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Abstract:  The functionalist approach to kinds has suffered recently due to its association with law-based 

approaches to induction and explanation.  Philosophers of science increasingly view nomological 

approaches as inappropriate for the special sciences like psychology and biology, which has led to a surge 

of interest in approaches to natural kinds that are more obviously compatible with mechanistic and model-

based methods, especially homeostatic property cluster theory.  But can the functionalist approach to 

kinds be weaned off its dependency on laws?  Dan Weiskopf has recently offered a reboot of the 

functionalist program by replacing its nomological commitments with a model-based approach more 

closely derived from practice in psychology.  Roughly, Weiskopf holds that the natural kinds of 

psychology will be the functional properties that feature in many empirically successful cognitive models, 

and that those properties need not be localized to parts of an underlying mechanism.    

I here skeptically examine the three modeling practices that Weiskopf thinks introduce such non-

localizable properties:  fictionalization, reification, and functional abstraction.  In each case, I argue that 

recognizing functional properties introduced by these practices as autonomous kinds comes at clear cost 

to those explanations’ counterfactual explanatory power.  At each step, a tempting functionalist response 

is parochialism:  to hold that the false or omitted counterfactuals fall outside the modeler’s explanatory 

aims, and so should not be counted against functional kinds.  I conclude by noting the dangers this 

attitude poses to scientific disagreement, inviting functionalists to better articulate how the individuation 

conditions for functional kinds might outstrip the perspective of a single modeler. 

 

I.  Introduction 

 

The very label ‘functional kind’ can seem an oxymoron, implying a curious mix of similarity and 

dissimilarity.  On the one hand, to form a kind, a category’s members must share a set of common 

properties, traits, or structures.  On the other hand, for a kind to be purely functional, these characteristic 

similarities must consist only in the activities, processes, or roles that category members perform, and 

those functional profiles must be implementable by significantly dissimilar mechanisms.  It may seem a 

cosmic coincidence that a reliable ability to perform the same function could arise in different systems 

without that ability being grounded in similar underlying structures. Nevertheless, that the world in which 
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we live is arranged in just this way is, functionalists claim, one of the most important empirical 

discoveries of the “special sciences” like psychology, biology, and economics.  

The classic arguments in favor of functional kinds presuppose a nomological approach to induction 

and explanation.  Briefly, the claim was that the special sciences have discovered many laws holding 

between functionally-defined categories, so taking these sciences seriously requires us to acknowledge 

their purely functional kinds.  Grounded as it is in an appeal to scientific fidelity, the classic functionalist 

program has been embarrassed by a growing consensus in philosophy of science that this nomological 

interpretation of the special sciences is untenable.  The special sciences are not in the business of 

discovering and confirming laws, this emerging consensus holds, but rather models or mechanisms.  To 

address this weakness in the program, Dan Weiskopf (2011a; 2011b; forthcoming) has recently offered an 

impressive reboot by reformulating functionalism on a more adequate model-based approach to induction 

and explanation.   

Here, I explore some of the challenges facing this “new functionalism” about kinds.  The general 

worry is that models provide a less stable foundation for scientific taxonomy than laws.  Laws, if true, are 

general and eternal, whereas models provide a more partial, provisional, inconsistent, and idiosyncratic 

purchase on the systems they describe. By contrast, the label ‘natural kind’ is an honorific reserved for the 

lynchpins holding together progressive stages of scientific investigation.  Epistemic factors can be 

recognized in the individuation of kinds, but kinds should also float somewhat free from them, and their 

study—from a variety of epistemic perspectives—should continually reveal more about the world’s 

explanatory structure as their nature is iteratively elaborated by progressive research programs.  The more 

evidence we have that a category will be conserved and regarded as important in future explanations, the 

stronger should be our conviction that it is a natural kind; and conversely, evidence that it will not be 

conserved or does not explain as well as alternatives should weaken our belief that it is a natural kind.  A 

key question, then, is whether we have good evidence that the functional properties featuring in 

successful cognitive models support the relevant sort of explanatory stability. 
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In this paper, I review reasons to worry that they do not.  Whereas Weiskopf (2011b) focuses his 

defense of functional kinds against reductionists like Polger and Kim, I will here weigh it against 

mechanistic approaches to kinds as outlined by figures like Boyd (1991, 1999), Machery (2004), and 

Griffiths (1997).  Functionalists and mechanists here share many methodological commonalities; they 

both think that kinds are typically discovered by breaking the activity of a complex system down into 

interactions amongst simpler activities.  A key contrast, however, concerns the question of an additional 

causal criterion for kindhood:  mechanists require that kind members nonaccidentally exhibit their shared 

functional profiles due to the operation of a shared underlying mechanism, whereas functionalists deny 

that members of a kind need to share any underlying structure.
1
  Indeed, Weiskopf holds that many 

functional kinds cannot be located in parts of an underlying mechanism at all, so there would not even be 

a place where such an influence could be expressed.  Thus, if successful explanations in the special 

sciences routinely featured such nonlocalizable kinds, this would provide strong evidence against the 

mechanistic approach to kinds. 

After providing some conceptual background (Section II), I skeptically examine this evidence by 

reviewing the three types of modeling activity that Weiskopf thinks introduces nonlocalizable functional 

categories:  fictionalization, reification, and functional abstraction (Section III).  Against these three types 

of modeling activity as a source of natural kinds, I offer two different styles of argument (Section IV).  

Concerning fictionalization and reification, I concede that these models are distinct from mechanistic 

models, but argue that interpreting fictions or reifications as natural kinds comes with clear costs in terms 

of those models’ counterfactual power—counterfactual power being an ecumenical “currency” that both 

functionalists and mechanists value and by which competing explanations can be ranked.  Functional 

abstraction, on the other hand, can be considered a legitimate source of kinds, but only on the condition 

                                                           
1
 In principle, mechanism vs. functionalism about explanation and mechanism vs. functionalism about kinds are 

independent questions; one could be committed on one dispute and agnostic on the other.  But mechanism about 

kinds fits most naturally with mechanism about explanation, because of their common emphasis on localization in 

an underlying mechanism. 
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that the functionally abstract models be interpreted as “templates” that could be elaborated into a more 

complete mechanistic model.
2
   

The conclusion of this latter argument is consistent with the assessments of Craver & Piccinini 

(2011) and Kaplan & Craver (2011) that functional models are mechanism sketches, but I arrive at this 

conclusion from within Weiskopf’s defense of functional abstraction.  I conclude (Section V) by 

suggesting an alternative emphasis for future work on functional kinds:  the need to elaborate their 

individuation conditions beyond mere functional profiles so that their natures can productively be the 

subject of sustained empirical disagreement.  The failure of these three etiologies for nonlocalizable kinds 

does not in itself vindicate mechanism about kinds; but it removes a key piece of evidence against it, and 

in each case the deficiencies of functionalism accentuate the strength of the mechanistic alternative. 

II. Historical background:  Fodorian Foundations   

Natural kinds, compared to other classes, are scientifically precious.  Consider some non-natural 

categories:  the set of objects that are grue, non-ravens, or less than two kilometers from the Eiffel Tower.  

While the definitions of these classes are clear enough to tell us what is in or out of their extensions, they 

are not suitable categories for scientific research, for they carve up the world in relatively arbitrary ways.  

Kinds, by contrast, are useful for sciences to track, for their boundaries correspond to important structural 

divisions in the world.  A theory of kinds can be distinguished by its accounts of (1) the nature of these 

structural breaks and (2) how we come to know whether a proposed class division corresponds to one. 

 For the latter half of the twentieth century, the notion of a natural kind was closely tied to the 

notion of a natural law.  The connection arose from attempts to address the problems of induction, filtered 

through Goodman’s analysis of projectible predicates.  In this tradition, kinds are useful to science due to 

their inductive potential; if predicates A and B pick out kinds, and we observe some sample of As causing 

Bs, then we are justified in taking these observations to confirm a law of the form AB.  Quine (1969) 

                                                           
2
 As we will see, we need to distinguish two different notions of “complete” here.  In the first sense, an explanation 

is complete if it is maximally detailed (it omits no relevant specifics).  In the second sense, an explanation is 

complete if it is unlikely to be revised in future iterations of a progressing research program.  Both senses may be 

relevant to kindhood, and both will be considered below. 
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influentially suggested that natural kinds confirm inductions in this way because members of natural 

kinds are united by a deep underlying similarity—i.e., if A is a natural kind, then the observed As are 

likely to resemble the unobserved As in scientifically-relevant respects.  While defining laws in terms of 

kinds, and kinds in terms of similarity, Quine worried that he could not reduce similarity to any “less 

dubious notion” like logic or set theory.  He thus left us with a tangle of important and interrelated ideas, 

but no clearer independent purchase on any of them. 

 Natural kind theorists after Quine recommend different strategies to untie this knot.  

Microessentialists appeal to other, “lower-level” sciences, on the assumption that members of natural 

kinds possess shared essences that serve as necessary and sufficient conditions for kind membership.  

While microessentialism might have seemed plausible for some paradigm examples like “water = H2O”
3
, 

it is not a viable approach in the special sciences, since consensus holds that special science kinds lack 

necessary and sufficient conditions.  Homeostatic property cluster (HPC) theorists instead hope to 

exchange Quine’s primitive appeals to similarity for a more precise notion of homeostatic property 

clustering secured by shared underlying mechanisms.  According to HPC theory (most associated with the 

work of Boyd—1991, 1999), a kind is the maximal class whose members non-accidentally share a large 

set of scientifically interesting properties due to the operation of at least one shared causal mechanism—

but crucially, no property or even subset of properties need be regarded as necessary for kind 

membership. 

 Functionalists about kindhood reject an assumption shared by both of these approaches:  that an 

underlying structure or mechanism need be common amongst all members of a kind.  They worry that this 

assumption flies in the face of an obvious truth about kinds in the special sciences:  that they can be 

realized or implemented by significantly different kinds of underlying mechanism.  Consider Fodor’s 

classic appeal to Gresham’s Law, or the economic principle that “good money drives out bad” (1974, 

124).  ‘Money’ is here taken to name a natural kind; but it is, he thinks, wholly implausible that all the 

                                                           
3
 However, without significant complications, microessentialism is probably not even plausible for ‘water’; see Van 

Brakel (2000) and Needham (2011). 



6 
 

various forms of money—dollars, personal checks, wampum, and so on—share any lower-level 

description.
4
  Given the apparent implausibility of lower-level criteria for special science kinds, 

functionalists instead suppose that the special sciences enjoy taxonomic “autonomy”—that the kinds of a 

special science do not depend upon the kinds of any other science for their legitimacy, utility, or reality.  

Multiple realizability and autonomy are today much more controversial than they once were; but since 

mountains of literature are now devoted to these topics (see Bickle 2010 for a review), I propose to set 

aside these debates at present and focus more directly on the implications these doctrines hold for the 

functionalist’s criterion for kindhood, which has received less sustained attention.   

 The most influential functionalist criterion is also due to Fodor, who suggested that we reverse 

Quine’s direction of dependency by taking special science laws as primitive and defining special science 

kinds as those categories that feature in many well-confirmed special science laws.  On this view, it is a 

brute fact about nature—a fact empirically discovered in the special sciences—that types of state or event 

can feature in macro-level regularities without those regularities being reducible to or secured by any 

shared micro-level regularities.  We may have the metaphysical intuition, Fodor concedes, that there must 

be some deeper explanation as to why some classes feature in many special science laws and others do 

not.  Fodor’s diagnosis is that this intuition merely reflects the hope that “ontological transparency” will 

win out over “empirical generality” (1997, 161)—but God could have made the world any way he liked, 

and the special sciences have revealed that we happen to live in a world where many real, empirical (non-

analytic) nomic relations hold amongst multiply realized kinds.    

Thankfully, the debate over this interpretation of evidence in the special sciences need not 

concern us here, for the new functionalists like Weiskopf reject the nomological criterion of kindhood on 

which it was based.  Before moving on, however, it is important to note the elegance of Fodor’s position, 

which comprises a set of interrelated and mutually-supporting theses: 

                                                           
4
 Viewed by today’s lights, there are obvious problems with this classic example:  it narrowly targets the Nagelian 

bridge-law program, whereas more permissive accounts of interlevel kind criteria (e.g. the HPC view) are more 

promising; and Fodor requires that all examples of money share intrinsic physical similarities, whereas what it is to 

be money may depend on extrinsic psychological or institutional relations, which are permitted by some mechanistic 

accounts of natural kinds (e.g. the HPC view).  
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1. The autonomy of the special sciences 

2. The multiple realizability of special science kinds 

3. A nomological approach to induction and explanation 

4. A nomological criterion for kindhood 

 

However, other than a few dynamicists (e.g. Walmsley 2008)—unlikely allies for Fodorians—

philosophers of the special sciences now consider the nomological approach highlighted in planks 3 and 4 

to be dead in the water.  As a result, these aspects of the functionalist program must be abandoned. 

However, jettisoning the nomological criterion of kindhood puts special pressure on the functionalist 

approach to kinds, for the most popular alternative criteria are variants of the mechanistic approach (e.g., 

HPC theory).  Functionalists cannot simply adopt the mechanist’s criterion, for the requirement that kinds 

share some underlying mechanistic structure appears to be at odds with the remaining planks of the 

functionalist program, autonomy and multiple realizability.  It is thus no easy task to rebuild the 

functionalist theory of kinds while retaining the core ideas which originally inspired it.  

III. Weiskopf’s New Functionalism 

A concerted campaign to reform the functionalist approach to kinds has been mounted recently by 

Dan Weiskopf.  In a series of papers, Weiskopf (2011a, 2011b, forthcoming) has sketched a new 

functionalist approach that replaces Fodor’s nomological commitments with a model-based foundation 

more obviously relevant to psychology’s actual methodology.  Weiskopf’s reboot begins with the 

observation that psychology is characteristically in the business of devising and testing models, rather 

than laws.  Crucially, Weiskopf denies the claims of Craver (2007), Piccinini & Craver (2011), and 

Kaplan & Craver (2011) that psychological models should always be construed as sketches of neural 

mechanisms.  The cognitive models that Weiskopf takes to be stock-and-trade of psychological 

explanation are, he concedes, like models of mechanisms in many ways; most notably, they decompose 

complex capacities into a series of subcapacities that, when interacting together in the right way, can 

produce the explanandum.  However, Weiskopf denies that the functional categories featuring in many 

successful cognitive models can be localized to parts of an underlying mechanism.  Since localization is 
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an essential feature of mechanistic explanation, he concludes that these models cannot be regarded as 

mechanism sketches.    

The models that interest Weiskopf are those that explain psychological capacities in terms of 

other psychological capacities.  In particular, they explain representational capacities in terms of 

interactions amongst other, usually more basic representational capacities.
5
  As Weiskopf puts it, such 

models specify “the set of representations (primitive and complex) that the system can employ, the 

relevant stock of operations…, the relevant resources available and how they interact with other 

operations, [and] how they are organized to take the system from its inputs to its outputs” (2011a, 323).  

Weiskopf focuses on three examples of such cognitive models:  Hummel & Biederman’s (1992) geon-

based model of object recognition, Kruschke’s (1992) exemplar-based model of categorization, and Love 

& Gureckis’ (2004; 2007) cluster-based models of categorization.   

For present purposes, the most interesting aspect of Weiskopf’s platform is the space it opens up 

for a novel functionalist criterion for kindhood.  Specifically, just as Fodor holds functional kinds to be 

classes that stand in many well-confirmed special science laws, Weiskopf holds functional kinds to be 

“abstractly defined functional categories [that] earn their credentials by participating in a range of models 

that are themselves empirically validated” (2011b, 251).  On this approach, a class K becomes a 

psychological kind not by featuring in many psychological laws, but rather by featuring in many 

successful cognitive models that apply to many distinct types of cognizer.  Weiskopf offers several 

examples of functional properties that would be considered kinds on his view, including central pattern 

generators, memory buffers, and analog accumulators. These classes count as natural kinds on Weiskopf’s 

view because they turn up so often in successful cognitive models, despite the fact that there does not 

appear to be any common neural mechanism that realizes them in each system that these models correctly 

describe.  (Mechanists about kinds, by contrast, would require the additional constraint that these realizers 

                                                           
5
 In this paper, when I write of “cognitive models” I am using the label as a technical term as defined by Weiskopf; I 

here take no stand on whether non-representational models should be regarded as ‘cognitive’ in any other sense. 
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nonaccidentally implement those functional profiles due to the operation of some shared causal 

mechanism.)   

Notably, Weiskopf’s reboot—like the nomological approach he aims to supplant—honors both 

the doctrines of multiple realizability and taxonomic autonomy.  Weiskopf’s functional kinds are multiply 

realizable, because the models in which they feature may correctly apply to many different kinds of 

underlying mechanism.  Central pattern generators (CPGs) are his best-worked out example on this point; 

according to Weiskopf, CPGs can be functionally defined as “units that produce regular oscillations 

endogenously or in response to input”; but they can be assembled out of such diverse mechanisms as 

“multi-neuron arrays of varying sizes using inhibitory interneurons, or out of local dendrodentritic 

connections…[which] differ in their size, location, temporal characteristics, and many other 

physical/neural properties” (2011b, 247-248).  Moreover, on Weiskopf’s view classes such as CPGs are 

functionally-defined and depend for their natural kind status only on the success of the models in which 

they appear, and so also enjoy taxonomic autonomy from other sciences.  The models in which they 

feature are pitched entirely at the psychological level of description, and their empirical utility can (at 

least in principle) be confirmed using psychological methods of investigation alone.
6
 

Weiskopf thus offers a package of views on kinds and explanation in the special sciences that 

parallels that of Fodor, but is substantially improved by being more obviously compatible with paradigm 

examples of inductive and explanatory practice in (at least) psychology.  This package includes: 

1. The autonomy of special sciences 

2. The multiple realizability of special science kinds 

3*.  A model-based approach to induction and explanation 

4*.  A model-based criterion for kindhood 

 

A corollary of the package’s novel criterion for kindhood is that it will produce a novel list of kinds when 

applied to putative explanations in the special sciences.  A substantial benefit of Weiskopf’s approach is 

that the literature’s tired examples of robot and Martian pain can now be set aside, replaced by a set of 

more relevant categories like CPGs, lateral inhibition, and memory buffers.  However, we should subject 

                                                           
6
 Weiskopf concedes that psychology may make use of neural evidence (i.e. he does not endorse a strict reading of 

evidential autonomy—see Weiskopf, forthcoming), but only as a guide to or proxy for psychological findings. 
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this novel list of kinds to careful scrutiny to determine whether these new functional kinds satisfy 

traditional constraints on kindhood.   

 Perhaps the most important of those traditional constraints is that kinds must be explanatory; 

Weiskopf thus needs to rebut Craver’s, Kaplan, and Piccinini’s arguments that all functional models are 

either mechanism sketches or fail to explain.  The argument appears in a variety of forms, but for present 

purposes Weiskopf’s summary (2011a, 319) will do: 

1. Functional explanations are nonlocalized.
7
 

2. Nonlocalized explanations provide only a redescription of the phenomenon or a how-possibly 

model. 

3. Redescriptions and how-possibly models are not explanatory. 

4. So [functional] explanations are not explanatory. 

 

In his defense of functional explanation (2011a)—and so, derivatively, his defense of functional kinds 

(2011b)—Weiskopf challenges the second premise of the argument.  He aims to establish that functional 

kinds can contribute to genuine explanations that do not reduce to either redescriptions of phenomena or 

how-possibly (i.e. incomplete mechanist) models. 

To this end, Weiskopf describes three types of modeling activity that can provide genuinely 

explanatory but not fully localizable model components:  fictionalization, reification, and functional 

abstraction.  First, fictionalization involves “putting components into a model that are known not to 

correspond to any element of the modeled system, but which serve an essential role in getting the model 

to operate correctly” (2011a, 331).  Second, reification is the “act of positing something with the 

characteristics of a more or less stable and enduring object, where in fact no such thing exists” (2011a, 

328).  Third, functional abstraction occurs “when we decompose a modeled system into subsystems and 

other components on the basis of what they do, rather than their correspondence with organizations and 

groupings in the target system” (2011a, 329).  According to Weiskopf, models containing components 

introduced by fictionalization, reification, and functional abstraction can satisfy norms of good 

                                                           
7
 Craver and Weiskopf actually use the word ‘noncomponential’ here, but since Weiskopf later writes about the 

functional components of models that are noncomponential in this sense (a practice I follow here), I have used the 

word ‘nonlocalized’ to avoid confusion. 
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explanation, and so functional properties picked out by those components should be considered genuinely 

explanatory kinds even when they do not map onto any parts of a shared underlying mechanism.   

The norms to which Weiskopf alludes are derived from Craver’s analysis of mechanistic 

explanations (albeit with some reinterpretation and critique—Weiskopf 2011a, 315-318).  First, models 

should be well-confirmed; ceteris paribus, a model that is better supported by the available evidence is to 

be preferred.  Second, models should be representationally accurate; ceteris paribus, a model that 

includes only elements that are real parts of a system, and that describes those parts more specifically—so 

far as the parts and the level of specificity are relevant to our explanatory purposes—is to be preferred.  

Third, models should be genuinely explanatory (as opposed to merely phenomenologically accurate); 

ceteris paribus, the model that can answer more counterfactual, what-if-things-had-been-different 

questions (which may include—but don’t on Weiskopf’s view, necessarily include—questions about the 

effects of interventions) is to be preferred.   Lastly, Weiskopf suggests that models should be well-

integrated; ceteris paribus, the model that coheres better with general background knowledge is to be 

preferred. 

So interpreted, Weiskopf is correct that functional models are evaluable along all these dimensions; 

but mere evaluability is not sufficient to establish the taxonomic stability of the relevant functionally-

defined properties.  Mere evaluability along these dimensions is consistent with functional models always 

ranking lower than nearby localized alternatives that satisfy them better and thus are to be preferred.  

Indeed, Craver’s “mechanism sketches” arguments (e.g. Craver 2007, p130-131) could be reconstrued to 

conclude not that functionalists cannot make any of the relevant distinctions between explanations and 

pseudoexplanations, but rather that for every functionalist decomposition, there will be a more localized 

alternative that satisfies these norms better. Should every functional decomposition be inferior to a nearby 

mechanistic elaboration of that decomposition, then the functional properties they depict would lack the 

stability characteristic of kinds.  

IV. To evaluate this possibility, I propose an argument by cases (see Figure 1 below for reference).  To 

wit, the next section focuses on Weiskopf’s three types of modeling activity (fictionalization, 
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reification, and functional abstraction) in turn, arguing in each case that there are clear 

disadvantages to acknowledging functionally-defined kinds introduced by these methods.  Should 

we find each of these three etiologies for non-localizable kinds to be problematic, it will be much 

less clear that Weiskopf’s model-based functionalism offers a viable alternative to mechanistic 

approaches to kindhood.Three non-mechanistic origins:  fictionalization, reification, and 

functional abstraction 

Fictionalization 

Let us begin with fictionalization.  As noted above, fictionalization involves placing a component in a 

model that is known not to correspond to any element of the system modeled.  According to Weiskopf, 

such fictions can be considered an important part of a successful model, rather than something “clearly 

intended to be eliminated by [a] better construct in later iterations” (2011a, 331).  Fictional components 

are further to be distinguished from “black box” or “filler” items, in that in addition to providing a true 

functional description of the system (i.e. an input-output profile that the system in some sense actually 

performs), fictionalized models posit at least some causal powers or dispositions that the system does not 

actually possess. 

Since natural kinds are traditionally taken to be the real, mind-independent joints of nature, fictional 

properties may seem non-starters here.  However, given the prevalence of fictional components in 

successful models—and recent arguments that fictions can genuinely explain (e.g. Bokulich 2011)—if 

they are to be rejected as kinds, it should be based on some principled reason, rather than a blanket bias 

against unreal entities.  On the topic of fictionalization, Weiskopf primarily discusses the Fast Enabling 

Links (FELs) in Hummel & Biederman’s geon-based model (which involve an impossible, infinitely fast 

transfer of information in the geon-based model of categorization).  Weiskopf notes that FELs play an 

essential role in getting that model to function by synchronizing distant neural regions, which crucially 

enables the binding of different intermediary representations in object categorization.  Since FELs have 

not been deployed by any other modelers (and so might not count as a natural kind on Weiskopf’s own 

criteria), I will focus on another probably fictional component:  backpropagation learning in connectionist 
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networks.  This is a better test case for fictionalization than FELs, for the critical discussion surrounding 

backpropagation is mature, and few other components have featured in as many successful cognitive 

models.   

The (re)discovery of backpropagation learning is largely responsible for the resurgence of 

connectionist modeling in the 1980s.  There are many different varieties and architectures for neural 

networks, but I will here focus on its use in basic three-layer, feed-forward connectionist networks.  

Backpropagation is a supervised learning method with two crucial features:  sigmoidal (rather than 

binary) activation functions for nodes and adjustments of link weights computed by iterative, backwards 

transmission of an error signal.  Error signals are computed by comparing a network’s actual to desired 

output in each learning trial and then propagating that error signal backwards from the output to earlier 

layers of the network across their connections.  In other words, in each trial of a connectionist network’s 

training phase, an input vector is presented to the network and activation propagates forward through the 

network’s layers according to each node’s sigmoidal activation function and the weights of the links 

between nodes.  Once activation reaches the output layer, the difference between the actual and desired 

output is computed, generating that node’s error value for that trial.  For each preceding layer, this error 

signal is then distributed backwards across the node’s input links, and the threshold values of all nodes 

and weights of all links are then updated (modulo the desired learning rate) to bring the future output 

closer to the desired output for that item in the training set. 

Despite being by far the most common training rule for connectionist networks (crucially featuring in 

thousands of successful models), backpropagation has been heavily criticized for its purported 

biologically implausibility.  Worries center on the backwards transmission of information across neural 

synapses, the need for prior knowledge of correct output, and the distinct, individualized error signals 

used to adjust the thresholds and weights of each node and link in the network.  Though connectionist 

networks are generally thought to be more biologically plausible models of cognition than discrete 

symbol-based models—due to a closer correspondence of nodes and links to neurons (or neural 

assemblies) and synapses (or synapse chains)—these features are thought by many to be inconsistent with 
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the operation of real neurons and synapses in the brain.
8
  Nevertheless, because it is mathematically well-

understood, supported by many software packages, and because no clear favorite has yet emerged from 

alternative learning rules, backpropagation continues to be commonly used even today.   

A potentially surprising feature of current scientific practice, however, is that even modelers who 

frequently make use of backpropagation attach ontological disclaimers.  As backpropagation-using 

connectionists Gluck & Myers put it, “backpropagation’s success as an engineering tool does not 

necessarily imply anything about its validity as a psychological model of learning” (2001, 109).  As 

further evidence that this unease goes deeper than rhetoric, there is a cottage industry in devising more 

biologically plausible training rules, including: simulated annealing, neural gas architectures, generalized 

recirculation, radial basis functions, deep learning, simulations of reinforcement learning, evolutionary 

methods, particle swarm optimization, and many others (see Haykin 2009 for a review of some of these 

techniques).  This sustained interest in replacements is difficult to explain if backpropagation models are 

providing fully legitimate, autonomous explanations of learning. 

There are good reasons for this caution, for the frequent appearance of useful fictions in models can 

tell us less about the structure of nature than it does about the representational power of that fictional 

component.  Given enough nodes and a large enough training set, connectionist networks with sigmoidal 

activation functions are Turing-complete, and so could, in the absence of further constraints, model any 

computable function.  This representational flexibility explains in part how backpropagation is able to 

feature in so many different successful models—because it is so powerful as to allow modelers to fit 

nearly any arbitrary data.
9
   

                                                           
8
 To qualify this critical consensus, there are a few interesting arguments in defense of the biological plausibility of 

backpropagation; some have suggested that backpropagation may be plausible if nodes are regarded not as 

individual neurons but rather as neural assemblies with recurrent connections (Stork, 1989), and others have 

concluded on the basis of neuroanatomical studies that something like an error signal—synaptic depression—might 

be transmitted backwards along individual synapses (though perhaps a time scales inconsistent with 

backpropagation–Fitsimmonds, Song, & Poo, 1997).   
9
 Of course, no actual experiment can be conducted involving an infinite number of nodes and an infinite training 

set, and the actual neural network implementations of Turing machines have been built by hand (e.g. Siegelmann & 

Sontag 1991).  It is a separate question what neural networks trained with a set number of nodes, a particular 

learning rule, a plausible learning set, and a fixed learning period can learn easily.  The point stands, however, that 
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This worry extends beyond fictional components; other representationally flexible functional 

categories such as CPGs are subject to similar worries.  To consider another relevant example, Prinz, 

Bucher, & Marder (2004) found that by varying free parameters such as the number, types, and strengths 

of neural connections in a three-node CPG network, there were over 450,000 possible configurations that 

produced output patterns consistent with lobster pyloric oscillations.  While Weiskopf cites this study as 

evidence that CPGs are massively multiply realized, Selverston (1980) instead catalogues a number of 

cases where this enormous space of possible CPG models led researchers down empirical dead ends, 

given that modelers “usually have enough variable parameters…to produce any rhythm [they] desire” and 

choices of parameter values not justified by information about actual underlying mechanisms frequently 

appeared to provide “‘confirmatory’ evidence for the operation of certain circuits which were 

subsequently found to be fundamentally incorrect” (1980, 540).  In short, representational flexibility in 

the form of free parameters can allow us to better satisfy one empirical desiderata—retrodiction—but 

only at the cost of another important desiderata—prediction (see especially Forster & Sober 1994).   

Similarly, the representational flexibility provided by fictionalization might help us better predict and 

explain one aspect of a phenomenon, but only at the cost of a diminished ability to predict and explain 

another—namely, the aspect that is fictionalized.  In the case of backpropagation, let us suppose that 

fictionalization allows us to establish link weights that will produce correct behavior, and in the case of 

the geon-based categorization model that the use of FELs can help us make predictions about property 

inference in object categorization.  However, insofar as each of these model components falsely describes 

an aspect of the systems they are about, these benefits come at a cost.  In the case of backpropagation, we 

cannot offer true predictions or explanations about link weight updating, and in the geon-based model, we 

cannot offer true explanations or predictions about synchronization.  This point can be driven home by 

consideration of the counterfactuals implied by the fictional components; for if they are indeed fictional, 

then models using backpropagation imply specific but false counterfactuals about learning curves and 

                                                                                                                                                                                           
these parameters exhibit a high degree of variability in the literature, and the number of functions that can be 

approximated by backpropagation-trained neural networks within this space is considerable. 
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interventions on error signal distribution, and models using FELs imply specific but false counterfactuals 

about the fine-grained timing of synchronization and interventions on information transfer from one 

region to another.   

However, Bokulich (2008, 2012) has recently defended the legitimacy of model fictions by appealing 

to their counterfactual power.  In particular, she claims that fictions can explain by capturing a “pattern of 

counterfactual dependence of the relevant features of the target system on the structures represented by 

the model” (2008a, 226).  Bokulich focuses on examples from physics, with the most discussed case 

being the periodic model of atomic orbits; the idea is that even if subatomic particles are ultimately 

quantum rather than classical in nature, the periodic model allows us to answer a range of what-if-things-

had-been-different questions about how quantum wave functions would change in certain circumstances, 

based on counterfactuals about how the classical periodic orbits might would change.  We might think 

that this defense could generalize to fictional models in the special sciences like psychology—for how do 

we know that backpropagation learning does not share a similar pattern of counterfactual dependence 

with the real details of synaptic adjustment in learning, whatever they might actually be? 

Two relevant problems with Bokulich’s defense of explanatory fictions are noted by Schindler 

(2014).  The first is that Bokulich accepts that not every fictional model which happens to make accurate 

predictions will be explanatory, so she still needs some way to distinguish genuine patterns of 

counterfactual dependence from cases where the correspondence between the activity of the false model 

and the actual system is merely coincidental.  The only obvious way to verify this dependence is with an 

account of model evaluation that is parasitic upon a true explanation of the phenomena, which in the 

present case would threaten the functionalist’s dedication to taxonomic autonomy.
10

  The second major 

problem noted by Schindler is that, since model fictions do not depict actual causes, they still cannot 

support counterfactuals regarding interventions on the false components.  Interventions are standardly 

recognized in important counterfactual accounts of explanation and explanatory power (Woodward 2005; 

                                                           
10

 Schindler (2014, 1746) notes that it is ultimately the quantum mechanical models, together with a ‘translation 

key’, that ends up playing this justificatory role in Bokulich’s analysis of periodic orbits in physics. 
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Ylikoski & Kuorikoski 2010), so it is unclear why the loss of counterfactuals pertaining to interventions 

should not be viewed as a clear disadvantage when comparing fictional models to more accurate 

alternatives.
11

   

A further functionalist response here might be that these false and omitted counterfactuals may 

concern some dimension of the phenomena that fall outside the explanatory scope of the models, and so 

should not be counted as a points against them.  Researchers who attach disclaimers or seek alternatives 

to model fictions might be interested in developing more mechanistically accurate models of these 

phenomena, but this should not be counted against modelers with purely functionalist aims.  Consider 

Weiskopf’s ultimate defense of FELs: 

“We might say: there is something that does what FELs do, but it isn’t an entity or a link or 

anything of that sort. FELs capture the general characteristic of neural systems that they often fire 

in synchrony. We can model this with FELs and lose nothing of interest.” (2011, 332) 

Yet FELs imply more than their functional profile—that is what distinguishes fictions from black box 

terms and functional abstractions—and it is unclear why modelers should be uninterested in the way that 

real cognitive systems achieve synchrony.  The true explanation for synchronization will be of value not 

only because it provides additional detail at lower levels of description, but also because it will support 

more counterfactual knowledge at the psychological level of description—especially by helping us 

distinguish causal counterfactual dependence from coincidence and confound, predict the effects of 

interventions on the system, and anticipate finer-grained aspects of object categorization data such as 

response times or learning curves.
12

  Moreover, the parochialism behind this functionalist response does 

not reflect the general attitude or epistemic position of psychologists—who are never in the epistemic 

position to strictly define and delimit the borders of the phenomenon that they are attempting to predict 

                                                           
11

 Weiskopf (2011, 318) argues that we should distinguish “allowing control and manipulation” from “being able to 

answer counterfactual questions”, recommending a metric of normative assessment for explanations that is neutral 

between the two.  However, counterfactuals about the results of interventions are still counterfactuals, and even a 

neutral metric would disadvantage models that do not capture the results of interventions on a system’s behavior.  
12

 For example, Hummel & Biederman (1994, 511) themselves espouse an interest in the way that visual attention 

may help avoid accidental synchronization, an interest not addressed by the use of FELs. 
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and explain, even at the psychological level (the attempt to do so being one of the primary mistakes of 

radical behaviorism—Greenwood 1999).
13

 

 To summarize, it is not enough to simply state that a functionalist will be uninterested in the costs 

of the false counterfactuals implied by model fictions or the omitted counterfactuals missed by not having 

a true explanation of how some phenomena is produced.  Interpreting fictional properties as natural kinds 

reads a metaphysical honorific onto these models, so it is not enough to point out the consistency of 

functionalist interpretations of these cases.  We must also be told why the functionalist interpretation of 

these models is to be preferred over mechanistic alternatives.  The common currency in arbitrating 

between functionalist and mechanistic interpretations, I have supposed, is counterfactual power, with the 

interpretation that supports more genuine counterfactuals being preferable, ceteris paribus.  The 

disadvantages of fictional components we have just considered should be counted as reasons to suspect 

that they lack the relevant forms of kind-making stability.
14

 So while FELs and backpropagation do play 

an important role in getting their respective models to function, they should be regarded as mere 

conveniences, rather than kinds.  Let us thus set aside fictionalization and consider other functional 

modeling activities with less obvious explanatory costs. 

Reification 

Compared to fictionalization, reification is prima facie more plausible as a source of functional kinds.  

According to Weiskopf’s account, reification occurs when a modeler introduces a division between model 

components that does not correspond to a structural division in an underlying mechanism.  To contrast 

with his account of fictionalization, the systems described by the model really do possess the 

subcapacities attributed to the reified components—those subcapacities just cannot be localized to 

particular parts of an underlying mechanism.  In this section I review general reasons to think that 

reification is also problematic as an origin for functional kinds by imposing a dilemma:  reified 

                                                           
13

 Indeed, it seems an overreach to read this parochialism into Hummel & Biederman, who at times espouse 

agnosticism regarding the interpretation of FELs, noting that it “remains an open question whether a 

neuroanatomical analog of FELs will be found to exist” (1992, 510).  
14

 Though FELs have been conserved in later iterations of JIM, they have not appeared in any other object 

categorization models—and indeed have been noted as a weakness of this model by critics (e.g. Robbins 2004).   
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decompositions will (again) either block us from recognizing important counterfactual generalizations or 

reduce to a species of the third type of modeling activity, functional abstraction (to be considered in turn).  

Though Weiskopf does not draw the distinction, it is important to note that there are at least two 

different forms of reification that need to be treated separately.  I will refer to the first as ‘fissional 

reification’ and the second as ‘fusional reification’.  In fissional reification, we introduce two or more 

distinct components whose causal capacities are actually possessed by the same underlying part of the 

system (or the system as a whole).  In fusional reification, we introduce a component whose causal 

capacities are actually distributed amongst distinct parts of the system.   

To evaluate fissional reifications, let us (following Weiskopf-2011a, 328-329) continue the central 

example of the previous subsection and consider work on representation in connectionist networks.  After 

having been trained to solve a categorization task, clustering algorithms can be run over those networks, 

shared hidden-layer activation patterns can often be located that extensionally correspond to everyday 

concepts (Shea 2007).  These hidden-layer activation patterns are then often treated by modelers as the 

“representations” learned by the network.  Additionally, connectionist networks are often described as 

modeling “inferences”; trained networks can be fed a series of novel exemplars, with their category 

values then “inferred” by the propagation of activity through the layers of the network.  However, many 

authors have noted that there is something awkward about describing connectionist networks as both 

possessing representations and additionally performing inferences, for in connectionist networks both 

representation and inference are implemented by the same activation vectors (Clark 1991a, 1991b).  By 

describing these networks as both possessing representations and separately performing inferences on 

those representations, we reify as distinct two entities that are not implemented by distinct mechanisms. 

As principle for model evaluation, I offer a general argument against fissional reification called the 

“A without B” challenge.  This challenge claims that for any two subcapacities A and B, if the system 

cannot perform A without engaging the very same mechanism that performs B, then an explanation that 

construes A and B as distinct subcapacities will have less counterfactual power than an otherwise identical 

model that depicts them as two aspects of the same capacity.  The argument is as follows.  First, identical 
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mechanisms always have identical causal dispositions or causal powers (i.e., causal powers supervene on 

mechanistic structure).  Second, if two models describe the same mechanism, the depicted aspects of the 

system will exhibit all the same causal dispositions or powers in the same circumstances.  Third, if A and 

B cannot be localized to different parts of the same mechanism, then they must be localized to the same 

whole mechanism, and any time the system A’s it could B, and vice versa.  Therefore, a “holistic” model 

which captures these counterfactuals (by depicting the unity of A and B) will be more powerful than a 

reified decomposition that does not.  To summarize, a reified decomposition taken at face value gives us 

the impression that A could be engaged without engaging B, or intervened upon without intervening upon 

B; but if A and B are implemented by the same whole mechanism, this impression is always false. 

To draw out this moral in the case connectionist networks, consider the set of counterfactuals that 

might be inferred from a network model of categorization that reified both representations and inferences.  

Such a model would imply that inferential resources could be engaged separately from representational 

resources and vice versa.  Where representation and inference are actually implemented by the same 

activation vectors, these counterfactuals will always be false.  For example, the reified model gives us the 

false impression that we could prime an inference rule without simultaneously priming a set of associated 

representations, or that we could add representations to the network without subtly altering generalization 

patterns for the networks’ other inferences; but these counterfactuals are all false.  Again, the point 

becomes even more obvious if we expand our interest to counterfactuals pertaining to interventions on the 

properties depicted by the model components; for a reified decomposition falsely implies that we could, 

e.g., ablate the resources responsible for a particular inference rule while leaving its associated 

representations available for other inferences—as we could, for example, disable a particular arithmetic 

operation on a microprocessor by damaging a particular set of transistors, while leaving other operations 

and data intact.  Moreover, since the subcapacities attributed to both A and B would both still be included 

in a unified model, it is not clear that depicting their unity comes with any comparable counterfactual 

cost. 
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To adapt a classic functionalist rejoinder, we might argue that fissional reification can compensate us 

for this loss of counterfactual power by increasing our understanding of how the system performs a task.  

Following Cummins (1977, 1983), let us call this the “analytical strategy”; the idea is that showing how a 

“sophisticated performance” emerges from “unsophisticated performances in a sophisticated order” 

(Cummins 1977, 270) makes its own distinctive contribution to explanatory power.  To consider a 

familiar example, we might think that breaking long division down into a series of simpler steps about 

copying numbers, dividing integers, subtracting, adding, and writing remainders renders an apparently 

difficult task intelligible in a way that is independent of counterfactual power.   Cummins has emphasized 

that such decompositions offer an entirely different mode of explanation from mechanistic models, and 

taking analytic intelligibility to contribute a distinctive explanatory desideratum might be thought to 

support the idea that fissionally reified models should not be considered deficient to mechanistic 

explanations.   

 However, it is far from obvious whether such a tradeoff of apparent intelligibility for counterfactual 

power can be justified—and there are well-known reasons for doubt.  Against this bargain, the experience 

of understanding or intelligibility is a mercurial psychological response that often tracks superficial 

features of models and explanations.  A feeling of understanding may arise merely from familiarity, or 

from unreliable biases such as hindsight and overconfidence (Trout 2002).
15

  At the very least, proponents 

of reification should explicitly discuss this tradeoff and the benefits that are meant to outweigh this loss of 

counterfactual power.  Furthermore, if this sense of analytic intelligibility cannot be converted to 

counterfactual currency, then its defense will beg the question against mechanists. There is much more to 

be said on this subject, but as method of weighing analytic intelligibility against counterfactual power is 

clearly beyond the scope of the current paper, let us thus move to consider fusional reification instead. 

Fusional reification occurs when a model introduces some component whose corresponding 

operations are actually possessed by a diverse set of resources or widely distributed throughout a system.  

                                                           
15

 Important recent explication of ‘explanatory power’ have valued the role of familiarity (e.g. see Ylikoski & 

Kuorikoski 2010 on ‘cognitive salience’) but only due to the pragmatic benefit that it is easier to infer 

counterfactuals from a familiar model, and not because it is an explanatory good in its own right. 
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Fusional reification is well-illustrated by Weiskopf’s discussion of Just and Carpenter’s (1992) 4CAPS 

model of sentence comprehension.  The 4CAPS model is a hybrid rule-network model that contains a 

component labeled “activation”, a limited resource which attaches to rules and representations, signaling 

the availability of the component for processing.  The more often a component is used in the network, the 

more activation it consumes, eventually leading to diminished performance. As Weiskopf notes, 

activation in this model does not correspond to any single entity in the brain; it corresponds rather to “a 

whole set of resources possessed by neural regions:  ‘neurotransmitter function and various metabolic 

support systems, as well as the connectivity and structural integrity of the system’” (Just et al. 1999, p129, 

quoted on Weiskopf 2011a, p329).   

Fusional reification can offer the following rebuttal to the “A without B” challenge:  the theory of 

kinds is not concerned simply with providing predictions and explanations in particular cases, but also 

with how well those predictions and explanations generalize to a greater number of systems.  This appeal 

has clear value in our ecumenical currency, for counterfactual power is enhanced not only by the number 

of distinct generalizations we can count, but also by the number of systems subsumed under those 

generalizations.  Specifically, fusional reifications might score higher on the second metric in cases where 

there are a variety of parts that systematically implement subcapacity A, but do not all implement some 

other subcapacities B1…Bn, though in each system that implements A, the very same part implements at 

least one of the other subcapacities B1…Bn.  Since the “lost” B1…Bn counterfactuals exposed by the “A 

without B” challenge here would not hold across all of these systems across which the A counterfactuals 

hold, the full range systems to which the A counterfactuals apply can only be captured by fusional 

reification. 

For now, I merely note that fusional reification so understood is not distinct from functional 

abstraction. For, as we noted above, truly identical mechanisms have identical causal powers and 

dispositions, so different systems that implement A could not vary in their abilities to implement B1…Bn 

without being different mechanisms.  Thus, the various parts that implement A must comprise a 

functionally abstract grouping—one that abstracts away from differences that are responsible for those 
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parts’ differential ability to implement B1…Bn.  In the 4CAPS model, for example, the diverse parts of 

the system that correspond to “activation”—neurotransmitters, metabolic support systems, and structural 

features—must share the common (if highly abstract) capacity to influence cognitive processing in the 

relevant ways, even if they differ in a variety of other ways such as their tendency to be modulated by 

drugs, dependency upon oxygen and glucose, or connectivity constraints. Let us thus set aside evaluation 

of fusional reification for now, as it will stand or fall with the broader defense of functional abstraction 

considered next. 

Functional Abstraction 

Functional abstraction, finally, is the most traditional of Weiskopf’s three etiologies for functional 

kinds.  According to Weiskopf, functional abstraction occurs when we “decompose a modeled system 

into subsystems and other components on the basis of what they do, rather than their correspondence with 

organizations and groupings in the target system” (2011a, 329).  As initially stated, it is unclear how this 

approach differs from the mechanistic approach to explanation; indeed, most mechanists think that this 

kind of strategy is the standard way to decompose a system into its explanatorily-relevant parts (see e.g. 

Craver 2006).  As such, Weiskopf clarifies that functional decompositions can cross-cut other ways of 

decomposing what the system does, noting that “any system that instantiates functions that are not highly 

localized possesses this feature” (2011a, 329—my emphasis).   As for what it means for a function to be 

“not highly localized,” Weiskopf appeals to subcapacities implemented by highly diffuse or distributed 

parts of the system, as are purportedly found in systems neuroscience, where most cognitive functions are 

held to be implemented by networks spatially distributed throughout the brain (Anderson 2010; Sporns 

2011).  To summarize and simplify, a decomposition is functionally abstract in Weiskopf’s terms just 

when it describes subcapacities that 1) the depicted systems really possess, 2) are, at least in principle, 

implemented by different parts of the system depicted, but, 3) cannot possibly, or can only with difficulty, 

be localized to particular parts of an underlying mechanism. 

Note that there are two versions of this third characteristic suggested by the modifiers “cannot 

possibly” or “only with difficulty”; these versions must be distinguished, for they lead to importantly 
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distinct positions.  The first, stronger version emphasizes metaphysical considerations, holding that there 

is something about these explanations or the systems they describe that blocks a localized elaboration of 

the functional model in principle.  The second version emphasizes epistemic factors, holding only that a 

localized elaboration of the functional decomposition is too complex, goes into unnecessary detail, or 

does not seem to be forthcoming given our current state of knowledge.  The problem with the stronger 

version of this principle is that there is no reason to believe it when evaluating functionally abstract 

cognitive models; and the problem with the weaker version is that mechanists would not disagree with it, 

and it makes concessions that would require functionalists to abandon Weiskopf’s favored response to 

Craver’s mechanism sketches argument. 

  The major roadblock for the stronger, “in principle” version of this claim is that, if we take away 

models containing fictions and fissional reifications (with which we have already dealt), as well as those 

featuring continuously, reciprocally-coupled components,
16

 there is a complete absence of cognitive 

models that are non-localizable in principle.  It is straightforward to see why fictions and fissional 

reifications resist localization, for the systems described by these models do not actually contain any parts 

possessing these components’ causal capacities.  We can also see why models featuring continuous, 

reciprocally-coupled components resist localization, because the causal dispositions of any one 

component cannot be isolated from the dispositions of other components (Bechtel & Abrahamsen 2010).  

Concerning the remaining functionally abstract models, however, a generic sort of standoff develops: 

functionalists offer a case where we have so far been unsuccessful in showing how apparently 

explanatory decompositions can be localized to mechanism parts, and mechanists respond by appealing to 

the general track record in science of overcoming such apparently insurmountable challenges through 

                                                           
16

 The most plausible examples of in-principle non-localizable models in cognitive science are dynamical models 

from systems neuroscience in which “super- and subordinate levels are indistinct, most interactions are circular, and 

control is decentralized” (Sporns 2011, 193).  However, such models do not easily fit the mold of Weiskopf’s 

cognitive models, for they resist even functional decomposition and their main proponents eschew representational 

interpretation entirely (e.g. Stepp, Chemero, & Turvey 2011; Silberstein & Chemero 2013).  For further arguments 

that such dynamical models fail to explain if they are non-mechanistic, see Kaplan & Bechtel (2011). 
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groundbreaking discoveries.
17

 The only way to definitively determine whether a localized elaboration of a 

functionally abstract model can be produced is to actually do the science.  Nevertheless, there remain no 

cases of a functional cognitive model with firm evidence that a localized elaboration, no matter how 

complex or convoluted, will never be forthcoming, so there is currently no reason to believe the stronger, 

metaphysical version of this tenet.  

Much of Weiskopf’s defense of functionally abstract kinds, however, is aimed not at establishing in 

principle unlocalizability, but rather at emphasizing the heuristic utility of functionally abstract 

explanations that are merely difficult to localize.  At times, he concedes that functionally abstract 

decompositions may be mechanism sketches, while holding that the functional properties featuring in 

sketches should be granted kind status due to their utility in exploring the space of how-possibly 

explanations in the search for a structurally localized model.  “There is not just one ‘functional level’…” 

he writes,  

“…but rather a whole host of intermediate structures at varying degrees of abstraction from the 

underlying physical components…It can prove heuristically indispensible, once one has 

characterized the general function of a cell type or brain region to then propose a range of 

possible lower level mechanisms that might realize that function, then proceed to rule them out on 

the basis of side effects, predicted responses to various interventions, predicted anatomical 

consequences, and so on.” (2011b, 254) 

On this justification, commonly deployed functionally abstract properties should be counted as natural 

kinds because they can “serve a crucial heuristic role in discovering mechanisms” (2011b, 243).  In short, 

these abstract model components function as explanatory “templates”.  These templates may all need to 

be localized to provide complete or maximally detailed explanations, the thought goes, but the fact that 

                                                           
17

That such an standoff is not likely to resolve the dispute is evidenced by the number of cases about which 

philosophers agree on all the details but disagree on their interpretation; e.g. regarding lateral inhibition compare 

Shapiro (2004, 117-120) to Weiskopf (2011b, 236-239) or on network neuroscience compare (Bechtel 2011, 553) to 

Silberstein & Chemero (2013, 965-966).   
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the same templates show up again and again in the intermediate steps of localization should be 

acknowledged by our special science taxonomy.   

 The first thing to note about this weaker, ‘heuristic’ defense of functional abstraction is that it no 

longer offers a clear rebuttal to Craver’s “mechanism sketches” argument.  Whereas we noted above that 

Weiskopf prefers to rebut this argument by denying its second premise, this heuristic defense appears 

instead to affirm its second disjunct: that functionally abstract models only support how-possibly 

explanations.  And indeed, without providing some other reason to think that the functionally abstract 

model components cannot be localized, it appears to embrace the argument’s conclusion—because we 

cannot know whether a functional template provides an actual explanation in any particular case until we 

determine whether it can be localized. 

 The second (and related) thing to note about this heuristic defense is that it seems to reject 

functional kinds’ direct explanatory import.  On this way of understanding matters, non-localized 

functional kinds are useful not because they themselves provide explanations, but rather because they are 

essential tools in the search for how-actually, localized explanations.  This defense diverges from the 

traditional Fodorian position, which held that functional kinds feature directly in explanations of 

psychological phenomena through a process of deductive-nomological derivation.  While Weiskopf calls 

this a “significant shift of emphasis” (2011b, 250), this move requires a departure from traditional ideas 

about kinds, and we should wonder whether any remaining debate with the mechanist is merely 

terminological—an exercise in relabeling.  Perhaps we could call these functionally abstract templates 

“natural kinds”—but if they do not themselves feature in explanations of psychological phenomena (or do 

so only when localized), why should we?   
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Figure 1.  A map of the argument by cases of Section IV. 

V. Three functionalist rejoinders 

In this section, I will consider a series of functionalist answers to this final question about 

functionally abstract kinds.  I will take it for granted here that fictional, reified, and reciprocally-coupled 

model components have already been taken off the table, focusing on the heuristic justification for 

functionally abstract kinds as useful tools in exploring the space of how-possibly explanations.  A general 

theme will be that while these rejoinders are effective against certain varieties of reductionism, they 

present no challenge to non-reductive mechanistic position on kinds. 

A.  Not all functional categories are equally useful; and only functionalism about kinds can explain 

these differences. 

 

Weiskopf challenges all accounts of kinds in the special sciences to explain why some 

functionally-defined categories are more useful than others in this process of elaboration.  Against 

Shapiro’s (2004) reductionist view that “functional concepts [merely] fix a range of ‘analytic’ truths about 

things that fall under them”, Weiskopf notes that… 
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“‘…things that can be knocked over with a feather’ is a functional category, but I doubt whether 

it is apt for a special science. Shapiro’s view leaves us with no way of explaining why […]. What 

is the point of grouping things together by function if the grouping itself does not pick out an 

inductively potent kind?” (2011b, 247) 

In other words, the thought is that the functional kinds, by contrast with non-kind functional categories, 

possess an inductive potency outstripping their explicit definition.  These latter categories grant the 

models in which they occur a special kind of inductive unity, and this fact must be explained. 

 The problem with this defense is that the new model-based functionalism about kinds also fails to 

explain the difference between the useful and useless functional categories.  Like the older Fodorian view 

it aims to supplant, it rather takes it as a primitive fact, discovered by the special sciences, that some 

functional components have the right kind of inductive “oomph”.  Weiskopf does note that “the sort of 

causal relations that qualify a grouping as a kind, on this view, are relations that enable a category to play 

a recurrently useful role in a range of models” (2011b, 253).  However, rather than providing a systematic 

account of these relations that explains how they enhance the counterfactual power of models in which 

they occur, Weiskopf suggests that they are to be read off of the explanatory success of those models—

thereby taking for granted just the thing that was to be explained.  By contrast, the mechanistic approach 

to kinds is built on its answer to this crucial question—that the inductively potent special science 

categories will be those that robustly possess their characteristic causal powers (and, perhaps, others we 

have not yet discovered) in virtue of the operation of some shared underlying mechanism(s).  Thus, this 

functionalist rejoinder not only misses its mark, but in so doing demonstrates a key strength of 

mechanism about kinds. 

 This is not to say that there are no other functionalist options to explore.  The most promising 

strategy would appeal to some general organizing principles of cognitive systems.  For example, 

expanding on ideas in Bechtel (2007) and Weiskopf (forthcoming), perhaps control theory could provide 

some answers, the idea being that once a system reaches a certain level of self-organizing complexity, the 

same types of control systems will tend to develop again and again in diverse substrates to achieve 
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coordination amongst semi-autonomous subsystems (which might perhaps make sense of examples like 

CPGs).  Or, elaborating threads from Burge (2010) and Millikan (2012), perhaps cognitive systems 

specialize in the detection of invariances across perceptually distinct situations, and this pressure will tend 

to induce the same functional organization in diverse mechanisms (which might make sense of examples 

like lateral inhibition and backpropagation learning).  At any rate, these suggestions remain largely 

speculative, and it needs to be determined whether any such strategy could account for the stability of the 

specific list of kinds offered by Weiskopf without revealing these kinds to be mechanistic in nature. 

B. Functionally abstract models can be called ‘mechanistic’, but only at the cost of stretching the 

label to meaninglessness. 

 

Let us consider the charge that mechanists can interpret functionally abstract models as mechanistic, 

but only at the cost of stretching ‘mechanistic explanation’ past its breaking point.  For example, consider 

Piccinini & Craver’s claim that a functionally abstract property in systems neuroscience “may be so 

[spatially] distributed and diffuse as to defy tidy structural description, though it no doubt has one if we 

had the time, knowledge, and patience to formulate it” (2011, 291).  Weiskopf calls this strategy 

“mechanism imperialism”, worrying that it “[strips] the mechanistic program of any substantial 

commitment concerning the distinctive ontology of mechanisms” (Weiskopf, forthcoming).  In short, the 

worry is that if mechanists cannot distinguish systems which possess a clear and relevant structural 

decomposition from those that resist such localized description, the “mechanistic/non-mechanistic” divide 

will become a distinction without any intelligible difference. 

Two responses should be made to this rejoinder.  First, the mechanist does not claim that all systems 

can be mechanistically explained, only that the behavior of systems that truly lack any intelligible 

mechanistic structure and organization cannot be explained.  Perhaps there are some systems—say, large 

weather systems or liquefying gases—that, despite showing some macro-level regularities, are really 

chaotic at all other levels of description.  The mechanist claims not that there must be some mechanistic 

decomposition of these systems that explains these macro-level regularities, only that if there is not, then 

those regularities cannot be explained.  The “imperialist” in this case simply thinks that there are no such 



30 
 

chaotic systems in cognitive science, and that the brain, described at various levels of abstraction, is 

ultimately the mechanism that explains cognition. 

 Second, the claim that mechanists cannot acknowledge the differences between paradigm 

localizable and only weakly localizable models also rings hollow, for mechanists such as Bechtel & 

Richardson (2010) have for years articulated the idea of a continuum of localizability.  Paradigm 

examples of mechanistic explanation like long-term potentiation fall to on one end of this spectrum, and 

paradigm examples of weakly-localizable explanations like spatially distributed neural networks fall to 

the other.  And again some systems—the large weather systems and liquefying gases, perhaps—may drop 

off the end of this scale entirely.  Setting aside the straw-manning assumption that mechanists can only 

localize with the precision of a 19
th
 century phrenologist, Piccinini & Craver (2011) and Kaplan & Craver 

(2011) simply argue that explanations in systems neuroscience, given the widespread practice of 

localizing psychological functions to specific and located distributed brain networks, do not drop off the 

scale.  And while adopting a different attitude towards the explanatory completeness of structurally 

abstract models, Levy & Bechtel argue that abstract explanations in systems neuroscience with 

components like motifs are mechanistic because they are derived from mechanisms by abstracting away 

from structural detail (but crucially “a more concrete description is possible” should our explanatory 

purposes require it—2013, 242).
18

  Though there are important differences between these two mechanist 

positions, neither abolishes the distinction between localizable and nonlocalizable models. 

C. Systems implementing a functionally abstract kind may share a correspondingly abstract 

mechanistic structure, but these structure types are not “independently certified”. 

 

There remains a final arrow in the functionalist quiver, one of the oldest arguments in favor of 

functional kinds: that while their realizers may share some diffuse, abstract mechanistic structure at lower 

levels of description, these abstract structures are not “independently certified” as kinds in those lower-

                                                           
18

 Levy & Bechtel emphasize that network motif models highlight the organization of neural mechanisms while 

omitting structural detail of the parts so organized.  Such models are to be distinguished from nonmechanistic 

decompositions because systems can only be organized in the relevant sense if they “exhibit a certain form of 

dependency of the whole on its parts” (2013, 244).  Components in abstract mechanistic models must at least in 

principle be localizable, even if such detail is irrelevant to the modeler’s current explanatory purposes. 
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level sciences.
19

  It would be ontologically irrelevant, this line of thought goes, that we could gerrymander 

some kind of gruesome lower-level mechanistic description shared amongst all of a model component’s 

realizers, for this structure would not itself independently count as a natural kind in any lower-level 

science.   

That functionally abstract kinds share a correspondingly abstractly mechanistic description is borne 

out by a close examination of Weiskopf’s examples.  In the 4CAPS model, for instance, “activation” is 

introduced as a disjunction of lower-level kinds (“neurotransmitter function and various metabolic 

support systems, as well as the connectivity and structural integrity of the system”),  localizes to resource 

utilization in a particular brain region (“considered as a resource pool”), and “is intended to correspond to 

the amount of brain activation observed with a neuroimaging measure in [that] corresponding area during 

the corresponding time interval” (Just et al. 1999, 129).  So while different forms of resource utilization 

subsumed by “activation” are diverse at the finest grain of neurophysiological description, they influence 

processing in the relevant ways because they share abstract structural and organizational properties in the 

brain.  Similarly in the case of CPGs, Prinz et al. note that their computational analysis did not explain 

how the various network models stably achieved the same functional profile, speculating that it would 

either arise from i) “local stability rules that set the properties of single-neuron excitability and/or 

synaptic strength” (an abstract structural hypothesis) or ii) “monitors of network performance, such as 

sensory feedback from target muscles” (which will either involve an external mechanism or reciprocal 

dynamical coupling) (2004, 1349). While such abstract descriptions are plausibly regarded as mechanistic 

(e.g. see again Levy & Bechtel 2013), they are indeed not “independently certified” in any lower-level 

science, in the sense that there would be little reason to group parts together into these categories except 

for their capacity to secure those higher-level functional profiles. 

Though there is much more to be said about this independent certification criterion, it can in the 

present context be curtly dismissed as an atavism from the older debate between functionalists and 
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 Throughout this section, I use talk of “higher” and “lower” levels to discuss this functionalist rejoinder without 

ultimately endorsing the intelligibility of such talk.  For skepticism about such terminology, see Craver (2007, Ch5).   
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reductionists.  Reduction, as classically conceived by the Nagelian bridge-law program, is indeed a 

relation between kinds of one science and metaphysically prior kinds of another, lower-level science; but 

few new mechanists are reductionists, as traditionally conceived or otherwise.  Because the mechanist’s 

insistence that model components be localizable is bolstered by concerns about the counterfactual power 

of explanations rather than assumptions about any ordering or priority amongst different scientific 

“levels”, mechanists can happily concede that the abstract structure underlying a special science kind 

would not be independently certified without undermining the claim that those abstract structures explain 

how those systems stably implement their functional profiles.
20

  Indeed, prominent mechanists have 

endorsed just this sort of agnosticism (Craver 2006; Bechtel & Mundale 1999; Boyd 1999), and the 

mechanist’s ability to offer coherent approaches to kinds, explanation, and induction without assuming 

either autonomy or an ordering amongst the sciences can be seen as an advantage of the position. 

VI.  Concluding remarks:  Kinds and scientific disagreement 

To sum up, we began by asking whether functionally-defined model components could stably play 

the explanatory role in the special sciences characteristic of kinds.  We tackled this question by evaluating 

the modeling practices that introduce functional components: fictionalization, reification, and functional 

abstraction.  Fictional and (fissionally) reified components were found to have clear disadvantages to the 

counterfactual power of models that contain them, and so these sources of functional kinds were 

eliminated from consideration.  The evaluation of functionally abstract components, however, proved 

more complex.  It threatened to degenerate into a pair of terminological disputes:  whether categories that 

are only indirectly explanatory (by helping us sort through the range of “how possibly” explanations) 

could properly be called “natural kinds”, and whether weakly localizable models could properly be called 

“mechanistic”.  Neither of these frames provides a particularly useful way forward in the dispute between 

functionalists and mechanists about the nature of kinds, so I end by sketching an alternate frame.   

                                                           
20

 A commonly-overlooked issue here is that mechanists about kinds typically concede that the mechanisms securing 

the homeostatic stability of a kind may be externally located from the system depicted—e.g., constraints on 

reproduction or predation may ensure that members of a biological species reliably possess their characteristic 

phenotypic properties (Boyd 1999). 
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Throughout our discussion, the unwillingness to appeal to information as to whether model 

components could be localized was repeatedly shown to have disadvantages to the counterfactual power 

of functional models.  Each time, a tempting functionalist response was to adopt the parochial attitude that 

the lost counterfactual generalizations were somehow not relevant to the modeler’s aims, and so “nothing 

was lost” by ignoring them.   

This response poses a danger to the health of empirical debate—for what are we to do when different 

research groups disagree as to which aspects of a phenomenon are explanatorily relevant?  The intention 

to engage in scientific investigation should imply a willingness to engage in a collaborative search for 

more powerful explanatory frameworks with other researchers coming from different epistemic 

perspectives.  As Boyd (1999) has repeatedly emphasized, the individuation conditions for mechanistic 

kinds are not determined just by their functional profiles, but rather by an “accommodation” between 

these characteristic profiles and underlying mechanisms that could nonaccidentally produce them.  

Because we have imperfect epistemic access to these underlying structures, searching for them can bring 

together a range of perspectives in a progressive research program that iteratively elaborates the kind’s 

nature.  By contrast, the functionalist attitude encourages each party to suppose that the aspects of the 

phenomena captured by their models are the definitive or characteristic ones, dismissing those captured 

by their opponents’ models as irrelevant, fictions, or idealizations.  Such impasses have been fairly 

common in cognitive science’s short history, and where participants are unwilling to arbitrate their 

disputes by appeal to underlying mechanistic structure, they can degenerate into scholastic disputes in 

which “the relevant models are underdetermined, and the modelers themselves perhaps overly determined 

to win an unwinnable competition” (Bechtel & Abrahamsen 2010, 330).   

 Much of the difficulty here arises from the partial and provisional way that models depict 

phenomena.  There are several different ways that apparently incommensurable models could relate to 

one another: they could genuinely disagree about the nature of the same target kinds (with the dispute to 

be arbitrated empirically), they could describe the same underlying kind at different levels of abstraction 

or idealization (and so not actually be in conflict), or they might depict different kinds of phenomena 
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(one, perhaps, implementing the other).  The mechanist counsels an appeal to underlying structures to 

arbitrate amongst these different options, but such structure is eschewed by the functionalist.  If kinds are 

individuated only by functional profile, and kindhood determined only by the empirical success of models 

featuring that kind as a component, then in cases where successful models possess components with 

different functional profiles, those components must be split into different kinds.  While this counsel has 

the advantage of precluding some ultimately fruitless disagreements, it also precludes other critical 

engagements that may be productive.  The result is a worldview featuring many incommensurable 

taxonomies, with numerous, cross-cutting kinds whose relationship to one another is ultimately unclear.   

 By contrast, the search for nature’s joints originally began with the hope that locating them could 

help us decide, for two or more putative categories whose ultimate nature is empirically uncertain, 

whether science would be more fruitful—across a range of explanatory interests—if they were lumped or 

split.  While the proposed model-based criterion for kindhood excels at splitting, it provides little 

guidance on lumping—and as such, may not satisfy the hankering for parsimony which inspired the 

enthusiasm for kinds.  Future work on functional kinds might address this dissatisfaction by concentrating 

on a pair of pressing and difficult issues:  how to decide when (1) a parochial attitude towards lost 

counterfactual power is legitimate and when it is ad hoc flummery, and when (2) two apparently distinct 

functionally-abstract kinds should be lumped (rather than split).
21

  Only with adequate answers to these 

two questions will we have a theory of functional kinds worthy of the name. 
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