
"Serverless" Information System (each.co.uk)

In 2013, I've transformed the each.co.uk server side system (aspx / c#) to the client
system of a few javascript files ≈400KB potentially webassembly, without plugins / 3rd
party / css.. The system maximally reuses functions & data to apply: 1) Linguistic principle
of arbitrariness of the sign maximizing repetitions, 2) Multi layer logic of the chess
composition, 3) Information Theory minimizing entropy. Some of these ideas were
presented at conferences in Santorini, Adelaide, Geneva, Daejon and virtually.
Philosophically, any system only organizes the existing reality (information), but can't create it. Its
fragmentation easily leads to illusions (entropy): eg. Zeno's Achilles can't overtake the slower
tortoise because as he gets closer, the tortoise gets a bit further, so he gets closer and closer but
never reaches her. So the more are logic and data fragmented in various layers (server, js, css, sql,
frameworks..), the less capable system is.

"Serverless" (closed server)
The server stores and shares data. "Serverless" is reduction to inevitable basic data operations without further
modifications. So the server's functionality is closed in a few php (or any server script) commands to get / send / store
data. The all data are processed in the browser (js/wasm). The outages on the old system with many server operations
(SQL / C#) ended, after moved to the browser. The server's reduction: 1) betters performance 2) reduces the logical
layers. The code C=N1+N2 splits in the server: N1 and the client: N2, increases the cases (incl bugs):
N1*N2>N1+N2, N1>1, N2>1. Moving the code a from one layer -a to another +a decreases the cases approximately
by a2: (N-a)*(N+a)=N2-a2, N1≈N2. The |-a| can differ from the |+a|: it's on average approximation. Eg. If the
server's code is closed: N1≈1: no application's bug can come from the server's code, while the split logic adds an extra
options: the bug can be in the server's or the client's logic: a2.
Remark: The old each.co.uk system that I started working in 2007, had suffered from regular outages and cutting off logged in
users from the server's sessions. The admins tried to resolve it by installation of load-balancer with an extra server. It didn't
improve it at all..

Example of tiny php files (easy to change to any script: py, pl, c#)..

Data: database, files, compression
The viable data model reuses and compresses data to minimize the bytes to store and transmit. Data files use the
server less than Database / SQL, but for the matches or data mix the SQL is far more comfortable. So I merged or
replaced all SQL (procedures, meta-data, indexes..) and let only the necessary SQL. Eg. I replaced the unique SQL key
(identity) by the js's compressed date-time unique string: SQL id=98049955, date-time=17. Oct 2022 09:01:33 ⇒
js(YYMMDDHHMMSS)⇒ 220917090133 ⇒ js(YMDHMS)⇒ MJH91X (M=22,J=09..).
The old system had eg. Property table with 24 sub-tables (size, file, pic..) linked by SQL foreign keys to be joined to
load the property. It was slowing down the server. I merged the all sub-tables to 1 table removing the foreign keys and
intersection tables. Multiple values (tenures, subtypes..) were merged to binary sums or comma separated ids. To load
data from the server, I started using simple data structures (instead of server's generated html). At first json, later I
started using the arrays, as I realized the json's keys are useless. The array:[5,7,2..] is smaller than json:

Miro Brada

https://www.youtube.com/watch?v=q8-F0AQNTqs
https://www.youtube.com/watch?v=KCFcEipF1-w
https://www.youtube.com/watch?v=GO0jNxgGh9s
https://www.youtube.com/watch?v=bZgvwU3rf4s
https://www.youtube.com/watch?v=hQrW6y8TwK4


{"a":5,"b":7,"c":2..}. when the json's 1-letter key (+ apostrophes + colon) adds 4 bytes per key and reduces the
flexibility (explained later). Also I compressed the texts as descriptions or lists of addresses.. The compression /
decompression is in js, the server only stores the compressed data to be loaded only if needed. Eg. the descriptions
load only if the line / grid view is clicked to open the detail view.
Remark: If the text is needed in the keywords' search, the texts can be saved also in the reduced but uncompressed form:
without signs and repeated words, in the SQL table's column to be used only for the keyword's search - the text itself would still
load from the compressed file.

Compression / merging data and data forms

For the matches, the counties' ids used to be assigned when the property was created from the 4 MB SQL table of 32K
rows. It slowed down the server, sometimes returning no result (had to be rematched). Instead, I made the simple 52
KB files' system with 4 leading postcodes' letters returning the county / council id before entering DB/SQL. This reduced
"no result" cases in SQL.
Remark: Some say the server is too powerful to be optimized. But the data reduction isn't hard to do and it increases reusage. It's
like not to see a difference if a car needs 10 L or 1/4 L per 100km. Or like to commute between Yerevan and Tbilisi via Teheran or
Moscow.
Tiny postcode's file with county / council id  Text from the compressed file in the detail view

Uniform data form and Ajax
In 2002-2013, each.co.uk loaded over 30 aspxs' pages: properties.aspx, requirements.aspx, invoices.aspx, department.aspx.. with
specific SQL procedure. The url had to reload to view different info, with server's user session. Using ajax, I made a
single-page application (SPA) merging the all aspxs to one aspx loading single parameter 'R' uniting the 'SELECT' of all
SQL procs to return uniform data form:[{R:'A0|B0|'},{R:'A1|B1|'},..]. I reduced the aspx / c# code to tiny C# scripts,
so I could rewrote them in 2019 to php in 1-2 days (php was easier for pdfs' creation). The logic remained, only the
final data form was simplified to arrays (not jsons): [['A0|B0..'],['A1|B1..'],..].
Remark: Ajax (asynchronous javascript + XML) appeared in 1999 to be more common in mid of 2000s. It enabled SPA
applications without re-loading the url.



SQL to C# to aspx to array's json loading mechanism applied to load all data

The old server-side system had issues with: a) outages due to huge server's functionality with data / SQL duplications,
b) user's sessions cut offs - session deleted somewhere in large c# code.
Admins installed the load balancer that didn't help at all. Then, I got a permission to create SPA system with simple
data model. Between Apr and Sep 2013, I made the new system that ran on each.co.uk/test.htm replacing the
default.aspx. It resolved the outages and session's cut-offs, and hastened the new functionality.
In 2014, based on recommendations I employed the jquery to easier the development and resolve the differences
accross the browsers (IE, Chrome, Firefox, Opera..). By time the jquery started being overused.. Finally I grasped, if
the functions are simplified the jquery isn't needed, so I removed it.
Remark: The optimal solution can be blocked if not understood or if there is no motivation.. If the server's functionality is moved
to js / webassemably the admins can try to discredit it, as there is less work for them. And programmers can practise or
implement system / plugins (eg. Node.js, React..) to improve their CV instead of searching for optimal algorithm.

Bitwise Logic
The bitwise operators compress more values to single one. It follows: y=2x, x={0,1,2.., n}, eg. for tenures:
lease=20=1, short lease=21=2, freehold=22=4, long lease=23=8. So lease (1) + freehold (4) is 1+4=5, or
freehold+long lease=4+8=12.. The bitwise operator '&' easily detects if eg. Property of tenure X (=5), matches
Requirement of tenure Y (=12): X&Y>0: 5&12=4 (=matches), unlike the string search '1,4' vs '4,8' that is slower /
harder. TO BE CONTINUED

Binary operations

Merging logical layers
"Serverless" doesn't prevent the split of the client's code: 1) html, 2) css, 3) js/wasm. The amended formula is:

N=N1+N2+N3.. ⟹ , where i=layer: php/C#.., SQL, html, css, js/wasm..



The code N can be in 1-layer (js) or eg. uniformly split in n layers with N/n code per layer. The cases multiply in each

layer: , where N is far bigger than n: N≫n. To compare: N 1-layer versus (N/n)n n-layers, let's assume
N=100: 1-layer code has 100 cases, while 5-layers uniformly split code has 205=3.2M cases. It's 32 000 less cases in
1-layer code: the less layers, the higher efficiency.
The layer's logic can be understood via chess composition. The quality of the puzzle / composition is assessable by its
difficulty to solve: the harder to solve, the better puzzle. This criterion is valid, but the other criterion has appeared in
the 20th century: changes between the phases (layers). Italian composers Alberto Mari and Guido Cristoffanini
developed the idea of change mates between try (or set play) and solution: neo-strategy. In 1928, A. Mari published
the 1st reciprocal change of mates (AB-BA). In 1949, Slovak Ľudovít Lačný made the 1st cyclic change of mates (ABC-
CAB), and in 1955 the first 4-fold cycle (ABCD-CADB). The online chess problem database yacpdb.org lists 2,714
reciprocal changes in mate in 2 (#2), 383 cyclic (Lacny) changes, 32 4-fold cyclic changes. It says: the less intricate
schemes precede and are more frequent than the more intricate ones. AB-BA is 6.8x more frequent and 21y earlier
than ABC-CAB that is 12.4x more frequent and 6y ealier than ABCD-DABC. TO BE CONTINUED
Remark: on yacpdb.org the 1st reciprocal #2 is in 1921 by Bruno Oswald Sommer, but it's unclear if intentional or 'by-product'.

The more intricate, the rarer The reciprocal and cyclic change (Lačný) of mates

Abstraction increases the reusage
It seems logical to name a function by its meaning eg. 'mail()' - a function to send emails. But, the functionalites often
overlap and 'meaningful' names can mislead or can be impossible to name something specific (as in medicine,
chemistry, mechanics). In 2017, I joined the conference 'The Arbitrariness of the Sign', an idea (1916) of linguist F.
Saussure. As I was preparing my lecture Psychological and other aspects of the sign arbitrariness, I realized the
broader picture applicable to programming too. Eg. the 'meaningfully' named codes is as Chinese sign refering to its
meaning (pictograph) eg. home 家 (jia): a pig under roof. The pictographs are less repeatable, so there are many
unique signs and 2-3000 are needed to read a newspaper. In contrast, Eurpean languages have about 30 letters
whose combinations create the all meanings. The pictographs disable the advanced grammar being too complicated to
be expressed in the pictographs. But the pictographs themselves are insufficient to create a language / system, the
chinese uses 'radicals' - repeatable signs re-used in various signs to amend / create the meaning. Eg. a radical
'person': 人 (rén) is used in different signs - where it can have shortened form: 亻. Everyone: 人人 (rénrén), estimate:
估 (gū), imitate: 仿 (fǎng), night: 夜 (yè). Without the radicals, no grammar would be even possible. Also there is
higher divergence (smaller share) among the the 'meaningful' languages - when differences among e.g. Slavic or Latin
languages or difference between German and English, is far smaller than between Mandarine and Cantonese,
Japanese, Koreans, Vietnamese (whose mother langue was Chinese). So, for a complex system is far more efficient to
use the abstract ('meaningless') signs to maximize their reusage. TO BE CONTINUED

https://www.yacpdb.org/
https://philpapers.org/go.pl?aid=BRAPAO-5

