
Journal of Philosophical Logic
https://doi.org/10.1007/s10992-021-09612-w

Identity and Aboutness

Benjamin Brast-McKie1

Received: 5 May 2020 / Accepted: 10 February 2021 /
© The Author(s) 2021

Abstract
This paper develops a theory of propositional identity which distinguishes necessarily
equivalent propositions that differ in subject-matter. Rather than forming a Boolean
lattice as in extensional and intensional semantic theories, the space of propositions
forms a non-interlaced bilattice. After motivating a departure from tradition by way
of a number of plausible principles for subject-matter, I will provide a Finean state
semantics for a novel theory of propositions, presenting arguments against the con-
vexity and nonvacuity constraints which Fine (Journal of Philosophical Logic, 4545,
199–226 2016, 2017a, b) introduces. I will then move to compare the resulting logic
of propositional identity (PI1) with Correia’s (The Review of Symbolic Logic, 9, 103–
122 2016) logic of generalised identity (GI), as well as the first degree fragment of
Angell’s (1989) logic of analytic containment (AC). The paper concludes by extend-
ing PI1 to include axioms and rules for a subject-matter operator, providing a much
broader theory of subject-matter than the principles with which I will begin.

Keywords Identity ¨ Subject-matter ¨ Hyperintensionality ¨ State semantics

1 Intensionalism

When do two sentences express the same proposition in virtue of their logical form?
It is important to stress that the present understanding of a proposition is intended
to be worldly: propositions are, so to speak, things being a certain way rather than
representations of things being some way or other. Intensionalism is the view that
what it is for propositions to be identical is for them to be necessarily equivalent.
For instance, reading xϕ ” ψy as xFor it to be the case that ϕ just is for it to be the
case that ψy, Rayo [36, p. 66] writes, “‘φ ” ψ’ should be thought of as equivalent
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to ‘lpφ Ø ψq”’. Part of what makes intensionalism appealing is that a simple and
strong theory of necessary equivalence may be derived in any normal modal logic,
shedding light on the nature of propositional identity and the abstract structure of the
space of propositions. Intensionalism is to be contrasted with the view that necessary
equivalence approximates propositional identity despite failing to be co-extensive
with propositional identity, or else given a specific application, that necessary equiva-
lence may prove to be of some utility. Certainly it should be admitted that intensional
theories of propositions have been of great utility within philosophy, logic, linguis-
tics, and computer science. Nevertheless, the present inquiry concerns the nature of
propositional identity itself, and not some approximation or useful application.

Instead of defining propositional identity as the intensionalist does, or in yet some
further way, primitivism claims that propositional identity is conceptually basic, and
so an informative definition in other terms cannot be provided. Accordingly, primi-
tivists cannot follow intensionalists in employing a modal logic to derive a range of
theorems for propositional identity from its definition. In an attempt to characterise
propositional identity, a primitivist is forced to make a fresh start by axiomatising
propositional identity rather than defining propositional identity in terms of other
primitive notions. Of course, free from all constraints, little progress can be made,
leaving one with no more than suspicions about which identities hold in full gener-
ality. For instance, is A the same or different proposition as either A ^ A or A _ A?
What about A and either of the propositions A _ pA ^ Bq or A ^ pA _ Bq?

Even if propositional identity cannot be defined in other terms, a primitivist must
nevertheless look to some prior conception of the theoretical role that propositions
are meant to play in order to guide the ambition to axiomatise propositional identity.
For instance, suppose that: (1) the proposition expressed by a sentence on a given
interpretation is identified with that sentence’s truth-condition; where (2) the truth-
condition for an interpreted sentence is taken to be the set of possible worlds in which
that sentence is true.1 Leaving the interpretation implicit, it follows that sentences
which are true in the same possible worlds express the same proposition, where of
course sentences which express the same proposition are true in the same possible
worlds, and so propositional identity ends up co-extensive with necessary equiva-
lence. In particular, xAy is true in the same worlds as xA _ pA ^ Bqy, and so given (1)
and (2), the propositions expressed by xAy and xA _ pA ^ Bqy are identical, and so
A ” A _ pA ^ Bq.2 Insofar as the theoretical role of propositional identity does not
require more than sameness in modal profile of the interpreted sentences flanking the
propositional identity sign, such conclusions are easy to accept. However, it is natural
to object that although xAy and xA _ pA ^ Bqy are true in the same possible worlds,
these sentences may fail to have the same subject-matter, where the subject-matter
of an interpreted sentence is what that interpreted sentence is about. For instance, on
its intended interpretation, the sentence ‘It is raining, or both raining and snowing’ is
partly about it snowing, where the same cannot be said of the sentence ‘It is raining’.
Without giving up on a truth-conditional account of interpreted sentences as in (1),

1Or one could take truth-conditions to be characteristic functions from worlds to truth-values.
2I will mostly use upper-case Roman letters to express propositions, relying on context to resolve use-
mention ambiguities, while occasionally employing corner quotes for clarity.
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we may seek to refine our conception of a sentence’s truth-condition, replacing (2)
with some alternative, guided by the aim to accommodate sameness in subject-matter
of the sentences flanking a propositional identity sign.

Setting aside whether primitivism is the right view of propositional identity or not,
I will take the propositional identity operator ‘”’ to be a primitive term for the pur-
poses of this paper. Instead of offering a definition, the present aim will be to present
a logic of propositional identity which is both motivated and constrained by the
ambition to respect sameness of subject-matter in addition to necessary equivalence.
By distinguishing necessarily equivalent propositions which differ in subject-matter,
the theory of propositions developed below will provide novel theoretical resources.
Rather than exploring any particular application of these resources, I will be con-
cerned to trace the contours of the resulting hyperintensional theory of propositions
by providing a definition of logical consequence as well as a derivability relation for
the first-degree fragment of a language for propositional identity.

It is worth contrasting an opposing strategy in which an intensional theory of
propositions is merely augmented with a theory of subject-matter. For instance,
assuming propositions to be sets of possible worlds, Lewis [32] identifies subject-
matters with partitions of the set of all worlds, writing:

A proposition is about a subject matter, and it is a subject matter of the propo-
sition, iff the truth value of that proposition supervenes on that subject matter.
[. . . ] When we think of subject matters as partitions, we can say that P is about
M iff each cell of M either implies or contradicts P . (p. 163)

The cells of a partition can be thought of as the different ways for the proposition in
question to be true or false, whereM includesN just in case every cell ofN is a union
of cells of M .3 For instance, consider the proposition P1 that there are more than a
hundred stars. One such subject-matter of P1 is the partition M1 which consists of
P1 and its complement within the set of all worlds W , whereas another partition M2
groups worlds together into cells which have the same number of stars. Accordingly,
M2 includes M1. Not only is there no unique subject-matter which each proposi-
tion is about, Lewis [32, p. 171-2] admits that non-contingent propositions are about
every subject-matter, “since there is no way at all for two worlds to give it different
truth values, a fortiori there is no way for two worlds to give it different truth values
without differing with respect to the subject matter”.4 Thus ‘The gold atom α has 79
protons’, ‘2+2=5’, and all instances of xA_ �Ay and xB ^ �By express propositions
which, according to Lewis, are about all subject-matters. Additionally, by identifying
necessarily equivalent propositions, Lewis makes all necessarily equivalent proposi-
tions about the same subject-matters. For instance, A _ pA ^ Bq, A ^ pA _ Bq, and
A will have the same subject-matters for any A and B, and so Lewis cannot accom-
modate the apparent difference in subject-matter between the proposition that it is
raining and the proposition that it is raining or both raining and snowing.

3Lewis [33] speaks of inclusion, though it is more natural to read xM includes Ny as xM refines Ny.
4Lewis [32, p. 164] does introduce the concept of least subject-matters, but admits that there need not
always be a least subject-matter for a given proposition.
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Abstracting from the details of Lewis’ account, the broader strategy aims to
capture differences in subject-matter while maintaining an intensional theory of
propositions by asking: for which values of X does the product PpW q ˆ X draw
enough distinctions to encode differences in subject-matter?5 As fruitful as inten-
sional theories of propositions have been for many applications, no such account can
accommodate differences in subject-matter between necessarily equivalent proposi-
tions. However, there is no need to accept this limitation. As Perry [35] writes:

[T]he problem of necessary equivalent propositions is simply a fly bottle that
did not have to be flown into. The solution is to fly out, not to argue that, all
things considered, maybe it is not such a bad bottle to be in. (p. 191)

Rather than attempting either to maintain an intensional theory of propositions, or
else to augment an intensional theory of propositions with a theory of subject-matters,
I will defend a hyperintensional theory of propositions which does not presume that
the particular form of hyperintensionality in question can or should be factored into
intensional and non-intensional components.6 Before attempting to provide such an
account, it will be important to motivate criteria for an adequate theory of propo-
sitional identity. Accordingly, Section 2 will present a number of principles which
I will assume that any adequate account of subject-matter ought to include along
with a minimal theory of propositional identity, where the adoption of these prin-
ciples will guide our departure from standard Boolean theories of propositional
identity. By drawing on the resources of Kit Fine’s state semantics, Section 3 will
present a hyperintensional theory of propositions which accommodates differences
in subject-matter, comparing the result with Fine’s [13–15] theory of regular propo-
sitions in Section 4. After presenting a first-degree logic for propositional identity
(PI1), Section 5 will contrast Correia’s [9] logic of generalised identity (GI) which I
show has the unwanted consequence of making negation an opaque operator. I will
conclude in Section 6 by extending PI1 to include axioms and rules of inference for
a subject-matter operator, providing not only a broader theory of subject-matter, but
one in which we may derive the first degree fragment of Angell’s [2] logic of analytic
containment (AC) in addition to comparing Fine’s [13, 15–17] account of subject-
matter. In the Appendix, I will present a few formal results which will be of use at
various points throughout the paper.

2 Subject-Matter

In order to facilitate the presentation of a theory of subject-matter, we may introduce
the sentential operator ‘σ ’, where σA is the subject-matter of A. Whereas Fine [13,

5See [4, 27, 38] for other theories of this kind.
6As Perry [35, p. 176] also observes, “the view that language was basically intensional, is older than
possible-worlds semantics. Basically, intensions are entities that provide some principle of classification,
and that have an identity, independently of the objects so classified”. Rather than attempting to uproot the
already entrenched practice of taking ‘intensions’ to be functions from possible-worlds to truth-values, I
will maintain the spirit of Perry’s critique of restricting attention to a possible worlds understanding of
intensions by defending a hyperintensional alternative.
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15–17] takes subject-matters to be states-of-affairs, I will maintain a propositional
account of subject-matter, whereby the subject-matter of an interpreted sentence is a
proposition.7 For instance, the subject-matter of ‘It is raining’ will be a rainy weather
proposition. More specifically, Section 6 will argue that there is good reason to read
xσAy as xIt is partially the case that A or partially not the case that Ay. By letting
A � B :“ σA ” σB, where we may then take xA � By to have the informal
reading xA and B have the same subject-mattery, I will adopt the principles:

S1 �A � A. S2 A ^ B � A _ B.
S3 A ^ A � A. S4 A ^ B � B ^ A.
S5 �pA ^ Bq � p�A _ �Bq. S6 �pA ^ Bq � p�A _ �Bq.
S7 A ^ pB ^ Cq � pA ^ Bq ^ C. Obj pA ” Bq Ñ pA � Bq.

Setting aside differences in formalisation, the principles above are widely accepted.8

Given that �A ” A and A ^ B ” A _ B do not hold in general, it follows from S1
and S2 that the converse ofObj admits of exceptions. Rather,Objmakes sameness of
subject-matter a necessary but insufficient condition for propositional identity. Nev-
ertheless, Obj asserts that what an interpreted sentence is about is solely a function
of the proposition expressed by that sentence on its interpretation irrespective of the
features unique to that sentence, or the concepts by which that proposition happens
to be expressed. For instance, given that for Hesperus to be rising just is for Phos-
phorus to be rising, it follows byObj that the subject matter of ‘Hesperus is rising’ is
the same as the subject-matter of ‘Phosphorus is rising’. In slogan, the present theory
takes subject-matter to be insensitive to differences in guise.

I will refer to theories of subject-matter which grantObj as objective, and theories
which rejectObj as representational. By contrast with objective theories, representa-
tional theories make subject-matter at least partially a function of the means by which a
given proposition is expressed. For instance, suppose that one were to take ‘Hesperus
is rising’ and ‘Phosphorus is rising’ to differ in subject-matter despite expressing the
same proposition. Insofar as the subject-matter of an interpreted sentence is what that
sentence is about, what ‘Hesperus is rising’ and ‘Phosphorus is rising’ are about must
differ. But this strikes a false note, for both sentences appear to be entirely about the
movement of the same astrological body relative to one’s position. Since the sen-
tences ‘Hesperus is rising’ and ‘Phosphorus is rising’ express the same proposition,
the only remaining differences between these sentences are representational in nature,
having to do with the means by which each sentence expresses the same proposi-
tion. For instance, one might consider the syntactic differences between sentences, or
else the different concepts thereby expressed. However, it would be inappropriate to
identify the subject-matter of an interpreted sentence with the means by which that
sentence expresses the proposition that it does, at least insofar as the subject-matter of

7Although states will be taken to be objects, one may think of the states in the intended model as
propositions, for states are objects which may either obtain or fail to obtain.
8Even in adopting an objectual account of subject matter where xσAy is taken to be a singular term, the
principles above may be maintained by instead defining A � B :“ σA “ σB. See [17, 27, 32, 35, 38]
for accounts which are committed to analogues of the principles above.
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an interpreted sentence is what that sentence is about. For instance, neither ‘Hesperus
is rising’ nor ‘Phosphorus is rising’ are about anything the least bit representational,
and so the ways in which these sentences differ cannot be identified with their differ-
ent subject-matters. Nevertheless, a representational theory of subject-matter could
take the subject-matter of an interpreted sentence to be a function of the means by
which that sentence expresses a proposition. Instead of pursuing this line, I will
develop an objective theory of subject-matter where the subject-matter of an inter-
preted sentence is a function of the proposition which that sentence expresses. Thus
I will speak directly of the subject-matter of each proposition, whether or not there is
a sentence which expresses that proposition on a given interpretation.

Even in granting Obj, this principle cannot provide positive determinations of
which propositional identities hold on account of including the propositional iden-
tity sign in its antecedent. Nevertheless, it follows from Obj that discrepancies in the
subject-matters of A and B entail that A and B are distinct. In this way, a theory
of subject-matter may inform our present aim to provide a theory of propositional
identity. We may also draw the following connection between subject-mater and rel-
evance, where xA ĺ By reads xIt being the case that A is wholly relevant to it being
the case that By, or for ease, xA is relevant to By:

Rel pA � Bq Ñ rpC ĺ Aq Ñ pC ĺ Bqs.

If A and B share the same subject-matter— if what A and B are about is the same—
then whatever is relevant to A must also be relevant to B. Together, Obj and Rel
provide a means by which to distinguish propositions, for if C ĺ A and C ł B,
it follows that A �/ B by Rel, and so A ı B by Obj. Of course, such evaluations
will depend on judgements about relevance. Nevertheless, Obj and Rel provide an
additional basis by which to evaluate propositional identity claims for truth.

Recall the claim from before that althoughA andA_pA^Bq have the same modal
profile, they may fail to share the same subject-matter. Even more starkly, A _ �A

and B _ �B are both necessary but may diverge completely in subject-matter. For
instance, the sentences ‘I am sitting or not sitting’ and ‘Grass is green or not green’
both express necessary propositions despite having entirely distinct subject-matters,
where neither is even partially about the other. In order to account for the possible
divergence in subject-matter between A _ �A and B _ �B, we may observe that
even without giving a full theory of relevance, it is natural to accept the following:

L1 A ĺ A _ B. L2 A ĺ A ^ B.
L3 B ĺ A _ B. L4 B ĺ A ^ B.

Given some A and B for which A ł B _ �B, we know by L1 that A ĺ A _ �A,
and so pA _ �Aq ı pB _ �Bq follows by Obj and Rel, where a similar argument
concludes that pA ^ �Aq ı pB ^ �Bq on the basis of L2.9 For instance, my sitting
fails to be wholly relevant to grass being green or not green, though of course my

9Given the definition of relevance in Section 6, we may show that A ĺ B _ �B just in case A ĺ B.
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sitting is relevant to me sitting or not sitting. Thus by Obj and Rel, it is not the case
that for me to be sitting or not sitting just is for grass to be green or not green.

We may provide similar arguments against the absorption laws. Given some A

and B where B ł A but B ĺ rA _ pA ^ Bqs, it follows by Obj and Rel that
A ı A _ pA ^ Bq.10 For instance, although it snowing is relevant to it raining or
both raining and snowing, it snowing fails to be relevant to it raining, and so by Obj
and Rel, for it to be raining is not for it to be raining or both raining and snowing.
An analogous argument shows that not all instances of A ” A ^ pA _ Bq hold. For
these reasons, I will take exception to the following Boolean identities:

#Necs pA _ �Aq ” pB _ �Bq. #Abs1 A ” A _ pA ^ Bq.
#Imps pA ^ �Aq ” pB ^ �Bq. #Abs2 A ” A ^ pA _ Bq.

Whereas intensional theories of propositions are Boolean insofar as they affirm all of
the Boolean identities, the present paper will provide a non-Boolean alternative. Nev-
ertheless, in accordance with a conservative methodology, I will maintain as many
of the Boolean identities as possible without ignoring differences in subject-matter.
More specifically, I will assume that just as differences in either the subject-matter
or the modal profile of A and B provide a reason to distinguish A and B, same-
ness in both the subject-matter and the modal profile of A and B provides at least a
defeasible reason to maintain the identity of A and B.

In order to begin to evaluate the broader space of propositional identities, I will
assume that anything deserving of the title ‘propositional identity’ ought to satisfy all
instances of the following core principles:

Ref A ” A. Trans pA ” Bq Ñ rpB ” Cq Ñ pA ” Cqs.
Sym pA ” Bq Ñ pB ” Aq. Imp pA ” Bq Ñ pA Ñ Bq.

Rejecting any of the core principles would be to change the topic from proposi-
tional identity to something else entirely. Additionally, given the present concern with
worldly propositions, I will restrict attention to propositional operators which are
insensitive to guise. More precisely, we may say that an operatorQ is transparent in a
language L just in case all instances of the following principle hold, where x �OpB{Aqy

is the result of freely substituting xBy for xAy in the sequence of Q’s operands x �Oy:

Func pA ” Bq Ñ rQp �Oq ” Qp �OpB{Aqqs.

Intuitively, a sentential operator is transparent in a language just in case it expresses
a propositional function, where the output of the function is determined solely by the
inputs independent of the means by which those inputs are expressed. A language L
is transparent just in case every operator Q in L is transparent in L.

Given that the present concern is with the structure of the space of propositions
independent of the structure of the different means of representing those proposi-
tions, I will restrict consideration to transparent languages throughout. As P2 in
the Appendix shows, any propositional language L which includes the extensional

10Both B ĺ rA _ pA ^ Bqs and its dual are theorems of PI1σ presented in Section 6.
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connectives ‘�’, ‘^’, and ‘_’ along with the propositional identity operator ‘”’ is
transparent just in case the following principle holds without exception in L, where
xCpB{Aqy is the result of freely substituting xBy for xAy anywhere in xCy:

LL pA ” Bq Ñ pC Ñ CpB{Aqq.

The principle above expresses Leibniz’s law of the indiscernibility of identicals
where identicals are required to satisfy the same conditions. Rather than adopting
LL as an independent assumption, P2 in the Appendix shows that so long as Ref and
Imps hold without exception, LL follows from the stipulation that L is transparent.
Since the restriction to transparent languages was motivated by the concern to study
the structure of the space of worldly propositions independent of any representational
difference in thought or language, LL may be taken to inherit the same motivation
given the ambition to provide a theory of identity for worldly propositions.

It is important to stress that in articulating a theory of propositional identity, we
need only take a stand on the transparency of a limited range of operators. In particu-
lar, I will take the operators for conjunction, disjunction, negation, and subject-matter
to be transparent. Letting an operator be opaque in L just in case it is not transparent
in L, the present paper need not take a stand on whether there are genuine cases of
opacity, though I take it that there are such genuine cases, where it is in virtue of this
fact that synonymy is much more fine-grained than propositional identity.11

Given that all instances of LL hold without exception in a language with operators
for conjunction, disjunction, negation, and subject-matter, we may derive S3 – S7
from the following identities by means of classical reasoning:

A1 A ^ A ” A. A2 A _ A ” A.
A3 A ^ B ” B ^ A. A4 A _ B ” B _ A.
A5 pA ^ Bq ^ C ” A ^ pB ^ Cq. A6 pA _ Bq _ C ” A _ pB _ Cq.
A7 �pA ^ Bq ” p�A _ �Bq. A8 �pA _ Bq ” p�A ^ �Bq.
A9 A ” ��A.

Given S1 – S7, the identities above respect sameness of subject-matter. Since these
identities also respect necessary equivalence, a conservative methodology recom-
mends adopting these principles in the absence of countervailing considerations.
Suppose that one were to attempt a similar defence for the following principles:

#Dist1 A _ pB ^ Cq ” pA _ Bq ^ pA _ Cq.
#Dist2 A ^ pB _ Cq ” pA ^ Bq _ pA ^ Cq.

The principles for subject-matter considered so far do not provide any means by
which to evaluate whether the identities above respect sameness of subject-matter.
Since intuitive judgements about which principles for subject-matter hold without
exception can only carry us so far, the following section will present a semantics for
a propositional language, providing a systematic means by which to survey the space
of all possible counterexamples to propositional identity claims. Section 4 will then

11See [3, 3, 11], and [7] for recent discussion of opacity, as well as Section 6 for further comparison
between synonymy and propositional identity.
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draw upon this semantics to show that there are strong abductive reasons to exclude
#Dist1 and #Dist2 from the logic of propositional identity on account of admitting a
compelling class of counterexamples.

3 State Semantics

In giving up the Boolean identities #Necs, #Imps, #Abs1, and #Abs2, it remains
to provide an alternative non-Boolean theory of propositions. Instead of attempting
to axiomatise propositional identity by means of intuition alone, this section will
draw on Kit Fine’s state semantics in order to provide a theory of propositions which
is sensitive to hyperintensional differences in subject-matter, while nevertheless
accommodating the identity principles maintained above.

For simplicity, I will focus on the first-degree fragment of a propositional language
L with the sentence letters L “ tpi : i P Nu and primitive operators �, _, ^, and
”, postponing consideration of extensions which include ‘σ ’ to Section 6. Given L,
we may define the extensional sentences of L as follows, where p P L:

A ::“ p | �A | A ^ A | A _ A.

Letting extpLq be the set of extensional sentences in L, I will take A ” B to be
an identity sentence in L for any A, B P extpLq, where idpLq is the set of identity
sentences in L. Following Fine [14–16], we may take a state space S “ xS, Ďy to be
any nonempty complete lattice which is defined in the usual way:

Upper Bound: s P S is an upper bound of X Ď S iff x Ď s for every x P X.
Least Upper Bound: s is a least upper bound of X Ď S iff s is an upper bound

of X, and s Ď y for every upper bound y of X.
Complete Lattice: S is a complete lattice iff every X Ď S has a least upper

bound.

As the uniqueness of a least upper bound for any set X is readily established, we may
refer to the least upper bound

Ů

X of X as the fusion of the states in X, designating
the full state by

Ů

S “ ‚ and the null state by
Ů

∅ “ ˝. It remains to employ these
resources in order to interpret the identity sentences in idpLq in a manner which
accords with the range of principles defended above.

Given a state space S “ xS, Ďy, I will follow Fine [14, p. 629] in taking propo-
sitions to be ordered pairs of sets of states which satisfy some number of constraints
depending on the application. Whereas the following section will raise general prob-
lems for the theory of regular propositions which Fine [13, 14] develops, the present
section will present a competing alternative which I will argue is well suited to the
application at hand. In particular, consider the space of normal propositions which
may be defined over any state space S as follows:

Normal Contents: CS “ tX Ď S : Ů

Y P X for all nonempty Y Ď Xu.
Normal Propositions: PS “ txX, Y y : X, Y P CSu.
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An S-model of L is any ordered triple M “ xS, Ď, | ¨ |y where S “ xS, Ďy is a state
space and |p| “ x|p|`, |p|´y with |p|˘ Ď S for every p P L.12 An S-model M is
normal just in case |p| P PS for every p P L, where I will take N to be the class of
all normal S-models of L for any state space S.13

In order to identify which sentences are true in all normal models of L, we must
provide semantic clauses for the primitive operators in L. Following Fine [13, 16], I
will define exact verification , and exact falsification - by means of the inclusive
semantics given below, letting t .d :“ Ů

tt, du for ease of exposition:

ppq` M, s , p iff s P |p|`. p�q` M, s , �A iff M, s - A.
ppq´ M, s - p iff s P |p|´. p�q´ M, s - �A iff M, s , A.

p^q` M, s , A ^ B iff s “ t .d where M, t , A and M, d , B.
p^q´ M, s - A ^ B iff M, s - A or M, s - B orM, s - A _ B.14

p_q` M, s , A _ B iff M, s , A orM, s , B or M, s , A ^ B.
p_q´ M, s - A _ B iff s “ t .d where M, t - A and M, d - B.

As a useful heuristic, we may consider an intended state space SI , where SI is the set
of all states-of-affairs, and ĎI is a parthood relation. Instead of considering which
sentences are true or false in which possible worlds, where worlds contain a great
number of things which are irrelevant to any given sentence, exact verification and
falsification is a matter of which sentences are “made” true or false by which states,
where the truth-makers and falsity-makers must be wholly relevant to the sentences
that they make true or false.15 Although the exact verifiers for a conjunction are
determined by the exact verifiers for its conjuncts, and the exact verifiers for a dis-
junction are determined by the exact verifiers for its disjuncts, the same cannot be
said for negation.16 In particular, one cannot take any state which does not exactly
verify a sentence to exactly verify its negation, at least insofar as states are required
to be wholly relevant to the sentences which they exactly verify or falsify. It is for
this reason that the state semantics assumes a bilateral form, extending consideration
to exact falsifiers in addition to exact verifiers so as to identify the exact verifiers
(falsifiers) for a sentence with the exact falsifiers (verifiers) for the negation of that
sentence. In this respect, the inclusive semantics makes an important addition to (1)
given in Section 1 by including falsity-conditions alongside truth-conditions.

Constructing the state semantics around the idea that states are required to be
wholly relevant to the sentences which they exactly verify or falsify makes the

12Were one to add top and bottom elements to the language, S-models must assign |J| “ xS,∅y and
|K| “ x∅, t˝uy which are the top and bottom elements with respect to ď, where we may let J́ :“ �J

and

J́:“ �K be the top and bottom elements with respect to Ď. By contrast, [14, p. 630] takes xS, t‚uy

to be a top element on account of excluding consideration of all vacuous propositions. See also Section 4 .
13I will employ set notation for convenience, assuming a no-class theory of classes.
14Removing the final disjunct from p^q´ and p_q` yields the non-inclusive semantics.
15See Fine [14–16] for related discussion, as well as Section 4 below.
16Instead of considering what is relevant to the truth (falsity) of a sentence, one may consider what is
relevant to either the truth or falsity of a sentence. See Section 6 for related discussion.
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notions of exact verification and falsification non-monotonic. Focusing on exact
verification, Fine [14] brings this point out as follows:

For it is to be a general requirement on verification that a verifier should be relevant
as a whole to the statement that it verifies; and in extending a verifier with additional
material, this holistic relevance of the verifier to the statement may be lost. (p. 626)

For instance, if the state t of Julieta thinking exactly verifies the sentence ‘Julieta is
thinking’, and the state d of Julieta writing exactly verifies the sentence ‘Julieta is
writing’, then the fusion t .d fails to be wholly relevant to ‘Julieta is thinking’ as well
as to ‘Julieta is writing’ on account of including something irrelevant in each case.
Nevertheless, the fusion state t .d exactly verifies the conjunction ‘Julieta is thinking
and writing’ on account of being a fusion of exact verifiers for each of its conjuncts,
where similarly, any fusion of exact falsifiers for ‘Julieta is thinking’ and ‘Julieta is
writing’ will exactly falsify the disjunction ‘Julieta is thinking or writing’.

It remains to consider the exact verification clause for disjunction, and the exact
falsification clause for conjunction. First we may observe that a disjunction is exactly
verified by the exact verifiers for either of its disjuncts, and similarly, a conjunction
is exactly falsified by the exact falsifiers for either of its conjuncts. Additionally, the
inclusive semantics respects the claims that: pTq any exact verifier for a conjunction
A ^ B will also be an exact verifier for the disjunction A _ B; and, pFq any exact
falsifier for A _ B will also be an exact falsifier for A ^ B. In order to justify these
latter additions, consider the following property:

Uniformity: A class K of models of L is uniform iff for any S-model M P K
and A P extpLq, there is an S-model M‹ P K and p P L where
|p|`‹ “ ts P M : M, s , Au and |p|´‹ “ ts P M : M, s - Au.

It is natural to require the class of models over which L is to be interpreted to be
uniform since nothing about the sentence letters in L should prevent them from
expressing the same propositions expressed by the complex sentences in extpLq.
Without requiring uniformity to hold, the law of uniform substitution is liable to fail,
where uniform substitution is a natural desideratum for any logic. However, were one
to give up (T), then the exact verifiers for a disjunction might fail to be closed under
fusion, where the same may be said of the exact falsifiers for a conjunction were one
to give up (F).17 Since the exact verifiers and falsifiers for any sentence letter must
be closed under fusion, rejecting either (T) or (F) leads to the non-uniformity of N ,
thereby providing a reason to maintain the inclusive semantics.

Insofar as we are to restrict consideration to the class of normal models N of L,
uniformity provides a strong reason to maintain the inclusive semantics. In order to
motivate the initial restriction to N , it will help to set |A|` “ ts P S : M, s , Au

and |A|´ “ ts P S : M, s - Au, adopting |A| “ x|A|`, |A|´y as standard notation
for the proposition thatA expresses inM. We may then provide the following seman-
tic clause for the first-degree identity sentences in idpLq along with definitions for
logical consequence and validity over an arbitrary class of models K:

17Fine [13, p. 206] establishes this result in Lemma 6.
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p”q M ( A ” B iff |A| “ |B|.
Logical Consequence: ϕ P idpLq is a K-logical consequence of � Ď idpLq,

i.e. � (K ϕ, just in case for any M P K, if M ( γ for
all γ P �, then M ( ϕ.

Validity: ϕ is K-valid just in case (K ϕ.

Suppose that instead of adopting the inclusive semantics, one were to give up (T)
and (F), maintaining uniformity by also giving up the closure condition on the sets
of states which make up propositions. As Fine [16, p. 563] observes, A and A ^ A

may then diverge in their exact verifiers, where A and A _ A may diverge in their
exact falsifiers, thereby producing counterexamples to A1 and A2. However, since A

agrees in both subject-matter and modal profile with A ^ A and A _ A, we find no
reason to distinguish between A and either A ^ A or A _ A given our present aims.
Thus if the semantics is to validate A1 and A2, then A ^ A and A _ A must have the
same exact verifiers and falsifiers as A. It follows that the sets of exact verifiers and
falsifiers for A must both be closed under finite fusion in S, where a set of states X

is closed under finite fusion in S just in case t .d P X whenever both t, d P X.
Let a finite fusion model M of L be any S-model of L where both |p|˘ are

closed under finite fusion in S. Since there may be more than one exact verifier or
falsifier for a sentence in a finite fusion model of L, it follows that the exact veri-
fiers and falsifiers for a sentence may contain more than what is strictly required to
make that sentence true or false respectively, and so may fail to be minimal.18 For
instance, any fusion of two or more exact verifiers for A is also an exact verifier for
A which contains proper parts which exactly verify A, where something similar may
be said for a fusion of two or more exact falsifiers for A. Given that any amount of
overdetermination is to be permitted, it is not clear what would motivate a restric-
tion on overdetermination to merely finite fusions. For instance, given a real number
625 ď x ď 740, we may take sx to be the state of α reflecting light with wavelength
x nanometers, where R “ tsx : 625 ď x ď 740u. Insofar as each sx P R is an
exact verifier for the sentence ‘α reflects red light’, we may admit that

Ů

Y is also
an exact verifier for any nonempty Y Ď R.19 In order for infinite fusions of exact
verifiers (falsifiers) to be admitted as exact verifiers (falsifiers) for sentences, I have
taken normal propositions to include sets of exact verifier and falsifier states which
are closed under infinite rather than finite fusion, restricting attention to the class of
models N in which sentence letters are assigned to normal propositions. We may
then show by a simple induction argument that closure under infinite fusion extends
to all extensional sentences in L.

Although I will not provide much of an exploration of the modalised state spaces
introduced by Fine [16], it is nevertheless worth considering a primitive distinction

18Compare minimal situations as used by [29] and [28] among others, as well as exemplifiers which [30,
31] later employs.
19Considerations of gunk also motivate one to take fusions of sets of exact verifiers of any non-zero
cardinality to be exact verifiers. If a gunky ice cube is entirely pink, then the state of any part of it being
pink will exactly verify the sentence ‘Part of the ice cube is pink’, where if a is a part of b, then the state
of a being pink is also part of the state of b being pink. It follows that for any non-null part of the ice cube
a, the state of a being pink will consist of an infinite fusion of exact verifiers for the sentence ‘Part of the
ice cube is pink’. See [37] for discussion of a related issue for Kratzer’s situation semantics.
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between possible and impossible states, where every part of a possible state is also
required to be possible. We may then say that two states t and d are compatible just in
case their fusion t .d is possible, and incompatible otherwise. For instance, although
the state of my sitting and the state of my standing are both possible, their fusion
is impossible, making these states incompatible. Insofar as sentences are to admit
of incompatible exact verifiers (falsifier), we may observe that far from an obscure
artefact of the framework, impossible states do important work in drawing hyperin-
tensional distinctions. In particular, it is natural to assume that no exact verifier v and
falsifier f for a single sentence A could ever be compatible. However, it follows that
every exact verifier for A^�A is a fusion of an exact verifier and falsifier for A, and
so must therefore be impossible. Nevertheless, we may observe that whenever the
exact verifiers and falsifiers for A and B do not share any parts in common, A ^ �A

and B ^ �B are exactly verified and falsified by different impossible states, as are
A _ �A and B _ �B. Thus A ^ �A and B ^ �B may be distinct despite sharing
the same modal profile, where the same may be said for A _ �A and B _ �B, and
so neither #Imps nor #Necs are valid over N , as desired.

In addition to including counterexamples to #Imps and #Necs, neither #Abs1 nor
#Abs2 are N -valid. Consider the model MA “ xSA, Ď, | ¨ |Ay where we may let
SA “ Ppta, b, c, duq with |p1|A “ xttauu, ttbuuy and |p2|A “ xttcuu, ttduuy, for
pairwise distinct a, b, c, and d . We may then derive the following identities:

|p1 _ pp1 ^ p2q|A “ xttau, ta, cuu, ttbu, tb, duuy;
|p1 ^ pp2 _ p2q|A “ xttau, ta, cuu, ttbu, tb, duuy.

Since ttauu ‰ ttau, ta, cuu and ttbuu ‰ ttbu, tb, duu, it follows from p”q that
bothMA * p1 ” p1 _pp1 ^p2q andMA * p1 ” p1 ^pp1 _p2q. SinceMA P N ,
neither #Abs1 nor #Abs2 are N -valid. In order to add texture to the present case,
we may take p1 to be ‘It is raining’ and p2 to be ‘It is windy’, where tau is a rainy
weather state and tcu is a windy weather state. It follows by the inclusive semantics
that although ta, cu exactly verifies ‘It is raining and windy’, and so ta, cu also
exactly verifies ‘It is raining or both raining and windy’, the same cannot be said for
‘It is raining’, thereby indicating a discrepancy between the set of exact verifiers for
‘It is raining’ and ‘It is raining or both raining and windy’. Similar considerations
show that the sentences ‘It is raining’ and ‘It is raining and either raining or windy’
have different exact verifiers, and so do not express the same proposition.

By invalidating #Necs, #Imps, #Abs1, and #Abs2, the inclusive state semantics
satisfies the initial aim set out in Section 2 to provide a theory of propositional
identity which respects differences in subject-matter. Given that the definition of
N -logical consequence is perfectly general, it is straightforward to compute the N -
validity of any of the propositional identity sentences in L. We may then ask whether
N -validity yields an extensionally adequate theory of propositional identity given
the aim to track subject-matter, while preserving as many of the Boolean identities
as possible. Instead of attempting to provide a determinate answer for all identity
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sentences in idpLq, the following section will begin by presenting considerations in
favour of excluding #Dist1 and #Dist2 from the logic of propositional identity.

4 Distribution Laws

In addition to the counterexamples to #Abs1 and #Abs2 given above, the semantics
admits counterexamples to #Dist1 and #Dist2. Letting MD “ xSD, Ď, | ¨ |Dy with
SD “ Ppta, b, c, d, e, f uq where |p1|D “ xttauu, ttbuuy, |p2|D “ xttcuu, ttduuy,
and |p3|D “ xtteuu, ttf uuy, for pairwise distinct a, b, c, d , e, and f , we may derive:

|p1_pp2 ^ p3q|D “ xttau, tc, eu, ta, c, euu, ttb, du, tb, f u, tb, d, f uuy;
|pp1_p2q^pp1 _ p3q|D “ xttau, ta, cu, ta, eu, tc, eu, ta, c, euu,

ttb, du, tb, f u, tb, d, f uuy;
|p1^pp2 _ p3q|D “ xtta, cu, ta, eu, ta, c, euu, ttbu, td, f u, tb, d, f uuy;

|pp1^p2q_pp1 ^ p3q|D “ xtta, cu, ta, eu, ta, c, euu,

ttbu, tb, du, tb, f u, td, f u, tb, d, f uuy.

Given that the underlined sets of exact verifiers (falsifiers) are not identical, we may
conclude by p”q that both MD * A _ pB ^ Cq ” pA _ Bq ^ pA _ Cq and
MD * A ^ pB _ Cq ” pA ^ Bq _ pA ^ Cq, and so neither #Dist1 nor #Dist2 are
N -valid.20 However, the intuitive basis for claiming that #Dist1 and #Dist2 do not
respect sameness of subject-matter is not nearly as obvious as it is for the absorption
laws. Since #Dist1 and #Dist2 respect sameness in modal profile, I will take there to
be a presumption in favour of accepting #Dist1 and #Dist2 on grounds of parsimony,
drawing fewer distinctions in the absence of countervailing considerations. Neverthe-
less, there are powerful abductive reasons for taking counterexamples such as MD

seriously, excluding #Dist1 and #Dist2 from the logic of propositional identity rather
than restricting the space of models so as to maintain their validity.

We may begin by observing that, modulo simplifying assumptions, the model
above commands a degree of intuitive appeal. For instance, let tau be the state of the
ball being black, tcu be the state of the ball being round, and teu be the state of the
ball being iron, where p1 is ‘The ball is coloured’, p2 is ‘The ball is shaped’, and p3
is ‘The ball is metallic’. It follows that the fusion state ta, cu of the ball being black
and round fails to exactly verify ‘The ball is coloured or both shaped and metallic’.
This conclusion follows from the observations that: (1) ta, cu includes tcu as a part,
and so does not exactly verify ‘The ball is coloured’ since tcu is irrelevant; (2) ta, cu

is not a fusion of exact verifiers for ‘The ball is shaped’ and ‘The ball is metallic’,
and so does not exactly verify ‘The ball is shaped and metallic’; and (3) ta, cu is
not a fusion of exact verifiers for ‘The ball is coloured’ and ‘The ball is shaped and

20Correia [9, p. 111-2] presents an analogous counterexample to #Dist1 articulated in terms of his super-
sentence semantics, but does not extend similar considerations to #Dist2 as above, claiming instead that
#Dist2 is valid. See Section 5 for further discussion.
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metallic’, and so does not exactly verify ‘The ball is coloured and both shaped and
metallic’. Without changing the inclusive semantics, ta, cu does not exactly verify
‘The ball is coloured or both shaped and metallic’. Nevertheless, it is easy to see that
ta, cu exactly verifies ‘The ball is coloured or shaped’ on account of exactly verify-
ing ‘The ball is coloured and shaped’, and so ta, cu exactly verifies ‘The ball is both
coloured or shaped, and coloured or metallic’. Thus we may conclude thatMD pro-
vides an intuitively compelling counterexample to #Dist1, where something similar
may be shown for #Dist2, making it unnatural to exclude these cases.

Insofar as validity over the class of normal models may claim to be reasonably
natural, arbitrary models of L should not be excluded from consideration by fiat
alone. Rather than attempting to hand pick the models ofLwhich are to be considered
in evaluating the validity of identity sentences, one may attempt to provide motivation
for adopting a principled restriction on the class of models. In particular, Fine [13,
14] considers imposing the following restriction on models of the language:

Regular Contents: C
R
S “ tX P CS : y P X if x Ď y Ď z for some x, z P Xu.

Regular Propositions: P
R
S “ txX, Y y : X, Y P C

R
Su.

Regularity: An S-model M is regular iff M P N and |p| P P
R
S for all p P L.

In order to provide motivation for restricting consideration to regular models, Fine
[14] appeals to the simplicity of the space of regular propositions, writing:

Regular propositions have an especially simple form. For each such proposition P (if
non-empty) will have a maximal verifier p, the fusion of all its verifiers, which we
identify with its subject-matter— the agglomeration of the facts, so to speak, from which
its verifiers are drawn; and it will also have various low lying verifiers, with all other
verifiers lying above them. The proposition itself will then consist of all the states that
lie between the low lying verifiers and the maximal verifier. Regular propositions are
therefore subject to a limited form of monotonicity; given that a state verifies a regular
proposition then so does any extension of the state as long as it lies within the subject-
matter of the proposition. (p. 628-9)

It is worth considering the manner in which the limited form of monotonicity to
which Fine refers fails to hold in the counterexamples to #Dist1 and #Dist2. In
particular, with respect to #Dist1, the outlier states in |pp1 _ p2q ^ pp1 _ p3q|

`
D

all lie between states in |p1 _ pp2 ^ p3q|
`
D , despite failing to be members of

|p1 _pp2 ^p3q|
`
D , and so |p1 _pp2 ^p3q|D fails to be regular. Of course, something

similar may be said for #Dist2 since |p1 ^ pp2 _ p3q|D also fails to be regular.
Despite the fact that neither |p1 _ pp2 ^ p3q|D nor |p1 ^ pp2 _ p3q|D are regular,

we may observe thatMD is a regular model insofar as all of the sentences letters are
assigned to regular propositions. Even so, the complex sentences p1 _ pp2 ^ p3q and
p1^pp2_p3q do not express regular propositions, and so the class of regular models
R fails to be uniform over the inclusive semantics. Rather than giving up regularity,
one may maintain uniformity by adopting the following alternatives:

p^q
´
S M, s - A ^ B iff t Ď s Ď d for some t and d whereM, d - A _ B

and either M, t - A orM, t - B.
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p_q
`
S M, s , A _ B iff t Ď s Ď d for some t and d whereM, d , A ^ B

and either M, t , A orM, t , B.

I will refer to the result of replacing p^q´ and p_q` in the inclusive semantics with
the clauses above as the super inclusive semantics. We may show that R is uniform
over the super inclusive semantics so that for any S-modelM P R and A P extpLq,
the proposition |A| P P

R
S . Additionally, #Dist1 and #Dist2 areR-valid over the super

inclusive semantics, though these validities come at the cost of a significant increase
in the complexity of the semantics for conjunction and disjunction. Even supposing
that the space of regular propositions could be shown to be simpler than the space of
normal propositions, we must nevertheless weigh this increase in simplicity against
the increase in complexity of the super inclusive semantics.

Given the super inclusive semantics together with a regular model M P R, we
may refer to the elements of |A|` as the liberal verifiers for A inM, and refer to the
elements of |A|´ as the liberal falsifiers for A in M.21 In addition to the increase in
overall complexity, it is natural to object that the super inclusive semantics does not
provide the most compelling falsity-condition for conjunction, nor truth-condition for
disjunction. For instance, in the example above, both tau and tc, eu liberally verify
‘The ball is coloured or both shaped and metallic’, but the same cannot be said for
tcu considered on its own. However, given that tcu is part of ta, c, eu, it follows
that ta, cu liberally verifies ‘The ball is coloured or both shaped and metallic’. By
contrast, ta, cu does not exactly verify ‘The ball is coloured or both shaped and
metallic’ on account of including tcu as a part which makes no contribution to the
truth of the sentence when considered on its own, or even when fused with tau.
Whereas ta, c, eu overdetermines the truth of ‘The ball is coloured or both shaped
and metallic’ on account of being the fusion of more than one state which makes the
sentence true, the same cannot be said for ta, cu since it is only when fused with teu

that tcu may be said to contribute to making ‘The ball is coloured or both shaped and
metallic’ true. Accordingly, without being fused to teu, the state tcu is irrelevant to
the truth of ‘The ball is coloured or both shaped and metallic’, and so tcu without
teu disqualifies ta, cu as an exact verifier for the sentence in question.

Even if one were to relax the notion of relevance holding between states and the
sentences which they make true or false, the super inclusive semantics faces a further
difficulty. In particular, one must restrict attention to the class R` of nonvacuous
regular models of L which may be defined as:

Nonvacuous: An S-model M is nonvacuous iff both |p|˘ ‰ ∅ for all p P L.

Without restricting consideration to just the nonvacuous regular models, we may let
ME “ xSE, Ď, |¨|Ey with SE “ Ppta, b, cuq for distinct elements a, b, and c, setting

21Although liberal verifiers (falsifiers) may be defined as the convex closure of the exact verifiers (fal-
sifiers) for a sentence, exact verification (falsification) cannot be defined in terms of liberal verification
(falsification) since different sets may have the same convex closure.
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|p1|E “ x∅, ttauuy, |p2|E “ xttauu,∅y, and |p3|E “ xttbuu, ttcuuy, where:

|p1 ^ p3|E “ x∅, ttau, tcu, ta, cuuy;
|p1 _ p3|E “ x∅, tta, cuuy;
|p2 _ p3|E “ xttau, tbu, ta, buu,∅y;
|p2 ^ p3|E “ xtta, buu,∅y.

Since p1 has no liberal verifiers, there are no liberal verifiers for p1 ^ p3, and so no
state lies between a liberal verifier for p1^p3 and a liberal verifier for either p1 or p3.
Even though tbu liberally verifies p3, it follows by the super inclusive semantics for
disjunction that there are no liberal verifiers for p1 _ p3, where a similar line of rea-
soning explains why there are no liberal falsifiers for p2 ^p3 despite the fact that tcu

liberally falsifies p3. But this is far from natural. By contrast, the inclusive semantics
for disjunction maintains that any exact verifier for a disjunct ought to immediately
qualify as an exact verifier for the disjunction to which it belongs, where similarly,
the inclusive semantics for conjunction takes every exact falsifier for a conjunct to
immediately qualify as an exact falsifier for the conjunction to which it belongs. Let-
ting a proposition be vacuous just in case it either has no exact verifiers or no exact
falsifiers, we may refer to the unnatural effects induced by the super inclusive seman-
tics as vacuous annihilation. Although a proponent of the super inclusive semantics
could prevent vacuous annihilation from occurring by restricting consideration to the
class of nonvacuous regular models R`, there is nothing to motivate this restriction
aside from the ambition to avoid vacuous annihilation.22

In addition to being ad hoc, the restriction to nonvacuous models trades on the
assumption that the sentence letters in L are to be interpreted over the space of non-
vacuous propositions. However, in opposition to this assumption, we may show that
the restriction to nonvacuous propositions prevents the space of propositions from
assuming an otherwise much more natural form. To begin with, one may expect that
any theory of propositions ought to be bounded insofar as for any set of propositions
U , there is a proposition B which entails every proposition in U , and a proposition
T which is entailed by every proposition in U . By letting U be the set of all propo-
sitions, we are guaranteed the existence of an upper bound which is entailed by all
propositions, as well as a lower bound which entails all propositions. For instance,
in an extensional theory of propositions, the upper and lower bounds on the space of
propositions are the only propositions— namely, truth and falsity— where we may
model these by t1u and ∅, with subset inclusion for entailment. Similarly, inten-
sional theories of propositions may be modelled by PpW q for any nonempty set W ,
where subset inclusion is entailment, and the sets W and ∅ are the upper and lower
bounds for PpW q, respectively. Not only are such extensional and intensional theo-
ries of propositions bounded, this fact follows from their completeness, whereby any
set U of propositions has a least upper bound as well as a greatest lower bound with
respect to entailment. Although completeness and boundedness could be given up,

22For instance, Fine [14, p. 649] considers restricting attention to nonvacuous propositions, providing a
number of results which turn on this assumption.
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there is nothing to recommend making either of these further departures from tradi-
tion given the present ambition to provide a theory of propositions which respects
differences in subject-matter. Thus in accordance with a conservative methodology, I
will take there to be a strong presumption in favour of maintaining the boundedness
and completeness of the present theory of propositions.

By contrast with extensional and intensional theories of propositions which are
ordered by a single entailment relation, the present aim to accommodate differences
in subject-matter yields a theory of propositions which admits of two distinct orders.
To see where these orders come from, consider the abbreviated proofs from Boolean
logics that conjunctive-parthood A Ď B :“ A ^ B ” B and disjunctive-parthood
A ď B :“ A _ B ” B are each other’s converse:

A Ď B ñ A ^ B ” B (def)

ñ A _ pA ^ Bq ” A _ B (LL)
ñ A ” A _ B (#Abs1)
ñ B _ A ” A (A4, LL)
ñ B ď A. (def)

A ď B ñ A _ B ” B (def)

ñ A ^ pA _ Bq ” A ^ B (LL)
ñ A ” A ^ B (#Abs2)
ñ B ^ A ” A (A3, LL)
ñ B Ď A. (def)

Giving up #Abs1 and #Abs2 blocks the derivations above. Rather, A Ď B may hold
without B ď A holding, and vice versa. For instance, although A Ď A ^ B is valid,
A^B ď A may fail to hold, since pA^Bq_A need not be wholly relevant to A, and
so pA ^ Bq _ A ı A. Similarly, although A ď A _ B is valid, A _ B Ď A need not
hold, since pA_Bq^A may fail to be wholly relevant to A, and so pA_Bq^A ı A.
Whereas conjunctive-parthood and disjunctive-parthood are two ways of specifying
the same order in a Boolean theory of propositions, these relations may come apart
in the present setting.23 Nevertheless, a conservative methodology recommends that
the space of propositions ought to be bounded above and below with respect to both
orders Ď and ď, where this feature follows from the stronger requirement that both
orders over the space of propositions form complete lattices.

Insofar as disjunctive-parthood and conjunctive-parthood are taken to be com-
plete lattices, we may show that both spaces of normal propositions PS and regular
propositions PR

S form bilattices, providing hyperintensional analogues of the Boolean
lattices familiar from extensional and intensional logics. We may bring this out
by defining semantic correlates of conjunctive-parthood, disjunctive-parthood, and
negation as follows, where X “ xX`, X´y and Y “ xY `, Y ´y are propositions:

23As I argue elsewhere, ‘ď’ and ‘Ď’ provide natural regimentations of constitutive explanatory readings
of ‘sufficient for’ and ‘necessary for’. See also [12] and [10].
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Essence: X Ď Y iff : (1) for every b P Y ` there is some a P X` where a Ď b;
(2) a.b P Y ` whenever a P X` and b P Y `; and
(3) X´ Ď Y ´.

Ground: X ď Y iff : (1) for every b P Y ´ there is some a P X´ where a Ď b;
(2) a.b P Y ´ whenever a P X´ and b P Y `; and
(3) X` Ď Y `.

Inversion: �xX`, X´y “ xX´, X`y.

Given the definitions above, we may show for any normal model M P N that: (1)
M ( A Ď B just in case |A| Ď |B|; (2)M ( A ď B just in case |A| ď |B|; and (3)
|�A| “ �|A|. Since R Ď N , these results also apply to the class of regular models.
We may then consider the following definition:

Bilattice: A structure B “ xP, Ď, ď, �y is a bilattice iff xP, ďy and xP, Ďy are
complete lattices, P contains at least two elements, and that � is a
unary operator which satisfies all of the conditions: (1) ��X “ X;
(2) X ď Y “ �X Ď �Y ; and (3) X Ď Y “ �X ď �Y .

The definition above was originally presented by Ginsberg [25, 26], and studied
extensively by Fitting [19–24], among others. Whereas both BS “ xPS , Ď, ď, �y

and BR
S “ xPR

S , Ď, ď, �y may be shown to be bilattices, we may nevertheless
observe that the same cannot be said of the corresponding spaces of nonvacuous
propositions, thereby falling short of what otherwise belongs to a natural class of
well-studied mathematical structures.24

Even if one were to give up boundedness, and hence completeness— taking the
space of propositions to form an unbounded bilattice in the sense studied by Bor
and Rivieccio [5]— it is natural to maintain that each order forms a lattice over the
space of propositions so that for any two propositions there is guaranteed to be both
a least upper bound as well as a greatest lower bound.25 However, spaces of nonvac-
uous propositions do not form bilattices (unbounded or otherwise) since for any two
propositions X and Y where no state is a part of either the exact verifiers or falsifiers
for both X and Y , there will fail to be a lower bound for X and Y with respect to
either order, and so no greatest lower bound for X and Y . Without admitting vacuous
propositions, the space may at most be said to consist of two join-semilattices with at
least two elements and a unary operator which satisfies the conditions (1) – (3) in the
definition of a bilattice, though there is little to suggest that such structures constitute
a reasonably natural class.26 Fine [14] makes a related observation, writing:

24This is not to claim that philosophers ought to be bound to what mathematicians have found to be most
natural. Rather, I take it that without powerful motivation to do otherwise, a conservative methodology rec-
ommends beginning by thoroughly investigating appropriate applications of the most natural mathematical
resources that have already been developed.
25An unbounded bilattice consists of two lattices with at least two elements together with a unary operator
satisfying the conditions (1) – (3) in Bilattice above.
26Fine [14, p. 642] takes conjunction to be the greatest lower bound with respect to containment, flipping
the perspective on conjunctive-parthood which I will maintain. See Section 6 for Fine’s definition of
containment along with a comparison to Essence.
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The domain of propositions has the structure of a lattice from a classical point of view
and the structure (or something like the structure) of a bilattice from the present point of
view. (p. 643, ft. 10)

Instead of following Fine (p. 649) in focusing on nonvacuous models and establishing
a range of results which turn on nonvacuity, I will restrict attention throughout what
follows to the normal and regular bilattices BS and BR

S .
Given the arguments above, a proponent of a regular theory of propositions cannot

adopt either an inclusive or super inclusive semantics, at least insofar as the uni-
formity of R is to be maintained while avoiding nonvacuous collapse. In order to
identify a suitable semantics for a regular theory of propositions, it will help to define
the propositional operators which are expressed by ‘^’ and ‘_’ when interpreted
over the inclusive semantics, where X, Y P PS are arbitrary normal propositions:

Content Fusion: J [ K “ tx.y : x P J, y P Ku.
Conjunction: X ^ Y “ xX` [ Y `, X´ Y Y ´ Y pX´ [ Y ´qy.
Disjunction: X _ Y “ xX` Y Y ` Y pX` [ Y `q, X´ [ Y ´y.

Given the inclusive semantics, we may show that for any normal model M P N ,
both: (I) |A ^ B| “ |A| ^ |B|; and (II) |A _ B| “ |A| _ |B|. Moreover, we may show
that X ^ Y and X _ Y are the least upper bounds of X, Y P PS with respect to Ď and
ď, specifying clear theoretical roles for the semantics analogues of conjunction and
disjunction to play within any bilattice of propositions BS .27

Although PS is closed under the operators ^ and _, the same cannot be said of PR
S ,

where it is this fact together with (I) and (II) which explains whyR fails to be uniform
over the inclusive semantics. In order to maintain a regular theory of propositions,
Fine [14, p. 632] considers the convex closure of the exact verifiers and falsifiers
specified by the inclusive semantics, where the resulting semantic operations may be
shown to be equivalent to the following:

Span: rJ, Ks “ ty : x Ď y Ď z for some x P J and z P Ku.
Convex Conjunction: X ©̂ Y “ xX` [ Y `, rX´ Y Y ´, t

Ů

pX´ Y Y ´qusy.
Convex Disjunction: X _© Y “ xrX` Y Y `, t

Ů

pX` Y Y `qus, X´ [ Y ´y.

We may show that PR
S is closed under ©̂ and _©, where X ©̂ Y and X _© Y are

the least upper bounds with respect to Ď and ď respectively, so long as X and Y

are restricted to P
R
S . In place of the inclusive semantics, I will refer to the result of

disjoining the super inclusive semantic clauses and the inclusive semantic clauses as
the extremely inclusive semantics. Given any regular model M P R, we may then
show that |A ^ B| “ |A| ©̂ |B| and |A _ B| “ |A| _© |B| hold with respect
to the extremely inclusive semantics, making R uniform over the extremely inclu-
sive semantics. Moreover, neither ^ nor _ result in vacuous annihilation given the
extremely inclusive semantics, making the extremely inclusive semantics a superior
alternative, at least insofar as a regular theory of propositions is to be maintained.

27These results may be taken to show that the semantic relations given in Essence and Ground are indeed
the semantic correlates of conjunctive-part and disjunctive-part, respectively. One may also consider oper-
ators b and ‘ for the greatest lower bounds with respect to Ď and ď, referring to these as common essence
and common ground, respectively.
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Recall Fine’s claim from before that regular propositions have an especially simple
form. As we have seen, the space of nonvacuous regular propositions does not satisfy
the definition of a bilattice, and diverges from extensional and intensional theories of
propositions in being unbounded and incomplete, where it is not clear what would
motivate such departures. At the same time, admitting vacuous propositions makes
R fail to be uniform over the inclusive semantics, motivating the super inclusive
semantics which is uniform over R. However, the super inclusive semantics gives
rise to vacuous annihilation, providing a reason to adopt the much more complicated
extremely inclusive semantics which avoids both of these defects. Nevertheless, the
bilattice of regular propositions BR

S satisfies the following conditions:

Interlaced: A bilattice B “ xP, Ď, ď, �y is interlaced iff pX ‹ Zq ˝ pY ‹ Zq if
X ˝ Y where ‹ P t^Ď, ^ď, _Ď, _ďu and ˝ P tď, Ďu, where ^˝

and _˝ are the least upper bounds with respect to Ď and ď.
Distributive: A bilattice B “ xP, Ď, ď, �y is distributive iff whenever

‹, ∗ Pt^Ď,^ď,_Ď,_ďu, then X ‹ pY ∗ Zq “ pX ‹ Y q ∗ pX ‹ Zq.

By contrast with BR
S , the bilattice of normal propositions BS may fail to be inter-

laced, and so non-distributive since— as Fitting [21] observes— every distributive
bilattice is interlaced. Although being distributive and interlaced are elegant prop-
erties for a bilattice to have, such virtues must be weighed against the increase in
complexity of the extremely inclusive semantics. Even more importantly, we must
ask which properties are appropriate given the application at hand. In addition to
its added complexity, I take the counterexamples discussed at the beginning of the
present section to show that the extremely inclusive semantics fails to provide natu-
ral semantic clauses for conjunction and disjunction for the same reasons given for
the super inclusive semantics. In particular, one must weaken the manner in which
states are required to be relevant to the sentences that they verifier or falsifier, adopt-
ing appropriate liberalisations of verification and falsification in place of the exact
analogues. It is on these grounds that I will continue to maintain the inclusive seman-
tics, extending consideration to all models in N as required by uniformity, and so
will exclude #Dist1 and #Dist2 from the logic of propositional identity. Nevertheless,
Interlaced and Distributive articulate at least one sense in which regular propositions
may be said to enjoy a degree of simplicity that normal propositions do not.

Even in giving up #Dist1 and #Dist2 in addition to #Abs1 and #Abs2, on account
of admitting counterexamples when evaluated over N given the inclusive semantics,
the following principles may be shown to be N -valid:

A10 A ^ pA _ Bq ” A _ pA ^ Bq.
A11 A _ pB ^ Cq ď pA _ Bq ^ pA _ Cq.
A12 A _ pB ^ Cq Ď pA _ Bq ^ pA _ Cq.
A13 A ^ pB _ Cq ď pA ^ Bq _ pA ^ Cq.
A14 A ^ pB _ Cq Ď pA ^ Bq _ pA ^ Cq.
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Whereas A10 asserts that order does not matter in conjoining or disjoining a propo-
sition B with a proposition A, A11 – A14 provide analogues of #Dist1 and #Dist2
for disjunctive-parthood and conjunctive-parthood. Rather than offering an intuitive
basis for accepting the principles above, I will take A10 – A14 to be justified by
theirN -validity given the reasons presented above for adopting the inclusive seman-
tics along with the full range of normal models included in N . It remains to provide
a broader description of the N -logical consequence relation, surveying the space of
N -valid principles. In the following section, I will make a start by providing a logic
for propositional identity which is sound over N given the inclusive semantics.

5 A Logic for Propositional Identity

Whereas Section 2 considered principles in which identity operators occurred within
the scope of extensional operators, the syntax provided in Section 3 restricted
attention to the propositional identity sentences in idpLq. Imposing this limitation
simplified the semantics, while still providing a systematic means of evaluating iden-
tity sentences for validity. Given these syntactic constraints, I will refer to the proof
system which results from combining the axioms A1 – A12 with the following rules
of inference as The First-Degree Logic for Propositional Identity (PI1):

R1 A ” B $ B ” A. R2 A ” B $ pA ^ Cq ” pB ^ Cq.
R3 A ” B $ �A ” �B. R4 A ” B $ pA _ Cq ” pB _ Cq.
R5 A ” B, B ” C $ A ” C.

I will take $1
PI to be the smallest relation to satisfy the axioms and rules of inference

for PI1 which is closed under the standard structural rules, where ϕ P idpLq is a
theorem of PI1 just in case $1

PI ϕ as usual. It is straightforward to show that PI1

is sound with respect to the inclusive semantics and class N of normal models of
L. Accordingly, the motivation presented above for adopting the inclusive semantics
and class of modelsN extends to each of the theorems of PI1. Additionally, R1 – R5
may be derived from Ref, Imps, and Func in a background classical propositional
logic, providing further reason to accept these rules of inference as uncontroversial.

In addition to deriving A13 and A14 in PI1, we may show more generally that
PI1 has the following duality property, where δpϕq is the result of swapping all
conjunction and disjunction signs in ϕ, and δp�q “ tδpγ q : γ P �u:

Duality: A logic 
 is dual iff δp�q $
 δpϕq whenever � $
 ϕ.

In contrast to PI1, Correia and Skiles [10] present a logic of generalised identity
(GI), which is the result of both excluding R3 from PI1 while also including #Dist2.
Although Correia and Skiles explicitly exclude #Dist1 from GI— thereby giving up
duality— they do not offer any motivation for leaving #Dist1 out when #Dist2 has
been included in GI. Instead, Correia and Skiles defer to the supersentence seman-
tics provided by Correia [9] over which #Dist2 may be shown to be valid, despite
admitting counterexamples to #Dist1. Although Correia says nothing to motivate the
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use of his semantics either by reference to a stock of principles which his seman-
tics validates or else by means of an intended model, he nevertheless shows that
his semantics is equivalent to a Finean inclusive state semantics for the extensional
operators together with the following alternative clause for propositional identity:

p”qC M (C A ” B iff |A|` “ |B|`.

Whereas p”q required A and B to have the same exact verifiers and falsifiers in
M, Correia [9, p. 109] only requires A and B to have the same exact verifiers in
M, taking ϕ P idpLq to be valid just in case M (C ϕ for all M P N`— in
symbols, (N`

C ϕ— where N` is the class of nonvacuous normal models of L.28
Correia [9] does not, however, provide any explicit motivation for adopting p”qC over
the semantics given in p”q, nor for restricting consideration to nonvacuous models,
despite how much turns on these choices. Having already considered the demerits of
restricting consideration to nonvacuous models, the present section will focus on the
results of adopting Correia’s semantics for propositional identity.

If PS is to model the space of propositions expressed by the sentences of a lan-
guage where ‘”’ expresses propositional identity, it is natural to assume that A ” B

is true in an S-model just in case A and B are assigned to the same object inside
PS by that model. Indeed, this is precisely what p”q asserts. By contrast, p”q` only
requires two sentences to have the same exact verifiers for identity to hold, and so
A ” B may be true in a model for Correia despite the fact that |A| ‰ |B|. This leads
to a number of undesirable effects, perhaps most vividly exhibited by the invalidity
of R3. In particular, counterexamples to R3 may be naturally extended to counterex-
amples to Func from which it follows that the negation operator is opaque, and so
it follows by P2 that LL does not hold without exception.29 Despite these surprising
results, Correia and Skiles say nothing to acknowledge or defend the conclusion that
negation is an opaque operator. By contrast, I will take the extensional operators ‘�’,
‘^’, and ‘_’ to be paradigm cases of transparent operators, maintaining a classical
reading of ‘Ñ’ in Func and LL.30

The fact that Correia and Skiles cannot claim that Func and LL hold without
exception in a language with operators for propositional identity and the exten-
sional operators is a direct result of the asymmetry between truth and falsity which
Correia [9] includes in his semantics. By contrast, it is easy to see why R3 comes
out valid when one takes both the truth-conditions and falsity-conditions for sen-
tences into consideration in evaluating propositional identity claims as in p”q from
Section 3. Assuming A ” B is true in an arbitrary model M, it follows from
p”q that A and B have the same exact verifiers and falsifiers. Given that negation

28 Fine and Jago [18, p. 539] present a system of exact entailment where exact entailment is defined solely
in terms of exact verification with corresponding implications for distribution, where A_pB ^Cq exactly
entails pA _ Bq ^ pA _ Cq but not vice versa, while A ^ pB _ Cq and pA ^ Bq _ pA ^ Cq exactly entail
each other, disrupting an otherwise natural duality.
29Similar problems arise for Correia’s [8] semantics of analytic containment.
30Other transparent operators include the metaphysical modals ‘l’ and ‘♦’, constitutive operators for
essence and ground ‘Ď’ and ‘ď’, as well as the propositional identity operator ‘”’ itself.
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inverts the exact verifiers and falsifiers, �A and �B will also have the same exact
verifiers and falsifiers, and so �A ” �B will come out true in M. Of course,
this argument breaks down if the truth of A ” B only requires the sameness of
the truth-conditions. As brought out by MD above, two sentences may share the
same truth-condition without sharing the same falsity-condition, and so the fact
that A and B share the same truth-condition says nothing of whether �A and �B

share the same truth-condition. Despite limiting consideration to truth-conditions
in evaluating propositional identity claims, Correia maintains consideration of both
truth-conditions and falsity-conditions in evaluating the extensional sentences in
extpLq, making it all the more mysterious what motivates the sudden asymmetry
late in his semantics.31 Rather than maintaining an asymmetry between the truth-
conditions and falsity-conditions in the semantics for propositional identity, I will
take the validity of R3 to be an immediate consequence of p”q together with p�q`

and p�q´, from which it follows that negation is a transparent operator.

6 Subject-Matter Revisited

Recall from Section 2 the manner in which differences in subject-matter were taken
to indicate differences between propositions. In particular, #Necs, #Imps, #Abs1,
and #Abs2 were found to admit of exceptions, both motivating and constraining the
development of the state semantics for L presented in Section 3. I then argued in
Section 4 that there are strong abductive reasons for taking exception to #Dist1 and
#Dist2, where Section 5 presented a logic of propositional identity which is sound
over the semantics. It remains, however, to extend the language L to include the
subject-matter operator ‘σ ’, providing both a semantics and logic for ‘σ ’, thereby
supplying a more substantial theory of subject-matter than the collection of principles
initially presented in Section 2.

We may begin by considering the extension Lσ of L, defining the pre-identity
sentences of Lσ as follows, where p P L is arbitrary:

A ::“ p | �A | σA | A ^ A | A _ A.

Letting pidpLq be the set of pre-identity sentences of Lσ , I will take A ” B to be
an identity sentence in Lσ for any A, B P pidpLq, where idσ pLq is the set of all
identity sentences in Lσ , and eqpLq Ď idσ pLq is the set of all equivalences in Lσ

of the form A � B. In addition to maintaining the inclusive semantics defended
in Section 3 together with the clause p”q for propositional identity, we may now
consider the following clauses for the subject-matter operator:

pσ q
`
C M, s ,σA iff x Ďs Ďy for some x, y P S where M, x ,A and M, y , A.

pσ q
´
C M, s -σA iff x Ďs Ďy for some x, y P S where M, x -A and M, y - A.

31Although one could define A ” B :“ pA ”C Bq ^ p�A ”C �Bq in a less syntactically restricted
language, or uniquely characterise ” with the rules A ”C B, �A ”C �B $ A ” B, A ” B $ A ”C B,
and A ” B $ �A ”C �B, one must ask why ”C has be axiomatised rather than propositional identity
”. I am grateful to Kit Fine and Tim Williamson for bringing these points to my attention.
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A set of states X is convex just in case y P X whenever x Ď y Ď z for some x, z P X.
Letting rXs “ ty : x, z P X and x Ď y Ď zu be the convex closure of X, it is easy to
show that rrXss “ rXs.32 We may then refer to the semantic clauses given above as
the convex semantics for σ since the exact verifiers (falsifiers) for σA is the convex
closure of the exact verifiers (falsifiers) for A. Letting PI1C be the result of including
the following axioms and rule of inference in PI1, we may show that given the convex
semantics, PI1C is sound over the class of nonvacuous normal models N` of Lσ :

R6 A ” B $ A � B. S9 A _ pB ^ Cq � pA _ Bq ^ pA _ Cq.
S8 σσA ” σA. S10 A ^ pB _ Cq � pA ^ Bq _ pA ^ Cq.

It is worth noting that R6 makes ‘σ ’ a transparent operator so that σ operates solely
on the propositions expressed by the sentences to which ‘σ ’ is appended, thereby
capturing Obj given in Section 2. Additionally, S3 – S7 stated in Section 2 follow
immediately from R6 given the range of identities included in PI1.

Were one to extend consideration to all normal models in N , both S9 and S10
will admit of counterexamples. For instance, letting MF “ xSF , Ď, | ¨ |F y with
SF “ Ppta, b, c, d, e, f uq where |p1|F “ xttauu, ttbuuy, |p2|F “ xttcuu, ttduuy,
|p3|F “ x∅, tteuuy, and |p4|F “ xttf uu,∅y, for pairwise distinct a, b, c, d , e, and
f , we may derive the following identities:

|p1 _ pp2 ^ p3q|F “ xttauu, ttb, du, tb, eu, tb, d, euuy;
|pp1 _ p2q ^ pp1 _ p3q|F “ xttau, tcu, ta, cuu, ttb, du, tb, eu, tb, d, euuy;

|p1 ^ pp2 _ p4q|F “ xtta, cu, ta, f u, ta, c, f uu, ttbuuy;
|pp1 ^ p2q _ pp1 ^ p4q|F “ xtta, cu, ta, f u, ta, c, f uu, ttbu, tdu, tb, duuy.

Since the convex closures of the underlined sets are not identical, neither S9 nor S10
is N -valid on the convex semantics. Although one could exclude such counterexam-
ples by restricting consideration to the nonvacuous models in N`, imposing such
restrictions faces the same criticism brought out in Section 4. Accordingly, with-
out justifying the restriction to N`, the convex semantics cannot provide a basis of
support for the claim that #Dist1 and #Dist2 respect sameness of subject-matter.

Despite the shortcomings faced by the convex semantics, we may nevertheless
observe that ‘�’ has the same derived semantic clause as the semantics which Fine
[13] provides for synonymy in the first degree fragment of Angell’s [2] logic of ana-
lytic containment (AC), or what Fine calls analytic equivalence, where we may take
rAs˘ :“ r|A|˘s to be the convex closure of |A|˘ for ease of exposition:

p�q M ( A � B iff rAs˘ “ rBs˘.

Whereas synonymy asserts the identity of the meanings of two terms— in this case
sentences— the same cannot be said for sameness of subject-matter. In particular,

32Alternatively, one could define rXs “ rX,Xs, where rXs is defined in Span from Section 3 above.
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both S1 and S2 reproduced below ought to come out valid:

S1 �A � A. S2 A ^ B � A _ B.

Although �A and A have the same subject-matter, they do not have the same mean-
ing, where something similar may be said of A ^ B and A _ B. However, neither S1
nor S2 is valid over the convex semantics. Not only do these considerations provide
good reason to reject the convex semantics for subject-matter, they also raise doubts
for Angell’s [2] logic AC. Given that synonymy in AC is coextensive with sameness of
subject-matter in PI1C, and that distinct propositions may nevertheless have the same
subject-matter in PI1C, it follows that synonymy in AC is not as fine-grained as propo-
sitional identity in PI1C. In particular, we may observe that although S9 and S10 have
been included in PI1C, neither #Dist1 nor #Dist2 belong to PI1C. However, this is far
from natural, since one may expect synonymy to be at least as fine-grained as propo-
sitional identity, if not much more fine-grained on account of the same propositions
being expressed by sentences with different meanings.33

Despite the disparity between the theoretical targets for analytic equivalence and
propositional identity, it is worth reviewing Fine’s reasons for taking the identity
of the convex closures of the exact verifiers (falsifiers) for A and B to provide a
semantics for analytic equivalence rather than the identity of sets of exact verifiers
(falsifiers) for A and B. To begin with, Fine defines containment:

Containment: T ă U iff : (1) for all u P U , there is some t P T where t Ď u; and
(2) for all t P T , there is some u P U where t Ď u.

Instead of providing an independent theoretical target for containment, Fine [13]
takes containment to provide a semantics for a unilateral notion of analytic entail-
ment which only concerns exact verifiers, writing:

Containment is the relation between contents which is the analogue of the relation of
analytic entailment between statements. Thus we will want to say that A analytically
entails C just in case the content of A contains the content of C. [. . . ] If the relation
T ă U is genuinely to represent a relation of partial content, of T being part of the
content U , then we would expect the relation to be antisymmetric. (p. 207-8)

Even in supposing there were a clear theoretical target by which to evaluate accounts
of analytic entailment, Fine says nothing in support of the claim that containment is
the most natural notion of partial content, or that it provides the most natural seman-
tics for analytic entailment. Nevertheless, it is clear that Fine takes antisymmetry to
be essential to any genuine parthood relation, and so given this assumption, antisym-
metry is required of containment insofar as containment is to be a notion of partial
content. Although Fine (p. 208) shows that containment is only antisymmetric for
convex sets of states, he does not provide a reason to restrict attention to convex sets
of states rather than revising his definition of containment.

33Fine [13] proves that AC is sound and complete over his semantics, and so ϕ P eqpLq is a theorem of
PI1C just in case ϕ is valid over N` given the convex semantics.
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In addition to these motivational concerns, we may note that Fine (p. 201) defines
analytic entailment as A � B :“ A � A ^ B, where ‘�’ expresses analytic equiv-
alence. Although Fine takes ‘�’ to be a primitive term instead of being defined in
terms of ‘σ ’ as above, the semantics that Fine (p. 217) provides for ‘�’ is equivalent
to p�q derived above. We may then follow Fine in deriving the following semantic
clause from the definitions of analytic equivalence and containment for allM P N`:

p�q M ( A � B iff rBs` ă rAs` and rBs´ Ď rAs´.34

Given any A which has exact verifiers, and any B which does not, A ^ B � A will
not hold, contrary to Fine’s (p. 201) expectations. However, following Fine (p. 205) in
restricting to nonvacuous models faces the same objections brought out in Section 4
above. By contrast, one may take conjunctive-parthood to provide a notion of par-
tial content where xA Ď By reads xA is analytically entailed by By, observing that
A Ď A^B and B Ď A^B are valid even without restricting consideration to nonva-
cuous models. Although it remains to specify a theoretical target for partial content
against which conjunctive-parthood may be evaluated for adequacy, we may derive
the following results, including disjunctive-parthood for comparison:

pĎq M ( A Ď B iff |A| Ď |B|.
pďq M ( A ď B iff |A| ď |B|.35

So long as A1, A3, and R5 all hold, it is easy to show that conjunctive-parthood is
antisymmetric.36 Accordingly, taking conjunctive-parthood to play the role of partial
content avoids the need to close the exact verifiers and falsifiers for the propositions
in question under convexity. Without an argument that p�q is preferable to pĎq as
a semantics for analytic entailment, the assumption that partial content ought to be
antisymmetric does not provide a reason to require propositions to be convex, for as
we have seen, conjunctive-parthood is antisymmetric even without closing the exact
verifiers and falsifiers under convexity.

Setting aside the connections between sameness of subject-matter in PI´C and ana-
lytic equivalence in AC, there is good reason to consider the undirected semantics for
‘σ ’ on account of validating S1 over all normal models in N :

pσ q
`
U M, s , σA iff s Ď t for some t P S where M, t , A _ �A.

pσ q
´
U M, s - σA iff s Ď t for some t P S where M, t - A ^ �A.

34Fine [13, p. 217] considers the wider space of nonvacuous models where sentence letters may be
assigned to propositions whose contents are nonempty but not necessarily closed under fusion.
35It is worth observing that the semantics for disjunctive-parthood is the result of inverting the exact
verifiers and falsifiers in the semantics for conjunctive-parthood, thereby validating A Ď B $ �A ď �B

and A ď B $ �A Ď �B. See [14, p. 661] for related results.
36Proof: If A Ď B and B Ď A, then A ^ B ” B and B ^ A ” A, and so A ” A ^ B by A3 and R5.
Thus A ” B again by R5, where the converse is immediate from A1.
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On the undirected semantics, σA is both exactly verified and falsified by the parts
of the exact verifiers and falsifiers for A. It also follows that both of the following
principles are valid, where S12 follows from S1 and S11 by R5:

S11 σA ” �σA. S12 σ�A ” �σA.

Rather than taking ‘σ ’ to be a sentential operator, Fine [13, 15, 17] identifies the
subject-matter of a proposition with the fusion of all exact verifiers and falsifiers
for that proposition. Accordingly, the subject-matter of A is not a proposition at all
for Fine, but rather a single state, and so neither S11 nor S12 can be interpreted
on Fine’s semantics for subject-matter. Despite the disparity in kind between Fine’s
objectual account of subject-matter and the propositional account assumed above,
the undirected semantics validates the same equivalences in eqpLq as Fine’s account
of subject-matter.37 In particular, S2 is invalid over the class of normal models N ,
contrary to the expectations above. For instance, if A has no exact verifiers, then
neither will A ^ B, though A _ B will retain all of the exact verifiers for B, where a
similar discrepancy may occur if B has exact falsifiers but A does not. Thus the parts
of the exact verifiers and falsifiers for A ^ B may diverge from the parts of the exact
verifiers and falsifiers for A _ B, resulting in counterexamples to S2.

Rather than restricting attention to the nonvacuous models of L, or else excluding
S2 from the logic for subject-matter, I will provide a semantics which validates all
of the subject-matter principles defended above. It will help to begin with a propo-
sitional analogue of another idea that Fine [13, 15, 17] develops, focusing at first
on the positive subject-matter operator ‘σ`’. In contrast to Fine who takes σ`A

to be the fusion of the exact verifiers for A, I will draw on the duality operator ‘δ’
defined in Section 5 in order to provide the following dual semantics for the positive
subject-matter operator ‘σ`’, where xσ`Ay reads xIt is partially the case that Ay:38

pσ`q
`
D M, s , σ`A iff s Ď t for some t P S where M, t , A _ δpAq.

pσ`q
´
D M, s - σ`A iff s Ď t for some t P S where M, t - A ^ δpAq.

Were we to omit ‘δpAq’ from the clauses above, σ`pA^Bq and σ`pA_Bq will fail
to be identical in cases where A has exact verifiers but B does not. However, given
the semantics for conjunction and disjunction, it is natural to expect that it being
partially the case that A ^ B is the same as it being partially the case that A _ B. A
similar point holds for the negative subject-matter operator which we may define by
σ´A :“ σ`�A, where xσ´Ay reads xIt is partially not the case that Ay.

Given the reading of ‘σ`’ together with the definition of ‘σ´’, we may define the
subject-matter operator by σA :“ σ`A _ σ´A, thereby incorporating the central
idea behind the undirected semantics into a dual semantics for ‘σ ’. Thus xσAy reads

37See [13, p. 209] and [27, p. 718] for similar observations.
38I will assume an improper reading of ‘partially’ so that it being the case that A entails that it is partially
the case that A. See also [15, p. 699] for notions of partial aboutness.
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xIt is partly the case that A or it is partly not the case that Ay, where we may then
derive the following dual semantic clauses for ‘σ ’:

pσ q
`
D M, s ,σA iff s Ď t for some t P S where M, t ,A _ �A _ δpAq_δp�Aq.

pσ q
´
D M, s -σA iff s Ď t for some t P S where M, t -A ^ �A ^ δpAq^δp�Aq.

That the dual semantics validates both S1 and S2 over N should not surprise, for
the exact verifiers for σA include all parts of the exact verifiers for A, �A, and
their duals, where the same may be said of the exact falsifiers. Additionally, the dual
semantics validates the following distribution laws:

S13 σ pA _ Bq ” pσA _ σBq. S14 σ pA ^ Bq ” pσA ^ σBq.

Instead of revising the syntax for Lσ , we may continue to take ‘σ ’ to be primitive for
present purposes, excluding ‘σ`’ and ‘σ´’ from L. Nevertheless, we may draw on
the definition of subject-matter given above in order to justify the informal reading
of xσAy. Additionally, we may extend the proof theory to accommodate the subject-
matter operator by letting PI1σ include PI1 along with R6, S1, S2, S8, S11, and S13,
where we may then derive S3 – S7, S9, S10, S12, and S14.39

Having begun to survey the space of subject-matter principles, it remains to pro-
vide an account of relevance. Were one to take the relevance operator ‘ĺ’ to be
primitive, Rel could be captured by including the following rule of inference in PI1σ ,
where L1 – L4 could be included as axioms:

R7 A � B, C ĺ A $ C ĺ B.

A natural motivation for R7 conceives of relevance as a parthood relation for subject-
matter, so that A ĺ B asserts that the subject-matter of A is part of the subject-matter
ofB. Thus, ifA andB share the same subject-matter, where the subject-matter ofC is
part of the subject-matter ofA, then the subject-matter ofC is also part of the subject-
matter of B. This justification for R7 can be strengthened by defining relevance as
A ĺ B :“ σA ď σB, or equivalently, as A ĺ B :“ σA Ď σB.40 Informally,
A is relevant to B just in case the subject-matter of A is a disjunctive-part of the
subject-matter of B, or equivalently, the subject-matter of A is a conjunctive-part of
the subject-matter of B. Regardless of which convention one adopts, R7 and L1 –
L4 may be derived in PI1σ , where Obj and Rel follow from R6 and R7 by classical
reasoning, thereby providing the beginnings of a theory of relevance.41

39It is worth noting that every ϕ P eqpLq is self-dual insofar as ϕ $1
PIσ

δpϕq.
40By contrast, there are the directed notions of positive relevance A ĺ

` B :“ σ `A ď σ `B and negative
relevance A ĺ

´ B :“ σ ´A ď σ ´B (or equivalently, A ĺ

´ B :“ σ `A Ď σ `B) which do not
assimilate what is relevant to A and what is relevant to �A. For instance, as brought out in footnote 16,
although the exact verifier states for a sentence must be wholly relevant to that sentence, those states may
fail to be wholly relevant to its negation.
41Alternatively, one may define relevance by either of the equivalent conventions A ĺ B :“ A ^ B ď B

or A ĺ B :“ A _ B Ď B. Although L1 – L4 are easily derived, R7 must be explicitly included in PI1σ .
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It is worth noting that relevance is not an entailment relation. Although both A and
B are relevant toA^B by L2 and L4, neitherA norB entailsA^B. Accordingly, the
present account of relevance is not to be assimilated to the notions of relevant entail-
ment, or analytic implication, as developed by the relevance logicians.42 Although
one could attempt to draw on a theory of relevance in combination with an account
of implication in order to provide an analysis of a relevant implication relation, we
may observe that disjunctive-part and conjunctive-part already amount to forms of
relevant implication. In particular, we may derive the following:

T1 A ď B $ A ĺ B. T2 A Ď B $ A ĺ B.

If A ď B, then by definition A _ B ” B, and so B obtains in any possibility in
which A obtains. Thus A ď B is an implication relation from A to B, where the
former must be relevant to the latter by T1. By contrast, we may observe that if
A Ď B, then by definition A^B ” B, and so A obtains in every possibility in which
B obtains. Accordingly, A Ď B is an implication relation from B to A, where the
latter must be relevant to the former by T2. Given that both relevance and implication
flow from left to right for disjunctive-part, but in opposite directions for conjunctive-
part, it is disjunctive-part rather than conjunctive-part which makes for the most apt
comparison with the entailment relations studied in relevance logics.

In contrast to the rough outline presented in Section 2, the axioms and rules
included in PI1σ provide a much richer theory of both subject-matter and relevance.
Nevertheless, it remains to establish completeness over the semantics defended
above, if the semantics has a complete logic at all. Additionally, it is desirable
to provide a semantics that does not restrict consideration to the sentences in
idσ pLq, interpreting sentences which contain any combination of sentential opera-
tors included in the language.43 Nevertheless, maintaining the restriction to idσ pLq

provides a first step towards a logic of propositional identity with greater expres-
sive power. In particular, I will take PI1σ to provide an elegant theory of propositional
identity with a well motivated semantics which is able to individuate proposi-
tions according to their subject-matter rather than their modal profile alone, thereby
satisfying the aims set out above.

Appendix

I will begin by considering propositional languages of the form L “ xL, �Qy where
each Qn

i P �Q is an n-ary sentential operator for some n P N, and �Q includes the
extensional connectives ‘�’, ‘^’, and ‘_’ along with the propositional identity oper-
ator ‘”’. The well-formed sentences in wfspLq consist of the sentence letters in
L along with any Qn

i p �Oq, where Qn
i P �Q and �O is a sequence of n well-formed

sentences. Assuming a background classical logic in which xA Ñ By abbreviates

42For instance, see [1, 2, 34].
43I provide such a semantics in [6].
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x�A _ By, we may consider the following:

Ref A ” A. Trans pA ” Bq Ñ rpB ” Cq Ñ pA ” Cqs.
Sym pA ” Bq Ñ pB ” Aq. Imps pA ” Bq Ñ pA Ñ Bq.
LL pA ” Bq Ñ pC Ñ CpB{Aqq. Func pA ” Bq Ñ rQp �Oq ” Qp �OpB{Aqqs.

As above,L is transparent just in case all instances of Func hold, where xQp �OpB{Aqqy

is the result of replacing one or more instances of xAy which occur as members of
the sequence x �Oy with xBy, where similarly xQp �OrB{Asqy is the result of replacing all

instances of xAy which occur as members of the sequence x �Oy with xBy. Additionally,
I will take xCpB{Aqy to be the result of replacing one or more instances of xAy as
it occurs anywhere in xCy with xBy, as well as taking xCrB{Asy to be the result of
replacing all instances of xAy as it occurs anywhere in xCy with xBy. We may now
prove the following propositions.

P1 If L is transparent, then Ref and Imps entail both Sym and Trans.

Proof Assuming that L is transparent, pA ” Bq Ñ rpA ” Aq ” pB ” Aqs follows,
where rpA ” Aq ” pB ” Aqs Ñ rpA ” Aq Ñ pB ” Aqs holds by Imps, and
so pA ” Bq Ñ pB ” Aq follows from Ref by propositional logic. Again by trans-
parency, pA ” Bq Ñ prpA ” Cq Ñ pA ” Cqs ” rpB ” Cq Ñ pA ” Cqsq, and so
pA ” Bq Ñ prpA ” Cq Ñ pA ” Cqs Ñ rpB ” Cq Ñ pA ” Cqsq by Imps. Since
pA ” Cq Ñ pA ” Cq holds by propositional logic, we may conclude as desired that
pA ” Bq Ñ rpB ” Cq Ñ pA ” Cqs.

L1 If L is transparent, then Ref and Imps entail pA ” Bq Ñ pC ” CrB{Asq.

Proof Assuming that L is transparent, the proof proceeds by induction on the com-
plexity of C P wfspLq. Of course, if C P L, then pA ” Bq Ñ pC ” CrB{Asq holds
by propositional logic if A occurs in C, and C ” CrB{As holds by Ref otherwise,
where pA ” Bq Ñ pC ” CrB{Asq follows by propositional logic.

Assume for induction that pA ” Bq Ñ pC ” CrB{Asq holds whenever

comppCq ď n, and let comppCq “ n ` 1. Assuming that C “ Qnp �Dq, we
may observe that for all 1 ď i ď n that pA ” Bq Ñ pDi ” DirB{Asq fol-

lows by hypothesis, where pDi ” DirB{Asq Ñ rQnp �Eq ” Qnp �ErDirB{As{Dis
qs by

the transparency of L for any �E. Assuming A ” B, it follows for all 1 ď m ď n

that Qnp �DrD1rB{As{D1s...rDmrB{As{Dmsq ” Qnp �DrD1rB{As{D1s...rDm`1rB{As{Dm`1sq. Given
that Ref and Imps, it follows by P1 that Trans holds, and so by n ´ 1 applica-
tions of Trans,Qnp �Dq ” Qnp �DrD1rB{As{D1s...rDnrB{As{Dnsq. We may then observe that

Qnp �DrD1rB{As{D1s...rDnrB{As{Dns “ Qnp �DqrB{As, and so it follows by discharging our

assumption that pA ” Bq Ñ pQnp �Dq ” Qnp �DqrB{Asq. Since C “ Qnp �Dq, we may
conclude that pA ” Bq Ñ pC ” CrB{Asq.

P2 Assuming Ref and Imps, then L is transparent just in case LL holds.



B. Brast-McKie

Proof Assume Ref and Imps. Letting LL hold in L where Q is an operator in L, it
follows that pA ” Bq Ñ prQp �Oq ” Qp �Oqs Ñ rQp �Oq ” Qp �OqpB{Aqsq. However,

given Ref,Qp �Oq ” Qp �Oq, and so pA ” Bq Ñ rQp �Oq ” Qp �OqpB{Aqs. In particular,

pA ” Bq Ñ rQp �Oq ” Qp �OpB{Aqqs as in Func. Generalising on A, B, �O, andQ, we
may conclude that L is transparent.

Assume instead that L is transparent. Letting p P L where p does not occur in
B or C, it follows by L1 that pp ” Bq Ñ pCpp{Aq ” Cpp{AqrB{psq. However,
Cpp{AqrB{ps “ CpB{Aq, and so pp ” Bq Ñ pCpp{Aq ” CpB{Aqq. Thus it follows that,
pA ” Bq Ñ pC ” CpB{Aqq and so LL follows by Imps.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
licence, and indicate if changes were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Anderson, A. R., Belnap, N. D., & Dunn, J.M. (1976). Entailment: The Logic of Relevance and
Necessity, 2nd edn. Vol. I. Princeton: Princeton University Press. ISBN 978-0-691-07192-3.

2. Angell, R. B. (1989). Deducibility, Entailment and Analytic Containment. In J. Norman, & R. Syl-
van (Eds.) Directions in Relevant Logic, Reason and Argument (pp. 119–143). Dordrecht: Springer
Netherlands. ISBN 978-94-009-1005-8.

3. Bacon, A. (2019). Substitution structures. Journal of Philosophical Logic, 48, 1017–1075. ISSN
1573–0433. https://doi.org/10.1007/s10992-019-09505-z.

4. Berto, F. (2019). Simple hyperintensional belief revision. Erkenntnis, 84, 559–575. ISSN 1572–8420.
https://doi.org/10.1007/s10670-018-9971-1.

5. Bou, F., & Rivieccio, U. (2011). The logic of distributive bilattices. Logic. Journal of the IGPL, 19,
183–216. ISSN 1367–0751. https://doi.org/10.1093/jigpal/jzq041.

6. Brast-McKie, B. (2020). Towards a Logic of Essence and Ground. Ph.D. thesis, The University of
Oxford.

7. Caie, M., Goodman, J., & Lederman, H. (2019). Classical Opacity. Philosophy and Phenomenological
Research n/a. ISSN 1933–1592. https://doi.org/10.1111/phpr.12587.

8. Correia, F. (2004). Semantics for Analytic Containment. Studia Logica, 77, 87–104. ISSN 1572-8730.
https://doi.org/10.1023/B:STUD.0000034187.37935.24.

9. Correia, F. (2016). On the logic of factual equivalence. The Review of Symbolic Logic, 9, 103–122.
ISSN 1755-0203, 1755–0211. https://doi.org/10.1017/S1755020315000258.

10. Correia, F., & Skiles, A. (2019). Grounding, essence, and identity. Philosophy and Phenomenological
research, 98, 642–670. ISSN 1933–1592. https://doi.org/10.1111/phpr.12468.

11. Dorr, C. (2016). To be f is to be g. Philosophical Perspectives, 30, 39–134. ISSN 1520–8583.
https://doi.org/10.1111/phpe.12079.

12. Fine, K. (2015). Unified foundations for essence and ground. Journal of the American Philosophical
Association, 1, 296–311. ISSN 2053–4477. https://doi.org/10.1017/apa.2014.26.

13. Fine, K. (2016). Angellic content. Journal of Philosophical Logic, 45, 199–226. ISSN 0022-3611,
1573–0433. https://doi.org/10.1007/s10992-015-9371-9.

14. Fine, K. (2017a). A theory of truthmaker content i: conjunction, Disjunction and Negation. Journal
of Philosophical Logic, 46, 625–674. ISSN 0022-3611 1573–0433. https://doi.org/10.1007/s10992-
016-9413-y.

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s10992-019-09505-z
https://doi.org/10.1007/s10670-018-9971-1
https://doi.org/10.1093/jigpal/jzq041
https://doi.org/10.1111/phpr.12587
https://doi.org/10.1023/B:STUD.0000034187.37935.24
https://doi.org/10.1017/S1755020315000258
https://doi.org/10.1111/phpr.12468
https://doi.org/10.1111/phpe.12079
https://doi.org/10.1017/apa.2014.26
https://doi.org/10.1007/s10992-015-9371-9
https://doi.org/10.1007/s10992-016-9413-y
https://doi.org/10.1007/s10992-016-9413-y


Identity and Aboutness

15. Fine, K. (2017b). A theory of truthmaker content II: Subject-matter, common content, remain-
der and ground. Journal of Philosophical Logic, 46, 675–702. ISSN 0022-3611, 1573–0433.
https://doi.org/10.1007/s10992-016-9419-5.

16. Fine, K. (2017c). Truthmaker Semantics. In A Companion to the Philosophy of Language (pp. 556–
577). New York: Wiley. ISBN 978-1-118-97209-0. https://doi.org/10.1002/9781118972090.ch22.

17. Fine, K. (2020). Yablo on Subject-Matter. Philosophical studies, 177, 129–171. ISSN 1573–0883.
https://doi.org/10.1007/s11098-018-1183-7.

18. Fine, K., & Jago, M. (2019). Logic for exact entailment. The review of symbolic logic, 12, 536–556.
ISSN 1755-0203, 1755–0211. https://doi.org/10.1017/S1755020318000151.

19. Fitting, M. (1989a). Bilattices and the Semantics of Logic Programming.
20. Fitting, M. (1989b). Bilattices and the theory of truth. Journal of Philosophical Logic, 18, 225–256.

ISSN 0022-3611, 1573–0433. https://doi.org/10.1007/BF00274066.
21. Fitting, M. (1990). Bilattices in logic programming. In Proceedings of the Twentieth International

Symposium onMultiple-Valued Logic, (Vol. 1990 pp. 238–246). https://doi.org/10.1109/ISMVL.1990.
122627.

22. Fitting, M. (1991). Kleene’s Logic, Generalized. Journal of Logic and Computation, 1, 797–810.
ISSN 0955-792X, 1465-363X. https://doi.org/10.1093/logcom/1.6.797.

23. Fitting, M. (1994). Kleene’s three valued logics and their children. Fundam. Inf., 20, 113–131. ISSN
0169–2968.

24. Fitting, M. (2002). Bilattices are nice things. Self-reference, 53–77.
25. Ginsberg, M. L. (1988). Multivalued logics: a uniform approach to inference in artificial intelligence.

Computational Intelegence, 4, 265–316.
26. Ginsberg, M. L. (1990). ISSN 0955-792X, 1465-363X. https://doi.org/10.1093/logcom/1.1.41. Jour-

nal of Logic and Computation, 1, 41–69.
27. Hawke, P. (2018). Theories of aboutness. Australasian. Journal of Philosophy, 96, 697–723. ISSN

0004–8402. https://doi.org/10.1080/00048402.2017.1388826.
28. Heim, I. (1990). E-Type Pronouns and donkey anaphora. Linguistics and philosophy, 13, 137–177.

ISSN 1573–0549. https://doi.org/10.1007/BF00630732.
29. Kratzer, A. (1989). An investigation of the lumps of thought. Linguistics and philosophy, 12, 607–653.

ISSN 1573–0549. https://doi.org/10.1007/BF00627775.
30. Kratzer, A. (1998). Scope or Pseudoscope? Are There Wide-Scope Indefinites?. In S. Rothstein (Ed.)

Events and Grammar, Studies in Linguistics and Philosophy (pp. 163–196). Dordrecht: Springer
Netherlands. ISBN 978-94-011-3969-4.

31. Kratzer, A. (2002). Facts: Particulars or Information Units?. Linguistics and Philosophy, 25, 655–670.
ISSN 1573-0549. https://doi.org/10.1023/A:1020807615085.

32. Lewis, D. (1988a). Relevant implication. Theoria, 54, 161–174. ISSN 1755–2567. https://doi.org/10.
1111/j.1755-2567.1988.tb00716.x.

33. Lewis, D. (1988b). Statements partly about observation. Philosophical papers, 17, 1–31. ISSN 0556–
8641. https://doi.org/10.1080/05568648809506282.

34. Parry, W. T. (1989). Analytic Implication; Its History, Justification and Varietiess. In J. Norman, & R.
Sylvan (Eds.)Directions in Relevant Logic, Reason and Argument (pp. 101–118). Dordrecht: Springer
Netherlands. ISBN 978-94-009-1005-8. https://doi.org/10.1007/978-94-009-1005-87.

35. Perry, J. (1989). Possible Worlds and Subject Matter. In The Problem of the Essential Indexical and
Other Essays (pp. 145–60). Palo Alto: CSLI Publications.

36. Rayo, A. (2013). The construction of logical space. Oxford: Oxford university press. ISBN
9780199662623, hbk.

37. von Fintel, K., & Partee, B. H. (2002). A Minimal Theory of Adverbial Quantification. In H.
Kamp (Ed.) Context-Dependence in the Analysis of Linguistic Meaning, volume 11 of Current
Research in the Semantics/Pragmatics Interface (pp. 137–175). Amsterdam: Brill. ISBN 978-0-08-
043694-4.

38. Yablo, S. (2014). Aboutness. Berlin: Princeton University Press. ISBN 978-1-4008-4598-9.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

https://doi.org/10.1007/s10992-016-9419-5
https://doi.org/10.1002/9781118972090.ch22
https://doi.org/10.1007/s11098-018-1183-7
https://doi.org/10.1017/S1755020318000151
https://doi.org/10.1007/BF00274066
https://doi.org/10.1109/ISMVL.1990.122627
https://doi.org/10.1109/ISMVL.1990.122627
https://doi.org/10.1093/logcom/1.6.797
https://doi.org/10.1093/logcom/1.1.41
https://doi.org/10.1080/00048402.2017.1388826
https://doi.org/10.1007/BF00630732
https://doi.org/10.1007/BF00627775
https://doi.org/10.1023/A:1020807615085
https://doi.org/10.1111/j.1755-2567.1988.tb00716.x
https://doi.org/10.1111/j.1755-2567.1988.tb00716.x
https://doi.org/10.1080/05568648809506282
https://doi.org/10.1007/978-94-009-1005-87

	Identity and Aboutness
	Abstract
	Intensionalism
	Subject-Matter
	State Semantics
	Distribution Laws
	A Logic for Propositional Identity
	Subject-Matter Revisited
	Appendix: 
	References


