
"Serverless" Information System (each.co.uk)

In 2013, I've transformed the server side each.co.uk system aspx / c# to javascript* ≈400KB
without plugins, 3rd party, css.. minimizing fragmentation to maximize reusage, following
◆ Linguistic principle of arbitrariness of the sign 1916 ◆ Multi layer logic of the chess
composition 1928 ◆ Information Theory 1940s. Partially presented at conferences in
Santorini, Adelaide, Geneva, Daejon and virtually.
*Javascript can be replaced or combined with webassembly

Philosophically, fragmentation creates illusions (entropy): eg. Zeno's Achilles can't overtake the
slower tortoise: as he gets closer, the tortoise gets a bit further, so he gets closer and closer to
never reach her. The more fragmented logic / data in various layers / structures (server, js, css, sql,
frameworks..), the higher probability of unproductive codes to handle other unproductive codes..

"Serverless" (closed server)
The server stores and shares data. "Serverless" is a reduction to inevitable basic data operations without further
modifications. So the server's functionality is closed in a few php (or any server script) commands to get / send / store
data to be 100% processed in the browser (js/wasm). The old system's outages ended, after its many server
operations SQL / C# moved to the browser js. It 1) betters performance 2) reduces the logical layers. The code
C=N1+N2 split in the server: N1 and the client: N2, multiplies the cases (incl bugs): N1*N2>N1+N2, N1>1, N2>1.
Moving the code a from layer 1 N1-a to another N2+a decreases the cases by ≈a2: (N1-a)*(Ne+a)≈N2-a2, N1≈N2.
The |-a| can differ from the |+a|: it's on average approximation. Eg. If the server's code is closed: N1≈1: no
application's bug can come from the server's code, while the 2-layers logic N1>1, N2>1 adds an extra options: the bug
can be in N1 or N2: a2.
Remark: The old each.co.uk system that I started working in 2007, had suffered from regular outages or logging out the logged
users. The admins installed load-balancer with an extra server to resolve the issues, without improvement..

Example of tiny php files (easy to change to any script: py, pl, c#)..

Data: database, files, compression
The viable data model reuses and compresses data to minimize the bytes to store and transmit. Data files use the
server less than Database / SQL, but for the matches or data mix the SQL is more comfortable. So I merged or
replaced all SQL (procedures, meta-data, indexes..) and let only the necessary SQL. Eg. I replaced the unique SQL key
(identity) by the js's compressed date-time unique string: SQL id=98049955, date-time=17. Oct 2022 09:01:33 ⇒
js(YYMMDDHHMMSS)⇒ 220917090133 ⇒ js(YMDHMS)⇒ MJH91X (M=22,J=09..).
The old system had eg. Property table with 24 sub-tables (size, file, pic..) join by SQL keys to load the property. It was
slowing down the server. I merged the all sub-tables to 1 table removing the keys and intersection tables. Multiple
values (tenures, subtypes..) were merged to binary sums or comma separated ids. I replaced server's generated html
by simple data structures (json, array) to load data from the server. The arrays are better as the same info in array:
[5,7,2..] is smaller than in json:{"a":5,"b":7,"c":2..}. when the json's 1-letter key (+ apostrophes + colon) adds 4 bytes
per key. Also I compressed the long texts eg. descriptions or addresses' list.. The compression / decompression is in js,

Miro Brada

https://www.youtube.com/watch?v=q8-F0AQNTqs
https://www.youtube.com/watch?v=KCFcEipF1-w
https://www.youtube.com/watch?v=GO0jNxgGh9s
https://www.youtube.com/watch?v=bZgvwU3rf4s
https://www.youtube.com/watch?v=hQrW6y8TwK4

the server only stores the compressed data to be loaded only if needed. Eg. the descriptions load only if the line / grid
view is clicked to open the detail view.
Remark: If the text is needed in the keywords' search, the texts can be saved also in the reduced but uncompressed form:
without signs and repeated words, in the SQL table's column to be used only for the keyword's search - the text itself would still
load from the compressed file.

Compression / merging data and data forms

For the matches, the counties' ids used to be assigned when the property was created from the 4 MB SQL table of 32K
rows. It slowed down the server, sometimes returning no result (had to be rematched). Instead, I made the simple 52
KB files' system with 4 leading postcodes' letters returning the county / council id before entering DB/SQL. This reduced
"no result" cases in SQL.
Remark: Some say the server is too powerful to be optimized. But to reduce data isn't hard and it increases reusage. It's like not
to see a difference if a car needs 10 L or 1/4 L per 100km. Or to commute between Yerevan and Tbilisi via Teheran or Moscow.

Tiny postcode's file with county / council id Text from the compressed file in the detail view

Uniform data form and Ajax
In 2002-2013, each.co.uk loaded over 30 aspxs' pages: properties.aspx, requirements.aspx, invoices.aspx, department.aspx.. with
specific SQL procedures. The url had to reload to view the pages, with server's user session. Using ajax, I made a
single-page application (SPA) merging the all aspxs to one aspx loading single parameter 'R' uniting the 'SELECT' of all
SQL procs returning uniform data form:[{R:'A0|B0|'},{R:'A1|B1|'},..]. I reduced the aspx / c# code to tiny C# scripts,
rewritten in 2019 to php in 2 days. The logic remained, only more economical arrays: [['A0|B0..'],['A1|B1..'],..],
replaced jsons.
Remark: Ajax (asynchronous javascript + XML) arose in 1999 to be more common in mid of 2000s. It enabled SPA applications
without re-loading the url.

SQL to C# to aspx to array's json loading mechanism applied to load all data

The old server-side system had a) outages due to huge server's functionality with data / SQL duplications, b) user's
sessions cut offs - session deleted somewhere in large c# code. Admins installed the load balancer that didn't help at
all. Then, I got a permission to create SPA system with simple data model. Between Apr and Sep 2013, I made the
new system running on each.co.uk/test.htm to replace the default.aspx. It resolved the outages and session's cut-offs,
and hastened the development. In 2014, based on advices I employed the jquery to easier the coding and resolve the
differences in the browsers (IE, Chrome, Firefox, Opera..). By time the jquery started being overused.. Finally I
grasped, the well designed code doesn't need the jquery, so I removed it.
Remark: The optimal solution can be blocked if not understood or if there is no motivation.. If the server's functionality is moved
to js / webassemably the admins can try to discredit it, as there is less work for them. And programmers can practise or
implement system / plugins (eg. Node.js, React..) to improve their CV instead of searching for optimal algorithm.

Bitwise Logic
The bitwise operators compress more values to single one. It follows: y=2x, x={0,1,2.., n}, eg. for tenures:
lease=20=1, short lease=21=2, freehold=22=4, long lease=23=8. So lease (1) + freehold (4) is 1+4=5, or
freehold+long lease=4+8=12.. The bitwise operator '&' easily detects if eg. Property of tenure X (=5), matches
Requirement of tenure Y (=12): X&Y>0: 5&12=4 (=matches), unlike the string search '1,4' vs '4,8' that is slower /
harder. TO BE CONTINUED

Binary operations

Merging logical layers

Tthe client's code can be split in 1) html, 2) css, 3) js/wasm. The amended formula is: N=N1+N2+N3.. ⟹ ,
where i=layer: php/C#.., SQL, html, css, js/wasm..
The code N can be in 1-layer (js) or eg. uniformly split in n layers with N/n code per layer. The cases multiply in each

layer: , where N is far bigger than n: N≫n. To compare: N 1-layer versus (N/n)n n-layers, let's assume
N=100: 1-layer code has 100 cases, while 5-layers uniformly split code has 205=3.2M cases. It's 32 000 less cases in
1-layer code: the less layers, the higher efficiency.
The layer's logic can be understood via chess composition. The quality of the puzzle / composition is assessable by its
difficulty to solve: the harder to solve, the better puzzle. This criterion is valid, but the other criterion has appeared in
the 20th century: changes between the phases (layers). Italian composers Alberto Mari and Guido Cristoffanini
developed the idea of change mates between try (or set play) and solution: neo-strategy. In 1928, A. Mari published
the 1st reciprocal change of mates (AB-BA). In 1949, Slovak Ľudovít Lačný made the 1st cyclic change of mates (ABC-
CAB), and in 1955 the first 4-fold cycle (ABCD-CADB). The online chess problem database yacpdb.org lists 2,714
reciprocal changes in mate in 2 (#2), 383 cyclic (Lacny) changes, 32 4-fold cyclic changes. It says: the less intricate
schemes precede and are more frequent than the more intricate ones. AB-BA is 6.8x more frequent and 21y earlier
than ABC-CAB that is 12.4x more frequent and 6y ealier than ABCD-DABC. TO BE CONTINUED
Remark: on yacpdb.org the 1st reciprocal #2 is in 1921 by Bruno Oswald Sommer, but it's unclear if intentional or 'by-product'.

The more intricate, the rarer The reciprocal and cyclic change (Lačný) of mates

Abstraction increases the reusage
It seems logical to name a function by its meaning eg. 'mail()' - a function to send emails. But, the functionalites often
overlap and 'meaningful' names can mislead or can be impossible to name something specific (as in medicine,
chemistry, mechanics). In 2017, I joined the conference 'The Arbitrariness of the Sign', an idea (1916) of linguist F.
Saussure. As I was preparing my lecture Psychological and other aspects of the sign arbitrariness, I realized the
broader picture applicable to programming too. Eg. the 'meaningfully' named codes is as Chinese sign refering to its
meaning (pictograph) eg. home 家 (jia): a pig under roof. The pictographs are less repeatable, so there are many
unique signs and 2-3000 are needed to read a newspaper. In contrast, Eurpean languages have about 30 letters
whose combinations create the all meanings. The pictographs disable the advanced grammar being too complicated to
be expressed in the pictographs. But the pictographs themselves are insufficient to create a language / system, the
chinese uses 'radicals' - repeatable signs re-used in various signs to amend / create the meaning. Eg. a radical
'person': 人 (rén) is used in different signs - where it can have shortened form: 亻. Everyone: 人人 (rénrén), estimate:
估 (gū), imitate: 仿 (fǎng), night: 夜 (yè). Without the radicals, no grammar would be even possible. Also there is
higher divergence (smaller share) among the the 'meaningful' languages - when differences among e.g. Slavic or Latin
languages or difference between German and English, is far smaller than between Mandarine and Cantonese,
Japanese, Koreans, Vietnamese (whose mother langue was Chinese). So, for a complex system is far more efficient to
use the abstract ('meaningless') signs to maximize their reusage. TO BE CONTINUED

https://www.yacpdb.org/
https://philpapers.org/go.pl?aid=BRAPAO-5

