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Categorization and memory for specific items are fundamental processes that allow us to apply knowledge to
novel stimuli. This study directly compares categorization and memory using delay match to category (DMC)
and delay match to sample (DMS) tasks. In DMC participants view and categorize a stimulus, maintain the cate-
gory across a delay, and at the probe phase view another stimulus and indicate whether it is in the same category
or not. In DMS, a standard item working memory task, participants encode and maintain a specific individual
item, and at probe decide if the stimulus is an exact match or not. Constrained Principal Components Analysis
was used to identify and compare activity within neural networks associated with these tasks, and we relate
these networks to those that have been identifiedwith resting state-fMRI.We found that two frontoparietal net-
works of particular interest. The first network included regions associatedwith the dorsal attention network and
frontoparietal saliencenetwork; this network showed patterns of activity consistentwith a role in rapid orienting
to and processing of complex stimuli. The second uniquely involved regions of the frontoparietal central-
executive network; this network respondedmore slowly following each stimulus and showed a pattern of activ-
ity consistent with a general role in role in decision-making across tasks. Additional components were identified
that were associated with visual, somatomotor and default mode networks.

© 2014 Elsevier Inc. All rights reserved.
Introduction

Categorization and specific-item memory are fundamental
processes which allow us to apply knowledge to novel situations. Cate-
gorization requires abstraction from inherent stimulus features to gen-
eralizable latent features, and plays an important role in the flexible
transfer of knowledge and skills across stimuli and tasks (for review,
see Seger and Miller, 2010). In contrast, memory for specific items
maintains these inherent stimulus features in order to enable us to
make fine distinctions between items. Despite these fundamental dif-
ferences, both categorization and specific item memory tasks recruit
common cognitive control systems to support task performance
(Seger and Peterson, 2013), raising the question of how the same neural
systems can serve different ends. This study directly compares categori-
zation and specific item memory using delayed-match-to-category
(DMC) and delayed-match-to-sample (DMS) tasks in which partici-
pants encode a stimulus, maintain information across a delay, see a sec-
ond stimulus and then decide if it matches the first. The tasks share
similar structure, and therefore place similar demands on perceptual
(stimulus encoding), motor (response execution) and some executive
876 CampusDelivery, Colorado
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functions (working memory and decision-making). The tasks differ in
what is encoded at the first stimulus and in the basis of thematch–mis-
match decision occurring at probe: specific item identity in the DMS
task and category in the DMC task. Our design, therefore, allows us to
isolate differences between processes associated with categorization
and those associated with item-specific memory, and also to identify
shared processes. Belowwe first discuss proposed shared cognitive con-
trol functions across categorization and specific-item tasks and how
theymay rely on intrinsically connected frontoparietal neural networks.
We then discuss aspects of cognitive processing specific to categoriza-
tion and to item working memory. Finally we describe our task and
our predictions.
Shared cognitive control processes and intrinsic neural systems

Much recent research has focused on how frontoparietal networks
can be flexibly recruited to support cognitive control in diverse task en-
vironments (Cole et al., 2013; Dumontheil et al., 2011; Duncan, 2010).
Multiple networks supporting cognitive control have been identified,
and although there is currently little consensus concerning network no-
menclature, we will focus on two networks that show coactivation
across a variety of cognitive tasks and correlated patterns of intrinsic ac-
tivity during resting-state fMRI (Dosenbach et al., 2007; Seeley et al.,
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2007). The first, the salience network (abbreviated here as SA), which
has important nodes in the anterior insula/frontoinsular cortex and
dorsal anterior cingulate (ACC)/medial frontal gyrus, is thought to
play an important role in bottom-up detection of salient external
events, the coordination of functional networks to meet task demands,
and in moderating autonomic arousal (Medford and Critchley, 2010;
Menon, 2011;Menon and Uddin, 2010; Sridharan et al., 2008). The sec-
ond, the central executive network (FP-CEN), which has important
nodes in the dorsolateral prefrontal cortex and posterior parietal cor-
tex/intraparietal sulcus, is thought to operate on the salient stimuli
marked by the SA network (Seeley et al., 2007), and to play an impor-
tant role in themanipulation andmaintenance of these representations
inworkingmemory and rule-based processes (Miller and Cohen, 2001).

Intrinsic connectivity has also identified other networks, such as the
somatomotor network (SM; primarymotor and somatosensory cortex),
dorsal attentional network (DA; premotor and superior parietal cortex),
default mode network (DMN;medial frontal and posterior cingulate re-
gions, inferior parietal and medial temporal lobe), and visual network
(VS; occipital and inferior temporal cortex) (Buckner et al., 2011; Choi
et al., 2012; Yeo et al., 2011). A focus of recent research has been to
identify how these networks interact, and one particularly important
finding is that the FP-CEN and SA, which show greater activity during
cognitively-demanding tasks (Chen et al., 2013; Dang et al., 2012;
Vanhaudenhuyse and Demertzi, 2011) are anticorrelated with the
DMN. The SA is thought to play an important role in mediating
this anticorrelated relationship, and in switching from the DMN to
the FP-CEN in response to salient external events (Bonnelle et al.,
2012; Goulden et al., 2014; Menon, 2011; Palaniyappan et al., 2013;
Sridharan et al., 2008).

How these primarily cortical intrinsic connectivity networks interact
with subcortical and cerebellar regions is an active area of research.
Buckner and colleagues, for instance, examined functional connectivity
between the cortical intrinsic connectivity networks and the basal gan-
glia and the cerebellum (Buckner et al., 2011; Choi et al., 2012). Both
basal ganglia and cerebellum had separate regions that correlated
with each cortical network, consistent with known projections from
cortex to these structures. Particularly relevant for our study are the in-
terconnections with the FP-CEN, which are primarily correlated with
the dorsal head and body of the caudate nucleus (Choi et al., 2012),
and the lateral cerebellar hemisphere (Buckner et al., 2011).

Categorization

Cognitive neuroscience studies have associated categorization with
a large distributed neural network including the basal ganglia (Seger,
2008), lateral frontal (Muhammad et al., 2006), lateral parietal cortex
(Daniel et al., 2011; Freedman and Assad, 2009; Rishel et al., 2013),
precuneus (Wenzlaff et al., 2011), premotor and supplementary motor
areas (Ashby et al., 2007; Little et al., 2006; Waldschmidt and Ashby,
2011). Although still an active area of research, clues are emerging as
to the individual contributions made by each region. The basal ganglia
have been associated with multiple processes: posterior regions are
involved in mapping visual stimuli to category, and category to motor
response, whereas anterior regions and the ventral striatum are associ-
ated with feedback and reward processing (Seger, 2008). Frontal re-
gions have been associated with maintenance and implementation of
categorization rules (Antzoulatos and Miller, 2011; Buschman et al.,
2012; Freedman et al., 2001; Meyers et al., 2008; Muhammad et al.,
2006; Wallis and Miller, 2003). The parietal cortex combines category
withmotor response, andmay be responsible for integration of relevant
information for category membership (Freedman and Assad, 2009;
Shadlen and Newsome, 2001; Swaminathan and Freedman, 2012).
The precuneus and SMA, along with regions of the basal ganglia
they interact with, may be associated with setting a response criterion
(Forstmann et al., 2008; Wenzlaff et al., 2011). In addition, infero-
temporal cortex performs relevant visual processing necessary for
categorization, though it is still unclear the degree to which this region
changes with learning and contributes to the representation of novel
categories.

Previous categorization studies in humans have typically required
participants to view, categorize and respond to single stimuli in rapid
succession. However, like the DMC task, real life situations often have
a delay between the categorization of a stimulus and a subsequent be-
havioral response, or require that multiple categorical representations
be integrated in order to determine the correct response. The DMC
task is advantageous in that it allows us to examine category mainte-
nance and integration across stimuli, and also allows the dissociation
of categorization processes from those related to motor preparation.
The DMC task was originally developed for research with non-human
primates, which find category sensitivity independent of motor re-
sponse for neurons in inferotemporal, parietal, frontal, and basal ganglia
regions (Freedman and Miller, 2008). Electrophysiological recordings
suggest coordination between the frontoparietal network and regions
within the inferior temporal lobe during this task, such that inferior
temporal regions tend to be more sensitive to the visual features of
individual exemplars,while prefrontal regions aremore sensitive to fea-
tures relevant for successful task performance (e.g., categorical-status of
the first stimulus, andmatch–mismatch status of the second; Freedman
et al., 2003; Meyers et al., 2008).

Working memory

The DMS task has been used extensively to investigate specific-item
working memory in human and non-human primates. A large body of
research finds that frontoparietal regions are recruited during the per-
formance of DMS tasks (Sala et al., 2003). However, there are some dif-
ferences based on task demands; for example, working memory for
objects rather than spatial location is particularly reliant on ventrolater-
al PFC regions in the middle and inferior frontal gyri (Sala et al., 2003).
There is also evidence that working memory for objects involves
interactions between these frontoparietal networks and higher order
visual cortical regions involved in representing the objects (Gazzaley
et al., 2004), and evidence that memory for specific items can lead to
interactions with the hippocampus (Rissman et al., 2008). Neural net-
works recruited during DMS performance vary depending on task de-
mands. Increased working memory demands have been associated
with increased connectivity between regions in the inferotemporal
cortex and the hippocampus, and decreased connectivity between
inferotemporal regions and the inferior frontal gyrus (Rissman et al.,
2008). Similarly, during the delay epoch, inferotemporal regions associ-
atedwith task-relevant processes show increased connectivitywith the
frontoparietal network while regions associated with task-irrelevant
processes show increased connectivity with the default mode network
(Chadick and Gazzaley, 2011).

Present study

In the present study, we directly compared patterns of activity dur-
ing DMC and DMS tasks utilizing the same perceptually-similar stimuli
(young Caucasian female faces) and the same timing and responses
such that the tasks differed only in the requirement to either categorize
the face or remember the specific face. As in several previous DMS
studies, we chose to use facial stimuli, as the processing of these stimuli
is known to occur with localized regions of the fusiform cortex (cf.,
Gazzaley et al., 2004; Rissman et al., 2008). Two versions of the DMC
task were used, which we termed “Category” and “Label.” In both, par-
ticipants viewed a face at encoding, categorized it, and maintained the
category membership across a delay. At probe, the conditions differed:
in the Category version participants viewed a second face, whereas in
the Label version they viewed the category label (“A” or “B”). In both
of these conditions, participants decided whether the categories
matched. The Label condition allowed us to discriminate between
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activity due to comparing category labels and match–mismatch deci-
sion making, versus activity due to viewing and categorizing the face.
Thus, we predicted that regions involved in stimulus categorization
should have high activity at encoding for both Label and Category, but
only for Category at probe. However, regions associated with category
match–mismatch decision making should show activity more broadly
in both tasks.

We predicted some common and some differing patterns of activity
based on the shared and individual characteristics of categorization and
item working memory. First, because of the paired task design that
equated basic visual and motor demands, we predicted similar recruit-
ment of the visual and motor systems. Second, as both tasks require
weighing evidence towards the binary response options, we predicted
that the tasks would commonly elicit activity in regions associated
with general decision-making processes (Freedman and Assad, 2011;
Seger and Peterson, 2013). We predicted that the primary differences
between tasks would be found in regions associated with the FP-CEN.
Categorization involves several different strategies that require cogni-
tive control, including evaluating information with respect to categori-
zation criteria and mapping the stimulus to category membership
(Seger and Peterson, 2013). In contrast, working memory requires
different control processes for encoding and maintenance, potentially
via interactions with inferotemporal cortex and the hippocampus
(Rissman et al., 2008).

Methods

Participants

Seventeen participants were recruited from the Colorado State Uni-
versity Community. All participants were healthy, right-handed adults
Fig. 1.During each trial, participants first saw a cue (Item condition: “Match the Specific Face”; C
ulus (1.5 s). After a brief delay (9 s) they saw a second stimulus (3 s). In the Category and Item c
the category label (“A” or “B”). After three seconds, amatchmismatch cuewas presented, and p
arated by a jittered ITI (1.5–9 s).
(11 females, 6 males) with an average age of 27 (range: 20–37). Partici-
pants were screened for history of psychiatric or neurological disorders,
for current use of psychoactivemedications, and exclusionary criteria for
fMRI (e.g., claustrophobia, metallic implants).

Stimuli

Twenty-five similar young adult female Caucasian faceswere selected
for the stimulus set. To discourage use of verbalizable memory strategies,
all images were cropped so that the whole face, but no other defining
characteristics, was shown. The faces were then warped and resized to
subtend a visual angle of roughly 3.9 degrees horizontally and 6.9 degrees
vertically. For each participant, eight stimuli were randomly assigned to
category “A” and eight were randomly assigned to category “B.” This
type of categorization task is sometimes referred to as arbitrary, or un-
structured because the stimuli are randomly assigned to category and
do not include any intentional within-category similarities. Unstructured
tasks rely on procedural knowledge to a similar degree as structured im-
plicit categorization tasks (Crossley et al., 2012), and recruit similar corti-
cal and striatal systems (Seger et al., 2010, 2011). The remaining stimuli
were used in the Item condition.

Procedure

Prior to scanning, participants performed two tasks on a laptop com-
puter; they first learned to categorize faces and then trained on a task
that was similar to what they would later perform in the scanner. In
the category-learning task, participants learned to categorize each of
the 16 faces into category “A” or category “B” via trial and error. On
each trial, a face was presented in the center of the computer screen,
and the category labels were presented at the bottom left and right of
ategory and Label conditions: “Match the Category”) for 1.5 s, they then saw thefirst stim-
onditions, the second stimuluswas a face. In the Label condition, the second stimulus was
articipants had to indicatewhether the second stimulusmatched the first. Trials were sep-
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the screen. To encourage participants to learn category labels rather
than specificmotor responses, the locations of the labelswere randomly
determined on each trial (i.e., “A” appeared at the bottom left of the
screen on some trials, but at the bottom right on others). Participants
responded by pressing the “d” key on the laptop keyboard if the chosen
category label was on the bottom left side of the screen, and the “k” key
if it was on the bottom right. Each image remained on the screen until
the participant made a response. Following each response, auditory
and visual feedback was presented for 0.75 seconds. Following correct
responses, the word “Correct” was presented in the center of the com-
puter screen with a pleasant tone. Following incorrect responses, the
word “Wrong”was presentedwith an unpleasant tone. Every 100 trials,
participants were given a self-paced break. Participants trained until
they reached an 85% correct performance criterion on the final block
of 100 trials.

To gain familiarity with the task that would later be used in the
scanner, after reaching the 85% performance criterion, participants
performed a second training task similar to that they would perform
in the scanner (Fig. 1 illustrates the task performed in the scanner).
At the beginning of each trial, a cue was presented for 1.5 seconds,
which instructed participants to either “Match the Specific Face,” or
“Match the Category.” After this cue was presented, a face stimulus
was presented for 1.5 seconds in the center of the computer screen.
After a nine-second delay (during which time participants saw only
a blank screen), a second face stimulus (or, in the Label condition,
the category label “A” or “B”) was presented for three seconds. Two
response cues, “Match” and “Mismatch” were then added to the dis-
play (at the bottom left and bottom right of the screen, respectively).
On trials in which participants were cued to remember the specific
face, participants had to indicate whether the second face was the
same as the first. On trials in which participants were instructed to
remember the category, they had to indicate whether the second
stimulus (face or category label) belonged to the same category as
the first. No feedback was delivered. Trials were separated by a 1.5
second inter-trial interval (ITI) during training. All participants per-
formed 30 trials of the second training task. The assignment of con-
dition to trial was random (selected with replacement), such that
there were 10 trials per condition. As in the first training task, partic-
ipants made their responses via the index fingers of their right and
left hands using the “d” and “k” keys.

In the scanner, the task was similar to the second pretraining
task described above. Stimuli were, however, presented via a back-
projection mirror positioned above the participant, and responses
were made with fingers of the right and left hands via separate button
boxes. The ITI was jittered according to a positively-skewed geometric
distribution ranging from 1.5 to 9 seconds. Participants performed two
15-minute runs. In order to increase power for analyses of the Item trials
in contrastwith Categorical Encoding trials, we presented fewer Catego-
ry (14) and Label (14) trials than Item trials (17) during each run. Both
correct and incorrect trials were included in the analyses to maximize
statistical power.
Image acquisition

Images were obtainedwith a 3.0 Tesla MRI scanner (Siemens) at the
Intermountain Neuroimaging Consortium (Boulder, CO). The scanner
was equipped with a 12-channel head coil. Structural images were col-
lected using a 3DT1-weighted rapid gradient-echo (MPRAGE) sequence
(256 × 256matrix; FOV, 256; 192 1–mm sagittal slices). Functional im-
ages were reconstructed from 28 axial oblique slices obtained using a
T2*-weighted 2D-EPI sequence (TR, 1500 ms; TE, 25 ms; FA, 75; FOV,
220-mm, 96 × 96 matrix; 4.5-mm thick slices; no inter-slice gap).
Each run consisted of 597 volumes. The first three volumes, which
were collected before the magnetic field reached a steady state, were
discarded.
Preprocessing
Image preprocessing was performed using SPM8 (http://www.fil.

ion.ucl.ac.uk/spm/software/spm8). Preprocessing involved correction
of slice time acquisition differences (images were adjusted to the 14th
slice), motion correction of each volume to the first volume of the
first run using 3rd degree B spline interpolation, coregistration of the
functional to the structural data, normalization to the MNI template,
smoothing (with a 6 mm Gaussian kernel), and temporal filtering
(with a 128 s high-pass filter). One participant had excessive head-
movement (defined as greater than 3mm translational or 2.5° rotation-
al movement). This participant's data were excluded from subsequent
analyses.

FMRI analyses

Univariate general linear model
Trial epochs (i.e., encoding, delay, and probe)weremodeled as inde-

pendent regressors in a univariate whole-brain analysis. All trials were
included in this analysis. The encoding regressor was coded as a 1.5 s
boxcar coinciding with the presentation of the first stimulus (1.5–3 s
after cue onset). The delay period was modeled as a 2 second boxcar
placed halfway through the delay period (6–8 s after cue onset). The
probe periodwasmodeled as a 3 secondboxcar coincidingwith the pre-
sentation of the second stimulus (12–15 s after cue onset). As in previ-
ous research, the onsets of these regressors were placed at least 4
seconds apart to minimize the influence of preceding trial epochs
(Barde and Thompson-Schill, 2002; Druzgal and D'Esposito, 2003;
Gazzaley et al., 2004, 2007; Pessoa et al., 2002; Postle et al., 2000;
Rissman et al., 2004, 2008; Zarahn et al., 1997).We convolved each box-
car with the canonical SPM HRF. For each contrast, we generated maps
at anuncorrected threshold of p b 0.001 and corrected formultiple com-
parisons using the topological false-discovery rate (Chumbley and
Friston, 2009).

Constrained Principal Component Analyses (CPCA)
To investigate task-related differences across functional net-

works, we used Constrained Principal Component Analyses (CPCA)
using a finite-impulse response (FIR) model, as implemented in the
fMRI-CPCA toolbox (www.nitrc.org/projects/fmricpca). CPCA com-
bines multivariate regression and principal component analysis to
identify multiple functional networks involved in a given task, and
has been used successfully with similar experimental paradigms
(Metzak et al., 2011, 2012; Woodward et al., 2013). This approach
is mathematically similar to Partial Least Squares analysis
(McIntosh et al., 1996), and is attractive, as it allows estimation of
changes in the BOLD response across peristimulus time within
each functional network, and also allows statistical inference
concerning the importance of each column of the design matrix for
each component.

CPCA involves preparation of two matrices: Z and G. Z contains the
BOLD time course of each voxel, with one column per voxel and one
row per scan. The designmatrix, G contains a FIRmodel of the BOLD re-
sponse related to the event onsets. The BOLD time-series in Z is
regressed onto the design matrix, G, yielding a matrix, C, of regression
weights. GC thus contains the variance in Z, that is accounted for by
the design matrix, G. Components are then extracted from the variance
inGC via singular value decomposition, yieldingU, amatrix of left singu-
lar vectors, D a diagonal matrix of singular values, and V, a matrix of
right singular vectors. The columns of VD, which reflect component
loadings, can be overlaid on a structural image to visualize the function-
al networks. To maximize the variance of the squared loadings, we or-
thogonally rotated VD prior to display. The top 5% of these rotated
loadings for each component are illustrated in Figs. 3B, 4B, 5B, 6B
and 7A. Several previous studies (e.g., Metzak et al., 2011, 2012) have
used a similar threshold. For each combination of peristimulus time-
point, condition and participant, CPCA estimates a set of predictor
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Fig. 2.Whole brain univariate analyses: activity differing between conditions within individual trial epochs (Encoding and Probe). Top figure: Encoding epoch. Red: Categorical Encoding
(Category and Label trials) greater than Item; blue: Item greater than Categorization Encoding. Bottom figures: Probe epoch. Top: Green: Label greater than Item; blue: Item greater than
Label. Middle: Green: Label greater than Category; Red: Category greater than Label. Bottom: Red: Category greater than Item. Blue: Item greater than Category. Regions of activity are
overlaid on the average normalized anatomical image across subjects. For each contrast, we generated maps at an uncorrected threshold of p b 0.001 and corrected for multiple compar-
isons using the topological false-discovery rate (q b .05; Chumbley and Friston, 2009).

Fig. 3. Component 1. Note the recruitment of regions involved in the salience network (inferior frontal/anterior insula and anterior cingulate) along with visual processing regions
(fusiform gyrus and occipital lobe). A) The top 5% of component loadings overlaid on theMNI template provided byMRIcron (3d renderings, top) and the average structural image (slices,
bottom). B) Predictor weight timecourse across peristimulus time. Error bars represent the standard error of the mean. Vertical lines indicate onsets of visual stimuli.
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weights (P), which are the values that relate the designmatrix, G, to the
networks associated with each component, such that U= G × P. All tri-
als were included in this analysis.

We conducted a repeated measures ANOVA using SPSS, which
allowed us to investigate the consecutive scans where the slope of the
predictor weight time course differed between conditions. This allows
investigation of differences between conditions or contiguous time
points, without considering the complex hemodynamic shape (cf.,
Metzak et al., 2012). For these analyses, and in Figs. 3B, 4B, 5B, 6B
and 7A, we adjusted the time-series so that the first observation was
zero for all conditions (cf., Metzak et al., 2011, 2012; Woodward et al.,
2013). We tested assumptions of sphericity, and controlled for viola-
tions using Greenhouse–Geisser adjusted degrees of freedom.

Readers more familiar with the interpretation of statistical maps
derived from univariate analyses should take care when interpreting
the multivariate results shown in Figs. 3, 4, 5, 6 and 7. Whereas sta-
tistical maps derived from univariate analyses provide information
about activity occurring within specific regions, each CPCA compo-
nent reflects a pattern of task-related variance derived from all
voxels in the brain. The maps derived from CPCA analyses, therefore,
provide information about regions that cooperate to subserve a par-
ticular function. Whereas most univariate analyses assume a HDR
shape by using a standard GLM with a canonical HRF, CPCA uses a
FIR model which uncovers network-specific HDR shapes of task-
related variance in a data-driven manner. This is valuable, as it can
help segregate and characterize task-related processes that might
not have been predicted by the experimenter.

In the present paper, we use univariate analyses to characterize ac-
tivity occurring within specific regions of the brain, and we use CPCA
to investigate how distributed regions coordinate to subserve different
processes. In the tables provided, we label cluster peaks according to a
7-network parcellation identified in previous research (Buckner et al.,
2011; Choi et al., 2012; Yeo et al., 2011), but refer to some regions
that these papers term the ventral attentional network as the salience
network (SA), in line with current usage (Buckner et al., 2013).

Results

Behavioral

All trials for which participantsmade a behavioral response were in-
cluded in all analyses. Accuracy was highest for the Item conditions
(M = 94.87% correct, SD = 5.83), lower for the Label condition (M =
81.11%, SD = 12.36) and lowest for the Category condition (M =
75.46%, SD=16.71), F(2,45) = 10.25, p b .001, η2 = 0.31. The accuracy
difference between the Label and Category conditions is likely related to
the different number of categorization decisions required for each con-
dition: the Category trials required participants to categorize stimuli at
encoding and probe, and an error on either decision could lead to an in-
correct response, whereas the Label trials required participants to cate-
gorize stimuli only at encoding. Performance in the Label condition was
close to that of the 85% accuracy criterion from the learning phase. We
did not collect reaction time data because it was unlikely to be of inter-
est due to the requirement that participants delay their response until
the response cue was presented.

Neuroimaging

Univariate GLM analyses
Whole brain GLM analyses were used to examine regions of activ-

ity during each trial epoch: encoding, delay and probe (cf., Gazzaley
et al., 2004, 2007). Because the Category and Label trials were iden-
tical until the onset of the second stimulus, these conditions were
combined as the “categorical-encoding” condition for examination
of activity during the encoding and delay epochs. In this section we
present univariate regions of activity across the whole brain; we
also discuss these results masked by each component later following
the CPCA results.

As can be seen in Table A.1 and Fig. 2, during encoding, the
Categorical-Encoding trials elicited greater activity than Item trials pri-
marily within frontal lobe regions (middle cingulate, superior medial
gyrus, inferior frontal/anterior insula) and subcortical regions that are
known to interact with the frontal lobe (right caudate, left cerebellar
lobule VI). These regions participate in the frontoparietal intrinsic con-
nectivity network (Yeo et al., 2011). In addition, categorical encoding
recruited visual regions including the bilateral calcarine gyri. The Item
condition elicited greater activity than Categorical-Encoding trials in
the left inferior frontal gyrus, regions of the temporal and occipital
lobe associated with high level visual processing, and the bilateral hip-
pocampus. All of these regions have been identified in previous studies
as being recruited during visual working memory encoding (Gazzaley
et al., 2007; Sala et al., 2003). The only region showing significant
activation in response to both conditions (conjunction analysis, contrast
with implicit baseline) at encoding was the crus I region of the right
cerebellum.

During the delay period, the majority of regions sensitive to dif-
ferences between conditions showed patterns of activity suppressed
below implicit baseline (cf. Gazzaley et al., 2004). To avoid difficul-
ties in interpreting deactivation, we conducted a conjunction analy-
sis, and have reported only regions that showed activity greater than
implicit baseline and were also sensitive to direct contrasts between
conditions.We found that regions in the right superior temporal lobe
and middle cingulate gyrus showed significantly greater activity
during Item trials than during Categorical-Encoding trials. No re-
gions showed greater activity during Categorical-Encoding trials
than during Item trials.

During the probe epoch, Category and Label trials were analyzed
separately, and compared with each other andwith Item trials. Not sur-
prisingly, during the probe epoch, conditions in which participants
viewed faces (Category and Item) had greater activity in higher order
visual processing regions than the Label condition (in which partici-
pants viewed the Category Label, “A” or “B”). As shown in Fig. 2, these
included bilateral inferior occipital and bilateral fusiformgyri. Converse-
ly, Label trials led to greater activity than Category and Item trials in
other visual processing regions including the right cuneus/superior oc-
cipital gyrus, and a region of the left fusiform (Label N Category only).
These differences are likely due to visual processing differences be-
tween faces and letters. In addition to visual regions, the Category N

Label contrast during the probe epoch revealed recruitment of
frontoparietal regions including the right superior medial gyrus, and
the middle and posterior cingulate, along with a region of the cerebel-
lum (left cerebellar crus II).

The Category versus Item contrast (see Fig. 2, bottom row) was the
most direct comparison between categorization and item recognition;
both conditions had similar requirements for viewing and processing
face stimuli and making same-different judgments. The only region
showing greater activity during Item trials than during Category trials
was a region in the left middle temporal gyrus. Category trials elicited
greater activity than Item trials in executive regions of the cerebellum,
frontal (middle frontal, anterior insula/inferior frontal, and superiorme-
dial gyrus) and parietal regions (inferior parietal, angular gyrus, and
precuneus), including the salience network. Finally a conjunction anal-
ysis revealed that motor planning regions of the SMA were recruited in
all three conditions, consistent with the similar motor response de-
mands across the conditions.

CPCA
The GLM model, GC, accounted for 36.31% of the variance in the

BOLD signal. Based on inspection of the scree-plot, we extracted five
components. After varimax rotation, the first through fifth components
accounted for 14.15%, 8.13%, 4.95%, 4.90%, and 4.16% of the task-related
variance, respectively.
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Component 1. Component 1 is illustrated in Fig. 3; cluster coordinates
are given in Table A.2. This component was characterized by activity
in the bilateral fusiform gyrus and occipital regions, bilateral thalamus,
bilateral parietal regions, bilateral inferior frontal gyrus and anterior
insula, and bilateral medial frontal gyrus. Overall this component over-
lapped with the visual, dorsal attentional, FP-CEN, and SA networks
(Buckner et al., 2011; Dosenbach et al., 2006; Seeley et al., 2007). Inspec-
tion of the predictor weights (Fig. 3B) revealed a bimodal shape, and an
ANOVA revealed a significant main effect of condition, F(2,30) = 6.1,
p b .05, η2 = .01, a significant main effect of time-point, F(17,255) =
27.29, p b .001, η2 = .56, and an interaction between condition and
time-point, F(34,510) = 9.88, p b .001, η2 = .04. This interaction was
driven by differences following the second stimulus. The slope of the
predictor weight timecourse differed between the Category and Label
trials for the two consecutive time points between 2.25 and 5.25 sec-
onds (p b .001 for both time points), and the time points between
6.75 and 11.25 seconds (p b .05; p b .001; p b .001) following the second
stimulus. The slope also differed between the Category and Item condi-
tions (2.25 to 3.75, 6.75 to 8.25, 9.75 to 11.25, and 14.25 to 15.75 sec-
onds; p b .05 for all time-points), and between the Item and Label
trials (2.25 to 5.25 seconds and 6.75 to 12.75 seconds; p b .05 for all
timepoints). Following the second stimulus, the predictorweights asso-
ciatedwith the Category and Item conditions showed greater amplitude
than those of the Label condition, suggesting that the Category and Item
conditions placed greater demands on the Component 1 network than
did the Label condition. This might have been due to the visual differ-
ences between faces and labels, or due to differences in higher-order
cognitive demands.

Component 2. Component 2 loadings (Fig. 4 and Table A.3) were associ-
ated with regions largely involved in motor and visual processing, in-
cluding motor and premotor cortex (e.g., precentral and postcentral
gyri, and the SMA) and visual regions (superior occipital, lateral occipi-
tal and lingual gyri). This component largely overlaps with the visual
and somatomotor networks, alongwith some adjoining areas of the sa-
lience network and dorsal and ventral attentional networks (Yeo et al.,
2011). Inspection of the predictorweights revealed a unimodal peak oc-
curring roughly 8 seconds after the onset of the second stimulus. An
ANOVA on the predictor weights revealed a significant main effect of
condition, F(2,30) = 19.23, p b .001, η2 = .03, a main effect of time-
Fig. 4. Component 2. Note the recruitment of sensorimotor and premotor regions. A) The top 5%
top) and an averaged structural image (slices, bottom). B) Predictor weight timecourse. Error ba
point F(17,255) = 5.00, p b .001, η2 = .18, and an interaction between
condition and time-point F(34,510)= 2.9, p b .001, η2= .04. There was
a significant difference in the slope of the predictor weight time course
between the Category and Label condition following the first peak
(6.75–8.25 seconds after the first stimulus; p b .05), but the effects pre-
dominantly followed the second stimulus. The slope between the
Category and Label Trials differed between 2.25 and 3.75 seconds
and 12.75 to 14.25 seconds following the second stimulus (p b .05
for both time points). The slopes associated with the Label and
Item conditions differed for the consecutive time points between
.75 and 3.75 seconds (p b .05); and the slopes of the Category and
Item conditions differed between 3.75 and 5.25 seconds (p. b .05).
Overall, following the second stimulus, the predictor weight peak
was greatest for the Label condition followed by the Item condition,
and then the Category Condition.

Component 3. The top 5% of loadings on Component 3 (see Fig. 5 and
Table A.4) were associated primarily with regions within the FP-CEN
network (Buckner et al., 2011; Choi et al., 2012; Yeo et al., 2011), includ-
ing extensive regions of the inferior and medial parietal lobe, regions of
the inferior,middle, and superior frontal gyri, and subcortical regions in-
cluding the caudate nucleus and cerebellar regions. In addition, this
component included primary visual cortex and regions of the medial
frontal gyrus, inferior parietal lobe, and cerebellum associated with
the default network. Inspection of the predictor weights associated
with Component 3 revealed a bimodal shape similar to that of Compo-
nent 1, but with peaks delayed several seconds in time. An ANOVA on
the predictor weights (shown in Fig. 5B) revealed a significant main ef-
fect of condition, F(2,30)=13.24, p b .001, η2= .04, amain effect of time-
point F(17,255) = 4.67, p b .001, η2 = .16, and an interaction between
condition and time-point F(34,510)= 2.34, p b .001, η2= .03. This inter-
action was driven by effects following the second stimulus. The predictor
weight slopeswere significantly steeper in the Category condition than in
the Label conditions from6.75 to 8.25 seconds following the second stim-
ulus (p b .01). The slope was steeper in the item condition than the Label
condition from 2.25 to 3.75 seconds (p b .05) and during the consecutive
time points from 6.75 to 9.75 seconds (p b .01; p b .05). From 8.25 to 9.75
seconds, the slope associated with the Item condition was steeper than
that of the Category condition (p b .05), an effect driven by a slightly
shorter time-to-peak in the Category condition.
of component loadings overlaid on theMNI template provided byMRIcron (3d renderings,
rs represent the standard error of themean. Vertical lines indicate onsets of visual stimuli.



Fig. 5. Component 3. Note the recruitment of FP-CEN regions including the lateral prefrontal cortex and intraparietal sulcus, alongwith the cerebellum and caudate. A) The top 5% of com-
ponent loadings overlaid on the MNI template provided by MRIcron (3d renderings, top) and an averaged structural image (slices, bottom). B) Predictor weight timecourse. Error bars
represent the standard error of the mean. Vertical lines indicate onsets of visual stimuli.
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Component 4. Component 4 (see Fig. 6 and Table A.5) was associated
exclusively with regions of the visual network (Yeo et al., 2011), and
included regions extending from the primary visual cortex superiorly
to the precuneus and anteriorly to the inferior temporal lobe. An
ANOVA on the predictor weight timecourse indicated a significant
main effect of condition, F(1.44,21.63) = 4.55, p b .05, η2 = .01, and a
main effect of time-point F(4.25,63.78) = 7.76, p b .001, η2 = .26. The
interaction between condition and time-point was not significant,
F(7.78,116.69) = 1.63, p N .05, η2 = .02.

Component 5. The top 5% of loadings (Table A.6 and Fig. 7) were associ-
ated primarily with regionswithin the default mode network, including
medial parietal, medial prefrontal, middle temporal gyrus, and the hip-
pocampus (Buckner et al., 2011; Choi et al., 2012; Yeo et al., 2011). An
ANOVA on the predictor weight time course revealed a significant
main effect of condition, F(2,30) = 12.56, p b .01, η2 = .46, a significant
main effect of time-point, F(17,255) = 19.24, p b .001, η2 = .41, and
an interaction between condition and time-point, F(34,510) = 2.5, p b

.001, η2 = .14.
The interactionwas driven by differences following the second stim-

ulus: the slopes differed between the Category and Label conditions
from 2.25 to 3.75 seconds (p b .05), from 5.25 8.25 (p b .01; p b .01),
Fig. 6. Component 4. Note the recruitment of visual processing regions. A) The top 5% of
component loadings overlaid on the MNI template provided by MRIcron (3d renderings,
top) and an averaged structural image (slices, bottom). B) Predictor weight timecourse.
Error bars represent the standard error of themean. Vertical lines indicate onsets of visual
stimuli.
and between the Category and Item conditions from .75 to 2.25 (p b

.05), and from 11.25 to 14.25 (p b .05; p b .05) seconds following the
second stimulus. As predicted based on task difficulty, we found that
Category (M = −0.11, SD = .08, t(15) = 3.04, p b .01, g = .61) and
Label (M=− .13, SD=.09, t(15)=4.97, p b .001, g=0.7) trials elicited
greater suppression across the predictor weight time series than Item
trials (M = − .05, SD= .11).

CPCA-masked univariate GLM analyses
In order to further explore how regions within CPCA components

were affected by task differences, we examined our univariate results
within masks formed by each individual component. However, it is im-
portant to understand the limitations of this approach. Whereas the
CPCA results highlight patterns of task-related variance shared between
brain regions, univariate analyses ignore these patterns of shared vari-
ance and consider only variancewithin specific clusters. As a result, uni-
variate results can represent several sources of overlapping variance,
and may, therefore, not closely resemble the patterns revealed by
CPCA (e.g., Components 1 and 3 overlapped in regions of the bilateral
precuneus, and Components 3 and 4 overlapped in bilateral regions of
the lingual gyrus). While univariate analyses can be conceptualized as
providing a view of task-related variance that slices across network
variance, CPCA can be conceptualized as providing a view that slices
across the variance within specific brain regions. The evaluation of the
statistical reliability of the results from each analysis reflects this dis-
tinction; univariate results are evaluated for each cluster separately,
while CPCA results are evaluated at the level of the hemodynamic re-
sponse of the entire network. Additionally, whereas the univariate anal-
yses assume a canonical hemodynamic response associated with each
task epoch, CPCA uses a flexible FIRmodel, and is capable of uncovering
patterns of task-related variance in a data-driven manner. Because the
univariate analyses are sensitive to matches between the network-
unspecific hemodynamic response and the canonical hemodynamic re-
sponse functionmodeling each task epoch separately, whereas themul-
tivariate analysis reflects network-specific, data-driven, hemodynamic
response shapes during overall task performance, we consider the pat-
tern of univariate results to convey a broader, network-unspecific view
of task related activity, although this activity is restricted to matches to
the canonical HRFs.
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Component 1. As shown in Table A.7, consistent with the predictor
weight time course, we found that visual regions within Component 1
tended to respond preferentially to visual stimulus features at probe;
regions in the bilateral inferior occipital gyrus, bilateral fusiform, and
the left calcarine showed greater activity when a face was presented
(i.e., during both Category and Item trials) than when a Label was
presented. Interestingly, neighboring regions within the fusiform
showed greater activity during the encoding epoch when it was neces-
sary to encode a specific stimulus (Item trials) than when it was neces-
sary to categorize it (Category and Label trials), indicating that this
region was sensitive to specific-item encoding demands. Taken togeth-
er, these results indicate that these visual regions have both feature spe-
cific processing roles, and functional roles within the task-related
salience network in responding to stimuli.

A second pattern was that frontal and parietal regions associated
with FP-CEN and SA tended to show sensitivity to categorization de-
mands. Regions in the superior medial frontal cortex, the left cerebellar
crus 1, and the bilateral precuneus showed greater activity for categor-
ical encoding trials than for Item trials during encoding, and also
showed greater activity for Category trials than for Item trials during
probe. Interestingly, only the left precuneus, a region thought to be a
hub in the FP-CEN (Niendam et al., 2012) also showed greater activity
for the Label condition than the Item condition at probe. The right ante-
rior insula, a key node in the salience network (Seeley et al., 2007), and a
region of the thalamus known to be connected with the prefrontal cor-
tex (Behrens et al., 2003), showed greater activity for the categorical-
encoding trials than the Item trials during encoding, but showed no dif-
ferences between conditions at probe.

Component 2. Mirroring the predictor weight timecourse, we found
that visual cortical regions of Component 2 were sensitive to visual
stimulus features, as detailed in Table A.8. Regions of the left lingual
and superior occipital gyrus showed greater activity during categor-
ical encoding than during item trials at encoding, while the right
superior temporal lobe showed the opposite pattern (item N categor-
ical encoding). The primary effect, however, was that regions of the
bilateral lingual gyrus, bilateral occipital gyri, and left supramarginal
gyrus were more active for Label than for Category and/or Item trials.
The univariate results, however, did not reveal similar patterns of ac-
tivity within the motor regions associated with Component 2.

Component 3.Overall, many regionswithin the component 3mask in the
univariate analysis (Table A.9) showed a pattern of higher activity for
both Label and Category than Item at encoding, alongwith greater activ-
ity for Category than both Label and Item at probe. Specifically, at
encoding, frontoparietal (right precuneus, left cerebellar lobule VI, and
middle cingulate) and visual (left calcarine gyrus) regions showed great-
er activity during categorical-encoding trials than during Item-trials. At
probe there was greater activity in FP-CEN regions during Category
trials than during Label trials (right superior medial gyrus, posterior cin-
gulate, bilateral cerebellar crus I), or Item trials (bilateral precuneus, left
inferior parietal lobe, right angular gyrus, bilateral superior medial
gyrus, and posterior cingulate). Overall, the univariate results were simi-
lar to the multivariate results for these regions, despite the fact that
each analysis approach captures different sources of variance. However,
the analysis approaches differed with respect to subcortical regions.
Although the basal ganglia was involved in this component overall, its ac-
tivity did not differ significantly across conditions in the univariate analy-
sis, indicating that these regions likely played an important role across
tasks. Similarly, there was widespread cerebellar activity in the compo-
nent in the multivariate analysis, indicating cerebellar contributions to
the functional network, but only small regions of cerebellum were
present in the univariate analysis.

Components 4 and 5. As was the case for visual regions within Compo-
nents 1 and 2, visual regions associated with Component 4 were
sensitive to visual stimulus features, (Table A.10). Interestingly, there
were differences in recruitment during encoding between the working
memory and categorization conditions despite both conditions sharing
the same stimulus types (faces). Activity within regions associated with
Component 5 tended to be anticorrelated with task difficulty, mirroring
results based on the predictor weight timecourse. Given the tangential
nature of this component to our primary hypotheses, we do not provide
a table of these results.

Discussion

We compared delayed match-to-sample and delayed match-to-
category tasks to investigate how neural systemswere recruited for cat-
egorization and item-specific processes across encoding, maintenance
across a short delay, and match–mismatch decisions. In the match-to-
sample task, optimal behavior could be subserved by a strategywherein
participants considered only the intrinsic visual features of the stimuli.
The categorization task, however, required that participantsmake judg-
ments based on latent categorical features (the category labels). We
found that categorization and item specific memory recruited five neu-
ral networks (identified as CPCA components). Two of the components
are of particular note: Component 1, which recruited key nodes of the
salience network involved in immediate stimulus processing, and Com-
ponent 3, which recruited fronto-parietal-striatal regions linked to ex-
ecutive function.

The first CPCA component had three important characteristics. First,
it included regions associated with frontoparietal networks, especially
the salience network (i.e., bilateral inferior frontal and anterior insula,
and dorsal anterior cingulate/SMA; Chiong et al., 2013; Ham et al.,
2013; Menon and Uddin, 2010; Sridharan et al., 2008) alongwith visual
processing regions. Second, it displayed hemodynamic response peaks
occurring rapidly after stimulus onset. Third, activity in this component
was significantly higher for both conditions that required face process-
ing (Item and Category) than the Label conditions. These characteristics
support the interpretation that this componentwas associated with the
detection of behaviorally-salient events and the rapid allocation of cogni-
tive resources to support task demands. The salience network has been
previously associated with the coordination of large-scale brain
networks to support advantageous behavioral responding (Eckert et al.,
2009; Ham et al., 2013; Menon and Uddin, 2010; Sridharan et al.,
2008). For instance, damage to the salience network has been linked to
defaultmode network dysfunction (Bonnelle et al., 2012), and functional
connectivity analyses have provided evidence that the salience network
mediates the anti-correlated relationship between the frontoparietal
network and the default mode network (Goulden et al., 2014; Menon,
2011; Palaniyappan et al., 2013; Sridharan et al., 2008).

Like Component 1, Component 3 was primarily associated with re-
gions of the frontoparietal network (Buckner et al., 2011; Choi et al.,
2012; Yeo et al., 2011), but unlike Component 1, these regionswere pri-
marily associated with the central executive network rather than the
salience network (Goulden et al., 2014; Sridharan et al., 2008). The bi-
modal predictor-weight timecourse associated with Component 3 was
similar to that of Component 1, but the peaks occurred later in time fol-
lowing each stimulus, consistent with a greater role in more time-
demanding processes such as those involved in decision making, rather
than rapid attentional orienting as in Component 1. Interestingly, uni-
variate analyses indicated that subregions within this network tended
to show greater activity when categorization was required than when
it was not.

Many of the regions involved in Component 3 have been associated
with categorization in previous studies. Notably Component 3 recruited
frontal lobe regions known to play an important role in rule and catego-
ry learning tasks in both monkeys (Antzoulatos and Miller, 2011;
Freedman et al., 2001; Meyers et al., 2008; Wallis and Miller, 2003)
and humans (Seger and Cincotta, 2006). Additionally, there was broad
activity extending medially to laterally across the intraparietal sulcus



Fig. 7. Component 5. Note the recruitment of default mode network regions. A) The predictor weight timecourse. B) The top 5% of component loadings overlaid on theMNI template pro-
vided by MRIcron (3d rendering, left) and an averaged structural image (slices on the right).We changed the color map to cool colors to emphasize that Component 5 was anticorrelated
with cognitive demands.
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region,which is thought to include the human homolog of LIP, shown to
be category sensitive in monkey (Fitzgerald, Freedman, and Assad,
2011; Freedman and Assad, 2006, 2009). This region is also implicated
in perceptual decisionmakingmore broadly, and is thought to subserve
processes of accumulation of information from perceptual regions that
can serve as input to regions involved in response selection (Ploran
et al., 2007; Roitman and Shadlen, 2002; Shadlen and Newsome,
2001). Although univariate analyses indicated that subregions within
this network were preferentially activated during conditions requiring
categorization, the multivariate analyses indicated that this network
was similarly recruited across tasks.

Component 3 was also the only component associated with wide-
spread activity in the basal ganglia, specifically in the body of the cau-
date, a region associated with visual categorization in several previous
studies (Lopez-Paniagua and Seger, 2011; Nomura et al., 2007; Seger
and Cincotta, 2005, 2006; Seger et al., 2010). Univariate analyses, how-
ever, did not indicate that there were significant differences in basal
ganglia activity between tasks; suggesting that this region may play
a similar role across these tasks. An unexpected finding was that
widespread regions of the cerebellumwere also included in Component
3. Although these regions of the cerebellum are associated with frontal
cognitive control system (Buckner et al., 2011), and are known to con-
tribute to higher-order cognitive processes (Balsters et al., 2012), the
cerebellum is not commonly a focus of categorization and decision
making research.

Component 5 closely resembled the DMN, and showed suppressed
activity during the more cognitively demanding Category trials relative
to the Item trials. This finding is in accordance with the known anti-
correlated relationship between the default mode and frontoparietal
networks (e.g., Menon andUddin, 2010; Sridharan et al., 2008). Compo-
nent 2 resembled the sensorimotor intrinsic connectivity network and
showed a single peak corresponding to the behavioral response. How-
ever, this network additionally recruited regions within the salience
and dorsal attention intrinsic connectivity networks. Many of these re-
gions have been previously associated with abstract motor representa-
tion and motor preparation in functional tasks (Noppeney et al., 2005;
Rowe et al., 2010), and may therefore have activity patterns that corre-
lated with the sensorimotor network during our task.

Component 4 was limited to regions within the visual intrinsic
connectivity network, and as in resting state fcMRI, displayed a pat-
tern of strong local connectivity (Yeo et al., 2011). Our multivariate
analyses, however, suggested that these regions also interacted
with different CPCA components. The bilateral lingual gyrus and
cuneus, for instance, interacted with somatomotor regions in Com-
ponent 2, while posterior occipital regions were associated with
Component 4, and regions extending from the lateral occipital lobe
down through the fusiform gyri interacted with Component 1.
Univariate analyses provided evidence that visual regions were driv-
en by stimulus type, but were insensitive to categorization demands;
fusiform regions showed greater activity when a face was presented,
while medial occipital regions showed greater activity when the
category label (a single letter) was presented.

In this paper we report, for the first time, functional networks in-
volved in the performance of a delayedmatching task thatwere recruit-
ed during categorization and during the processing of specific items.
Most importantly, we found two different frontoparietal networks,
one of which (Component #1) acted on a faster time course, was sensi-
tive to differences between conditions, and included regions of the sa-
lience network in conjunction with regions involved in higher level
visual processing. The second, (Component #3) operated on a slower
time course, and involved lateral parietal and lateral frontal regions, as
well as the basal ganglia, all regions previously individually associated
with categorization and decision-making.
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Table A.1
Univariate results for the encoding, delay and probe epochs.

Contrast Peak MNI coordinates Region BA Network

Voxels mm3 x y z

Encoding
Categorical encoding N item

1185 9480
−2 −90 −4 Left calcarine gyrus 17 VS

2 −76 8 Right calcarine gyrus 18 VS
731 5848

12 −64 40 Right precuneus 7 FP-CEN
−4 −64 44 Left precuneus 7 DMN

357 2856 −4 −28 28 Middle cingulate 23 SA
152 1216 12 6 14 Right caudate nucleus FP-CEN
106 848 −6 −18 10 Left thalamus
99 792 −12 −80 −22 Left cerebelar lobule VI (hem) 18 FP-CEN
79 632 4 28 42 Right superior medial gyrus 6 SA
75 600 30 22 −4 Right inferior frontal/anterior insula 47 SA

Item N Categorical encoding
451 3608 −42 −66 −12 Left inferior occipital gyrus 19 VS
284 2272

−46 −8 −30 Left inferior temporal gyrus 20 DMN
−24 −2 −22 Left amygdala 28
−36 −2 −20 Superior temporal pole 36
−22 −12 −18 Left hippocampus 35

177 1416 −4 52 −16 Left rectal gyrus 11 DMN
124 992 22 −10 −14 Right hippocampus
111 888 44 −62 −6 inferior temporal gyrus 36 VS/DA
91 728 −42 28 −16 Left inferior frontal gyrus 38 DMN
87 696 −44 −46 −14 Left inferior temporal gyrus 37 DA

Conjunction (item N Implicit baseline and categorical
encoding trials N implicit baseline)

100 800 40 −73 −29 Right cerebellar crus I FP-CEN/DMN

Delay
Conjunction (item N categorical encoding and
item N implicit baseline)

131 1048 56 −18 10 Right superior temporal SM
52 416 −6 −18 44 Middle cingulate SM/VA

Probe
Item N Label

1325 10,600
42 −82 −2 Right inferior occipital gyrus 19 VS
42 −74 −10 Right inferior occipital gyrus 19 VS
42 −46 −16 Right fusiform gyrus 37 DA

937 7496
−26 −94 −4 Left inferior occipital gyrus 18 VS
−38 −84 −14 Left fusiform gyrus 19 VS

Label N Item
191 1528 16 −76 24 Right cuneus 18 VS
135 1080 −50 −50 6 Left middle temporal gyrus/lateral occipital 21 VA
103 824 −14 −88 24 Left superior occipital gyrus 18 VS
84 672 −4 −68 46 Left precuneus 7 FP-CEN

Label N Category
513 4104

18 −88 18 Right superior occipital gyrus 18 VS
18 −78 24 Right cuneus 19 VS

325 2600 −56 −56 10 Left middle temporal gyrus 37 VA
298 2384 −12 −90 24 Left superior occipital gyrus 18 VS
156 1248 52 −32 16 Right superior temporal gyrus 41 SM
120 960 −38 −18 −8 Left insula (Id1) 20 VA
112 896 −54 −2 −10 Left superior temporal gyrus 22 DMN
102 816 10 −70 −6 Right lingual gyrus 18 VS
81 648 0 −24 60 Left paracentral lobule 6 SM
80 640 68 −30 30 Right supramarginal gyrus 2 VA
77 616 −6 −70 −2 Left lingual gyrus 18 VS
71 568 −32 0 12 Left insula 48 VA
67 536 −62 −24 16 Left supramarginal gyrus 42 VA
63 504 60 −58 20 Right superior temporal gyrus 21 DMN
62 496 −32 −38 −14 Left fusiform gyrus 37 VS

Category N Label
1629 13,032

42 −88 −2 Right inferior occipital gyrus 19 VS
42 −74 −10 Right inferior occipital gyrus 19 VS

Appendix A.
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Table A.1 (continued)

Contrast Peak MNI coordinates Region BA Network

Voxels mm3 x y z

42 −52 −16 Right fusiform gyrus 37 VS
32 −92 −2 Right inferior occipital gyrus 18 VS

1114 8912
−26 −94 −4 Left inferior occipital gyrus 18 VS
−38 −82 −12 Left inferior occipital gyrus 19 VS

211 1688
2 28 46 Right superior medial gyrus 8 SA
8 30 30 Right middle cingulate cortex 32 SA

148 1184 0 −44 20 Posterior cingulate DMN
136 1088 −8 −74 −38 Left cerebellar lobule VIIb (Hem) DA
97 776 −6 −32 28 Posterior cingulate 23 FP-CEN
97 776 −2 −34 −6 Superior colliculus

Item N Category
122 976 −58 −2 −18 Left middle temporal gyrus 21 DMN

Category N Item
863 6904

−6 −72 44 Left precuneus 7 FP-CEN
8 −70 44 Right precuneus 7 FP-CEN

758 6064 −34 −56 46 Left inferior parietal lobule 7 FP-CEN
555 4440

0 28 42 Left superior medial gyrus 6 SA
−2 14 46 Left preSMA 6 SA

312 2496
−30 6 60 Left middle frontal gyrus 6 SA
−48 6 44 Left precentral gyrus 44 FP-CEN

252 2016 34 −60 48 Right angular gyrus 7 FP-CEN
91 728 −4 −38 24 Left posterior cingulate cortex 26 FP-CEN
76 608 −44 30 32 Left middle frontal gyrus 45 FP
71 568 −36 18 −2 Left inferior frontal/anterior insula 47 SA
59 472 −8 −74 −26 Left cerebellar lobule VI (Hem) FP-CEN

Conjunction (category N implicit, label N implicit,
and item N implicit)

121 968 −1 2 50 Bilateral preSMA 6 SA
39 312 −16 −14 15 Left thalamus
26 208 19 −13 16 Right thalamus

As Category and Label trials were methodologically identical during encoding and delay, they were combined into a single Categorical-Encoding condition. VS = visual;
SM= somatomotor; DA = dorsal attention; FP-CEN = central executive; SA = salience; DMN = Default Mode Network. Cluster volumes smaller than 10 voxels have been omitted.

Table A.2
Cluster volumes and peak coordinates for the rotated top 5% of Component 1 loadings.

Voxels mm3 Peak MNI
coordinates

Region BA Network

x y z

3755 30,040
32 −90 0 Right middle occipital

gyrus
18 VS

42 −56 −20 Right fusiform gyrus 37 VS
40 −78 −12 Right inferior occipital

gyrus
19 VS

32 −60 46 Right angular gyrus 7 DA/FP-CEN
30 −52 46 Right inferior parietal lobule 7 DA/FP-CEN

2916 23,328
−32 −90 −6 Left middle occipital gyrus 19 VS
−38 −82 −12 Left inferior occipital gyrus 19 VS
−40 −72 −14 Left fusiform gyrus 19 VS
−38 −56 −20 Left fusiform gyrus 37 VS

1021 8168
−28 −70 26 Left middle occipital gyrus 19 VS/DA
−28 −62 48 Left superior parietal

lobule
7 DA

−30 −48 42 Left inferior parietal lobule 40 DA
627 5016

−4 10 50 Left preSMA/medial
frontal gyrus

6 SA

4 16 46 Right preSMA/medial
frontal gyrus

6 SA

Table A.2 (continued)

Voxels mm3 Peak MNI
coordinates

Region BA Network

x y z

525 4200
48 12 30 Right inferior frontal gyrus

(p. Opercularis))
44 DA

44 6 34 Rightprecentral gyrus 44 DA
48 32 18 Right inferior frontal gyrus

(p. Triangularis)
45 SA

113 904
12 −64 42 Right precuneus 7 FP-CEN

110 880
−46 4 34 Left precentral gyrus 44 DA
−46 12 26 Left inferior frontal gyrus

(p. Triangularis)
44 SA

95 760 32 24 −4 Right anterior insula 47 SA
89 712 −10 −72 44 Left precuneus 7 FP-CEN
71 568 −6 −76 −24 Left cerebellar lobule VI FP-CEN
68 544 10 −14 8 Right thalamus SA
63 504 −2 −30 26 Middle/Posterior cingulate 23 FP-CEN
60 480 −10 −16 8 Left thalamus SA
49 392 −30 24 −2 Left anterior insula 47 SA
35 280 −48 0 50 Left precentral gyrus 6 DA/SM

VS = visual; SM = somatomotor; DA = dorsal attention; FP-CEN = central executive;
SA = salience. Cluster volumes smaller than 10 voxels have been omitted.
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Table A.3
Cluster volumes and peak coordinates for the rotated top 5% of Component 2 loadings.

Voxels mm3 Peak MNI
coordinates

Region BA Network

x y z

3170 25,360
−56 −22 40 Left inferior parietal lobule 3 DA
−58 −20 18 Left postcentral gyrus 48 SM
−38 −40 58 Left postcentral gyrus 2 SM
−62 −36 24 Left supramarginal gyrus 48 SA
−46 −36 22 Left superior temporal gyrus 48 SM
−42 −12 52 Left precentral gyrus 6 SM

2679 21,432
56 −18 46 Right postcentral gyrus 1 SM
48 −20 18 Right rolandic operculum 48 SM
46 −26 58 Right postcentral gyrus 1 SM
64 −40 22 Right superior temporal gyrus 22 SA
64 −24 24 Right supramarginal gyrus 48 SA
38 −26 62 Right precentral gyrus 4 SM

1243 9944
2 −4 52 Right preSMA 6 SM

−2 6 40 Left middle cingulate cortex 24 SA
12 −28 44 Right middle cingulate cortex SA

1085 8680
−6 −72 −2 Left lingual gyrus 18 VS

8 −68 −2 Right lingual gyrus 18 VS
−20 −60 −14 Left cerebellum lobule VI 19

20 −60 −12 Right fusiform gyrus 19 VS
406 3248

−50 −2 0 Left insula 48 VA/SM
−44 −4 10 Left insula 48 VA/SM
−56 8 20 Left inferior frontal gyrus 44 SA

306 2448 −8 −94 14 Left cuneus 18 VS
277 2216

44 2 6 Right insula 48 SA
58 10 8 Right inferior frontal gyrus 44 SA

243 1944 14 −90 20 Right cuneus 18 VS
54 432 20 −4 68 Right superior frontal gyrus 6 VA/SM
45 360 50 −66 8 Right lateral occipital gyrus 37 VS
36 288 −12 −26 40 Left middle cingulate cortex SA
32 256 −52 −74 8 Left lateral occipital gyrus 19 VS
18 144 12 −18 6 Right thalamus

VS= visual; SM= somatomotor; DA= dorsal attention; SA= salience. Cluster volumes
smaller than 10 voxels have been omitted.

Table A.4
Cluster volumes and peak coordinates for the rotated top 5% of Component 3 loadings.

Voxels mm3 Peak MNI
coordinates

Region BA Network

x y z

5040 40,320
4 −72 46 Right precuneus 7 FP-CEN

−4 −66 58 Left precuneus 7 DA
−38 −58 38 Left angular gyrus 40 FP-CEN
−32 −72 42 Left inferior parietal lobule 7 FP-CEN

38 −64 48 Right angular gyrus 7 FP-CEN
−44 −58 48 Left inferior parietal lobule 39 FP-CEN

40 −56 42 Right inferior parietal lobule 40 FP-CEN
0 −34 24 Bilateral posterior

cingulate
23 FP-CEN

2774 22,192
12 −88 −26 Right cerebellum crus I DMN
−4 −82 −22 Left cerebellum lobule VI FP-CEN
−8 −88 −26 Left cerebellum crus I FP-CEN
44 −72 −30 Right cerebellum crus I DMN
6 −94 −10 Right calcarine gyrus VS

−40 −78 −30 Left cerebellum crus I DMN
1061 8488

0 −8 10 Thalamus
18 4 22 Right caudate nucleus FP-CEN

−10 −6 12 Thalamus
−18 −14 24 Left caudate nucleus FP-CEN

174 1392 46 38 28 Right middle frontal gyrus 45 FP-CEN
165 1320 −38 58 2 Left superior frontal gyrus 10 FP-CEN

Table A.4 (continued)

Voxels mm3 Peak MNI
coordinates

Region BA Network

x y z

158 1264
0 34 38 Bilateral superior medial

gyrus
32 FP-CEN/DMN

0 24 48 Bilateral preSMA 6 FP-SA
77 616 −12 −92 −2 Left calcarine gyrus 17 VS
71 568 −50 18 34 Left middle frontal gyrus 45 FP-CEN
32 256 34 62 10 Right superior frontal gyrus 10 FP-CEN

VS = visual; SM = somatomotor; DA = dorsal attention; FP-CEN = central executive;
SA= salience;=DMN=Default Mode Network. Cluster volumes smaller than 10 voxels
have been omitted.

Table A.5
Cluster volumes and peak coordinates for the rotated top 5% of Component 4 loadings.

Voxels mm3 Peak MNI
coordinates

Region BA Network

x y z

9600 76,800
0 −80 8 Left calcarine gyrus 17 VS

−40 −88 −2 Left middle occipital gyrus 19 VS
−38 −80 −14 Left fusiform gyrus 19 VS

16 −94 −2 Right calcarine gyrus 17 VS
0 −84 26 Left cuneus 18 VS

10 −64 8 Right lingual gyrus 17 VS
−12 −62 4 Left calcarine gyrus 17 VS
−36 −88 −12 Left inferior occipital gyrus 19 VS
−28 −68 −18 Left cerebellum 19 VS

6 −80 42 Right cuneus 7 VS
−4 −82 42 Left superior occipital gyrus 19 VS
36 −68 −20 Right fusiform gyrus 19 VS

VS = visual. Cluster volumes smaller than 10 voxels have been omitted.

Table A.6
Cluster volumes and peak coordinates for the rotated top 5% of Component 5 loadings.

Voxels mm3 Peak MNI
coordinates

Region BA Network

x y z

4231 33,848
2 54 2 Right superior medial gyrus 10 DMN

−2 52 −12 Left mid orbital gyrus 11 DMN
0 62 6 Left superior medial gyrus DMN
6 52 16 Right superior medial gyrus 32 DMN

−8 42 −8 Left mid orbital gyrus 11 DMN
−12 66 22 Left superior frontal gyrus 10 DMN

1770 14,160
−4 −56 18 Left precuneus 7 DMN

8 −52 8 Right precuneus 17 DMN
1301 10,408

−50 −68 24 Left angular gyrus 39 DMN
−62 −50 4 Left middle temporal gyrus 21 DMN

523 4184 50 −10 −16 Right middle temporal
gyrus

20 DMN

514 4112 52 −56 18 Right middle temporal
gyrus

21 DA/DMN

424 3392
−58 −2 −18 Left middle temporal gyrus 21 DMN
−54 −14 −14 Left middle temporal gyrus 20 DMN
−64 −18 −8 Left middle temporal gyrus 21 DMN

258 2064 26 −20 −18 Hipp (SUB) 20
186 1488 −42 22 −20 Left temporal pole 38 DMN
134 1072 −24 −22 −18 Hipp (SUB) 30
36 288 −20 −86 −10 Left fusiform gyrus 18 VS

VS = visual; DA = dorsal attention; DMN = Default Mode Network. Cluster volumes
smaller than 10 voxels have been omitted.
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Table A.7
Cluster volumes and MNI peak coordinates regions within Component 1 that showed significant differences between conditions, based on the full-brain univariate statistics.

Voxels mm3 Peak MNI coordinates Region BA Network

x y z

Encoding
Categorical encoding N item

103 824 12 −64 40 Right precuneus 7 FP-CEN
55 440 −4 −28 28 Bilateral posterior cingulate 23 FP-CEN
54 432 32 23 −4 Right anterior insula 47 SA
51 408 4 28 42 Right superior medial gyrus 6 SA
35 280 −10 −78 −24 Left cerebellar lobule VI FP-CEN
35 280 −4 −70 46 Left precuneus 7 FP-CEN
32 256 −6 −18 10 Left thalamus

Item N categorical encoding
275 2200 −42 −66 −12 Left inferior occipital gyrus 19 VS
50 400 44 −62 −6 Right inferior temporal gyrus 37 VS
24 192 −42 −46 −16 Left inferior temporal gyrus 37 DA

Probe
Item N Label

1271 10,168
42 −82 −2 Right inferior occipital gyrus 19 VS
42 −74 −10 Right inferior occipital gyrus 19 VS
42 −46 −16 Right fusiform gyrus 37 DA/VS

851 6808
−26 −94 −4 Left inferior occipital gyrus 18 VS
−38 −84 −14 Left fusiform gyrus 19 VS

Label N Item
11 88 −6 −68 46 Left precuneus 7 FP-CEN

Category N Label
1471 11,768

42 −88 −2 Right inferior occipital gyrus 19 VS
42 −52 −16 Right fusiform gyrus 37 VS/DA
32 −92 −2 Right inferior occipital gyrus 18 VS
42 −50 −28 Right Cerebellar Lobule VI (Hem) 37 SA

999 7992
−26 −94 −4 Left inferior occipital gyrus 18 VS
−38 −82 −12 Left inferior occipital gyrus 19 VS
−40 −58 −24 Left cerebellar lobule VI 37 SA

96 768 2 28 46 Bilateral superior medial gyrus 8 SA
24 192 −4 −32 28 Bilateral posterior cingulate 23 FP-CEN

Category N Item
412 3296 −34 −56 46 Left inferior parietal lobule 7 FP-CEN
309 2472

0 28 42 Bilateral superior medial gyrus 32 SA
−2 14 46 Left preSMA 6 SA
−2 6 58 Left preSMA 6 SA

190 1520 34 −60 48 Right angular gyrus 7 FP-CEN
103 824 8 −70 44 Right precuneus 7 FP-CEN
75 600 −6 −72 44 Left precuneus 7 FP-CEN
30 240 −2 −36 24 Posterior cingulate 23 FP-CEN

VS= visual; SM= somatomotor; DA= dorsal attention; FP-CEN= Central Executive; SA= salience; DMN=Default Mode Network. Cluster volumes smaller than 10 voxels have been
omitted.

Table A.8
Cluster volumes and peak coordinates for the rotated top 5% of Component 4 loadings.

Voxels mm3 Peak MNI
coordinates

Region BA Network

x y z

9600 76,800
0 −80 8 Left calcarine gyrus 17 VS

−40 −88 −2 Left middle occipital gyrus 19 VS
−38 −80 −14 Left fusiform gyrus 19 VS

16 −94 −2 Right calcarine gyrus 17 VS
0 −84 26 Left cuneus 18 VS

10 −64 8 Right lingual gyrus 17 VS
−12 −62 4 Left calcarine gyrus 17 VS
−36 −88 −12 Left inferior occipital gyrus 19 VS
−28 −68 −18 Left cerebellum 19 VS

6 −80 42 Right cuneus 7 VS
−4 −82 42 Left superior occipital gyrus 19 VS
36 −68 −20 Right fusiform gyrus 19 VS

VS = visual. Cluster volumes smaller than 10 voxels have been omitted.
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Table A.9
Cluster volumes and peak MNI coordinates regions within Component 3 that showed significant differences between conditions, based on the full-brain univariate statistics.

Voxels mm3 MNI Peak coordinates Region BA Network

x y z

Encoding
Categorical encoding N item

599 4792
12 −64 40 Right precuneus 7 FP-CEN
−4 −64 44 Left precuneus 7 DMN

161 1288 −4 −28 28 Left middle cingulate/medial frontal gyrus 23 SA
65 520 −12 −80 −22 Left cerebellar lobule VI (Hem) 18 FP-CEN
47 376 4 −88 −4 Left calcarine gyrus 17 VS
16 128 −8 −88 −6 Left calcarine gyrus 18 VS
14 112 −6 −8 8 Left thalamus

Probe
Label N Item

67 536 −4 −68 46 Left precuneus 7 FP-CEN
Category N Label

40 320 2 26 46 Right superior medial gyrus SA
33 264 −4 −34 28 Bilateral posterior cingulate 23 FP-CEN
33 264 36 −62 −28 Right cerebellar lobule VIIa crus I FP-CEN
30 240 2 −42 22 Bilateral posterior cingulate cortex 26 DMN
24 192 −8 −80 −30 Left cerebellar lobule VIIa crus I FP-CEN

Category N Item
743 5944

−6 −72 44 Left precuneus 7 FP-CEN
8 −70 44 Right precuneus 7 FP-CEN

556 4448 −34 −56 46 Left inferior parietal lobule 7 FP-CEN
168 1344 34 −60 46 Right angular gyrus 7 FP-CEN
85 680 0 28 42 Bilateral superior medial gyrus 32 SA
68 544 −4 −38 24 Posterior cingulate cortex 26 FP-CEN
14 112 −8 −84 −34 Left cerebellar lobule VIIa crus II (hem) FP-CEN
11 88 −50 22 34 Left middle frontal gyrus 45 FP-CEN

VS= visual; SM= somatomotor; DA= dorsal attention; FP-CEN= central executive; SA= salience; DMN=Default Mode Network. Cluster volumes smaller than 10 voxels have been omitted.

Table A.10
Cluster volumes and peak MNI coordinates regions within Component 4 that showed significant differences between conditions, based on the full-brain univariate statistics.

Voxels mm3 MNI Peak coordinates Region BA Network

x y z

Encoding
Categorical encoding N item

1040 8320
−2 −90 −4 Left calcarine gyrus 17 VS

2 −76 8 Right calcarine gyrus 18 VS
16 −76 10 Right calcarine gyrus 17 VS

−14 −62 2 Left lingual gyrus 17 VS
20 160 −12 −74 −10 Left lingual gyrus 18 VS

Item N categorical encoding
138 1104

−42 −66 −12 Left inferior occipital gyrus 19 VS
−46 −74 −8 Left inferior occipital gyrus 19 VS

Probe
Item N Label

764 6112
−26 −94 −4 Left inferior occipital gyrus 18 VS
−38 −84 −14 Left fusiform gyrus 19 VS
−14 −96 −12 Left lingual gyrus 18 VS

436 3488 42 −82 −2 Right inferior occipital gyrus 19 VS
Label N Item

56 448 −14 −88 24 Left superior occipital gyrus 18 VS
22 176 12 −86 16 Right cuneus 18 VS

Category N Label
861 6888

−26 −94 −4 Left inferior occipital gyrus 18 VS
−24 −82 −16 Left lingual gyrus 18 VS

591 4728
42 −88 −2 Right inferior occipital gyrus 19 VS
22 −96 −4 Right calcarine gyrus 17 VS

Label N Category
125 1000 −12 −90 26 Left cuneus 18 VS
165 1320 6 −86 18 Right cuneus 18 VS
82 656 10 −70 −6 Right lingual gyrus 18 VS
59 472 −6 −70 −2 Left lingual gyrus 18 VS

VS= visual; SM= somatomotor; DA= dorsal attention; FP-CEN= central executive; SA= salience; DMN=Default Mode Network. Cluster volumes smaller than 10 voxels have been omitted.
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