contexts in more populated worlds 

receive a lesser share of their world’s probability.   

But what sort of plausible motivation could there be for assigning contexts in less 

populous worlds less of the share of their world’s probability?  Such a rule would seem to 

violate the intuitive principle that probabilities should be divided equally between 

symmetrical possibilities.  So, until someone is able to provide a such a motivation, I 

conclude that any plausible weighting rule will be one according to which the indexical 

information I am in this context either fails to confirm the multiverse hypothesis or 

disconfirms it (relative to background information that includes the fact this universe 

exists). 

These considerations suggest that if anything tends to confirm or disconfirm the 

multiverse hypothesis relative to background information that includes the fact that this 

universe exists, it is the rather refined sort of indexical information found in the statement I 

am in this context.  Our investigation further suggests that, if anything, this information is 

apt to disconfirm the multiverse hypothesis.  If fine-tuning is relevant at all, it is only by 

way of mitigating this disconfirming effect.  This too appears not merely to be a feature of 

the rules considered, but of any well-motivated averaging rule.  These results suggest that 
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while there may be a good cosmological argument for the multiverse hypothesis, things do 

not look promising for a distinctively fine-tuning one. 

Appendix A: A Proof that Any Averaging Rule Vindicates AIP 

Lemma 

For any statement r, any value, ϕ, such that 0 ≤ ϕ ≤ 1, and for any context, Ci, Ai(r&A(r) = 

ϕ) = Ai(r&Ai(r) = ϕ).  And furthermore, if Ai(r) = ϕ, then Ai(r&Ai(r) = ϕ) = ϕ; otherwise 

Ai(r&Ai(r) = ϕ) = 0. 

Proof of Lemma 

Consider some arbitrary statement, r, some arbitrary value ϕ such that 0 ≤ ϕ ≤ 1, and 

some arbitrary context Cn.  By definition, An(r&A(r) = ϕ) is the absolute probability of the 

set of worlds the statement r&A(r) = ϕ’s character assigns to Cn, which is the intersection 

of the set of worlds that r’s character assigns to Cn and the set that A(r) = ϕ’s character 

assigns to Cn.  Likewise, mutatis mutandis, regarding An(r&An(r) = ϕ).   

Now assume that An(r) = ϕ.  It follows that according to Cn, it is true at all worlds 

that A(r) = ϕ.  It is also true at all worlds according to Cn that An(r) = ϕ.  So the intersection 

of the set of worlds that r’s character assigns to Cn and the set that A(r) = ϕ’s character 

assigns just is the intersection of the set assigned by r’s character and An(r) = ϕ’s which in 

turn just is the set of worlds assigned by r’s character.  And since An(r) = ϕ, the absolute 

probability of that set is ϕ.  It follows that An(r&A(r) = ϕ) = An(r&An(r) = ϕ) = ϕ.   

Now assume instead that it is not the case that An(r) = ϕ.  In that case, according to 

Cn, it is false at all worlds that A(r) = ϕ.  Of course, it is also false at all worlds according to 

Cn that An(r) = ϕ.  So the intersection of the set of worlds that r’s character assigns to Cn 

and the set that A(r) = ϕ’s character assigns to Cn just is the intersection of the set assigned 
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by r’s character and An(r) = ϕ’s which in turn just is the empty set.  So it follows that 

An(r&A(r) = ϕ) = An(r&An(r) = ϕ) = 0.   

So it follows either way that An(r&A(r) = ϕ) = An(r&An(r) = ϕ).  It also follows that 

if An(r) = ϕ, then An(r&An(r) = ϕ) = ϕ; otherwise An(r&An(r) = ϕ) = 0. 

Proof  

Let P(…) be an indexical probability function defined in terms of an averaging rule with a 

weighting function ѱ.  It is to be shown that for any statements r and k and for any value, ϕ, 

such that 0 ≤ ϕ ≤ 1, P(r│k&A(r│k) = ϕ) = ϕ, provided that P(k&A(r│k) = ϕ) > 0. 

Consider some statements r and k and some value ϕ, where 0 ≤ ϕ ≤ 1, such that 

P(k&A(r│k) = ϕ) > 0.  Note that P(r│k&A(r│k) = ϕ) = 
P(r&k&A(r│k) = ϕ)

P(k&A(r│k) = ϕ)
.  By definition, 

P(r&k&A(r│k) = ϕ) = ∑ ѱii Ai(r&k&A(r│k)  =  ϕ) and P(k&A(r│k) = ϕ) = 

∑ ѱii Ai(k&A(r|k) = ϕ).  It follows from Lemma furthermore that ∑ ѱii Ai(r&k&A(r│k)  =

 ϕ) = ∑ ѱii Ai(r&k&Ai(r│k)  =  ϕ) and that ∑ ѱii Ai(k&A(r│k)  =  ϕ) = 

∑ ѱii Ai(k&Ai(r│k)  =  ϕ).  So it follows that P(r│k&A(r│k) = ϕ) = 
∑ ѱii Ai(r&k&Ai(r│k) = ϕ)

∑ ѱii Ai(k&Ai(r│k) = ϕ).  
.  

Note that since P(k&A(r│k) = ϕ) > 0 there must be at least one context, Ci, such 

that ѱi ≠ 0 and Ai(r│k) = ϕ.  Since, for any such context, Ai(r│k) = Ai(r&k)/Ai(k), the 

statement Ai(r│k) = ϕ is equivalent to the statement Ai(r&k) = ϕAi(k).  Accordingly, 

∑ ѱii Ai(r&k&Ai(r│k)  =  ϕ) = ∑ ѱii Ai(r&k&Ai(r&k)  =  ϕAi(k)).  It follows from Lemma 

that for any i, if Ai(r│k) = ϕ, then Ai(r&k&Ai(r&k) = ϕAi(k)) = ϕAi(k); otherwise 

Ai(r&k&Ai(r&k) = ϕAi(k)) = 0.  So let ζ be a function such that ζi = ѱi if Ai(r│k) = ϕ, and 

otherwise such that ζi = 0.  It follows from all of the above that ∑ ѱii Ai(r&k&Ai(r│k)  =  ϕ) 

= ϕ ∑ ζiAi(k)i .   
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Furthermore, it is also true that for any context, Ci, such that Ai(r│k) = ϕ, Ai(k) = 

(1/ϕ)Ai(r&k).  Accordingly, ∑ ѱii Ai(k&Ai(r|k) =  ϕ) = ∑ ѱiAi(i k&Ai(k)= (1/ϕ)Ai(r&k)).  

So it also follows from Lemma that for any i, if Ai(r│k) = ϕ, then Ai(k&Ai(k) = 

(1/ϕ)Ai(r&k)) = (1/ϕ)Ai(r&k); otherwise Ai(k&Ai(k) = (1/ϕ)Ai(r&k)) = 0.  So it also 

follows that ∑ ѱii Ai(k&Ai(r|k) =  ϕ) = 
1

ϕ
∑ ζiAi(r&k)i  = 

1

ϕ
∑ ζiϕAi(k)i  = ∑ ζiAi(k)i .  So it 

follows that P(r│k&A(r│k) = ϕ) = 
ϕ ∑ ζiAi(k)i

∑ ζiAi(k)i
 = ϕ. 

Appendix B: A Proof that Simple Averaging Vindicates the This-Universe Objection 

Notation 

Hn ≡def there are exactly n universes; I@ ≡def I exist in this context; …#...[...] ≡def individual … 

occupies universe … at time …;  ‘s’ is an indexical term with the same character as ‘myself’; 

‘α’ is an indexical term with the same character as ‘this universe’; ‘τ' is an indexical term 

with the same character as ‘this time’; N is the maximal number of universes that could 

possibly exist; Eu ≡def universe u exists; Etu ≡def universe u exists at time t; ‘K’ stands for a 

body of background knowledge that entails the assumptions stated below but contains no 

other relevant information. 

Assumptions 

The first assumption is often presupposed in discussions of the this-universe objection but 

less often explicitly stated.   

(Isolation) No possible agent possibly exists without existing at a time, or possibly 

exists at a given time without occupying exactly one universe, or possibly 

transitions from occupying one universe at a given time to occupying another at a 

different time. 
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Isolation sets aside the possibility of agents who might exist without being in time, or by 

occupying multiple universes at once, or without occupying a universe at all.  It also sets 

aside possibilities such as agents traveling between universes.  Isolation should be 

regarded as an idealization rather than as a substantive commitment.   

 The remaining assumptions are straightforwardly in the same spirit as the 

independence assumptions made by Hacking and White.  Some multiverse models violate 

these assumptions.11  Nevertheless, they are dialectically appropriate, given the claim 

targeted by the this-universe objection, namely, that multiverse hypotheses are confirmed 

solely by way of random variation combined with an observation selection effect.    

(Occupational Independence) For each time, t, and for any given integer n such that 

1 ≤ n ≤ N, and for any possible agent ax, and possible universe uy, either 

A(ax#uy[t]&K) = 0 or A(Hn│ax#uy[t]&Etuy&K) = A(Hn│Etuy&K). 

According to this assumption, the fact that a given universe is occupied by a given agent at 

a given time is absolutely probabilistically relevant to how many universes there are only 

to the extent it entails that the universe in question exists at that time.   

(Time Independence) For each possible universe ux, and for each time t, and for 

each integer n such that 1 ≤ n ≤ N, A(Hn│Etux&K) = A(Hn│Eux&K). 

According to this assumption, at most, it is the mere fact that a given universe exists that is 

absolutely probabilistically relevant to how many universes there are, not the fact that it 

exists at a given time.   

 
11 E.g. the model proposed by (Smolin 1997). 
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(Identity Independence) For any possible universes ux and uy, and for each integer n 

such that 1 ≤ n ≤ N, A(Hn│Eux&K) = A(Hn│Euy&K). 

According to this assumption, at most, it is the mere existence of a universe that is 

absolutely probabilistically relevant to how many universes there are, not its identity.   

Proof  

Let P(…) be an indexical probability function defined in accordance with Simple Averaging.  

Let n be an integer such that 1 ≤ n ≤ N.  It is to be shown that P(Hn│I@&Eα&K) = 

P(Hn│Eα&K). 

According to Simple Averaging, either P(I@&Eα&K) = 0 or P(Hn│I@&Eα&K) = 

∑ Ai(Hn&I@&Eα&K)i

∑ Ai(I@&Eα&K)i
.  Since (by previous stipulation) every model contains at least one context, 

every context is (given Isolation) one at which the statement I@&Eα&K is true, and Simple 

Averaging guarantees that every context receives non-zero weight, it is not the case that 

P(I@&Eα&K) = 0. 

The value of ∑ Ai(Hn&I@&Eα&K)i  is obtained by taking each context at which 

Hn&Eα&K is true, assigning to it the absolute probability of the singleton set of the world it 

is in, and summing the values so assigned.  Note that, given Isolation, each context is one at 

which a possible instantiation of Hn&ax#uy[z]&Ezuy&K is true, where ax, uy, and z are 

variables for terms referring to possible agents, possible universes, and possible times 

respectively, and the referents of the relevant instantiations of ax and z occupy the subject 

and time slots of that context.   

It also follows from Isolation that for each possible instantiation of 

Hn&ax#uy[z]&Ezuy&K there is at most one context per world at which that instantiation is 

true.  So for each such instantiation, the sum of the values of the probabilities assigned to 
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each context at which it is true is equal to the absolute probability of the set of worlds at 

which that instantiation is true.  I.e. for each instantiation of Hn&ax#uy[z]&Ezuy&K, the sum 

of the values of the probabilities assigned to the contexts at which that instantiation is true 

equals the value of the corresponding instantiation of A(Hn&ax#uy[z]&Ezuy&K).   

So it follows that ∑ Ai(Hn&I@&Eα&K)i  equals the sum of the values of each possible 

instantiation of A(Hn&ax#uy[z]&Ezuy&K).  A parallel argument also establishes that 

∑ Ai(I@&Eα&K)i  equals the sum of the values of each possible instantiation of 

A(ax#uy[z]&Ezuy&K).   

Now consider a particular subject, b, a particular universe u, and a particular time, t.  

It follows from the standard definition of conditional probability that either 

A(b#u[t]&Etu&K) = 0 or A(Hn&b#u[t]&Etu&K) = A(b#u[t]&Etu&K)A(Hn│b#u[t]&Etu&K).  

It follows from Occupational Independence and Time Independence that, as long as 

A(b#u[t]&Etu&K) ≠ 0, A(Hn│b#u[t]&Etu&K) = A(Hn│Etu&K) = A(Hn│Eu&K).  It also 

follows from Identity Independence that there is some constant λn* such that, for every 

possible universe, ux, A(Hn│Eux&K) = λn*.  Let λn be such a constant.   

It follows by way of generalization from the arbitrary case that the value of every 

instantiation of A(Hn&ax#uy[z]&Ezuy&K) is identical to the value of the corresponding 

instantiation of λnA(ax#uy[z]&Ezuy&K).  So it follows that the sum of the values of each 

possible instantiation of A(Hn&ax#uy[z]&Ezuy&K) equals λn multiplied by the sum over the 

values of each possible instantiation of A(ax#uy[z]&Ezuy&K). 

 So it follows from all of the above that P(Hn│I@&Eα&K) is equal to λn multiplied by 

the sum over the values of each possible instantiation of A(ax#uy[z]&Ezuy&K) and then 

divided by the sum over the values of each possible instantiation of A(ax#uy[z]&Ezuy&K).  
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So it follows that P(Hn│I@&Eα&K) = λn.  Since (as was already established) for every 

possible universe, ux, A(Hn│Eux&K) = λn, it also follows that it is true at every context that 

A(Hn│Eα&K) = λn.  So it follows (via AIP) that P(Hn│Eα&K) = P(Hn│Eα&K&A(Hn│Eα&K) = 

λn) = λn.  So it follows that P(Hn│I@&Eα&K) = P(Hn│Eα&K).12 
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