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5.1 Introduction 

There has been a lot of recent interest in predictive processing (PP) theories 

of cognition (Bar, 2003; Clark, 2013, 2016, 2020; Friston, 2003, 2009, 

2010; Hohwy, 2012, 2013, 2020). While initial PP models focused pri- 

marily on visual perception (Friston, 2003, 2005), recent advocates have 

suggested that the predictive framework can account for all mental pro- 

cesses and indeed all of the brain’s operations (Clark, 2013, 2016, 2020; 

Hohwy, 2013, 2020). 

PP theories take issue with classic models of visual perception. On the 

classical approach, lower cortical areas (V1, V2, V4, etc) in the ventral 

stream process sensory information that has been filtered through the thal- 

amus (LGN) and then project this information to higher regions [e.g., the 

inferior temporal (IT) cortex]. Here, the information is further processed in 

light of feedback from object templates stored in long-term memory. Once 

the last visual area in the ventral stream has processed the information 

from earlier areas, a visual perception of the distal object is generated. 

The traditional model thus focuses primarily on bottom-up processing and 

to a lesser extent on top-down modulation. On the predictive view, this 

picture is reversed (Clark, 2013, 2015; Feldman & Friston, 2010; Hohwy, 

2012, 2013). The predictive framework posits that the brain deploys inter- 

nal models, which contain information extracted from past experience, to 

generate predictions, or hypotheses, about its surroundings. These predic- 

tions are then matched to the incoming visual information. Mismatches 

between predictions and incoming signals – so-called prediction errors – 

are then projected bottom-up to higher brain areas, where they are used 

to update the predictions. This process, which occurs hierarchically, con- 

tinues until the prediction errors are minimized to the greatest extent pos- 

sible, and the winning prediction determines the visual content. In contrast 

to traditional models, predictive approaches thus hold that all bottom-up 

processes are signals conveying prediction errors to higher regions. By only 
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processing prediction errors rather than all visual stimuli, the brain saves 

energy (Friston, 2003, 2004, 2009). 

Here, we argue that the predictive approach falls short of providing 

a complete account of visual perception. Specifically, we take issue with 

the predictive approach’s core idea that all bottom-up signals are predic- 

tion error signals and that prediction error minimization is “all that the 

brain ever does,” as Jakob Hohwy puts it (2013, p. 7). Although our point  

is a general one, we will focus on the case of object recognition. As we 

will see, there is a substantial body of evidence suggesting that there are 

three stages to object recognition: (i) scene gist processing, (ii) attentional 

object selection, and (iii) hypothesis testing. We argue that PP theories 

lack the resources to accommodate the first two stages of object recog- 

nition. Ransom, Fazelpour, and Mole (2017) and Ransom et al. (2020) 

have previously argued that the predictive account of attention is unable to 

account for voluntary object attention and affect-biased attention. These 

conclusions challenge one of the predictive account’s key claims, viz. that 

it offers a unified theory of the mind. We will argue that attention during 

the earliest stages of object recognition presents a further problem for the 

predictive account of attention. 

The chapter is structured as follows. In Section 5.2, we outline the details 

of the predictive approach, as presented by Karl Friston, Andy Clark, Jakob 

Hohwy, and others. In the two subsequent sections, we review the empirical 

evidence for the claim that object recognition begins with gist processing 

and argue that the PP framework is unable to accommodate gist processing. 

In Section 5.5, we offer a brief overview of the previous studies showing that 

predictive models of attention are unable to account for selective attention 

and affect-biased attention and then argue that attention at the earliest stage 

of object processing presents a problem for the predictive approach. Finally, 

in the concluding section, we discuss some ways in which the predictive ac- 

count may be augmented to provide a unified theory of the mind. 

 
5.2 The Brain as a Hypothesis-Testing Mechanism 

The PP approach is often cast as a solution to the problem of how the 

brain determines the distal cause of an incoming visual signal. This prob- 

lem arises because any visual input has an infinite number of possible dis- 

tal causes, which raises the question of how the brain reliably determines 

which is most probable. Consider this analogy from Hohwy: 

 
You are like the brain, the house is the skull, and the sound is audi- 

tory sensory input. As you are wondering about the cause of the 

input, you begin to list the possible causes of the input. It could be 

a woodpecker pecking at the wall, a branch tapping at the wall in 
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the wind, a burglar tampering with a lock, heavy roadworks further 

down the street, a neighbour’s loud music, or those kids throwing 

stones; or it could be something internal such as loose water pipes 

banging against each other. Let your imagination rip: it could be that 

your house has been launched into space over night and the sound is 

produced by a shower of meteorites. There is no end to the possible 

causes. Call each of these possibilities a hypothesis. The problem of 

perception is how the right hypothesis about the world is shaped and 

selected. (2013, pp. 15–16) 

 
In Hohwy’s analogy, you wonder about the cause of the auditory input 

and begin to list possible causes of the input. It might be caused by a wood- 

pecker pecking at the wall, a branch tapping at the wall in the wind, a 

burglar tampering with a lock, heavy roadworks further down the street, a 

neighbor’s loud music, those kids throwing stones, loose water pipes bang- 

ing against each other, a shower of meteorites, and so on ad infinitum. Of 

course, the brain could not possibly test infinitely many hypotheses. So, it 

needs to somehow narrow down the infinite set to a more manageable one. 

PP’s popularity is partly due to its advertisement as a solution to this 

problem (Hohwy, 2013). PP holds that the brain generates predictions, or 

hypotheses, and then uses Bayes’ principle to determine the most prob- 

able hypothesis.1 The competing, or alternative, hypotheses are generated 

by models that group together patterns, or statistical regularities, derived 

from past sensory inputs (Friston, 2009). One key concept in Bayes’ prin- 

ciple is likelihood: how probable it is that the hypothesis accurately pre- 

dicts the distal cause of the sensory input. The more probable it is that the 

hypothesis accurately predicts the distal cause of the sensory input, the 

greater its likelihood. Since mosquitos do not make pecking sounds, 

the likelihood that the pecking sound is caused by a mosquito buzzing 

around the ceiling lamp is low. So, this hypothesis’ likelihood is low. But 

as far as you know, there are countless other hypotheses with a high likeli- 

hood. A second concept in Bayes’ principle is a hypothesis’ independent, 

or prior, probability. According PP, the prior is also determined by in- 

formation about the environment, extracted from past experience. In our 

example, the prior probability of the hypothesis that the pecking sound is 

produced by a shower of meteorites is infinitesimal. But if there are a lot 

of woodpeckers, burglars, and stone-throwing kids in the area, then the 

prior probabilities of the woodpecker, burglar, and stone-throwing kids 

hypotheses are high. In the Bayesian framework, the hypothesis with the 

greatest posterior probability determines what you perceive. According to 

Bayes’ principle, the posterior probability is the product of a hypothesis’ 

prior and the likelihood that the hypothesis accurately predicts a distal 

cause of the sensory signal. If the woodpecker hypothesis has the highest 
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posterior probability, owing to its higher prior or its higher likelihood (or 

both), then you perceive the auditory signal as the sound of a woodpecker. 

Of course, Hohwy’s analogy is just that: an analogy. Here are three 

key differences between this analogy and the predictive account of percep- 

tion. First, in the brain, the Bayesian inferences that go into determining 

the hypothesis with the highest posterior probability occur at the subper- 

sonal level; these inferences are unconscious (at least for the case of per- 

ception).2 So, you do not first hear a pecking sound and then the sound of 

a woodpecker. You just hear the sound of a woodpecker. Second, in the 

brain, there is a hierarchy of generative models that produce hypotheses 

(or predictions). In the brain, these hypotheses are more akin to “This 

neural activation in the V4/V8 color region is caused by a red object” than 

“This auditory signal is caused by a woodpecker.” Third, at every level 

in the hierarchy, hypotheses generated at one level are matched to inputs 

at the level below. If there is a mismatch, or prediction error, between 

the hypothesis and the input, this prediction error is used to update the 

hypothesis. Updating a hypothesis effectively means that the hypothesis is 

revised in light of the information that did not accurately depict the distal 

cause of the incoming sensory signal. This process then continues until the 

brain has arrived at the hypothesis with the highest posterior probability. 

Determining the hypothesis with the highest posterior probability at each 

level amounts to minimizing the prediction error between the hypothesis 

and the sensory input. A perception arises as the prediction error is suf- 

ficiently minimized. So, prediction error minimization is a key concept in 

PP (Friston, 2010; Hohwy, 2013). One complication within the PP frame- 

work, which we will turn to below, is that prediction error minimization is 

subject to expectations of noise. 

One of PP’s boldest conjectures is that only prediction error signals, 

that is, signals that encode information about the prediction error, are 

propagated up through the system in a bottom-up fashion. In the follow- 

ing sections, we take issue with this claim. We argue that empirical studies 

of visual object recognition run counter to this conjecture that all bottom- 

up processing is prediction error signaling. We begin by looking closer at 

visual object recognition. 

 
5.3 Object Recognition in Natural Visual Scenes 

In ordinary life, objects tend to occur as parts of larger scenes, together with 

other items that are likely to occur in the same scenes (Trapp & Bar, 2015). 

While it is often difficult to find an object hidden in a crowded scene, con- 

text can facilitate the visual recognition of objects that are congruent with 

it (e.g., a frying pan in a kitchen) (Fiser & Aslin, 2001, 2005; Kondo, van 

Loon, Kawahara, & Moore, 2017; Oliva & Torralba, 2007). However, 
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scene context presents an obstacle to the discrimination of objects that 

are incongruent with it (e.g., a frying pan in a movie theater) (Auckland 

et al., 2007; Gordon, 2004; Hollingworth & Henderson, 1998; Oliva & 

Torralba, 2007; Palmer, 1975). Thus, when viewing a kitchen containing a 

frying pan and a bicycle helmet, the pan is detected faster and with greater 

ease than the helmet. However, if an object is located in an unusual place 

(e.g., a microwave hanging from the ceiling), detecting the object is slower 

in a congruent scene (e.g., kitchen) than an incongruent scene (e.g., living 

room) (Bar, 2004; Hoffman, 1996; Meyers & Rhoades, 1978). These ef- 

fects are also known as “scene consistency-inconsistency effects” (Oliva 

& Torralba, 2007). Various other contextual factors besides object-scene 

relationships provide cues that can be exploited by the visual system for 

the identification of objects, including co-variation of objects, spatial and 

temporal proximity of objects, spatial configuration of objects relative to 

each other, typical positions of objects in scenes, familiar relative size of 

object, and pose of objects in scenes (Bar, 2004; Biederman, Mezzanotte, 

& Rabinowitz, 1982; Green & Hummel, 2006; Hock et al., 1974; Oliva & 

Torralba, 2007). For example, chairs and tables are expected to co-occur, 

whereas a frying pan and an elephant are not; fire hydrants are expected be 

on top of the sidewalk rather floating in the air; dinner plates are expected 

to be on top of tables, in stacks on shelves or in the sink or dishwasher but 

not on the floor; chairs are expected to be oriented toward tables rather 

than away from them; cars are expected to be oriented along the driving 

directions of a street rather than in the direction of the sky; and pedestrians 

are expected to be in an upright position rather than lying down. 

The effects of scene context can be so strong that altering the back- 

ground scene while leaving the target object intact can change the per- 

ceived identity of the object. In Figure 5.1, for example, the orange Toyota 

Supra is recognized as a real car in the nature scene but as a toy car in the 

street scene and the indoor scene. Biederman et al.’s (1982) prediction that 

relative familiar size (i.e., the scale of an object relative to other objects) 

influences object recognition is borne out here. In the street scene, rela- 

tive size trumps statistical co-variation of objects, whereas both relative 

size and statistical co-variation of objects contribute to the identification 

of the car in the indoor scene. 

People are sometimes capable of recognizing objects embedded in con- 

gruent scenes, even when they completely lack perceptible structures or 

features that can guide object recognition independently of scene context. 

In the street scene in Figure 5.2, for example, the blob on the right is iden- 

tical to the blob on the left after 90 degrees rotation (Oliva & Torralba, 

2007). So, the blob’s intrinsic features do not reveal its identity. Neverthe- 

less, the scene is immediately recognized as a street scene. Recognition of 

the scene gist activates a scene template (i.e., context frame) that provides 



BK-TandF-CHENG_9780367535476-230688-Chp05.indd  117 13/10/23 3:29 PM 

 

 

Predictive Processing and Object Recognition  117 

 

 

Figure 5.1 The car is immediately recognized as a real car in the nature scene (a) 
but is recognized as a toy car in both the street scene (b) and the indoor 
scene (c). 

 
 

 
Figure 5.2 The gist of a street scene. The gist of a scene is the scene’s low spatial 

frequency information, such as the global scene configuration and the 
gross contour of objects. In this image, the “pedestrian” on the right is 
identical to the “car” on the left after 90 degrees rotation. As cars and 
pedestrians typically are oriented differently in a street scene, observers 
recognize one blob as a car and the other as a pedestrian 

Source: From Oliva and Torralba (2007) 
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information about the typical differences in the orientation of cars and 

pedestrians in a street scene. As a result, the blob on the right is recognized 

as a pedestrian and the blob on the left as a car. 

In dynamic scenes, scene recognition can also facilitate object tracking 

and trajectory prediction and expectations. In a street scene where a mov- 

ing bus passes a grocery store on the opposite side of the street and thereby 

occludes the storefront relative to the vantage point of an observer, she still 

expects the store to be present once the bus has passed it. However, ex- 

pectations regarding the trajectory of a pedestrian occluded by the bus are 

not nearly as strong, as the pedestrian might have gone into the store in 

the meantime. While scene context facilitates and sometimes is essential to 

object recognition, people usually recognize a good exemplar (or prototype 

member) of an object category when presented to us without any scene con- 

text in a laboratory setting within 75 ms (see Dall, Wang, Cai, Chan, & 

Sørensen, 2021; Shibuya & Bundesen, 1988; Sørensen, Vangkilde, & Bun- 

desen, 2015). Even under optimal conditions, however, recognizing an ob- 

ject without scene context is considerably slower than recognizing a familiar 

scene (36 ms) (Larson, Freeman, Ringer, & Loschky, 2014) (Figure 5.3).  

 
 

 
Figure 5.3 Demonstration of scene gist recognition. From KSU, Vision Cognition 

Laboratory (left, online only).3 Scene information presented briefly 
between two blank screens can be extracted rapidly (right) 
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Studies have shown that the ability to rapidly recognize objects and 

scenes is due to the collaboration of two distinct visual pathways: a fast 

pathway that projects the gist of the object directly from the primary vis- 

ual cortex (V1) to the orbitofrontal cortex (OFC) in the prefrontal cortex, 

which then generates predictions, or hypotheses, and a slower pathway that 

processes detailed information in a standard button-up fashion (V1, V4, 

V5/MT, LOC, IT) (Bar et al., 2006; Torralba, Oliva, Castelhano, & Hen- 

derson, 2006). The gist of an object or scene takes the form of low spatial 

frequency (LSF) information extracted from the sensory signal originating 

in the object or scene. LSF information encodes gross outlines and ob- 

ject contours, whereas high spatial frequency (HSF) information encodes 

sharp edges and fine details. 

To demonstrate that the recognition of isolated objects takes place via 

dual visual pathways, Bar et al. (2006) combined functional magnetic res- 

onance imaging (fMRI), magnetoencephalography (MEG), and a behav- 

ioral task. In the fMRI study, participants were shown images that were 

either unmanipulated or manipulated to contain only LSFs or HSFs. The 

results showed that the LSF image of an object elicited greater activity in 

OFC than the HSF image of that object, although unmanipulated images 

resulted in the greatest increase in OFC activity. Greater OFC activation 

was also observed when an object’s LSF image had multiple interpreta- 

tions compared to just a few, suggesting that the more ambiguous an ob- 

ject’s LSF signal is, the greater the workload for OFC (see also Dall et al., 

2021). In their 2007 study, Kveraga, Boshyan & Bar found that the fast 

pathway is a magnocellular pathway, which projects information from V1 

to OFC via either subcortical projections or the dorsal “visual for action” 

pathway. All the brain’s magnocellular (M) pathways project information 

much faster than its parvocellular (P) pathways, but at the expense of de- 

tailed information. The brain’s visual M pathways process global spatial 

structure, object contours, depth, and motion. 

In the absence of scene context, the inferior part of OFC matches 

the object gist to object templates in long-term memory to find the best 

match or best matches. For example, when the object gist with the mush- 

room contour in Figure 5.4A is matched to object templates in long-term 

memory in the absence of scene context, there is no single best match but 

rather several best matches, such as the object templates for a mushroom, 

a lamp, and an umbrella. 

Although the LSFs projected via the M pathway generate predictions, or 

hypotheses, about the identity of the objects, the HSFs extracted from the 

object and processed bottom-up via the P pathway are typically required 

for the visual system to be able to determine the identity of the object. 

The hypotheses arrive back in the IT cortex temporally prior to the ar- 

rival of the finely detailed bottom-up information, and the fast-arriving 
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Figure 5.4 Three pictures (256 pixels) of familiar objects (A: lamp, B: flower, and 

C: vase) filtered to include only the low frequency spatial components 
(0–4 cycles/picture) 

Source: From Bar (2003) 

 

hypotheses are then compared to the slowly arriving fine-grained infor- 

mation. If there is a mismatch between a hypothesis and the fine-grained 

information, then the fast M pathway sends a prediction error signal to 

OFC, telling it to update the hypothesis. 

Object recognition in real-world scenes proceeds in a similar way. The 

scene gist (i.e., the LSF information extracted from the scene) is projected 

directly from V1 to OFC (Bar et al., 2006) (Figure 5.4). But different parts 

of OFC show selectivity for the gists of objects and scenes. However, the 

inferior part of the OFC shows selectivity for LSFs extracted from images 

of isolated objects, the medial part of OFC responds preferentially to LSFs 

extracted from images of scenes (Aminoff, Kveraga, & Bar, 2013; Bar et al., 

2006). The increased activation of the medial areas of OFC recruits a scene 

template, or what is also sometimes called a context frame, schemata, a 

script, or a frame (Bar, 2004; Friedman, 1979; Palmer, 1975; Schyns & 

Oliva, 1994). Scene templates are structures in long-term memory, which 

store statistical scene regularities and derive from past exposure to similar 

scenes. Once a scene template has been recruited (e.g., a living room scene 

template), associated object templates are rapidly activated, a process that 

provides the platform for predictions of which objects are most likely to 

be found in the scene (e.g., a sofa, a sofa table, a lamp, a television) (Bar, 

2009). Activated scene templates constrain expectations with respect to 

the presence and typical characteristics and location of objects in the scene 

and provide the ability to direct attention in order to shift gaze to relevant 

regions of the scene. The scene template serves as a coarse-grained predic- 

tion about the distal cause of the scene gist. The scene information is then 

projected to the IT cortex, where it awaits the later-arriving HSF signal 

that has been processed bottom-up. 

Suppose the task is to determine the distal cause of the mushroom con- 

tour in Figure 5.4A in the context of a living room. Although multiple 

object templates match the object gist with the mushroom contour when 

processed without a scene gist, one can imagine that only the lamp is a 
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suitable match when the object gist with the mushroom contour is pro- 

cessed together with the gist of a living room. In the envisaged case, the 

gist of a living room recruits a living room scene template in long-term 

memory, which in turn helps narrow down the range of hypotheses about 

the distal cause of the object gist with the mushroom contour to a single 

one (viz., the hypothesis that the distal cause of the gist with the mush- 

room contour is a lamp). Even so, one cannot equate the information pro- 

jected back to IT with perceptual content, as this signal only consists of 

LSF information from the mushroom contour and semantic information 

about a prototypical living room table lamp. But there is obviously more 

to perceptual content than LSF and semantic prototype information. Per- 

ceptual content also contains HSF information, such as information about 

texture, sharp edges, and colors. 

 
5.4 The Predictive Account and Gist Processing 

Let us now turn to one of the problems object recognition presents for the 

predictive approach, viz., that of accounting for gist processing. Recall 

that on the predictive account, the only information that gets relayed up 

through the hierarchy is the prediction error signal, which encodes infor- 

mation about the mismatch between the sensory input and a hypothesis 

about what caused the signal. A prediction error can also be thought of 

as information that has not yet been successfully predicted by the hypoth- 

esis. Prediction error signals carry information bottom-up in the visual sys- 

tem, eliciting an update of the hypothesis, which is then compared to the 

lower level sensory signal. This hypothesis-testing process continues until 

the prediction error is minimized as much as possible. But, as we have just 

seen, the first step in object recognition is not the generation of a hypoth- 

esis but rather the projection of low frequency spatial information – the 

kind of information that encodes holistic layouts and contours of objects – 

from V1 to OFC. This gist of a scene or an object recruits a scene or object 

template encoded in long-term memory. Scene templates and object tem- 

plates serve as hypotheses about the distal causes of sensory information 

about scenes and objects, respectively, where the sensory information at 

this stage is the gist of the object or scene. If a single hypothesis wins out, 

then this hypothesis is matched against the slower arriving, HSF signal, 

which has been processed bottom-up. Hypothesis revision continues until 

the best match has been found. The problem this poses for PP is that the 

projection of the gist of a scene or object from V1 to OFC cannot be con- 

strued as a prediction error signal, as the brain needs to be apprised about 

its surroundings, at least in broad strokes, before it can generate detailed 

predictions about its surroundings. If the brain were to start with a ran- 

domly chosen hypothesis – a random guess – our vision would fail us far 
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more often than it actually does, as correcting the potentially gross error of 

a random guess would be rather time-consuming in most cases. 

Andy Clark uses the following analogy to shed light on the idea of a 

prediction error signal: 

 
[S]uppose you and I play a game in which I (the “higher, predicting 

level”) try to describe to you (the “lower level”) the scene in front 

of your eyes. I can’t see the scene directly, but you can. I do, how- 

ever, believe that you are in some specific room (the living room in 

my house, say) that I have seen in the past. Recalling that room as 

best I can, I say to you “there’s a vase of yellow flowers on a table 

in front of you”. The game then continues like this. If you are silent, 

I take that as your agreeing to my description. But if I get anything 

that matters wrong, you must tell me what I got wrong. You might 

say “the flowers are yellow”. You thus provide an error signal that 

invites me to try again in a rather specific fashion—that is, to try 

again with respect to the colour of the flowers in the vase. The next 

most probable colour, I conjecture, is red. I now describe the scene 

in the same way but with red flowers. Silence. We have settled into a 

mutually agreeable description. (Clark, 2015, p. 5) 

 
The problem with this analogy is that Clark assumes that he (the 

“higher, predicting level”) already believes that he is in a living room, a 

specific living room indeed. He thus skips right over the first (and the 

second) stage of object recognition, that is, he ignores that the sensory sig- 

nal somehow must generate an initial hypothesis, or prediction, about the 

distal cause of the sensory signal. Otherwise, the initial hypothesis is just a 

random guess. If we assume that the sensory signal does not initially help 

shape the formation of a hypothesis, then the game you (the “lower level”) 

play with Clark (the “higher, predicting level”) might well run as follows: 

 
Clark: I don’t really have any idea where you are. But let me just give it a 

shot. You are in a living room in Edinburgh. 

You: You are wrong about “You are in a living room in Edinburgh.” 

Clark:  How wrong? Is it a room in a house? 

You: You are wrong about “You are in a living room in Edinburgh.” 

Clark:  Okay, let me try something more general. You are outside. 

You: [Silence] 

Clark:  Silence means we have settled to a mutually agreeable description. 

Okay, then. You are outside. You are in your yard. 

You: You are wrong about “You are in your yard.” 

Clark:  You are walking your dog. 

You: You are wrong about “You are walking your dog.” 
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Clark:  You are on a beach. 

You: You are wrong about “You are on a beach” 

Clark:  Bloody hell. I give up … 

You: Really! Alright then. I am in the outback of Australia, on a mis- 

sion to extract venom from the deadly eastern brown snake. 

Clark: You’re what? 

 
Granted, people often do know at the top predictive level where they 

are. We bet that you know where you are right now, even without having 

to open your eyes. This much is true. The problem with this rejoinder is 

that object recognition does not require knowing where one is. If you are 

shown slides of different familiar scenes one by one, you can immediately 

identify the scenes and the objects in them without holding any prior be- 

liefs about what the slides might present. The same goes for object recogni- 

tion without a scene context. It is possible to recognize familiar objects in 

isolation of scene context in less than 80 ms without having the slightest 

hint ahead of time as to what the object on the next slide may be (e.g., 

Davenport & Potter, 2004). 

This example merely serves to drive home the point that you need a 

bottom-up signal to present at least a general sketch of the scene or ob- 

ject to the prefrontal cortex, so the decision-making part of the brain can 

generate probable predictions rather than being forced to rely on random 

guesses. But PP encounters further trouble once we consider how it han- 

dles noise, or imprecision, in the sensory input (see also Vance, 2021). 

Noise can be understood as a meaningless discrepancy between the sen- 

sory signal and its distal cause. Externally generated noise in a visual signal 

may be due to poor viewing conditions, such as morning fog, which makes 

sensory signals less reliable. Internally generated noise, by contrast, may 

be due to random deviations in neural firing. 

Within the PP framework, updating a hypothesis is supposed to gen- 

erate a more accurate prediction about the distal cause. Updating a hy- 

pothesis on the basis of a noisy, or imprecise, signal, however, is much 

less likely to give rise to a more accurate prediction. So, PP maintains 

that noisy, or imprecise, signals have much less influence on the updat- 

ing of the brain’s predictions. To accommodate this idea, advocates of PP 

assume that in addition to making hypotheses, or predictions, about the 

distal cause of a sensory signal, the brain also makes predictions about 

how precise the sensory signal is. The greater precision the brain expects, 

the greater the gain on the prediction error signal, and the more weight is 

given to the prediction error in updating the hypothesis. Conversely, if the 

brain expects a noisy, sensory input, then it attenuates the prediction error 

signal, thus inhibiting its influence on the update of the hypothesis. But 

this causes trouble for PP with respect to the gists of scenes and objects. 
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As we have seen, a substantial body of research shows that in real scenes, 

the brain first samples LSF information about a scene and propagates it 

to the prefrontal cortex, where it activates a scene template in long-term 

memory. The scene template then generates a hypothesis about what sorts 

of objects are likely to be present in the scene. When dealing with a fixed 

object, the gist of the object is projected from V1 to the prefrontal cortex, 

which then activates compatible object templates in long-term memory. 

Object gists and scene gists are prime examples of noisy incoming sen- 

sory signals. After all, they are encoded in the form of LSF information – 

information which, by definition, lacks fine details about the object or 

scene. But PP suggests that the brain attenuates noisy, or imprecise, sensory 

signals. If, however, the brain attenuated the gists of objects and scenes, 

then the sensory input would not be able to activate object or scene tem- 

plates in long-term memory. Accordingly, the brain would not be able 

to generate an informed prediction about the distal cause of the sensory 

signal. If, however, sensory signals had not been able to shape predictions 

about their distal causes through gist signaling, then the brain would have 

been forced to rely on pure guesswork, and humans and animals would 

have been unable to perceive objects. The case of object perception thus 

unveils a flaw in PP’s way of dealing with noisy sensory signals. 

At this point, advocates of PP may deny that the gists of scenes and 

objects are noisy sensory signals because they facilitate object recognition. 

This, however, would be an ad hoc maneuver. The gists of scenes and ob- 

jects are paradigm examples of noisy signals. For example, when pictures 

of familiar objects are filtered to include only the LSF components (0–4 

cycles/picture), the objects cannot be recognized with high certainty (Bar, 

2003) (Figure 5.4). When the distal cause is viewed in the absence of a 

scene context, the brain ought to expect the object gist with the mush- 

room contour in Figure 5.4A to lack precision. That is, the brain ought 

to predict that gists are low-precision signals. After all, in the absence of 

scene information, the brain has no basis upon which to give priority to 

the hypothesis that the object gist with the mushroom shape in Figure 5.4A 

was caused by a living room table lamp rather than the hypothesis that it 

was caused by a mushroom or an umbrella. So, the brain ought to predict 

that the object gist in Figure 5.4A is a low-precision signal. But PP holds 

that low-precision signals are attenuated. So, PP wrongly predicts that gist 

signals are attenuated. 

 
5.5 Object Recognition Depends on Attention 

Given that the gist of a scene can be extracted over the course of a sin- 

gle eye fixation, during which all components of the retinal image have 

fixed locations, it may be tempting to think that the scene gist is processed 
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homogeneously across the visual field prior to any involvement of at- 

tention. Recent studies, however, have shown that attention plays a piv- 

otal role in scene gist recognition (Larson et al., 2014; see also Berry & 

Schwartz, 2011)). Although scene gist acquisition occurs within a single 

fixation, covert attention aids in extracting the gist of the scene. Evidence 

shows that masking central vision during the first 50 ms of eye fixation 

interferes with visual tasks, such as reading, visual search, scene memory 

(Võ & Henderson, 2009), and scene gist recognition, whereas masking 

peripheral vision only interferes with visual tasks when it occurs about 70–

100 ms into fixation (Glaholt, Rayner, & Reingold, 2012; Larson et 

al., 2014). This points to the hypothesis that the type of attention that is 

operative during a single eye fixation is zoom-out attention, that is, at- 

tention that is initially focused in the center of the visual field but then 

expands diffusely outward into the visual periphery within the first 100 ms 

of viewing (Figure 5.5). Zoom-out attention is thus a form of (covert) 

spatial attention. 

Once a scene template has been activated, other types of attention de- 

termine where we allocate our resources to object recognition. In a visual 

search task, voluntary attention guides the movement of our eye fixation. 

However, zoom-out attention is operative during each eye fixation. In 

the absence of a perceptual task (e.g., visual search), our attentional re- 

sources are preferentially allocated to the identification of objects within 

our peripersonal space – that is, the region immediately surrounding the 

 

 

 

Figure 5.5 During a single eye fixation, attention is initially focused in the center 
of the visual field but then expands diffusely outward into the visual 
periphery 

Source: From Larson et al. (2014) 
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perceiver, typically within an arm’s reach (for a review, see Castelhano & 

Krzyś, 2020). As a result, objects within peripersonal space are identi- 

fied more accurately (Fernandes & Castelhano, 2019; Josephs & Konkle, 

2019; Man, Krzys, & Castelhano, 2019). This prioritization of informa- 

tion closer to the perceiver is also known as the “foreground bias.” As 

we will explore below, other types of attention can be central to object 

recognition at the stage of hypothesis testing, including attentional cap- 

ture, affect-biased, and cued attention. However, the idea that attention 

facilitates object recognition presents a further problem for the predictive 

account. Before spelling out the gist of this problem, let us first have a 

closer look at how the predictive account handles attention. The original 

proposal, due to Friston, is that attention is the optimization of the ex- 

pected precision of incoming signals (Feldman & Friston, 2010; Friston, 

2009; see also Hohwy, 2013, p. 195): 

 
The Predictive Account of Attention 

 
To attend to a stimulus just is to turn up the gain on expected high- 

precision signals while turning down the gain on other signals. 

 
According to PP, to turn up the gain on an expected high precision 

signal is to enhance the precision of a signal already expected to be highly 

precise. A prediction error signal with an enhanced gain is given greater 

weight in the revision of hypotheses about the visual scene. So, PP holds 

that attention allows a prediction error signal to play a weightier role in 

hypothesis revision. 

However, thus formulated, the PP’s account of attention seems to face 

problems similar to those that fueled the classical debate between early 

(Broadbent, 1958) and late selection (Deutsch & Deutsch, 1963) in at- 

tention, especially to unexpected externally driven salient events like the 

eruption of a sudden fire or a loud noise in a quiet café. Here, a chicken 

and egg problem arises: how can the system reliably expect a high preci- 

sion signal before it knows which object it is processing? One theory that 

provides a highly effective solution to this problem is the theory of visual 

attention (Bundesen, 1990). This theory proposes that we change the way 

we think of the relationship between memory subsystems, so that rather 

than positing that information flows from short-term memory into long- 

term memory; this theory takes information from the environment to be 

matched to mental categories (or templates) in long-term memory (Bun- 

desen & Habekost, 2008). The best match (which could be guided by PP 

principles)4 then competes in a stochastic race for active representation in 

a limited capacity short-term memory, or working memory, store. That 

is, incoming sensory information is compared to long-term memory and 
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then attention prioritizes the most relevant categorizations for encoding 

in short-term memory. Thereby avoiding the problem of how selection can 

occur before objects have been identified (Dall, Watanabe, & Sørensen, 

2016; Brogaard, & Sørensen, 2023). 

The details of the predictive account differ for different types of at- 

tention, specifically for attentional capture, form of exogenous attention, 

and cued spatial and voluntary spatial attention, forms of endogenous at- 

tention. To a first approximation, we can say that attention is exogenous 

when it is automatically drawn toward a target (e.g., a spatial region, 

object, or attribute), whereas attention is endogenous when attention is 

directed toward a target by an internal state (e.g., volition, expectation, 

memory, or emotion), sometimes as a result of processing a cue that aids 

the perceiver in directing her attention to the target. 

In attentional capture, the best known form of exogenous attention, 

attention is grabbed by a stimulus that stands out in some way from its 

surroundings, such as a scream in a relatively quiet coffee shop, or a red 

dot in an array of black dots.5 Attentional capture is thought to be an 

early visual phenomenon, as perceptual features must be processed early 

enough in the visual system for them to attract attention and lead to 

segregation (Beck, 1966; Treisman, 1982). A stimulus captures attention 

when the associated signal is strong compared to other incoming signals. 

But now, advocates of PP argue, a signal can reasonably be assumed to 

be strong due to a higher signal-to-noise ratio compared to weaker in- 

coming signals. Granting this assumption, strong signals are more pre- 

cise than weaker incoming signals. So, according to PP, the visual system 

increases the gain on attention-capturing signals. As PP holds that high 

precision signals have a substantially greater influence on the revision of 

hypotheses than noisy signals, signals associated with attention-capture 

thus lead to a significant revision of the brain’s existing hypothesis about 

its surroundings. 

Next, let’s look at cued spatial attention, one of the most studied forms 

of endogenous attention. A classic paradigm for studying the effect of cued 

spatial attention on the speed of detecting a target object is the Posner par- 

adigm (Posner, 1980). Here, volunteers fixate on a central fixation cross. 

Then a cue appears that points in the direction of the target in 80 percent 

of trials (valid cue) and in the opposite direction of the target in the re- 

maining 20 percent of trials (invalid cue) (Figure 5.6). 

The expected finding in this paradigm is that target stimuli are detected 

faster when a valid cue directs our attention to the target’s spatial location. 

On the predictive account, the appearance of a cue generates a hypothesis 

that a target will appear in the cued spatial region, which increases the 

gain for a high precision signal associated with the target in that region, 

facilitating detection. If the task involves spotting a particular target (e.g., 
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Figure 5.6 Posner paradigm. Valid cues (left) direct attention to the target’s spatial 

location, which allows for faster detection of the target stimulus 

Source: Adapted from Posner (1980) 

 

 
the emotional valence of a smiley, the letter identity, or a Gabor pattern), 

then cued spatial attention facilitates spotting just those targets. 

Voluntary spatial attention, another form of endogenous attention, is 

not directed by environmental cues (e.g., a pointing finger, a gaze, or an 

arrow) but rather by the perceiver’s internal states (i.e., a desire/belief pair, 

an intention, or a volition). Hohwy proposes to treat voluntary spatial at- 

tention as a kind of action used to test a perceptual hypothesis (Hohwy, 

2013, pp. 77–78). The general idea here is that we often try to figure out 

what the world is like by actively engaging in it, for instance, by walking 

closer to a target object or inspecting it from different perspectives. Say 

you expect a wooden construction in front of you to be a real barn but 

want to rule out that it’s a realistic barn facade used in a movie set. You  

can test your “real barn” hypothesis by making a prediction about what 

the sensory signal would be like, if your hypothesis were true. For exam- 

ple, unlike a barn facade, a real barn will keep looking like a real barn if 

you walk around it. So, to test your hypothesis, you can walk around the 

construction. By doing that, you are sampling more data, thus increasing 

the “power” of your study. If your “real barn” hypothesis predicts the 

stimulus well, your walk around the barn will bring about the predicted 

sensory signal, where the predicted sensory signal here is the wooden 

construction still looks like a real barn. In exploratory perception, then, 

the prediction error, or mismatch between the hypothesis and your initial 

sensory signal, is not minimized by revising the hypothesis but rather 

by acting to bring yourself into a situation where your hypothesis will 
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match the sensory signal well, if the hypothesis predicts the stimulus well. 

Hohwy applies this idea of acting to sample additional data to voluntary 

spatial attention. Voluntary spatial attention, he argues, involves acting 

for the purpose of testing your hypothesis (Hohwy, 2013, pp. 197–198). 

But in voluntary attention, the action is not intentional bodily movement, 

but a mental act, a preparedness, to increase the sensory gain on a high 

precision signal if one appears in the sampled region of space. If, for 

example, your hypothesis is that there is a mouse on the kitchen floor, 

your attention to the kitchen floor increases the sensory gain for a high 

precision “mouse” signal in that region, resulting in faster detection if a 

mouse shows up on the floor. Ransom et al. (2017) have recently argued 

that the predictive approach fails to offer a complete account of voluntary 

attention. Their test case comes from Ulric Neisser and Robert Becklen’s 

1975 classical study of “selective looking.” Neisser and Becklen used a 

system of half-silvered mirrors to present two overlapping films of equal 

quality to participants, appearing in the same segment of their visual field. 

One depicted actors playing a hand clapping game, filmed from up close, 

whereas the other depicted actors playing a ball game, filmed from a dis- 

tance (Figure 5.7). 

Neisser and Becklen found that the volunteers were perfectly capable of 

attending to either film, while ignoring the other, and switching their atten- 

tion from one to the other, provided that both films were presented to both 

eyes. Attending both films at once, however, proved to be “demanding” or 

“impossible.” They conclude on the basis of their findings that it is not the 

distance or clarity of a visual stimulus that enables us to selectively attend 

to it, nor a “filter” or “gate” created on the spot, but rather the stimulus’ 

intrinsic properties and structure. The type of attention exemplified in the 

study is voluntary attention, as evidenced by the fact that the volunteers 

 

 
Figure 5.7 Neisser & Becklen’s (1975) “Selective Looking” Experiment. Two 

overlapping films were presented to volunteers, as shown in pane C. 
One film depicted A hand clapping game, as shown in pane A, and 
the other depicted A ball game, as shown in pane B 

Source: From Ransom et al. (2017) 
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could choose to attend to either one of the overlapping films and were able 

to easily switch from one to the other. 

According to Ransom et al. (2017), the kind of voluntary attention 

exemplified in Neisser and Becklen’s study presents a problem for the pre- 

dictive model. The kind of voluntary attention that determines whether a 

subject is attending to the hand clapping game or the ball game is volun- 

tary object attention, where the object is the depicted game. But advocates 

of the predictive account do not say how we are to understand voluntary 

object attention. Hohwy (2013), for example, only explains how PP would 

deal with voluntary spatial attention for enhanced target detection. Ran- 

som et al. (2017) thus consider and ultimately reject several ways that 

advocates of PP could accommodate voluntary target attention. The gist of 

their argument, however, is this: the participants in Neisser and Becklen’s 

experiment can voluntarily attend to either one of the two overlapping 

stimuli. But the stimuli differ only in intrinsic features; the signals associ- 

ated with the stimuli do not differ in context-dependent precision. For ex- 

ample, it is not the case that the hand clapping game is presented in foggy 

conditions and that the associated sensory signal therefore is less precise; 

and there is no reason to think the volunteers expect otherwise. 

In response to Ransom et al. (2017), it may be argued that rather than 

being a perceiver-independent matter, the participants’ expectations re- 

garding the precision of the sensory signals on which stimulus they choose 

to attend to. This objection, however, is misguided. If the expected preci- 

sion of the sensory signal depends on what the volunteers voluntarily at- 

tend to, then – on pain of circularity – PP cannot account for voluntary 

attention in terms of expected precision. Clark (2017) nonetheless insists 

on something like this response to Ransom et al. (2017). According to 

Clark, the participants’ voluntary switch in attention should be cashed out 

in terms of their desires, which in turn are to be understood in terms of 

their predictions about what they will do. As he puts it, 

 
[D]esires are simply beliefs/predictions that thus guide inference and 

action (see Friston et al., 2011, p. 157). My desire to drink a glass of 

water now is cast as a prediction that I am drinking a glass of water 

now – a prediction that will yield streams of error signals that may 

be resolved by bringing the drinking about, thus making the world 

conform to my prediction. Desires are here re-cast as predictions apt 

to be made true by action. 

 
Thus consider the prediction (based on some standing or newly 

emerging belief) that I will now experience, say, the hand-clapping 

film. This would enslave action, including the ‘mental action’ of 

altering the precision-weighting on hand-clappy stuff. In this way 
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desires and motivations are revealed as beliefs that enslave action. 

The apparently non-indicative nature of a thought such as ‘let’s have 

a look at the hand-clap film’ is now no barrier. For the real con- 

tent of the thought, as far as the PEM mechanism is concerned, is 

indicative – it is something like “I am looking at the hand-clap film 

now.” (Clark, 2017, p. 117) 

 
However, Clark’s fix simply re-introduces the worry of circularity. 

Clark’s suggestion boils down to this: a participant S attends to a stimulus 

(the ball game, say) just in case S expects the associated sensory signal to 

be a high precision signal, but the associated sensory signal is a high preci- 

sion signal just in case S predicts that S attends to the stimulus. So, S at- 

tends to the ball game stimulus just in case S predicts that S attends to the 

ball game stimulus. The predictive account of attention thus presupposes 

an account of attention. 

In a more recent paper, Ransom et al. (2020) argue that PP also fails 

to account for affect-biased attention, that is, attention to stimuli that are 

emotionally, or affectively, salient as a result of their associations with 

reward or punishment. Their main example of affect-biased attention runs 

as follows: 

 
Suppose you walk your dog uneventfully every day past a house on 

the corner of your block. One morning, however, a large Doberman 

rushes to the fence, barking and snapping. You jump backwards and 

for a moment you fear for your life. From this day forward, you give 

this house a bit of extra attention when you walk past, your eyes 

always searching the fence for signs of the Doberman, though it is 

seldom in fact in the yard. (Ransom et al., 2020, p. 1) 

 
Your increased attention to the yard subsequent to your initial encoun- 

ter with the Doberman is not obviously stimulus-driven, or exogenous. The 

yard presumably triggers a flashback, an affect-laden memory, which then 

causes you to pay closer attention to the yard. Affect-biased attention is 

thus a kind of endogenous attention. 

Ransom et al. (2020) argue that affect-biased attention cannot be under- 

stood in terms of expectations of a high precision signal, as PP suggests. In 

the envisaged case, you eventually learn that the Doberman rarely is in the 

yard. So, your attention to the yard cannot be explained by your expecta- 

tion that the Doberman will be causing a high precision sensory signal. 

Rather, it seems that your affect-laden memory of the aggressive dog plays 

a part in explaining your attention to the yard. Ransom et al. (2020) sug- 

gest that it’s your desire to shun the yard-associated punishment that drives 

your attention to the yard, where the yard-associated punishment is the 
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Doberman lunging at you. The predictive account thus yields the wrong 

result here, viz. that you attend to the yard because you expect a high pre- 

cision “Doberman” signal there. Ransom et al.’s (2020) objection points 

to a more general problem with PP: suppose you step out of the car and 

jump to the side because it looks like there is a snake under the car. Upon 

further scrutiny, however, the snake-shaped object is just a stick. Here, the 

mistaken categorization occurs because if the stick had been a snake, this 

would be a potentially dangerous situation. This is so, in spite of the fact 

that you have encountered far more sticks than snakes and therefore should 

have a higher prior for categorizing the stimulus as a stick. 

The problems voluntary object attention and affect-biases attention 

present for the predictive account are augmented by the role that these 

types of attention may play in object recognition. While a scene hypothesis 

is activated within the duration of a single eye fixation, which information 

is processed bottom-up depends on which object is attended. In a visual 

search of a complex scene, voluntary attention partially guides eye move- 

ments, whereas zoom-out attention covertly scans a spatial region from 

the visual center to the periphery. The visual search results in the selection 

of an object. If the scene contains a visually salient object (e.g., a colored 

object in a black-and-white scene), attentional capture results in a selec- 

tion of the object. Cued and affect-biased attention could also be what 

drives the selection of an object. Unless an object is selected, however, 

the object will appear as a diffusely attended blob with features that are 

insufficient for confident identification. Attention is thus a precondition 

for object recognition. Yet, as we have already seen, the predictive account 

fails to provide a satisfactory account of at least two forms of attention 

that may assist in the selection of an object, viz. voluntary object attention 

and affect-biased attention (Ransom et al., 2017, 2020). 

The predictive account also lacks the resources to account for the zoom- 

out attention that occurs during scene gist recognition. Recall that over the 

course of an eye fixation, which takes around 100 ms, attention is initially 

highly focused at the center of the visual field and then covertly diffuses 

from the center to the periphery (Glaholt et al., 2012; Larson et al., 2014). 

This zoom-out attention also operates during each eye fixations in sac- 

cades and visual searches of complex scenes at later stages in the process 

of object recognition. 

The predictive account construes attention as turning up the gain on an 

expected high precision signal, but although expectations modulate atten- 

tion (Sørensen et al., 2015; Vangkilde, Coull, & Bundesen, 2012), scene 

gist extraction seems to occur during a single eye fixation and depends 

on zoom-out attention (Larson et al., 2014). Nevertheless, in zoom-out 

attention, covert attention is diffusely distributed around the visual center 

for about 50–75 ms of eye fixation, and it then diffusely expands outward 
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during the subsequent 25–50 ms of fixation. During initial zoom-out at- 

tention, the visual system expects a low-precision LSF signal extracted 

from the scene, not a high-prediction signal. As the system does not expect 

a high precision signal, it should not turn up the gain on the signal, and 

so, PP is unable to accommodate zoom-out attention; PP thus lacks the 

resources to account for object recognition on multiple levels. 

 
5.6 The Dark Room Problem 

The main problem with PP, as we have seen, lies in its excessive emphasis 

on top-down predictions. However, you can have too much of a good 

thing. So, perhaps an easy fix is to tone down the emphasis on top-down 

predictions. One option is a proposal that replaces prediction error min- 

imization with the ratio of top-down processes to bottom-up processes 

as the overarching unifying principle (TD:BU ratio) (Herz et al., 2020). 

Top-down predictions guide the bottom-up signals by enhancing expected 

signals and inhibiting unexpected signals, whereas bottom-up processes 

are free of top-down guidance (or disturbances). The ultimate perceptual 

output is shaped by the TD:BU ratio. 

As argued by Herz et al. (2020), different states of minds lead to differ- 

ent TD:BU ratios, including different moods, attentional scopes, and think- 

ing styles. A broader thinking style, for example, entails a lower TD:BU 

ratio. Reduced guidance and inhibition by top-down processes enables in- 

creased associative activation and non-linear thought processes. Narrower 

thinking, by contrast, is linked to a higher TD:BU ratio. The increased 

top-down processing helps prevent distraction by competing thoughts, in- 

hibits free associative activation, and thus results in a narrower and more 

ruminative style of thinking (e.g., Smith & Alloy, 2009).6
 

The state of mind framework may help address the so-called dark room 

problem for PP (Klein, 2018; Mumford, 1992; Sun & Firestone, 2020). 

The gist of the dark room objection is that if PP is right that the principle 

of prediction error minimization lies at the heart of all of our mental pro- 

cesses, then we should be biologically driven to stay inside a dark room. 

The dark room that drives the objection is not just pitch-dark, but also 

quiet, non-smelly, unfelt, and so on.7 So, inside the dark room, no sensory 

inputs from the environment reach us. With no sensory inputs entering our 

brain, there cannot be a mismatch, or prediction error, between sensory in- 

puts and our predictions about our environment. As long as we stay inside 

the dark room, no evidence could ever cause us to update our predictions. 

No matter how tame or wild we predict that the dark room really is, our 

predictions go unchallenged. So, staying in the dark room seems to be a 

much more effective way of minimizing prediction errors than entering the 

outside chaotic world (however, see also Van de Cruys, Friston, & Clark, 
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2020). But, as a matter of fact, we do not stay in a dark room, in fact most 

seem motivated to gather in “noisy” cities. So, taking the prediction error 

minimization principle to be fundamental to our brain and mind, as PP 

does, seems misguided. 

This is not the place to consider PP’s replies to the dark room problem.8 

It should, however, be clear that if we take the TD:BU ratio to explain the 

mind, then the dark room problem no longer rears its shady head. Rather, 

if the mind operates in different modes, involving different TD:BU ratios, 

then staying in a dark room should be appealing to us only when we are 

in a hyper-narrow state of mind entailing a sky-high TD:BU ratio – the 

TD:BU ratio characteristic of people in depressive states characterized by 

complete apathy. 

The states of mind proposal can be seen as an augmentation of PP, 

but it should be emphasized that accepting the states of mind proposal 

entails denying some of the central claims made by PP, for instance, that 

prediction error signals are the only signals processed bottom-up and that 

prediction error minimization is the overarching principle explaining all 

our mental processes. 

 

Notes 

1 Predictive processing is far from the only Bayesian approach to the brain and 
cognition. For a review of Bayesian approaches, see, e.g.,Talbott (2016), Spra- 
tling (2017). 

2 While perceptual states are the product of unconscious, subpersonal infer- 
ences, mental states themselves, including judgment and desire, are personal- 
level states (Clark, 2020; Wiese & Metzinger, 2017). 

3 For the original demonstration, see KSU, Vision Cognition Laboratory, https:// 
www.k-state.edu/psych/vcl/images/beach%20loop.gif, retrieved Oct 31, 2018. 

4 TVA assumes that sensory evidence matched with templates in long-term 
memory provides the initial basis for stimulus encoding that is modulated by 
additional top-down mechanisms of pertinence and bias. However, the specific 
mechanism in this template matching procedure is not entirely clear, and we 
propose that PP could in fact be that exact mechanism. Thus, PP may be a key 
mechanism in perception, but not an exclusive unified mechanism in percep- 
tual processing. 

5 It may be argued that attentional capture is the only form of exogenous atten- 
tion. However, here we leave room for other forms of exogenous attention, 
for example, stimulus-driven diffuse attention and what Azenet Lopez (2020, 
ch. 4) calls “spillover attention.” According to Lopez, spillover attention is at- 
tentional allocation to a vicarious or secondary target, such as the bearer of a 
feature in the case of feature attention (for the most recent version of her view, 
see Lopez, 2022). The most intuitive cases of spillover attention are instances 
of endogenous attention. But given that attentional capture entails attentional 
selection, presumably spillover attention could be exogenous as well. 

6 For a review of the relationship between rumination and depression, see, e.g., 
Thomsen (2006). 

http://www.k-state.edu/psych/vcl/images/beach%20loop.gif
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7 On Mumford’s (1992) variation on the dark room problem, you are to envis- 

age a place, “like the oriental Nirvana … when nothing surprises you and new 
stimuli cause the merest ripple in your consciousness” (1992, p. 247, fn. 5). 
Here, there are sensory inputs, but they don’t move you the least bit. This 
version of the dark room is more akin to a depressive state characterized by 
complete apathy. 

8 Sun and Firestone (2000) argue that various intuitive responses to the dark 
room problem ultimately fail. For example, it’s highly predictable that we will 
get hungry in the dark room, but as Klein (2018) notes “predicting hunger is 
not the same as being motivated by it.” Sun & Firestone acknowledge that 
Friston’s (2013) reply succeeds in solving the problem but only by introducing 
a new one. Friston argues that the dark room problem rests on the mistaken 
assumption that the dark room is not surprising. As he puts it, “the state of a 
room being dark is surprising, because we do not expect to occupy dark rooms.” 
The problem with this reply, Sun & Firestone argue, is that it makes PP trivi- 
ally true, as no behavior can count as evidence against the view: “Why do we 
dance? Because we predict we won’t stay still. Why do we donate to charity? 
Because we predict we will do good deeds. Why do we seek others? Because 
the brain has a prior which says ‘brains don’t like to be alone’” (pp. 347–348). 
See also Kwisthout et al. (2017), who present an interesting variation on the 
dark room problem based on the idea that coarse-grained predictions are more 
likely to minimize prediction error than fine-grained predictions. 
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