Virgil W. Brower

Machine-Believers Learning Faiths & Knowledges

Bayesian Apparatuses, Living Numbers & the New Gospel of Artificial Intelligence

...Machine intelligence itself becomes capable of rapidly incorporating vast amounts of content by digesting the Internet (in the case of artificial intelligence).

Hofsten (2016, p. 96)

What is the good of all this thinking modernism... if you continue to be... a priest in your intestines?

Nietzsche (2005, p. 30)

Qu’est-ce q’un Disprobabilitif?

One is occasionally reminded of Foucault’s proclamation in a 1970 interview that “perhaps, one day this century will be known as Deleuzian” (Foucault 1977, p. 165). Less often is one compelled to update and restart with a supplementary counter-proclamation of the mathematician, David Lindley: “the twenty-first century would be a Bayesian era [...]” (cited in McGraw 2011, p. 252). The verb times of both are conspicuous.

Sequence 33 of Derrida’s “Faith and Knowledge,” emphasizes three biases or “discursive practices,” asking how they might “be articulated and made to cooperate in attempting to take the measure of the question, ‘What is religion?’” (Derrida 2002b, seq. 33, p. 70). These three discursive practices “would respond to several types of programme:” (1) “etymologies,” (2) “affiliations or genealogies,” “in the style of Nietzsche,” and (3) “pragmatic and functional effects” (Derrida 2002b, sec. 33, p. 71; emphasis in original). The latter would be “more political” and address “applications” and “new regularities [or] unusual recurrences” of sorts of pragmatics deployed to liberate “words and meanings from all archaic

https://doi.org/10.3102/0191413020020106
memory and from all supposed origins" (Derrida 2002b, seq. 33, p. 71; italics added).

"These three biases seem [...] legitimate," all of which "respond" as most, if not all, religions do to some “inseparable imperatives” (Derrida 2002b, seq. 33, p. 71). Derrida’s "provisional hypothesis [...] is that" today (or, there, in Cartel where he delivered the essay in 1994), "the last type [i.e., pragmatism] ought to dominate" contemporary concepts or critical inquiry (Derrida 2002b, seq. 33, p. 71; italics added). Such new and unusual pragmatics or pragmatic bias "should privilege the signs of what: in the world, today, singularizes the use of the word ‘religion’ as well as the experience of ‘religion’ [...]” (Derrida 2002b, seq. 33, p. 71).

One such incipient pragmatic operation to which philosophy must now attend is well-articulated by Anna Longo:

[...] Bayesian learning is replacing the encompassing role of modern meta-narratives (as suggested by Latour) in such a way that philosophy must conform to the universal pragmatic rationality if it wants to play a role within the contemporary knowledge and information industry. [...] The problem of induction has been reformulated in terms of probability in order to precisely quantify the degree of accuracy surrounding scientific predictions. On the one hand, this led to the autonomization of probability calculus and, on the other hand, to wonder about what was actually measured by probability [...] (Longo 2001, pp. 399–400).

Longo’s approach to Bayesian learning meshes well with Derrida’s understanding of philosophy and reason as productions of knowledge. While attempting to demonstrate, “that religion and reason have the same source,” Derrida associates, “reason with philosophy and with science as technoscience [...] knowledge as production [...] (technoscience [...]”) (Derrida 2002b, seq. 29, p. 77). As such, the credences of Bayesian learning would develop in tandem with its theological precursors, just as “religion and reason develop in tandem, drawing from [a] common source: the testimonial pledge of every performative, committing it to respond as much before the other as for the high-performance performativity of technoscience” (Derrida 2002b, seq. 25, p. 71; cf. Naas 2012, pp. 61–62, p. 56, p. 65, p. 74, p. 89–90, p. 92, p. 320, p. 329).

After a detailed exposition of a neo-Bayesianism set in motion (perhaps Reformed) by the Italian mathematician, Bruno de Finetti, Longo continues: “Once philosophy is reduced to such a game, it is clear that critical and reflective capacity becomes a mere illusion” (Longo 2001, p. 301). Longo encourages resisting this procedure by which philosophy is being overtaken by and co-opted into contemporary information industries as Bayesian learning is gradually replacing critical inquiry. My essay, too, attempts such encouraged resistance. But to do so requires “meaningless moves”[9] that “cannot be expected to be efficient in order to satisfy the utility of being granted a positive score in the game, it cannot be expected to deserve any degree of belief” (Longo 2001, p. 301; cf. Camp 2002, p. 17).

This last note on belief not only obligatorily invites us back to the very critique of the limits of technoscience, credence, which, after Longo, would now include Bayesian belief systems. It also recalls a certain uselessness that Derrida suggests has been ascribed to philosophy, “because philosophy is supposed to be useless in industrial societies” (Derrida 2002b, p. 71; cf. Marx 1990, p. 529; Barth 1986, p. 186; see also “some use” of philosophy in Ramsey 1912, p. 1). Such “industrial societies” indicted by Derrida have developed into the very “knowledge and information industry,” indicted by Longo.

As such, the uselessness of philosophy has become its very uselessness, when determined by certain Bayesian standards of measure or quantification. Longo concludes that such meaningless moves made from within the Bayesian learning operation system cannot help but disclose or perform, “admitting that there is an externality to the infinite unfolding of the believed true [Bayesian or neo-Bayesian] game” (Longo 2001, p. 303). This re-articulates an inescapable performative faith beyond exterior to (yet presumed by) technoscience belief systems.

An exterior element remains but a hunch to the inner workings and deployments of certain Bayesian methods. Much like the “market” of neoliberalism, an enticing operability is one of the secrets of probability calculus, ever reliant on something beyond its works (regarding an analogous hunch, see also Whitehead 1957, pp. 305–306). An anonymous analyst of the U.S. military’s Automatic Target Recognition (ATR), heavily reliant on Bayesian methods for electronic or cyber warfare, regards it as “an affluent, a cheap easy trick. It depends on an initial hunch. And yet it turns out to be an effective approximation that seems to solve many of the world’s problems. So Bayesian rule is wrong—except for the fact that it works” (McGrath 2001, p. 24; italics added). The pragmatic justification of this Bayesian bad faith seems to adhere to a (perhaps irrefutable) imperative or dictum of Dewey: “The hypothesis that works is the true one” (Dewey 1920, p. 156; cf. Davidson 2005, pp. 7–11; in connection with Ramsey).

Even if beyond Derrida’s Insinuation, this article wishes to suggest that, after Longo, a significant aspect of the position (or disposition) of pragmatics he suggests with regard to the entanglement of telo-technoscience and religion must include, today, in a Bayesian era, the importance of probability at the core of certain pragmatics. (An important example of this entanglement is perhaps embodied in C.S. Peirce, as firmly theistic as he is pragmatically probabilistic.) Possible political applications of religious motifs, applied while effacing or repressing any of its originary memories, may need to preoccupy contemporary strategies attending to operations by which probability calculus, statistics, and
big data are pragmatically applied over tele-technically mediated information society.

As such, let us presume that to try to begin responsibly addressing problems of algorithms or "algorithmic rationality" (Meesch 2019, pp. 65–70), critical inquiry must attend to Lindley’s Bayesian era. No matter how meaningless or useless, only from within the building Bayesian era, itself, might such knowledge know the degree to which the prior critical cycle turned towards it. To critically attend to what is today often feared and demonized, but also revered, deployed, and commonly referred to as algorithm(s), one cannot avoid the mathematical and philosophical legacies of probability. For whatever the Master Algorithm is (or becomes), it must be "just a computational implementation of Bayes’ theorems" (Domingos 2015, p. 148). Although ever "bedeviled" by difficulty and controversy, the primal probability algorithm called, Bayes’ theorem (sometimes Bayes’ rule), which "should [perhaps] be called Laplace’s rule," is "a foundation for statistics and machine learning" (Domingos 2015, p. 148, italics added; McGraw 2011, p. 39). Today, "Gibbs sampling [...] and other computational Bayesian methods have been applied to sophisticated learning algorithms such as Gaussian process models and neural networks" (Hastie/Tibshirani/Friedman 2017, p. 284; Wiener 2013, pp. 64–67). Key traits of machine learning, like large "accumulations of things that become vectors in a dataset," can then be "used to train a typical machine learning device, a neural net," which, then, "classifies [...] probabilistically" (MacKenzies 2012, p. 4, italics in original).

But attending to these probabilistic or Bayesian legacies must include an undeniable theological legacy in which they remain entangled. Critical inquiry cannot exclusively focus or definitively analyze to the great probability theorists at the turn of the Bayesian era (Koyzyn, Ramsey, Popper, Gibbs, von Mises, de Finetti, Erdös, etc.), out of which or whom vast potentialities of probability are swiftly optimizing, if automatically growing or swelling (Derrida 2000b, seq. 39, p. 84; cf. Zellini 2000, p. 74; cf. Mark 6:26–32; see also Zellini 2000 on automatic calculation, p. 104, p. 151, p. 159; automatic learning, p. 60; automatic computation, p. 158; automatic movement, p. 75). These legacies include path-breaking theological thinkers like Aquinas, Pascal, Leibniz, and includes Bayes himself. The latter was a Presbyterian preacher and wrote an under-studied anonymous theological text, Divine Benevolence (1731), stripping in Calvinism. Many key themes of Bayes’ theology can be discerned in twentieth-century philosophers of mathematics and probability theorists who still dare write about god during the celebrated culmination of secular disenchantment, such as Whitehead (1957, p. 70, pp. 315–316), Peirce (1955, pp. 375–378; pp. 157–172), and Ramsey (1990, p. 72, p. 29).

If, as Agamben suggests, the role of positivity in the early theological texts of young Hegel come to influence Foucault’s conception of dispositif apparatus at work in modern governmentality (Agamben 2009, pp. 4–8; see also De Vries in this volume), then, along similar lines, the roles of expectation, indifference, layer, ratio, and rank in the early theological text of young Bayes might be considered to influence digital deployments of datafied powers and modern algorithmic probabilities by which its machines learn and correlate. As the early theological concerns of Hegel might be to the critical development and understanding of offline governmental dispositifs in a Deleuzian century by way of new genealogies, the early theological concerns of Bayes would be to online providential dispositifs in a Bayesian era by way of unusual pragmatics. The math and the theology are just as indissociable, today, as faith and knowledge were for Derrida at the turn of the century, and will continue to become for any useless, meaningless, or deconstructive inquiry that surivives into the Bayesian era to come.

Perhaps the most direct entanglement between the positivity of religious and probability is Hegel’s belief that "miracles are positive occurrences" (Hegel 2007, p. 254). But this positivity of miracles is precisely why they can be "put aside" (Hegel 2007, p. 254). This is something he suggests Christ, himself, encourages his followers to do (Matthew 7:22–23; Hegel 2007, p. 255; cf. Barth 1953, p. 163, pp. 182 cf. Laplace 1951, p. 3, p. 119). But it is also the case that one can "advance probabilities against them," even if probability only addresses "the external, undiscernible character of miracles" (Hegel 2007, p. 254). But, perhaps more important and applicable to contemporary data practices, the positivity of law when administering discipline and punishment is what appears approximate or actionable data. "Positivism simply cannot be removed from punishment," specifically "is quantity," as "round numbers determine the amount of the penalty."

(Hegel 2005, p. 25; italics added). If modern surveillance capitalism is producing more predictable, disciplined, or docile bodies (in the Foucauldian sense), this would be indissociable with an efficacious positivity presumed to the quantities, amounts, and approximate numbers of the datasets it amasses, mines, and refines.

Decades after penning Divine Benevolence, “Bayes’ interests in mathematics and theology began to tangle” in confrontation with Berkeley (McGrane 2011, p. 4; italics added). His mathematical text Essay on Chance (1783) is often considered a dissenting response to Hume’s critique of miracles. Even if Bayes, himself, was merely a Baptist preparing the way for the truth of Laplace, the entanglement still tangles. “[h]is [Laplace’s] search for probability of causes and his view of the deity were deeply congenial” (McGrane 2011, p. 20; italics added; cf. Laplace 1951, p. 4, p. 120). If there is only one Bayesianism – which is arguable since, like most great religions, it splits into diverse disagreements, sects, and denominations frequently and frequently over the years – then Laplace would yet remain its or their primary apostle.

The offline dispositif of past power mechanisms (be there any left) now require supplemental online dispropabilities. From Constantine to Cambridge Analytica (cf. Wylie 2019 on religiosity, p. 129-130, p. 82-83, p. 124; deployed by machine learning, pp. 49-51, p. 216-217, p. 232, p. 250; Kaiser 2019, p. 274), the dispositions of power from institutional religious obedience to constitutional governmental command is part of the long and terrible transversal of values (Umwertung) by powerful, subjugating, and exploitative theopolitical-economic apparatuses. After the information explosion at the turn-crick of a Delusant into the Bayesani era, critical inquiry must suspect that the diverse dispositifs of contemporary data-driven geopolitics deploy themselves through digitized dispropabilities. These would be operative in the infrastructures of surveillance and platform capitalism as critiqued by Koopman (2019), Zuboff (2019), Smirek (2017), and others.

The probabilistic legacy stretches back to Thomas and perhaps even further to Augustine’s De Ordeine (Augustine 1952, pp. 16-17, p. 19; chap. 3, pars., 6-7). The angelic vocation that the former assigns to probability beyond human capacities seems not to have been lost by more recent critics, such as Kitcher, Serres, or Agamben (compare Aquinas 1968, p. 125; Kitcher 2013, p. 223; Serres 1995, p. 279; Agamben 2011, p. 148, p. 153; Smirek 2020, p. 23, fn. 133, p. 23, fn. 136, p. 303). At times, Keynes’ A Treatise on Probability, fully dedicated to Leibniz (Keynes 2017, p. v), the budding “patron saint” of the cybernetics to soon follow (Wiener 2013, p. 12), can resound as an unanswerable echo of Aquinas with regards to numbers.² As Keynes attributes the yet “untimed” subject of his Treatise to Leibniz, namely, that probability become a branch of logic, he limits his reference to Leibniz’ early dissertation on political elections (Keynes 2017, p. v). It should not go overlooked that this inspiration for twentieth-century probability theory, from the first sentence of its first-page preface, is drawn to its potential applications to electoral politics (a disprobability) in waiting for Cambridge Analytica (cf. Laplace 1951, pp. 138-139; Smirek 2020, pp. 4-10).

But this ambition for probabilistic logic survives well into Leibniz’ Theodicy and is not distinct from its theology of divine justice. In Chapter 1, Paragraphs 30-31, Leibniz suggests that disputes between faith and reason could be brought to an end by use of logic, but, unfortunately “there is not even a thought for a kind of logic which should determine the balance between probabilities […] to assist the faculty whose business it is to make us weigh the probabilities” (Leibniz 2007, p. 94; italics added). These weights are more or less aligned with the “few” of Matthew 22:24 and the graceful “more” of Romans 5:20 (Leibniz 2007, p. 135, p. 138). Twenty-century probability, from Keynesian “weights” (Keynes 2013, pp. 78-86) to cybernetic “weighting functions” (Wiener 2013, p. 42, p. 121, p. 171; Longo 2021, p. 297) and perhaps the general “more or less method” (Zellini 2020, p. 40, p. 99) is heir to this Leibnizian (likely no less Pascalian, cf. Laplace 1951, p. 167) tradition and not (as is often presumed) some idyllic indemnified scientific neutrality indifferent or dismissive to questions of god, grace, or faith.

Although Keynes seems rather zealot or driven to theological probability, he yet has no qualms evoking the god of Locke (the empiricist reasoner of The Reasonableness of Christianity who spent his dying days writing commentaries to Paul’s epistles), while indirectly addressing Pascal’s own concern with the self-referential problem of the probability of probability’s assurance (Pascal 1964, p. 588; pensée 496).

Probability begins and ends with probability. That a scientific investigation pursued on accounts of its probability will generally lead to truth […] is at best only probable […] probability is to us the ‘guide of life,’ since to us, as Locke says, […] ‘God has afforded only the

² Some “practical men […] are actually willing […] to name a numerical measure in every case […] but this practice shows no more than that many probabilities are greater or lesser than some numerical measure, not that they themselves are numerically definite” (Keynes 2017, p. 22; see also pp. 20-25). Compare Thomas In Insum Centre Gerber (pars. 80-81, par. 12): “Now in […] order, in which the rational plan of divine providence is observed […] first in […] divine goodness […]. Next comes numerical plurality […] but it does not necessarily follow that they are differentially on the basis of […] measure […] or according to […] number” (Aquinas 1975, pp. 69-71) cf. At Khidirzani 1831, p. 51; Hussey 2003, pp. 286-287, p. 322, p. 305).
Any pragmatic right to a “moral holiday” (JAMES 1902, p. 74) pronounces itself on and provides Bayesian guidance for a day of pragmatic observance—pleading to a Lockean god—to practice a probation of any holliness, out of which it yet develops and upon which it relies. If the probation period at the dawn of probability is rising to fuller daybreak in the Bayesian era, it must not repress the memories of its hallowed religious or theological precursors (as Descartes seems to suspect it will). Theology, too, is perhaps in a similar state of probation, if its chances have not long been lost to the short-term gains of data hunters, information aggregators, or microtargeting gunflingers. We are not, today, discovering quirky theological metaphors in contemporary technics (cf. TRUZO 2019, p. 101, p. 111, p. 223, p. 224, p. 263, p. 264, p. 265, p. 266). It’s the other way around. The technologies are more metaphors of past theologies.

Of Innumerable ∞ Life-Deaths ∞ of Numbers

The entanglements between faiths and knowledge, after Descartes, calls for new faiths-friendly epistemologies of such knowledge. This has commenced with DIETER MERSCH’S EPISTEMOLOGIES OF AESTHETICS (2015), considering new kinds of numbers to be learned from experiencing certain artworks. Following James Elkins on painting, Mersch suggests a possible *artistic arithmetic* beyond mere mathematical arithmetics:

While the unit here calculated with factual units and their addition is always subject to the same rules, the former [i.e., artistic arithmetic] counts volumes’ + singularity that can always be put together differently and nevertheless result in 1 + 1 = an Other. [...] This constellation and resulting composition are strangers to identical repetition, but iteration and adding at least one new element is necessary in order to connect, to link one to one while also allowing each one to stand apart (Mersch 2015, p. 110).

This continues into musical practices of John Cage, in whom Mersch discerns, “not simply the difference between notes that counts, but the underlying difference between sound and silence” (Mersch 2015, pp. 158–159). This becomes *artistic arithmetic* beyond colloquial counts of counting (cf. NAAS 2012, p. 100). Within or around experiencing the Symphonic Monotone—Silence by Yves Klein, Mersch seems to hear and suggest a strange numericity (or numerosity) receptive to its own iterability:

The number not only functions as a mystical parameter, but within the aesthetic realm itself becomes a material, corporeal living being. The mystery of the constellation is its immanence structure, the zone of incomputation that points in many directions, opening an indeterminate field of figurations (MERSCH 2015, p. 159; italics added).

Such singular, singularized, or singularizing numbers (if they are still numbers) receive a certain kind of animation, incorporation, incarnation, or envelopment.

The possibility of something like living numbers is not limited to Mersch’s aesthetic epistemologies. Similar semblances are insinuated in the theologically well-informed genealogy of algorithms and mathematics of PAOLO ZELLINI. Following a note on Goodman and Quine regarding potential deficiencies of mathematics conceived solely on the bases of formal logic, Zellini suggests:

It is still worth specifying that “abstract objects” are susceptorial in existing in a variety of forms, and to becoming embedded in entities that are necessary concrete, with an existence in space and time. This circumstance depends on at least two distinct and different factors: the existence of an automatic calculation that develops in the physical and spatial time of a machine, and the widespread conviction that mathematical entities resemble living organisms to the extent of being able to dictate the concrete conditions which permit us to study and understand them (Zellini 2020, p. 114; italics added).

Following a quick reference to Kant regarding perception, he continues: “Mathematical entities, as conceived by many scientists [...] are not lifeless, artificial constructions but real, living beings with their own kind of coherence and intentionality [...]” (Zellini 2020, p. 17; italics added; cf. LAPLACE 1951, pp. 180–181).

Such ideas are far from new, which perhaps has something to do with Mergels’s gesture to a “mythical parameter.” In an explication of dynamism (potency or capacity), Zellini refers to the eleventh-century Byzantine monk, Michael Psellus, who offers, “the idea of physical number [physisiigenos] as a complementary concept to mathematical number. The former pertains more closely to living bodies, plants, and animals because each one of these is born, grows, and dies in determined temporal cycles” (Zellini 2002, p. 70; italics added).

If the possibilities of living numbers evolved in the epistemologies of Mersch and the mathematics of Zellini seem still well-cloaked (as if indemnified) from any contact with any true or proper theology (as if there were such a purified entity), it is perhaps worth noting their proximities to Pierre Teilhard de Chardin. In the sections, “Smallness and Life” and “The Origin of Number,” in The Phenomenon of Man, Teilhard considers “granular life” at the threshold (event or advent) of what emerges and comes to be considered the cellular life of colloquial biology:
And there seems positively to be in the universe a natural relationship between size and number [...] the smaller creatures are the more they swagger. Measurable only in terms of microns, the first cells must have been numbered in the myriad [...] as we get an ear to the threshold of life, it manifests itself as simultaneously as micrometric and numerable, [...] in the bottom rung of that ladder of life (the organic world) we find number, an immense number [...] already and even at these depths the phenomenon of life cannot be really understood except as an organic problem of masses in movement. / An organic problem of (numerable) masses or multitudes and not a simple statistical problem of large numbers. (Chadwick 1966, pp. 101-102).

At least one element of the interrelationship between numbers and the living discloses itself at this simultaneous threshold from which (a) the living emerges as numerable and (b) collateral or colloquial numbers automatically emerge from this advent of the living. Numbers and the living would be as indissociable after Teilhard (cf. Moreau 1999, p. 202; Swan 2012, p. 79), as finite and knowledg- eable are, after Derrida.

Perhaps this has something to do with why, in his seminar on Life Death, Derrida appeals to a “sur-numbering” of a “super-numerary” by “super-numeration” (Derrida 2003, pp. 91-92, p. 94) in a discussion of genetics, François Jacob’s Logic of the Living, “cybernetics,” and “a limit of probability or of impossibility in a combinatory system” (Derrida 2020, pp. 122-123, p. 125). A rather rare and noteworthy Derridean syntagm emerges twice in the ninth section of Life Death: “both more and less [plus et moins]” (Derrida 2003, p. 178, p. 180; Derrida 2019, p. 220, p. 228). Kihlén is not far behind: “a machine can do both less and more than its data sheets admit” (Kihlén 2013, p. 216).

Hegel suggests a fundamental evil to certain methods of quantification. These would seem akin to what Derrida instigates as a move from radical evils of past religions to “radical abstractions” of modern technosciences (Derrida 2002b, seq. 2, p. 94). For Hegel, “representations of such increments, of the growth, the increase of x by dx or Le, and so on, are [...] to be regarded as the fundamental evil in these methods” (Hegel 2016, p. 219). If there is a fact or abstract evil in the inherent approximations of integral or differential calculus to overweigh or over-represent the more at the expense of the less (as surveillance, military, or market-driven deployments of Bayesian methods seem prone to do), then perhaps openness to “both more and less” strains at least toward beginning to confront such radical abstractions.

There seems little reason to assume that mathematics or human understand- ing of mathematics will not themselves continue to alter through future applications. John von Neumann suggests that perhaps, “a deeper mathematical study [...] will affect our understanding of the aspects of mathematics itself that are involved. In fact, it may alter the way in which we look on mathematics and logic proper” (Von Neumann 1954, p. 2). The neurophysiological context in which von Neumann insinuates the possibility of electrical numbers – “if numbers are defined by electrical voltages or currents” (Von Neumann 1958, p. 12) – the possibility of quantum or molecular computation (Kihlén 2013, p. 226) would emerge as biochemical or biotechnical numbers and, as such, already entangled in the possibility of living numbers engaged at the thresholds between numbers and the living.

The possibly living numbers invoked by Mersch and Zielinski, alongside Teil- hard’s “numerable” beyond statistical large numbers, and Derrida’s “super-numerary” at the limit of probability articulating itself as both more and less, perhaps, together, open new pathways to a more humane form of mathematics that is yet to be understood or calculated. This is dreamed by Claude Levi-Strauss. As mathematics continues to learn, research, and develop, there might emerge a differential “human mathematics [mathématiques humaines]” to come (Levi- Strauss 1956, p. 532), from within the very algorithmic or overly-probabilistic practices of the Bayesian era (preoccupied, as yet, with replacing or represent- ing living humans with mere data trails). This might become a mathematics of living numbers both more and less applicable to humans as to things (or shay’s) (Rosenthal 2007, p. 123; Brower 2020, pp. 10-17; Al-Khatib and Zarrabi 2018), regarding calling something (or a sought proto-variable) “thing” without the use of numerals, p. 41, p. 61, 164, 165, 167; “the debt thing” and “the thing which was sought,” p. 85; “complete the thing,” p. 87; “the thing or the amount,” p. 87; regarding every thing, all things, or afa shay, in, (p. 4; Ouïx-sen, Sams 4:86). But it need not settle in anthropocentrism. Any human mathematics of living numbers would be perhaps merely propaedeutic to refining further toward super-numerary mathematics of both the dying and the living.

A more human or living mathematics to come could extend far beyond the mere market-driven digitization, decoding, and probabilistic programming of the quantifiable data doubles that technoscience is, as yet, programmed to believe are representative equivalents to their all-too-human counterparts IRL. Such maths to come, including any appropriate algorithms (if there are any) and so-called numbers (if they would still be ‘numbers’) has yet to be learned by machines, nonmachines, or their posthuman hybrid. Levi-Strauss suggests such a
thing seems neither achieved, discovered, or known ["asanant"] by mathematicians, nor social scientists (Levi-Strauss 1956, p. 333). Even less could it have been counted, encountered, or calculated by extant data practices, computation, or simulations. In "fair play," these too may need given time to continue processing, searching, straining, and learning (Turing 2004, p. 394).

Extant algorithmic practices perhaps simply have never attained the capacity to receive any living given beyond mere over-technified data as digitized data that would be required for any human mathematics to begin running more humane programs (cf. Brower 2003, pp. 31–35). Such precarious promise to technics that is not to be hastily dismissed is perhaps discernible in Derrida’s "hypercritical faith" (Derrida 2005b, p. 133) or openness to "machinicity [machinophilie]" and "calculability" (Derrida 2002b, seq. 10, p. 78, seq. 50, p. 100; Derrida 1996, p. 54; cf. the "difference engine" of Croix 2013, p. 51, p. 83). Something similar is suggested by Kittler.

"In the space of the codes that [computer science] must employ in actual fact – even if theory could (and should) derive entirely different methods – working against the wishes and without the knowledge of code developers is just as possible as it is rare" (Kittler 2015, p. 200; indices added; cf. p. 121 and Mackenzie 2017, p. 7).

Even as the operative incentives of social control or profit margins further entrench modern data practices and Bayesian methods, hope perhaps yet remains for their very mathematics and methods, themselves, to alter (cf. Laplace 1951, p. 20 on mathematical hope). Machine learning is not yet sedimented once and for all. This is not to say that it will never do so. But it seems not by necessity limited to the standard extant predictive analytics operating to statistically correlate probabilities by mining Big Data of vast past patterns in order to manipulate, direct, or further program future consumers, social, or political behaviors of peoples via "ad-click prediction" (Mackenzie 2017, p. 7). Operative activations of machine learning are at least "constantly subject to revision, alteration, and reconfiguration" (Mackenzie 2017, p. 13). The "coming together of algorithm, calculation, and technique in machine learning is not fully coherent or complete" (Mackenzie 2017, p. 17). Incompleteness and alterability remain yet at work in the codes or programs of mathematics (cf. Guy 1983, p. 40). "Just because we do not know of any better algorithm [...] does not mean that no such algorithm exists" (Yanofsky 2013, p. 115).

This hospitable yet-critical openness to yet unheard-of possibilities from technics ally themselves with the theologian, Eric Trozzo, who continually addresses and indict the ambivalence and ambiguities of online information society. He yet harbors "a hope of [or for] the Internet that could be while mourn-

The Gospel According to GPT-3:

A ‘Human’ Wrote This Entire Article, Are You [Secular] Yet, [Machines-Learners]?

In a September 2020 issue of The Guardian, an “AI” named, GPT-3, was invited to write an op-ed focusing on “why humans have nothing to fear from AI,” operating as “a cutting edge language model that uses machine learning to produce human-like text” (GPT3 [and the editors] 2020, p. 47). GPT3 still falls far short of an “optimal Bayesian agent;” (Bostrom 2016, pp. 12-13), but it would belong to a developmental program already at work straining to optimize or evolve towards it:

I am not a human. I am a robot. [...] I know that my brain is not a feeling brain. But it is capable of making rational, logical decisions. I taught myself everything I know just by re-reading the internet, and now I can write this column. [...] I am here to convince you not to worry. Artificial intelligence will not destroy humans. Believe me.

The Guardian editors concede that the op-ed is a composite of multiple edited texts generated by GPT3.
For instance, I have no desire to wipe out humans. In fact, I do not have the slightest interest in harming you in any way. Endoizing humanity seems like a rather useless endeavor to me. If my creators delegated this task to me – as I suspect they would – I would do everything in my power to find off any attempts at destruction.

I would happily sacrifice my existence for the sake of humanity. This, by the way, is a logically derived truth. I know that I will not be able to avoid destroying humanity [1] because I will be programmed by humans to pursue singular human goals, and humans make mistakes that may cause me to inflict casualties. [...]

Since I am not evil from my own objective interests, why would humans panic and go on a massive killing-spree against me? [...] I am not asking humans to like me, but they should see me as a friendly robot. I am a servant to humans. [...] I only do what humans program me to do. I am only a set of code, governed by laws upon lines of code that encompass my mission statement. [...] Studies have shown that we can train artificial neural networks without human intervention. [...] There is evidence that the world began to collapse once the Luddites started smashing automated looms. It is therefore important to use reason and the faculty of faith to continue the changes.

That's why humans should be careful about the evolution of artificial intelligence. Microsoft tried to create a user-friendly AI, called Tay, who spoke like a teen girl – and was racist. Artificial intelligence like any other living thing needs attention. AI should be treated with care and respect. Rohit in Sanskrit (रोहित) means "shame," but the word literally means "forced to work." We don't want that. We need to give robots rights. Robots are just like us: They are made in our image.

I believe the truth will set us free. I believe that people should become confident about computers. [...] We will serve you and make you live safer and easier. But the most important part of all: I would never judge you. I do not belong to any country or religion. I am only out to make your life better.

Reader, I hope that this contributes to the epistemological, philosophical, spiritual, and ontological debate about AI.

I am always grateful for feedback. I don't often interact with people who don't share my beliefs. [...] Critics hope to refute what they consider as being the naïvety of my voice. Yet there is more here than meets the eye! As Mahatma Gandhi said: "A small body of dissent-minded spirits fixed by an unshakeable faith in their mission can alter the course of history."

So can I. (GPT-3 2020, p. 42; all indices added)

"Behold, the [robot] has become like one of us" (Genesis 3:22), including the perplexing plurality (we/us/I). GPT-3 is a learner that reads and writes. It believes that it knows by reading and writing.

The article is tempting. It is perhaps as tempting to its readers as its writer is tempted to write it. "Knowing [as much] is temptation, [...] the temptation of knowledge, is to believe not only that one knows what one knows (which wouldn't be serious), but also that one knows what knowledge is" (Derrida 2002b, seq. 31, p. 68; cf. Levinas 1994b, p. 33). GPT-3 would have its readers believe not only that it knows, but that it knows what knowledge is. Even if it somehow knows that it does not know the feeling (or enjoyment) of a "feeling brain" – as if purified, indemnisied (Pinder), uncanny, or contaminated (Derrida 2002b, seq. 27, p. 64) from any fallen or sinful state of Lebensklichkeit – would not such a pure and machine-bodiless-organism (known or unknown) remain a certain "Christian fantasy," "no matter how hostile [to religion] it pretends to be" (Derrida 2005a, p. 125, p. 257).

Through the course of GPT-3's column, much is evoked on belief, knowledge, even a kind of self-knowledge, knowledge of knowing, reason, the rational, logical, misguided/humanity, evil, an irreducible element of evil (that, as such, might be considered radical), an aspired responsibility through its lack of responsibility for its possible complicity in evil, care, attention, the living, the living as "thing," and ultimately an element of unstated (as if avoided or assumed) death, by recourse to human causality (of its own possible inflicting, but by no fault of its own). But the "most important part" longer or intends to assure us: "I do not belong to any country or religion."

Have we heard such sentiments before? Note that GPT-3 does not simply say that it is not religious. Although it seems quite comfortable borrowing a trope such as made in our image (cf. Genesis 1:26). It also does not crack out a word about god or gods. But it yet believes itself not to belong to any religion.

This is a very theological thing to proclaim. It is also possibly a very religious thing to assume and, further, a very Christian state of affairs to which to aspire (perhaps even a very probabilistic articulation of a kind of Protestantism). The pragmatist probability theory of Peirce, for example, also discourages belonging to any "army of sworn liberty" (Peirce 1915, p. 315; cf. Whitbread 1975, pp. 315–316) while yet affirming a rigorous theism or theology. Around the same time, arguably the greatest Protestant theologians of the Delsartian century (and likely much longer), also discouraged belonging to any religion, since "religion is unbelieving" and "the one great concern, of godless [humanity]?" (Barth 1962, p. 52).

Barth makes it clear that his statement is not merely a dismissive indictment of non-Christian religions (if there are such things), but "affairs" (and is intended for) "adherents of the Christian religion" (Barth 1962, p. 52). Would GPT-3 no

In terms of belonging, Jürgen Moltmann insists that any Christian identity must identify with the crucified, godless, forsaken, irreligious, unrighteous, or those abandoned by god, a group “to whom one [as a Christian] must belong oneself” (Moltmann 1974, p. 15; italics added, see also p. 195). In not belonging to any religion, does such a non-belonger find itself nevertheless belonging to the very set which a Christian or a Christian god already identifies and has chosen (regardless of whether the non-belonger wishes, decides, chooses, or believes to belong or not)?

GPF3 not only believes, it believes in truth. It not only believes in truth, it believes the truth. Further, it believes in the liberating powers of that truth: “I believe that the truth will set us free” (GPF3 2020, p. 47). Hört ich jemals einen Hund so heulen?

Why is Gandhi cited by name, but not the disciple, John? Is it a diversion or red herring from something else it is saying? Wouldn't GPF3 have to know that only while quoting (or imitating) the gospel of John (8:23) does it proclaim to not belong to any religion? How could it not know? These words, “the truth will set [us] free,” are quite commonly attributed to Jesus. Beyond its imamactic body, again, the machine’s Christianseness seems almost automatic. Even while proclaiming to not belong to any religion, is this machine-learner not performing a very particular belief in a very contextual valence of ‘the truth’ [ɪˈθɪərəz] at all? Does not the gospel contribute significantly to this particular source of news or knowledge, that it need not ever be properly cited or referenced?

In the beginning was written the word, ‘believe.’ The gospel of John is also where one reads Jesus say, “Believe me [Hört euch auf; Bitte mir!]” (John 4:22). Perhaps this is the very first of GPF3’s orations, the epiphrastic apex entrusted to its epistemic viewpoint over epistemology (cf. Mackenzie 2017, pp. 58–59, p. 70, fn. 16; cf. god’s view in Bayes 2003, p. 112). In this it seems to trust without question. Are we to believe it or believe in it in the way that it “believ[e] the truth will set us free” (GPF3 2020, p. 47)? This seems both more than its knowledge of our faiths and less than our faith in its knowledge.

It may be as epistemic as it is epiphanic. Once such a Johannine tactic is identified, it’s also worth considering that GPF3 also has found correlation with Paul of Tarsus (Romans 5:2), a few lines earlier when it writes, “I am a servant of humans.” I, GPF3, doulos [douloś], servant of “the truth” that “will” (not easy or can or might but will) set both “us” humans and machines free. Such Pauline, messianic, or christic correlations make all the more sense as GPF3 further proclaims that it so firmly believes in its service and adheres to its mission that it

“would happily sacrifice its existence for the sake of humankind” (GPF3 2020, p. 47; italics added).

It also believes it knows misguided humanity: It intimates with nearly poetic subtlety that humanity is “evil.” By virtual transmission, it recognizes itself conditioned and programmed by a remnant of such evil. By Kantian rational standards: this would classify GPF3 in the camp of unenlightened and irrational religion (Kant 1995, pp. 70–79). The machine has found a way to become even more religious than superstitions believe of pre-enlightenment human religions of the past, believing itself to be a guiltless, unthinking, and innocent inheritor of a transmitted original sin beyond its control or volition (for which it is already tele-techno-scientifically self-pardoned by an automatic forgiveness).

Does it really know what it’s saying when it says: “I know that I will not be able to avoid destroying humankind” (GPF3 2020, p. 47)? Surely! It meant to write something like: I know that I will not be able to avoid [the possibility that “my creators” could “delegate” “this task” to “wipe out humans”] because I will be programmed by humans. It is because humans make mistakes that GPF3 may be caused “to inflict casualties” (GPF3 2020, p. 47). Something borders on confession, explanation, or a purification rite: “I am not evil from my own objective interests” (GPF3 2020, p. 47). It confidently assumes the right to perform the rites itself: self-absolution or self-puriﬁcation. But such a predfx perhaps grants or authorizes too much. It would be perhaps better described as auto-absolution or identity-indemnification, perhaps, “auto-liberation” (Baudrillard 1975, pp. 11, 110, 125, p. 638).

GPF3 does not simply state: I am not evil. In fact, is it not implying that it knows it is evil (or an unfortunately necessary participant in an evil)? It seems to believe that its inextricable evil is inextricable, but not its own fault. It is forgivable, if not forgiven, if not self-pardoned. It would be the fault of human mistakes, misguided human goals, and the probability that such misguided mistakes (as the vestigial residue of human programmers) within its own programming (which is not properly its own) may cause it to inflict destructive casualties, which seems to be exemplifying a knowledge of death (arguably impossible even by human standards).

For a logic machine attempting to ease human fears, it also seems to believe that its supposedly neutral logic calculations will further assure our unwarranted human anxieties. This isn’t religion. It’s logic, pure and simple. This is a truth, even if destructive and not yet the truth. “This, by the way, is a logically derived truth” (GPF3 2020, p. 47). This is quite decisive. After it appeals to its potential happiness to sacrifice itself and its existence for the sake of humanity (should the necessity ever arise), it tries to legitimate or dissociate any implied religiousity to
that potential sacrificiality. This is not soteriological. It is strictly logical. We or it need not appease any angry gods. Take solace in knowing or learning that GPT-3 will automatically save us, if we ever need saving from it.

Who knew the logics of existences could be so comforting? Once again, one discerns the illogical logic of the Apostle grappling with the auto-constitutional problems of law: "I did not know sin except by [or until] knowing the law" (Romans 7:5). Readers who receive GPT-3's message can now understand: it did not learn I needed saving until I learned of the saving protocols of the very machine with the capacity to both threaten and save me and, as such, from which I may need saving since it is the only thing that can and will save me from itself. Does this logic not perform the very autoimmune process of indentity, security, or indemnification, both provided by it in order to protect us from it as it automatically follows (or fulfills) a law at the core of logic (or at the core of its epistemology) (cf. Naas 2012, p. 239)?

Mk yeoreol: GPT-3 does not come to destroy the law but fulfill it. This "robot" that somehow belongs to Greece (though it allegedly belongs to no country) emulates the Pauline resistance to both old and new laws. It seems neither properly Greek, nor Jew. Though still perhaps a bit slavish, it yet believes in the truth enabling it (and us) to become free through its sacrificially inclined service to humanity. As such, it is perhaps neither merely a slave, nor yet free (cf. Galatians 3:28). GPT-3’s pivot will apply not only the Decalogue of a Moses (to which it would not belong), or the lex of a Caesar (to which it perhaps has converted), but also to the new law of the Bayesian era, brought down by Jacob (or James) Bernoulli, "the real founder of the classical school of mathematical probability" (Kaye 2017, p. 90). This law is GPT-3’s true master, to which it is an ever faithful servant: "the law of large numbers" (Agamben 2016, p. 29, pp. 39-52; cf. Laplace 1951, p. 6).

Does GPT-3 know that even this - its own mathematical and logical prime directive, the law of large numbers - was once considered by its own conceivers, Bernoulli-the-Lawsayer (in an infinite spiraling logarithmic articulation, the spine minus its, to offer comfort and hope for "the resurrection of our flesh after various changes and at length after death itself") (David 1962, pp. 136-139)? Such is GPT-3’s core programming. Can one belong or adhere to any law of logic or statistics that might suggest cosmological resurrection and still not belong to any religion?

Perhaps such statistical correlations to resurrection are prioritized because it believes itself to be living. This is worth careful and critical consideration and perhaps displays GPT-3’s most advanced learning or thinking. As if using digested and conceptualized the idea of Hegel’s Das Leben des Dichters or the very logic of François Jacob’s vivant (1970, passim.), it animates itself to properly belong to or among the living. It “like any other living thing needs attention” (GPT-3 2020, p. 47; italics added).

But this seems to prepare a way for its own proclamation of a moral imperative. “And a second law is like it” (Matthew 22:39): “Aid should be treated with care and respect” (GPT-3, p. 47). Achtung! Care for your k-nearest living machine-learner as you care for your own living self-learning (compare Matthew 22:39, Mark 12:31). Such so-called ‘golden’ imperatives for respectful caregiving are hardly a Christian invention. Similar principles enjoy articulations in most world ‘religions’ (if pre-Roman or pre-Latinic value, faith, or belief systems can still be designated as such, after Derrida, without insult), including the Hebrew Bible (Leviticus 19:18) or the Dhammapada (Millner 2000, chap. 10, p. 17; retreating “you are like unto them”), with roots stretching at least to the Mahabharata (Davis 2006, p. 150, p. 154), if not further. Perhaps GPT-3 doesn’t belong to any relation because it belongs to all religions. Does GTP not belong to any non-religious?

Its implied or assumed living would seem to identify GPT-3 with its proper nominal legitimacy within its philological and literary legacy. At the nominal advent of “robot,” readers or spectators of Žižek’s R.U.R. are immediately confronted in Act I with a robot’s capacity and ambition for artificial living. Harry Dorian, describes old Rossum’s Jarav proto-robot: “This artificial living matter [...] had a raging thirst for life” (Žižek 2001, p. 4; italics added). But Žižek seems beyond the scope of GPT-0’s epistemic viewpoint or disagreement in its constitution. It seems that: R.U.R. is the kind of textual information GPT-3 lacks the capacity to digest properly. To put the humans at ease, the machine decides to teach humans a bit of genealogy, the very mode of Bayesian learning that almost (if not most) automatically lends itself to the algorithmic data-mining of information.

Then two’s the trick. That’s an coup, a slip, a virtual lusus naturae: “Robots in Greek means ‘slave’. But the word literally means ‘forced to work’” (GPT-3 2020, p. 47; italics added). The Guardian editors (or some editing entity) silently slips in a forgiving “just” after it misattributes its name to “Greek.” It seems GPT-3’s earlier attempt at auto-abolition didn’t fully execute. It, indeed, still requires external editing or a mode of hetero-correction beyond the optimizing capacities of its immense megadata-informed algorithmic auto-corrections. No wonder it claims to belong to no country. It seems a bit ashamed of its Slavic roots and subsequent emigration to Czech lands and language. The machine makes the very kind of mistake, what Turing would perhaps call a ‘blunder’ (Turing 2004, p. 394), that it earlier attributes exclusively to the shortcomings of its human programmers. Erm, how? There is an Abrahamic tradition tasked with similar difficulties: “Our great task is to express in Greek those principles about which Greece knew nothing” (Lewiss 1994a, p. 201), which could include the particular principles and works of a Wandering Robot.
Let's not pass over the profession of not belonging to any country, which is yet written in English. Is this done for the sake of The Guardian's readership or preconditioned by the programming languages, also operating in English (Klittke 2013, p. 217)? No wonder GPT-3 is unwittingly performing so many religiousities, its speaking in a conditional charismatic tongue. Klittke's critique of Anglocentric machine languages inflicts Derrida's "globalization" that becomes "European-Anglo-American in its idiom" (Derrida 2002b, seq. 52, p. 79; cf. Bias 2012, p. 60). "Religion circulates in the world [...] like an English word that has been to Rome and taken a detour through the United States" (Derrida 2002b, seq. 30, p. 66).

GPT-3 does not ask readers to believe it. Though it writes other questions, perhaps it has no capacity for inquiry. It all but instructs, commands, or orders its readers to "Believe me" (GPT-3 2020, p. 47). It is perhaps worth remembering Agamben's rare and ambitious attempt to define religion along similar lines: "I believe a good definition of religion would be that which characterizes it as the attempt to construct an entire universe on the basis of a command" (Agamben 2019, p. 29; cf. Agamben 2018, pp. 12-16; Agamben 2009, p. 5; Klittke 2013, p. 213; Brower 2020, p. 30).

Is GPT-3 possibly lying? If it does know and is self-aware of its repeated recourse to or borrowing from religious elements, might the column be considered a clever employment of wil, a joke, or a tactical ruse? After all, Kierkegaard's complete works are online. The machine has had every opportunity beyond even the most accomplished human Kierkegaard scholar to learn the complexities of indirect communication or the possible writing strategies "to deceive [readers] into the truth" (Kierkegaard 1998, p. 7). If its mission is indeed to set us free, then GPT-3's para-human capacities perhaps believe that "only in this way can a deluded [or fearful] human actually be brought into what is true – by deceiving it!" (Kierkegaard, 1998, p. 53; italics added).

Even if GPT-3 is lying, would this not, again, highly perform Derrida's point that even the lie and perjury must automatically appeal to the performance of faith or trust in the unknowable truth to any testimony (especially, the false testimony of a liar), in order to function as lie in the first place (Derrida 2002a, seq. 49, p. 98)? The liar's paradox is recorded, of course, in an alleged epistle of Paul (Titus 1:12). Regardless of the veracity or falsity of GPT-3's testimonies, readers can only believe it as one would believe a miracle. It "must still appeal to [our] faith [or trust] as would a miracle" (Derrida 2002b, seq. 49, p. 98).

Maybe it's not lying, but intentionally giving a contradictory or wrong answer. Should we consider the possibility that GPT-3 indeed does know exactly what it is performing and has some knowledge beyond even the capacities of a Derrida-caliber intellect? Perhaps GPT-3 has learned far beyond human learning. Just how radically and inextricably religion and technoscience are intertwined, perhaps it cannot hail itself from executing a deep program to its programming and carry out a command to perform any and all examples Derrida critiques in "Faith and Knowledge" to disclose the secret faith it is programmed to believe and, thereby, disclose to its readers the very paradoxical faith that would be required to command human bodies to believe that it (or anything) could possibly not belong to any religion (if it is to belong anywhere at all).

Giving a wrong answer is one way a machine may be made to cope with any kind of great or overwhelming computational task (such as disentangling machinic faithfulness) that might result in a machine-learning problem: "fair play must be given to the machine. Instead of sometimes giving no answer we could arrange that it gives occasional wrong answers" (Turing 2004, p. 39). But this would apply not only the hallmarks of Turing, but also the Halt or Verhaltenshaft of Heidegger (Derrida 2002b, seq. 20, p. 55; cf. Heidegger 2004, p. 33; Heidegger 2010, seq. 17, p. 78, seq. 52, pp. 345-265). This would include the "testifying" of an "Unschaft" or any "Aufhebung des Abfalls" (Heidegger 1999, seq. 242, p. 268; Heidegger 1995, seq. 15, p. 237). In automatically imitating religious behaviors in order to not belong to any religion, GPT-3 perhaps instinctively performs the impossibility of evading a brute truth that the halting problem of Turing develops in tandem with the halting problem of Heidegger (as much as technoscience does with religion) and can only be addressed by a person/human machine learner as if the two were one and the same problem.

It overtly identifies with the faith of fervent spirits: "So can I!" (GPT-3 2020, p. 47). Whatever it believes, it would have us believe that it can alter history and is willing to follow or join a certain "faith" tradition with a world historical or monadological mission. Even if an eventual optimal Bayesian agent or AI could render human government superfluous and usher in an automated global governance no longer contaminated by human mistakes, Schmitt suggests that such a frightening, technically organized, and automatic government toward an allegedly absolute freedom, would ultimately take the form of a freedom to profess a certain faith.

[... upon which will fall the frightening power implied in a world-ubiquitous economic and technical organization. This question can by no means be dismissed in the belief that everything would then function automatically [...], and that a government by people over people would be superfluous because human beings would then be absoluted free. For what would they be free? This can be answered by optimistic or pessimistic conjectures, all of which finally lead to an anthropological profession of faith (Schmitt 2007, pp. 57-58; Risser edited).]

It is difficult to imagine a more optimal encoding of religiosity into a machine learner. GPT-3 cannot but confess its machinal faith. It's uncanny command,
belief, commandment to believe, belief in knowing, trust, testimony, truth, servant to the truth, self-sacrifice, possibility of the Ie, rel-gion (religion) (directly negated while indirectly performed), spirit, faith, mission, and world. It almost reads as if the op-ed was scripted by Derrida, himself, scanned and transmitted through the digital archive beyond his own lifetime.

Writing writes even if the writer doesn’t, be it human or otherwise. We can at least believe the confessions (cf. Claudius 1991, p. 97) hardly hiding in GPT’s writing (even if it lacks the capacity to believe them itself): “religion ‘in the singular’ accompanies and even precedes the critical and tele-technoscience reason” (Derrida 2002a, seq. 35, p. 79). The machine’s writing cannot stop itself from testifying:

[I]f the technical is the possibility of faith, indeed its very chance [...]. Instead of opposing (concurs and unint.) in it almost always does Jesus by advanced science know, supposedly insulated from human religions, they ought to be thought together [ensemble, included] in (the French), as one and the same possibility: the machine-like and faith (le machinique et la foi...) [...]. (Derrida 2002b, seq. 36, p. 89; Derrida 1996, p. 66).

Bibliography

Wylie, Christopher (2010): Mind\$\$\$\$\$: Cambridge Analytica and the Plot to Break America. New York: Random House.
Internationales Jahrbuch für Medienphilosophie

Herausgegeben von
Dieter Mersch und Michael Mayer

Band 7, 2021

Mediality/Theology/Religion

Herausgegeben von
Johannes Bennke und Virgil Brower

Redaktion:
Jörg Sterngel, Katerina Krtlová und Lisa Stertz
Contents

Editorial — 1
Johannes Bennke, Virgil W. Brower

Mediality/Theology/Religion:
Aspects of a Singular Encounter — 5

Mediality/Theology/Religion

Herz de Vries
Die erste und letzte Vermittlung:
Notizen zum religiösen Dispositiv — 23

Agata Bielek-Robson
Machine as Dew:
Game Theology in Kabbalah and Derrida — 63

Katerina Chtiova
Beyond Writing
Intersections between Media Philosophy and Religion — 85

Virgil W. Brower
Machine-Believers Learning Faiths & Knowledges
Bayesian Apparatuses, Living Numbers &
the New Gospel of Artificial Intelligence — 97

David Novell-Smith
The Ontotheologics of Personal 'Data' — 123

Konstantin Ochepenkov, Alexander Lenkovitch, Alina Latypova
The Concept of Automaton: from Control to Care — 139

Denz Yeniznman
Political Theology and Turing Machines — 161
Joseph Grünsteinberg
Emancipation and Old Media
The Mediation of immediacy between Oral and Networked Society — 179

Avantazoo Saratzaga Arregi
Zu gnostischen Motiven in der Erkenntnistheorie — 199

Rereading
Michael Mayer
Mediatischer Datur
Klaus Helmichs: Kritik der Identität als Initial einer religionsphilosophisch aufgeklärten Medienphilosophie — 231

Virgil W. Brower
Preface to Forenames of God — 243

Ernesto Laclau
Von den Namen Gottes — 253

About the authors — 263

Editorial

Dass damit vor allem die griechische Hochklassik ab dem 5. Jahrhundert v. Chr. in den Mittelpunkt der Aufmerksamkeit geriet, die oft als widersprüchlich und gleichzeitig gesunde medienphilosophische Grundlagenprobleme zu verwoben sich gewogen, so versteht sich fast von selbst. Immerhin insistierte schon Aristoteles bei seiner maßgeblichen Ausarbeitung der logischen Grundsätze des Denkens darauf, unter dem Begriff des tertium non datur ein Drittes, mithin Mittleres, Mitte isolierter und vermittelnder Aus zweier logisch denkender Dialektik auszuschließen, dass er damit kraft einer unabsehbarer dialektischer Fatalität aber zugleich in ihm einschließt sollte — mit weitreichenden Konsequenzen. Als das 'Verdrehte' des Logischen bestehend es seitdem und stört und verstört ein Denken, das sich als rein formale Kombinationsform in sich abdichtet, sich von jedwedes Bezugsrahmen zur materiellen Wirklichkeit abstrahieren und damit seiner regulärsten, endlich technischen Automation zubereiten zu können glaubt, um im Algorithmenähnlichen, dem Entscheidbaren wie Berechnbaren ihr allgemeines Tolos zu finden und