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Abstract

The purpose of this paper is to explore infinite sets and classes by mean
hyperoperations. With ideal notion, the idea of extending infinite sets is as
large as those objects. In this paper, extensions with hyperoperations are
realized, like factorial, derivative, integral and operations between vector
spaces. The ideas about infinite and count are enlarged.
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1 Introduction
Here, we remember concepts about hyperoperations, which are a generalization
of basic arithmetic operations, and a new perspective on counting elements in
sets. After these hyperoperations are used to analyse, explore and study some
concepts and to extend infinity sets and classes. Hence, the comprehension of
some mathematical concepts and tools is improved.

Let be a,b,n ∈ N, hyperoperations [ ] are ternary operations defined by [1, 2]:

·[·]· : N×N×N → N
(a,b,n) 7→ Hn(a,b) = a[n]b,

in which

a[n]b =


b+1 if n = 0;
a, if n = 1 and b = 0;
0, if n = 2 and b = 0;
1, if n≥ 3 and b = 0;
a[n−1](a[n](b−1)), otherwise.

Finite sets do not take into account how they are counted. Infinite sets behave
differently: a set can be counted by order or by bijection. They are called ordinals
and cardinals [3].

Definition 1.1 Neutral Element The neutral element by right of an n-hyperope-
-ration is defined like:

x©n en = x, ∀x ∈ R (1)

Then en assumes the values:

en =

{
0, if n=1
1, if n>1 (2)

It is seen easy that does not exist a neutral element by left for n > 2. However,
a question can be done: There is a finite solution for the equations:

a©n 2 = a (3)
2©n b = b. (4)

In the equation (3), there are solutions only for n > 1 and it is exactly the neutral
element en−1. In the (4), there is a solution only for n = 2 and it is equal to zero.

Further up, we consider solutions that are infinite numbers, where "=" denotes
cardinality.
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1.1 Euler relation in terms of hyperoperations
The Euler relation is very known and relates five interesting numbers [4]: the
Euler number e, the imaginary number i, the relation in the circle π , the neutral
element of multiplication and addition, like shown in the eq. (5). It is written in
notation of hyperoperations like:

eiπ +1 = 0⇒ [e©3(i©2π)]©1e2 = e1 (5)

His beauty is seen in a more symmetrical way.

1.2 H-factorial
The standard factorial [5, 6] is defined from the first hyperoperations like:

a! := a∗ [(a−1)!] = a©2[(a41e2)!], (6)

which can be extended for other orders of hyperoperations in the following way:

a!n := a©̄n[(a4n en̄)!n]. (7)

Or more generally:

a!n
m := a©n(a4m en)!n

m. (8)

1.2.1 Some properties:

i. n = 1 : a!1 = a!

ii. m = n−1 : a!n
m = a!n−1

1.2.2 Some examples:

i. n = 2 : a!2 = a(a·1)!
2
= a↗

ω

ii. n = 3 : a!3 = a↗
a!3

= a©5 ω

v. m = 1 : a!n
1 = a©n(a−1)!n

1
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1.3 Hyperoperations’ Properties
1. a©3 b = ab 6= ba = b©3 a - it is not commutative.

2. (a©3 a)©3 a = (aa)a = aa2 6= a(a
a) = a©3 (a©3 a)- it is not associative, neither

2-power associative.

3. (a©n b)©n c 6= (a©n c)©n b

Ex: (2©4 3)©4 2 =
(

2↗
3
)↗2

6=
(

2↗
2
)↗3

= (2©4 2)©4 3

4. a©n (b+1) = a©m (a©n b), m = n−1

5. a4nb = a©n(−b)

1.3.1 Inverse hyperoperation4n

In the same way that equivalence relation are used to construct inverse basic op-
eration as difference and quotient, we construct inverse of hyperoperation and its
formal aspects. First, take the exponentiation case:

ab = a©3 b = c©3 d = cd ⇔ a43 d = c43 b (9)
⇔ (x,1)∼ (a,d)∼ (c,b)⇒ xd = a1 (10)

Then, equivalence relation can be constructed for the general case:

a©n b = c©n d⇔ a4n d = c4n b (11)
⇔ (x,1)∼ (a,d)∼ (c,b)⇒ x©n d = a (12)

1.4 Ordinal Algebra
We know the succession operation is fundamental to order relations and defined
by n̄ = n+1. For finite numbers, sum operation commutes, which does not occur
with infinite numbers [7, 8]. In a short way: 1+ω = ω , however ω +1 = ω̄ 6= ω .

Writing the known numbers by order, we have:

0,1,2, . . . ,n, . . . ,ω,ω +1,ω +2, . . . ,ω +ω = ω ·2, . . . ,ω ·3, . . . ,ω ·n, . . .

. . . ,ω ·ω = ω
2, . . . ,ωn, . . . ,ωω , . . . ,ωωω

, . . .
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Like ω +ω2 = ω(1+ω) = ω2, the identity ω +a = a can be used to characteriz-
ing the square ω2 and greater numbers. In a analogous way, ωω is the first ordinal
a that satisfies ω ·a = a. In the next step, we found the first ordinal that satisfies
ωa = a. Because it misses a finite representation with the known operation, it is
named ε0 [3]. In the notation of hyperoperations, it would be denoted by

ε0 = ω
↗ω

= ω©4 ω = ω©5 2. (13)

Extending this idea arbitrary to hyperoperations©m, we have:

lim
n→ω

(ω©m n) = ω©m ω = ω©̄m2.

Analogous characterizations of ω©̄m2 with ideals can be stated also[9].
Proposition: Order of hyperoperations are useful to order ideal ordinals. a =

ω©̄m ω is the first ordinal that satisfies

ω©m a = a. (14)

1.5 Cardinal Algebra
Another form of counting can be considered by bijection. The first cardinals are
represented like [10]:

ℵ0,ℵ1,ℵ2, . . . ,ℵω ,ℵω+1, . . . ,ℵωω , . . . ,ℵℵ1, . . . ,ℵℵω
, . . . ,θ , . . . , (15)

where θ satisfies θ = ℵθ . After this, we have many others numbers, like ℵθ+1,
ℵθ +ℵω ,ℵθ+ω . This sequence never ends. Absolute Infinity, which is be-

yond all the ordinals, is denoted by the symbol Ω, which is not an ordinal number
because all ordinal numbers are before it [3].

1.5.1 Extension of set idea

The generalized continuum hypothesis states that the infinite cardinal number a+,
defined by the minimal cardinality bigger than another cardinal number a, is the
power set 2a [11]. However, let be an object B with cardinality b that satisfies
b= 2b = 2©3 b, it cannot be a set. This implies that the set of subsets of B has the
same number of elements as B. This requires another succession rule in terms of
cardinality. Let be the rule b+ = 2©4 b. Then, we define a©3 -set as an object that
satisfies this succession rule.
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For extension, define a ©a -set as an object B that satisfies the identity b =
2©a b and the succession rule b+ = 2©̄a b. In particular, the standard succession
b+ = 2©3 b for infinite numbers is satisfied by©2 -set, that are standard sets.

Suppose that ℵ0 = 2↗
ℵ0 , then

ℵn = 2↗
ℵ0+n

= 2↗
ℵ0

= ℵ0,

which is absurd. However

b= 22↗
ℵ0

= 2↗
ℵ0 satisfies b= 2b = 2©3 b,

i.e., it does not represent a cardinality of a set.
To summarize, the sequence below is increasing:

2 ·ℵ0 ≺ 2ℵ0 ≺ 2↗
ℵ0

= b≺ ·· · ≺ 2©nℵ0 ≺ ·· · (16)

1.6 Surreal Numbers
Elements from a type of special algebra in the non-standard analysis can rule in
[12, 13]:

a
(

1
b

)
= c ⇔ a = bc ; a,b,c ∈ {N,ζ1,ζ2, . . . ,} (17)

It does exist µ(s), where µ(s) is a measure of the set s and µ(s) = 1
b .

ζi = ℵi−1, for i ∈ N∗ (18)
ζ3 = ℵ2 − functions set infinity (19)
ζ2 = ℵ1 − continuum infinity (20)
ζ1 = ℵ0 − countable (21)

ζ0 =
n, ∀n ∈ N − finite numbers
1
n

(22)

ζ−1 =
1

ℵ0

ζ−2 =
1

ℵ1

ζ−3 =
1

ℵ2

−−infinitesimals /∈ R. (23)
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1.7 Infinitesimal calculus with hyperoperations
The standard calculus can be extended by the hyperoperations [14, 13]. Then, for
each order, we write the differential and integral correspondents. The next step is
to construct the analogous for higher orders.

n = 0 successor ¯ f (x) _
n = 1 addition + 1+1 d f

dx
∫

f (x)dx − Z
n = 2 multiplication · 2 ·3 fρ o f (x)dx ÷, :,/ Q

n = 3 potentiation exp 32 ... n
√
· R

n = 4 ↗ 5↗
4 ... ↙

...
...

...
...

...
...

...

n ©n 2©n 3 no f (x)©̄ndx 4n ,
The concepts used are better explained forward. Beside this, n̄ = n+1 and the

inverse of©n is denoted by4n :

(a©n b)4n b = a (24)
(a4n b)©n b = a (25)

1.7.1 Generalization of derivative by mean hyperoperations

First, the derivative definition is written in terms of hyperoperation [14, 13]

d f
dx

=
f (x+dx)− f (x)

dx
= [ f (x©1 dx)41 f (x)]42 dx

Then, we generalize by induction

Dx
a f = [ f (x©a dx)4a f (x)] 4̄a dx

Put ∆x = x′4a x, then

Dx
a f = lim

x′→x

[
f (x′)4a f (x)

]
4̄a ∆x, (26)

1.7.2 Generalization of Integral by mean hyperoperations

Extension of Riemann Integral [14, 13] can be extended by mean hyperoperation.
Let be a partition P = [γ = x0,x1, . . . ,xn, . . . ,δ = xN ]. Apply©a ∆x to the equation
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(26) on each point of the partition P and do the hyperoperation©a among all them.

aoδ
γ

f (x)©̄a dx = lim
min(∆x)→0

©aδ

γ
f (x)©̄a ∆x (27)

= [ f (x1)4a f (γ)]©a [ f (x2)4a f (x1)] · · · [ f (δ )4a f (xN−1)] (28)

These kinds of integral can help to comprehend the behaviour of functions at
many levels of infinitude.

Examples:

1. 1oδ
γ

f (x)©2 dx =
∫

δ

γ

f (x)dx

[Riemmann Integral]

2. 2oδ
γ

f (x)©3 dx = oδ
γ

f (x)dx = oδ
γ

eln f (x)dx = exp(
∫

δ

γ

ln f (x)dx)

[A path in the Feymann integral]

1.8 Extension of tensor space by mean hyperoperations
Let be dimV = n, then the operation of direct sum and tensor product [15] can
be extended by mean hyperoperation analogous, like the following recurrence of
vectorial space construction.

S0 =
[
ω

0,V,m
]

= V ⊕Rm

S1 =
[
ω

1 =⊕,V,m
]

= V ⊕·· ·⊕V︸ ︷︷ ︸
m times

, where
[
ω

1,V,2
]
≈
[
ω

0,V,n
]

S2 =
[
ω

2 =⊗,V,m
]

= V ⊗·· ·⊗V︸ ︷︷ ︸
m times

, where
[
ω

2,V,2
]
≈
[
ω

1,V,n
]

...
...

...

Sp = [ω p,V,m] = V ω
p−1 · · ·ω p−1V︸ ︷︷ ︸

m times

, where [ω p,V,2]≈
[
ω

p−1,V,n
]

Solving the recurrence, the dimensions of those spaces are found:

• dimS0 = n+m
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• dimS1 = n ·m

• dimS2 = nm

...
...

• dimSp = n©̄p m

To summarize, some functions and concepts are extended with hyperopera-
tion. Those are essential to large numbers comprehension. New larger infinities
and their properties arise with the ideal notion and class notion. Derivative and
integral concepts from calculus are also extended with hyperoperations. Besides
this, operations between vector space, like direct sum and tensor product, are also
generalized.
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