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Abstract

Vann McGee has recently argued that Belnap’s criteria constrain the formal rules of
classical natural deduction to uniquely determine the semantic values of the propo-
sitional logical connectives and quantifiers if the rules are taken to be open-ended,
i.e., if they are truth-preserving within any mathematically possible extension of
the original language. The main assumption of his argument is that for any class
of models there is a mathematically possible language in which there is a sentence
true in just those models. I show that this assumption does not hold for the class of
models of classical propositional logic. In particular, I show that the existence of
non-normal models for negation undermines McGee’s argument.
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1 Conservativeness, uniqueness and open-endedness

McGee (2000, 2015) has recently argued that the formal rules of classical natural
deduction uniquely determine the semantic values of the logical connectives and
quantifiers if these rules are open-ended, i.e., if they are sound not only within a
certain language, but they remain sound in any mathematically possible extension of
that language.

The requirement of open-endedness is meant to supplement Belnap’s (1962) cri-
teria (conservativeness and uniqueness) that a rule should satisfy for the acceptabil-
ity of the connective that it introduces. Conservativeness guarantees that the addi-
tion of a new connective creates a conservative extension of the initial language (i.e.,
it adds no new truths about the initial language) and uniqueness guarantees that a
rule which introduces a new connective is such that it allows precisely one infer-
ential role for that connective (i.e., if there are two syntactical connectives, #, and
#,, that obey the same formal rules and ¢’ is a sentence obtained from ¢ by replac-
ing each occurrence of #, with #,, then ¢ and ¢’ are interderivable). Harris (1982)
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proved that the formal rules of natural deduction for classical propositional connec-
tives and quantifiers do satisfy the uniqueness condition' and McGee (2000: p. 67)
takes this result as showing that the rules of classical natural deduction “uniquely
pin down the semantic role of the connectives and quantifiers”, if they are open-
ended. The semantic role of a sentence is taken by McGee (2000: p. 66) to be deter-
mined, “uniquely up to logical equivalence, by indicating the models in which the
sentence is true.”

McGee’s proposal could be seen as an attempt to offer what Carnap (1943) called
a full formalization of classical logic, i.e., a formalization that uniquely represents
all the semantic properties of the logical terms. In his 1943 book, Formalization of
Logic, Carnap proved that the standard formalizations of classical propositional and
predicate logic allow for non-normal interpretations, i.e., interpretations for which
the calculi remain sound, but in which the logical constants have different meanings
than the standard ones. The existence of such interpretations shows that the standard
calculi do not fully formalize all the logical properties of the logical terms and, thus,
fail in uniquely determining their meaning.

Does an open-ended formalization of propositional classical logic, however,
eliminate the non-normal interpretations? In particular, since Carnap (1943: p. 84,
T16-3) proved that if negation has a normal interpretation, then all the other propo-
sitional connectives also have a normal interpretation,® the problem that has to be
analyzed is whether the open-ended rules for negation are categorical.* The analysis

I An extensive discussion on the uniqueness condition could be found, for example, in Humberstone
(2011: pp. 578-630) and Dosen and Schroeder-Heister (1985).

2 McGee (2015) proposes an understanding of the semantic role of sentences in terms of possible
worlds; namely, a sentence is taken to express a proposition and the latter is understood, following R.
Stalnaker’s account, as a set of possible worlds. He then formulates propositional rules for the proposi-
tional connectives, i.e., the counterparts of the sentential ones. For simplicity, we shall not consider this
propositional approach here, but what we say below is applicable, mutatis mutandis, to it.

3 In a non-normal interpretation, disjunction violates the fourth row from the normal truth table (NTT),
i.e., it is true although both of its disjuncts are false (the first three rows are secured by the vI rule). This
happens because VE rule does not fix the fourth row of the NTT. Nevertheless, if negation is normal,
then disjunction is also normal, otherwise the Disjunctive Syllogism Rule (AvB, ~A F B) would become
unsound (i.e., if “A” and “B” are false and negation is normal (thus, “~A” is true), then “AvB” cannot be
true). However, since negation and disjunction form a functionally complete set of connectives, then all
the other connectives will be normal.

4 The notion of categoricity used in this paper differs from the standard notion of categoricity defined
in modern model theory, where a theory T is categorical in a cardinal k (or k-categorical) if and only if
it has exactly one model of cardinality k up to isomorphism. The present notion of categoricity simply
points out to the fact that the formal rules of deduction are compatible with truth-tables (the normal and
the non-normal ones) that are not isomorphic. A precise definition of isomorphic truth-tables was given
by Kalicki (1950: p. 175) by adapting Tarski (1938: p. 106)’s definition of isomorphic matrices. The
main idea of the definition is that, in at least one row, for the same input, the normal truth-table gives a
designated value, while the non-normal truth-table gives an undesignated one —or the other way around.
A general definition of categoricity in this sense could be given following Scott’s (1971: pp. 795-798)
terminology: a formal system of logic is categorical if and only if the only valuation that is consistent
with the syntactical relation of logical consequence in that system is the standard one. A valuation v is
consistent with a consequence relation I if and only if, whenever I" F o, if v(¢p)=1 for all ¢ € I, then
v(o)=1. For a discussion of this notion of categoricity see Hjortland (2014: pp. 447-51) and Bonnay
and Westerstahl (2016: pp. 726-27). It is worth mentioning, however, that the property of categoricity, in
this sense, is relative to the format of the proof system. For instance, if we strengthen the proof-theoretic
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of the open-endedness requirement becomes even more interesting because some
of Harris’ results had been already known by Carnap (1943: pp. 32-33, T8-9), who
showed that, under ordinary conditions, if a propositional calculus contains two
signs for negation (‘~,” and ‘~,’), then for any closed sentence c,~,c and~,c are
syntactically interderivable and interchangeable (C-equivalent and C-interchangea-
ble in Carnap’s terms).

Nevertheless, the fact that the formal rules for negation (and for the other syntac-
tical connectives) respect Belnap’s uniqueness condition did not lead Carnap to the
conclusion that these rules uniquely determine the meanings of the syntactical con-
nectives that they introduce. On the contrary, in spite of the syntactical uniqueness
results, Carnap discovered that negation and most of the propositional connectives
allow for non-normal interpretations.” Moreover, there are also non-normal inter-
pretations of the quantifiers even when the classical propositional connectives have
only normal interpretations. In particular, there are sound interpretations of quan-
tificational logic in which “(Vx)Fx” could be interpreted as “every individual is F,
and b is G”, where “b” is an individual constant. The possibility of these non-nor-
mal interpretations arises because, in the standard formalizations of quantificational
logic, a universal sentence is not deductively equivalent with the class formed by
the conjunction of all the instances of the operand. Nevertheless, the non-normal
interpretations of propositional calculi will suffice for analysing the efficiency of the
open-endedness requirement.

2 Are the open-ended rules for negation categorical?

Carnap (1943: Chapter C) proved that there are two mutually exclusive kinds of
non-normal interpretations for propositional calculi (and in particular for classical
negation): non-normal interpretations in which a sentence and its negation are both
true (and, thus, all the sentences are true) and non-normal interpretations in which
they are both false (and their disjunction is true). McGee (2000: p. 71) assumes that
there is no model in which all sentences are true and, thus, excludes by stipulation
the first kind of non-normal interpretations. However, he argues that if the rules are
open-ended, then there is no model in which a sentence and its negation are both
false (i.e., the second kind of non-normal interpretations is not possible). His argu-
ment goes as follows:

(1) Let O be a sentence that is true in just those models in which neither ¢ nor ~ ¢
is true.

Footnote 4 (continued)

framework of propositional logic, e.g. by allowing multiple-conclusions [like Carnap (1943) and Shoe-
smith and Smiley (1978) suggested], or by resorting to a bilateral formalisation of logic [see e.g. Smiley
(1996) and Rumfitt (2000)], categoricity can be regained.

> One moral that we can drawn from Carnap’s discovery of the non-normal interpretations is that syn-
tactical uniqueness is not a sufficient condition for semantic uniqueness, i.e., for determining a unique
meaning for the syntactical connectives.
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(2) There are no models in which 0 and ¢ are both true. (1)
3) {86,d}FA (D)

4 {8}F~0 (3) (Rule: If TV {¢p} F A, then " F~ )

(5) There are no models in which 0 and ~ ¢ are both true. (1)
©6) {86,~d}kr )

7 {8} F~~0 (6) (Rule: If TU {¢p} F A, then T F~)
@) {~b,~~d}k A

9 {6} FA ), (1), (8)
(10) There are no models in which 0 is true. (9)
(1) A (1), (10)

(12) Inevery model, either ¢ is true or ~ ¢ is true. (1), (11)

The general structure of the argument could be seen as a reductio ad absurdum.®
It is assumed that the language of propositional logic is extended by adding a sen-
tence that is true just in those models in which neither ¢ nor~ ¢ is true. This is an
instance of McGee’s (2000: p. 70) general assumption that “for any class of models,
there is a mathematically possible language in which there is a sentence true just
in those models.” On this assumption, by validly reasoning in the meta-theory, it
follows (at line 9) that 0 is inconsistent and, thus, that it has no model (at line 10).
Therefore, McGee concludes that in every model, either ¢ is true or~¢ is true (at
line 12).

It seems to me that the derivation of (12) is, in a broader sense, a non—sequitur.7
What we could legitimately do after line (11), when we find out that there is a con-
tradiction between (1) and (10), is to deny assumption (1), i.e., to derive that: (117)
it is not the case that 0 is a sentence that is true just in those models in which neither
¢ nor~ ¢ is true. However, (117) could be true in two cases: (a) 0 is a sentence that
is true in those models in which neither ¢ nor ~ ¢ is true, but not only in them, or (b)
there are no models in which neither ¢ nor~¢ is true and, thus, a fortiori, © could
not be true. McGee offers no reason for excluding option (a). However, due to Car-
nap’s results, I argue that (a) is what actually makes (11%) true.

% The argument starts with the assumption that 0 is a sentence that is frue in just those models in which
neither ¢ nor~ ¢ is true. Then, by valid reasoning we find out, at line (9), that 0 is inconsistent, i.e., it has
no model (10). Since (1) and (10) constitute an inconsistent pair of sentences -(1) says that 6 has at least
one model and (10) says that 6 has no models-, an absurdity follows at line (11). What led us, however,
from the very beginning to this inconsistency was the assumption (1), which does not simply say that 6
is true in general, but that it is true just in a certain class of models. Therefore, the negation of (1) has to
be inferred by reductio and not simply the negation of 6. Actually, as Carnap showed, if 6 is true in those
models in which neither ¢ nor~ ¢ is true, then 0 is true in all the models of PC.

7 As a reviewer kindly suggested, someone may say that since assumption (1) leads to a contradiction,
then one may classically draw any conclusion whatsoever from this contradiction. Hence, the derivation
of (12) from it is not a non-sequitur. Indeed, from a strictly formal point of view, it is not a mere non-
sequitur. However, when we arrive at a contradiction, it is more reasonable to see what false ideas led us
to that contradiction, and not to start deriving any conclusion from it. Since McGee’s argument is in the
meta-theory, and uses both proof-theoretic and model-theoretic resources, and it is a logical fact (more
precisely, a model-theoretic fact) that there are models in which a sentence and its negation are both
false, the truth value of the starting assumption should be first investigated.
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The propositional calculus is sound with respect to a model in which neither ¢
nor ~ ¢ is true and, as a matter of mathematical fact, there exists such a model, e.g.,
the one that satisfies each and every theorem of the calculus and satisfies no non-
theorem (let us note with N this model). To see that the propositional calculus is
sound in this model, let I" be an arbitrary set of premises and o an arbitrary sen-
tence in the language of propositional calculus, and let us further suppose that I' | o.
There are two cases to be considered: I" contains only theorems or it contains at least
one non-theorem. If I" contains only theorems, then o will also be a theorem and,
thus, true in the model N. If I" contains at least one non-theorem, then the sequent I"
F o will be valid even if o is false.®

McGee assumes that 0 is true in just those models in which neither ¢ nor~¢ is
true (let M be this class of models). Since neither ¢ nor~ ¢ is true in N, it follows
that N is a member of M. Thus, due to assumption (1), 0 is true in N. But if 0 is true
in N, it follows that 0 is a theorem, because only the theorems are true in N. How-
ever, if 0 is a theorem of the propositional calculus, it cannot be true just in M, but in
all the models of the propositional calculus. Thus, the starting assumption of McGee
is false; O is not true just in M. We see thus that the existence of the model N falsi-
fies assumption (1).

Now, since we have a logical reason to take assumption (1) to be false, we may
reconsider McGee’s argument. Naturally, since assumption (1) is false, it leads to a
contradiction. Formulated explicitly, assumption (1) is a conjunction of “0 is true in
M” and “there are no other models, besides those from M, in which 0O is true”. As
we have noticed, since assumption (1) leads to a contradiction, we have to deny this
assumption. Hence, by DeMorgan’s rules, we obtain the disjunction of (A) “it is not
the case that 0 is a true sentence in M” and (B) “there is at least one model, besides
M, that satisfies 0”. This disjunction is indeed true, because 0 could be either a theo-
rem, or a non-theorem. If 0 is a theorem, then (B) is true, because all the theorems
of propositional calculus are true in all the models of propositional calculus, not
only in M, and, thus, (11%) is true. If 0 is not a theorem, then (A) is true, because all
non-theorems are false in N and, since N belongs to M, 6 will not be generally true
in M. Hence, (11") is true. Therefore, McGee’s argument from (1) to (11) is valid,
but the derivation of (12) is, in a broader sense (see footnote 7), a non-sequitur.

Another way of looking to McGee’s argument is to use the resources of set the-
ory. We can read McGee’s argument as starting from the universal sentence (1)
"WW)(WEB) & (W E ¢) & (W E~@))]", where W is an arbitrary model. We
should note that from this statement, by the distribution of the universal quanti-
fier over implication, we get something to the effect that (2) "(YW)(W E ¢) & (W
E~@)— (YW)(WES)" which, with the standard reading of the quantifiers implies
3) "YWY((W E @) & (W E~@))— @W)(WED)'. McGee’s argument stated above,
however, shows that the consequent of this statement is inconsistent, i.e., (4) "
(AW)(WEB) F A", and thus it is not true. Hence, from (3) and (4), by contraposition,
it follows that (5) "~(YW)((W E ¢) & (W E~@))". By DeMorgan rules, what fol-
lows from (5) is an existential statement, i.e., (6) "@AW)(W E @) v (W E~@))", and

8 This proof could be found in a different terminology in Carnap (1943: pp. 91-92).
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not an universal one, as McGee would want. This last statement, however, is per-
fectly compatible with the existence of the non-normal interpretation of the second
kind for classical negation.

As McGee (2000: p. 72) puts it, correctly I think, we have to go beyond language
in order to determine whether a sentence is true in a particular model (so to say: “we
have to take a look at the model”). We cannot simply stipulate that in any case there
is a sentence that is true just in a certain class of models.” Actually, since the sound-
ness theorem for classical propositional logic is insufficient to pin down uniquely the
intended meanings of all its connectives, the open-endedness understanding of the
rules will neither work for this job. An open-ended understanding of the rules for
negation will not be able to eliminate a model in which a sentence and its negation
are both false and their disjunction is true. The propositional calculus is sound and
complete with respect to this model. Thus, an extension of the propositional lan-
guage with a sentence that is true just in the class of models in which a sentence and
its negation are false is not a “mathematically possible extension”. The existence of
the non-normal interpretations of the second kind for classical propositional calculi
shows that McGee’s (2000: p. 70) assumption that “for any class of models, there is
a mathematically possible language in which there is a sentence true just those mod-
els” is not universally true.

3 Two objections and replies
3.1 Objection 1

The propositional calculus (PC) allows for non-normal interpretations in which all
theorems are true and all non-theorems are false. In these interpretations the syntac-
tical sign for negation has a non-normal meaning. McGee claims that this interpreta-
tion can be ruled out if we allow an expansion of the initial language L in which a
new sentence 0 is true in all and only these non-normal interpretations. My claim
above was that if O is true in a non-normal interpretation, then 6 must be a theo-
rem of PC and hence 0 must be true in other interpretations as well, contrary to its
definition. However, the criticism states, this seems to overlook the fact that O is
in an expansion of L, not in L. Thus, it does not follow that 0 is a theorem of PC.
Consequently, if one distinguishes the initial language of PC from its expansion, the
definition of O appears to be consistent.

° As a reviewer suggested to me, the main point made in this paper can be formulated by saying that
McGee’s argument already presupposes the notion of an admissible model, i.e., a model that respects the
meanings of the logical constants. For if we let McGee’s claim be about any model, we get that the claim
must also hold for non-standard interpretations of propositional logic, e.g. interpretations that make both
¢ and not-@ true. But there is no sentence that is (actually) true in exactly those models.

@ Springer



Synthese (2021) 198:7249-7256 7255

3.2 Reply to objection 1

The problem is whether L can be consistently expanded with a sentence that is
true just in the models in which a sentence and its negation are both false. The objec-
tion states that if 0 is in the expansion of L and not in L, then it does not follow that
0 is a theorem, and thus true in all the models of PC. If we consider this problem
carefully, however, if PC allows for non-normal interpretations in which a sentence
and its negation are both false when it is formulated in the extended language, then
0 must be a theorem. This is a logical result for which there is a rigorous proof given
by Carnap (1943: pp. 91-92), according to which the only sentences that are true in
the models in which a sentence and its negation are both false are the theorems of
PC. Thus, the definition of 0, as being true just in the class of models in which a sen-
tence and its negation are false, is problematic. There is no such 6. Being a theorem,
0 is true in all models of PC. To reiterate, if 0 is to be true in the models in which a
sentence and its negation are false, it must be a theorem.

3.3 Objection 2

The point of the paper is that (12) is demonstrably false and thus McGee’s argument
should be regarded not as a proof of (12), but as a rejection of (1). The problem with
taking the argument as a rejection of (1) lies in the way in which the rules of PC are
formulated. Carnap’s proof uses a system of PC taken from Hilbert and Bernays, in
which all the axioms are logically valid, and the rules of inference (substitution and
modus ponens) are validity preserving. But McGee uses a natural deduction system
in which not all the rules are validity preserving. In particular, reductio ad absurdum
is not validity preserving. If the sentence  is neither valid nor contradictory, the
inference from  to falsehood is not validity preserving. Thus, the criticism in the
paper does not apply to McGee’s system.

3.4 Reply to objection 2

It is well known that the natural deduction formalization of propositional logic and
the axiomatic formalizations are equivalent, in the sense that if a formula is deduc-
ible from a set of formulas by the natural deductive rules for the propositional con-
nectives, then it is also deducible by the rules and axioms of the axiomatic systems
(and the other way around). In this sense, Carnap’s results obtained on an axiomatic
form of PC remain sound even if a natural deduction system is considered. As a
matter of fact, Carnap (1943: p. 8) was aware of the fact that ‘the different forms (of
PC) vary with respect to the choice of primitive signs, primitive sentences, and rules
of inference, but they are known to agree with respect to possible results of proofs
and derivations’. Actually, the syntactic results are formulated by Carnap (1943:
pp. 16-19) in a general manner, not to pure forms of PC, but for calculi contain-
ing PC, as they are usually used in the logical foundations of deductive sciences.
On the basis of these general syntactic formulations, in the case of the non-normal
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interpretations “the results hold likewise for any other form of PC” (Carnap 1943:
69), not only for the system taken from Hilbert and Bernays.'? Therefore, the prob-
lem whether reductio is validity preserving is not relevant in this case; (12) remains
demonstrably false.
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