
1 
 

Learning not to be Naïve: A comment on the exchange between Perrine/Wykstra and Draper1 

Lara Buchak, UC Berkeley 

 

ABSTRACT: Does postulating skeptical theism undermine the claim that evil strongly confirms 
atheism over theism?  According to Perrine and Wykstra, it does undermine the claim, because 
evil is no more likely on atheism than on skeptical theism.  According to Draper, it does not 
undermine the claim, because evil is much more likely on atheism than on theism in general.  I 
show that the probability facts alone do not resolve their disagreement, which ultimately rests on 
which updating procedure – conditionalizing or updating on a conditional – fits both the evidence 
and how we ought to take that evidence into account. 

 

 Does postulating skeptical theism undermine the claim that the amount and type of evil in our 

world is evidence (strong or weak) against God’s existence?  Participants in this debate are ultimately 

interested in the relative probability of theism and atheism; whether evil confirms atheism over theism; 

and if it does, to what degree.  A crucial issue is how the probabilities of these two hypotheses shift when 

we come to believe, through trying to construct a theodicy, that no satisfying positive account of why God 

permits the amount of evil in our world is forthcoming: that naïve theism is false and thus that skeptical 

theism is the only viable version of theism.2  According to Perrine and Wykstra, the relevant comparison 

is between the best version of each theory, and comparing skeptical theism with (the best version of) 

atheism will show that evil does not strongly confirm atheism over theism.  According to Draper, the 

relevant comparison is between atheism and theism full stop, and comparing these will show that evil 

does strongly confirm atheism over theism.  Their disagreement is spelled out in a particular example of 

belief updating which they both discuss.3  Examining how the probability facts change in this example 

will help us see what the disagreement ultimately rests on, and whether there is a way forward for the 

skeptical theist. 

 Here is the example.  Consider two aliens, Natty (a naturalist) and Theo (a theist), who learn the 

empirical facts about our world in a particular order, while making some predictions on the basis of their 

theories N and T (I will use TS to stand for skeptical theism and TS̅ to stand for naïve theism, making the 

simplifying assumption that these are the only two theistic options).  They “first make predictions about 

pain and pleasure.  Then, taking into account what they’ve learned about pain and pleasure, they make 

predictions about flourishing and languishing…Finally…they make predictions about triumph and 

tragedy” (Draper 5).  According to Draper, Natty’s predictions will be on the whole more accurate than 

                                                            
1 Forthcoming in Skeptical Theism: New Essays, eds. Trent Dougherty and Justin McBrayer (OUP). 
2 What participants in this debate typically hold is that naïve theism is very unlikely to be true, given that we lack a 
positive account of why God allows evil.  It will simplify the discussion to assume that naïve theism has been ruled 
out entirely, and that skeptical theism is the only alternative. 
3 Original example Draper.  Here I follow Draper (2014: 5). 
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Theo’s.4  In probabilistic terms, if E1, E2, …, En are the data, and b is the background information, then 

p(E1 | N & b) >> p(E1 | T & b), p(E2 | E1 & N & b) >> p(E2 | E1 & T & b), and so on for successive data 

points (though Natty’s predictions needn’t all be much more accurate).  If D, the total data of good and 

evil, is the conjunction of E1, E2, …, En, then p(D | N & b) >> p(D | T & b).  And as long as we don’t have 

p(T | b) >> p(N | b),5 application of Bayes’ Theorem shows that p(T | D & b) < ½.  None of this is 

controversial to participants in the debate if the only theistic possibility on the table is naïve theism.   

 What difference could skeptical theism make to this scenario?  According to Perrine and 

Wykstra, Theo could develop as follows.6  He begins as a naïve theist – or, more accurately, assigns most 

of theism’s probability to naïve theism and only a tiny amount to alternative precisifications of theism – 

but then notices that his initial assumptions about what God values get him into trouble.  As a result, 

“chastened by [his]  failed predictions” and “given [his] commitment to theism” he now “shifts much of 

the probability he had assigned to naïve theism to a form of moderate skeptical theism.”7  Of course, once 

he has shifted most of theism’s probability to skeptical theism, then his theism predicts the data just as 

well as Natty’s naturalism. 

 What is Perrine and Wykstra’s claim here, in probabilistic terms, and how is it supposed to 

undermine the above argument that p(T | D & b) < ½?  Draper mentions three interpretive possibilities, 

two of which are important for our purposes.8  The first is that Theo’s initial predictions remain the same 

and are inaccurate (p(E1 | N & b) >> p(E1 | T & b)), but thereafter Theo’s theism becomes skeptical 

theism and his subsequent predictions are in line with those of naturalism (p(E2 | E1 & N & b) = p(E2 | E1 

& T & b) and so forth).  As Draper also points out, however, this set of probabilities still implies that p(D 

| N & b) >> p(D | T & b).  The second interpretation, which Draper also argues against, is more 

interesting: upon realizing that naïve theism is not viable, Theo adopts skeptical theism,9 and then predicts 

all of the data anew (including the initial data point).  Since all participants in this debate agree that p(D | 

TS & b) = p(D | N & b), then if p(TS | T & b) ൎ 1, it follows that p(D | T & b) ൎ p(D | N & b), and so D is 

not evidence for atheism over theism, strong evidence or otherwise.   

                                                            
4 On p. [14], Perrine and Wykstra assign a particular probability distribution to Theo, though unfortunately p(T) is 
not given.  One might assume from the particular values they assign that they mean to imply p(T) = 0.5.  However, 
if, in parallel, Natty assigns p(N) = 0.5, this seems to imply that Theo and Natty assign the same probability as each 
other to N and T, obscuring the sense in which Theo is a theist (in Perrine and Wkystra’s words, commited to 
theism) and Natty a naturalist.  Therefore, I will assume that Theo assigns p(T) = 1 and Natty p(N) = 1, since this 
seems to better capture the assumptions that both sets of authors are making.  Since what matters are the 
probabilities the observer assigns to each hypothesis at the end of the experiment, it won’t make a difference to the 
debate.  I will also assume for simplicity that T and N are mutually exclusive and exhaustive. 
5 See Draper (2014: [12]).  
6 Perrine/Wykstra (2014: [12-14]). 
7 Id., p. [14].  I will hereafter drop the modifier “moderate” from “moderate skeptical theism.” 
8 Draper (2014: [18-19]).  
9 Or assigns he most of his probability to skeptical theism, as in Perrine and Wykstra’s discussion: again, for 
mathematical simplicity I am assuming that alternatives to skeptical theism have been completely ruled out. 
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 Draper suggests a problem for this version of Perrine and Wykstra’s argument, by way of 

analogy.  Suppose we have four urns, three of which (#1, #3, #4) contain many more yellow balls than 

purple balls, and one of which (#2) contains more purple balls than yellow balls.  Balls are being drawn 

from one of the urns, and we are interested in how our probabilities about the urn they were drawn from 

should change in response to seeing the colors of these balls.  Theory T12 says the balls are being drawn 

from urn #1 or urn #2, and comes in two versions: T1, which says they are drawn from urn #1, and T2, 

which says they are drawn from urn #2.  Theory T34 says the balls are being drawn from urn #3 or urn 

#4.  Upon seeing a yellow ball, two things ought to happen.  First, a defender of T12 ought to shift 

probability from T2 to T1: on the assumption that T12 is correct, T1 is much more likely to be correct 

than T2.  For the same reason, an impartial observer should raise her conditional probability p(T1 | T12).  

But second, and crucially, an impartial observer should also shift some of her probability from T12 to 

T34: as Draper puts it, the data favors T34 over T12.10  And, according to Draper, these same two facts 

hold in the case of Theo and Natty.  While Theo should raise his probability for skeptical theism (and we 

the observer should raise our conditional probability for skeptical theism given theism), we the observer 

should also lower our probability for theism overall: the data supports atheism over theism. 

Draper’s conclusion that the data supports T34 over T12 in the urn example is clearly correct.  So 

what exact mistake is being made by the adherent of T12 who says “I now know that T1 is the best 

version of my theory, and the data does not support T34 over T1, so the data does not support T34 over 

T12”?  (This is supposed to be analogous to Perrine’s and Wykstra’s claim that the data does not support 

atheism over theism in general, once we notice that skeptical theism is the best version of theism.)  The 

move of letting the adherent make his view more specific in response to the data, and the thought that the 

question of which general theory the data supports is answered by looking at his prediction on the more 

specific theory, obscure an important point.  When we learn that T2 is likely false, this has an effect not 

just on the relative probabilities of T1 and T2 conditional on the assumption that T12 is true, but also on 
                                                            
10 As an example: let’s say our antecedent probabilities are p(T1) = p(T2) = p(T3) = p(T4) = 0.25, and so p(T12) = 
p(T34) = 0.5 and p(T1 | T12) = p(T2 | T12) = 0.5.  Let us also assume, following Draper, that p(Y | T1) = p(Y | T3) 
= p(Y | T4) = 0.9, and p(Y | T2) = 0.003.  Then we have: 

p(Y) = p(Y | T1)p(T1) + p(Y | T2)p(T2) + p(Y | T3)p(T3) + p(Y | T4)p(T4) = 0.67575. 
p(T1 | Y) = p(Y | T1)p(T1)/p(Y) = 0.333  (and similarly for p(T3 | Y) and p(T4 | Y). 
p(T2 | Y) = p(Y | T2)p(T2)/p(Y) = 0.001 

    p(Y | T12) = p(Y | T1)p(T1 | T12) + p(Y | T2)p(T2 | T12) = 0.4515 
p(Y | T34) = p(Y | T3)p(T3 | T34) + p(Y | T4)p(T4 | T34) = 0.9.   
p(T12 | Y) = p(Y | T12)p(T12)/p(Y) = 0.334 (another way to see this is that p(T12 | Y) = p(T1 v T2 | Y) = 

p(T1 | Y) + p(T2 | Y) 
 p(T34 | Y) = 0.666 
 p(Y & T12 | T12 & T1) = p(Y | T1) 
 p(T1 | Y & T12) = p(Y & T12 | T12 & T1)p(T1 | T12)/p(Y | T12) = 0.997 
Upon learning Y, we conditionalize on Y, and so pnew(T1 | T12) = 0.997 and pnew(T12) = 0.334. 
The particular values here are not crucial.  As long as p(T2) > 0, we will have pnew(T1 | T12) > p(T1 | T12) and 
pnew(T12) < p(T12).   
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the relative unconditional probabilities of T12 and T34 – and it has an effect precisely by eliminating a 

previously viable possibility for one theory without doing the same for the other theory.  (Technically, it 

assigns low probability to a previously higher-probability possibility, but let us assume for the sake of 

discussion that it eliminates the possibility altogether.)  A better picture, according to Bayesianism, is the 

following (it assumes both that T12 and T34 are initially given equal probability by the observer, and that 

the disjuncts of T12 are initially given equal probability by the observer, but the analogy can be made 

more general).  We begin with two representatives of T12, one who adheres to T1 and one who adheres to 

T2, and two representatives of T34 – so that the relative number of representatives is equal to the relative 

probability we assign to each theory.  When the data comes in, the representative of T2 is eliminated.  So 

while the spokesperson for T12 will now be our T1 representative, there will be more spokespeople for 

T34 overall.  If the situation between Theo and Natty when they learn D is like the situation between the 

defender of T12 and the defender of T34 when they learn Y, then a better analogy for what happens in 

response to discovering that naïve theism isn’t viable would mirror the analogy here, with the relative size 

of the voice in favor of theism decreasing.11 

 Therefore, if what we are interested in is how conditionalizing on D impacts the relative 

probability of theism and naturalism, then Draper is correct: even though conditionalizing on D should 

make theists become skeptical theists, D is evidence for atheism over theism.   

 Is there anything then to be said for Perrine’s and Wykstra’s position?  Might there be other 

legitimate ways of updating on the data?  Yes.  We can model Natty’s and Theo’s situation in such a way 

that the evidence doesn’t support atheism over theism – so that the observer ought not to lower her 

probability for theism.  (Which model – this model or Draper’s – is accurate will ultimately depend on 

certain further facts, as we will see.)  The mathematical details aren’t explicitly spelled out by Perrine and 

Wykstra, but this model makes good on what seems to be the primary point driving their argument: that 

what the data about evil supports is the conditional claim that if theism is true then skeptical theism is 

true.12  The existence of such a model shows that, indeed, the question of whether the data of good and 

evil supports atheism even in light of the skeptical theist hypothesis turns not primarily on a mathematical 

question about what follows from the probability calculus and Bayesian updating, but on a more 

fundamental question about how to appropriately characterize the role of skeptical theism in the 

argument. 

 Let us step back and consider the general phenomenon of how probability shifts in response to 

evidence.  A helpful way to think about this phenomenon is as follows, following van Fraassen (1989: 

                                                            
11 A similar point holds if we are meant to interpret Theo as assigning p(T) = 0.5 rather than p(T) = 1 (see footnote 
3): as he rules out non-skeptical theism, p(TS | T) increases, but p(T) decreases. 
12 See, for example, claim “D” about Granularism on p. 9. 
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161-2).  Think of the entire space of hypotheses as a Venn diagram, where each region in the diagram 

specifies the truth-value of all the propositions we care about.  We have a unit’s worth of “mud” to 

distribute across the space, and the amount of mud in each region is the probability assigned to the 

proposition describing that region.  So, for example, in the diagrams below (Figure 1), the amount of mud 

in the shaded region represents the probability of HE̅ and of AB̅, respectively; the amount of mud 

surrounded by the thick line represents the probability of H and of A, respectively.  If we think of 

unconditional probability as a primitive, and define conditional probability in terms of it,13 then 

conditional probability can be read off the diagram as well: the conditional probability of E̅ given H is the 

ratio of the amount of mud in the HE̅ region to the total amount of mud in the H region (the proportion of 

the thick-lined region that is shaded). 

 

FIGURE 1: Muddy Venn Diagrams 

 Let us now consider how one’s probability distribution could change in response to new facts 

coming to light.  Learning new facts can be represented by moving mud around in the diagram.  Here are 

two ways that one could move mud around, that each correspond to a particular way of ruling out the 

possibility that AB̅.  The first is that one could remove all the mud from the AB̅ region and distribute it to 

the rest of the diagram while preserving facts about the proportions of the remaining mud (as in the left-

hand side of Figure 2).  The probabilities of AB, A̅C̅, and A̅C are 0.3, 0.4, and 0.1, respectively, and so to 

maintain the 3:4:1 ratio, we distribute probability so that p(AB) = 0.375, p(A̅C̅) = 0.5, and p(A̅C) = 0.125.  

(This is equivalent to “removing” the AB̅ mud and renormalizing, as van Fraassen describes the 

procedure.)  This procedure preserves the probability ratio of the remaining possibilities, and corresponds 

to the familiar updating rule known as (classical) conditionalization.  Indeed, Bayes’ Rule is a formal 

characterization of the operation of this procedure when we learn some evidence E (i.e. rule out HE̅ and 

H̅E̅).  So, the first way to move mud around is to maintain the ratios between the unconditional 

probabilities of the remaining options.  One obvious effect of conditionalizing by eliminating AB̅ is to 
                                                            
13 There may be good philosophical reasons to think of conditional probability as primitive (see Hájek 2003 and 
Pruss (2012)).  Nonetheless, this won’t matter to our discussion. 
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lower the probability of A relative to A̅: since one of the “A” regions is eliminated, and the remaining 

regions retain their ratios with each other, the probability of A can only go down.  This is what happened 

in the case of the urns: T12 was (nearly) ruled out, and the mud previously assigned to that region was 

redistributed to the remaining hypotheses in proportion to their previous probability.  Similarly, to borrow 

another example from the skeptical theism literature, the same result should obtain when you find 

yourself in the following situation.14  You are not sure whether your friend is in town (A) or out of town 

(A̅), but if he is in town there are a limited number of possibilities.  You check the concert hall (AB̅), and 

he is not there.  In this situation, the probability you assign to “he is in town” ought to decrease.  You’ve 

learned that he is not at the concert hall, and conditionalized on that fact.  Purely incidentally, you’ve also 

learned the (material) conditional <If he is in town, he is not at the concert hall>. 

 A second way that one could move mud around in the diagram while ruling out the possibility 

that AB̅ is to take all of the mud from AB̅ and move it to AB (as in the right-hand side of Figure 2).  This 

procedure preserves the ratio between p(A) and p(A̅), since mud is moved around only within the “A” 

region, not between the two regions.  But it does not preserve the ratio between AB and any of the other 

regions: the probability of AB increases relative to the probability of A̅C̅, for example.  What type of 

learning, if any, could result in such a change?  One example is learning the indicative conditional <If A 

then B> in a situation in which learning this conditional is irrelevant to the probability of its antecedent.  

For example, you assign equal probability to the hypothesis that your friend is in town (A) and the 

hypothesis that he is out of town (A̅).  There are five coffee shops in town, three Pete’s and two 

Starbucks, and knowing nothing else, you assign equal probability to his being at each (with AB 

representing his being in town at a Pete’s and AB̅ his being in town at a Starbucks).  You then learn that 

he hates Starbucks, so if he’s in town, he won’t be there – therefore, you can rule out AB̅.  Intuitively, 

though, learning this fact shouldn’t make you think it more likely that he is out of town.  Whereas the first 

procedure captured updating by conditionalization, this procedure captures updating on an indicative 

conditional without lowering the probability of the antecedent.  In both cases, you’ve ruled out a version 

of one of the more general hypotheses: but in the first case, you’ve ruled it out in such a way as to make 

the general hypothesis less likely, and in the second, you haven’t.   

 

                                                            
14 Rowe (2004). 
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FIGURE 2: Two responses to ruling out AB̅ 

 

Cell Before Change After  Cell Before Change After 

AB .2 -.2 0 AB .2 -.2 0 

AB .3 .2(.3/.8) = 

.075 

.375  AB .3 .2 .5 

AB .1 .2(.1/.8) = 

.025 

.125  AB .1 0 .1 

AB .4 .2(.4/.8) = 

.1 

.5  AB .4 0 .4 

SUM  1 0 1   1 0 1 

 

FIGURE 3: Two ways of redistributing credences 

 

 How should this second kind of updating be formalized?  And, moreover, how do we know when 

learning a conditional <If A then B> is a case of learning that AB̅ is false that can be handled by 

conditionalizing on not-(AB̅), and when it is a case in which the probability of the antecedent ought to be 

preserved?  That is, how do we know when we’re in an updating situation in which we ought to set p(AB̅) 

= 0 while preserving the ratios of unconditional probabilities, and when we’re in an updating situation in 

which we ought to set set p(AB̅) = 0 while preserving the antecedent probability of A?  Unfortunately, 

there is currently no consensus.15  Bradley (2005) argues that updating on a conditional without changing 

the antecedent probability can be modeled using what he calls “Adams conditioning,” a special case of 

                                                            
15 Douven/Romeijn (2011: 6) point out that it is not merely that there is no consensus, but that the question has 
received very little attention in the literature. 
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Jeffrey conditioning.  He adds that how to update in a particular case requires a judgment call about “the 

epistemic standing of both our conditional and unconditional beliefs.”  Douven and Romeijn (2011) 

expand on Bradley’s suggestion by suggesting a procedure for deciding which probability facts to 

preserve that takes into account which probability facts are more “epistemically entrenched.”  Lukits 

(forthcoming) argues for a rule known as MAXENT, which delivers the verdict that when updating on a 

conditional, the probability of the antecedent is preserved if the antecedent is casually independent of the 

consequent.   And Bovens and Ferreira (2010) claim that standard Bayesian conditionalizing allows us to 

retain the prior probability of a conditional’s antecedent as long as we include the fact that we learned the 

conditional in the set of facts we conditionalize on (this is a standard solution to the Monty Hall problem). 

Despite the lack of consensus, three things are clear.  First, there are cases of learning a 

conditional in which the probability of the antecedent ought to be preserved.  Second, updating on a 

conditional <If A then B> in these cases cannot be modeled by conditionalizing exclusively on the 

material conditional (or on its truth-functional equivalent not-(AB̅)): either we will have to take into 

account additional information or we will have to use a different updating rule.  Finally, knowing whether 

we are in one of these cases – whether the probability of the antecedent ought to be preserved – requires 

more than knowing which conditional we are updating on: it requires knowing which antecedent 

probabilities we are more committed to or how we came to receive the information that the conditional is 

true.  

 Is some scientific progress best modeled as learning a conditional while preserving the 

probability of its antecedent?  One case of this might be that of a scientist adopting a research program 

and trying to discover some of its commitments, on the assumption that it is true and for reasons 

independent of what its rivals can explain.  This describes Perrine and Wykstra’s physicist “Grain,” who 

gathers independent evidence (e2) for his conditional claim that if Granularism is true, then a particular 

version of it must be true.  Learning which precisification of a general theory is the most plausible needn’t 

always make the general theory less likely relative to the alternatives.   

Now we can see what the key question for this debate is: when we take ourselves to learn that 

naïve theism is false – because we learn the data of good and evil and conclude that a theodicy won’t 

work – should we conditionalize on not-(TS̅), thereby preserving the ratios between the remaining 

unconditional probabilities, or should we update on the conditional <If T then S> in such a way as to 

preserve the probability of T?16  What those who reject theodicy (everyone in this debate) agree to is at 

                                                            
16 Just to be clear: the data itself isn’t “naïve theism is false.”  The data is some set of facts (D plus the supposed 
failure of theodicy) which has very low probability on naïve theism (I assume for simplicity: no probability), and 
higher probability on the remaining hypotheses, probability that is equal for all three hypotheses.   This mirrors the 
structure of the above examples, in which the data were “I drew a yellow ball,” “I checked the concert and my friend 
wasn’t there,” “a reliable third-party said my friend hates Starbucks,” and e1; this data has low or no probability on 
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least that no or very low probability should be assigned to TS̅ (let’s assume no probability, for the sake of 

argument).  But should that probability be re-distributed evenly across the remaining space, thus 

preserving the antecedent ratio between TS and N; or should it be re-distributed to T, thus preserving the 

antecedent ratio between T and N?  The answer to this question depends on how exactly to characterize 

the data of good and evil, the failure of theodicy, and, perhaps, how we’ve come to learn these facts. Is 

what we take ourselves to have learned appropriately characterized as supporting not-(TS̅), or 

appropriately characterized as supporting the conditional <If T then S>? 

Draper’s urn example suggests that what we learn is exactly that a certain alternative (non-

skeptical theism) is off the table – and if this is all we learn, then he is right that according to standard 

Bayesianism the evidence from evil supports theism over atheism, even when skeptical theism is on the 

table.  Perrine and Wykstra’s Granularism example suggests that what we learn is the conditional <If 

theism, then skeptical theism>.  Notice that Perrine and Wykstra take Theo’s absorption of the facts to 

primarily be a way of refining his theory.  Within theism, he is considering what the best hypothesis is: he 

is considering, if theism is true, in what way is it most likely to be true?  And he learns that skeptical 

theism is the best version of theism.  If this is all we learn, then evil supports skeptical theism over other 

brands of theism but does not support atheism over theism. 

 We’ve already mentioned some situations that require conditionalizing on not-(AB̅) and some 

that require updating on the conditional <If A then B> while preserving the probability of A.  While I 

cannot give a precise characterization of features that distinguish when ruling out AB̅ ought to be 

characterized as conditionalizing on not-(AB̅) and when doing so ought to be characterized as updating on 

a conditional, here are a few general thoughts.  The first is that, as several of the authors mentioned above 

point out, one ought to consider how one came to be in possession of the evidence that rules out AB̅.  

What exactly do we learn about our own learning when we learn that naïve theism is false?  In the 

scientific case, Grain started with a supposition and determined what followed from it: he asked, 

assuming Granularism is true, what’s the best version of it?  That the conditional was learned was 

independent of which general theory is true.  This was also true in the second friend-locating case.  In the 

urn case, one sampled randomly from the environment without regard to the assumptions of the general 

theories in question.  This was also true in the first friend-locating case.  The second thought (also pointed 

out by the above authors) is that when figuring out whether to conditionalize on not-(AB̅) or update on the 

conditional <If A then B>, one ought to think about which “probability facts” are more epistemically 

                                                                                                                                                                                                
the hypotheses H2, my friend is at the concert, my friend is at Starbucks, and a very coarse version of Granularism; 
and this data has higher probability on both T1 and T34, on both my friend is in town but not at the concert and my 
friend is out of town, both my friend is in town but not at Starbucks and my friend is out of town, and both fine-
grained Granularism and Smoothism. 
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entrenched.  For example, are we theists first and specific theists second, or does theism get its support 

from the initial plausibility of some of its specific versions? 

 I will close by pointing out that the general question discussed here reappears in a parallel debate: 

that about whether fine-tuning is evidence for theism.  In particular, we might wonder whether the 

naturalist’s invocation of the possibility of multiple universes blocks the claim that fine-tuning strongly 

supports theism over atheism.  And we can approach this question by considering: when one learns that 

the physical constants are extremely unlikely to support life on single-universe atheism, is what one learns 

more accurately characterized as “If atheism, then multi-universe atheism” or as “Not single-universe 

atheism”?  In both of these debates, the difference between the two ways of ruling out AB̅ (naïve theism 

in the case of the argument from evil and single-universe atheism in the case of the fine-tuning argument) 

may explain why the proposed response (skeptical theism and multi-universe atheism, respectively) can 

seem ad hoc to those on the side of A̅.  The defender of A thinks of the data as supporting <If A then B>, 

whereas the defender of the claim that the datum undermines A thinks of the data as supporting not-(AB̅). 

Examining the differences between Perrine/Wykstra and Draper reveals the way forward in the 

debate about whether skeptical theism undermines the argument from evil: we need to consider how to 

appropriately characterize the evidence, and which updating procedure to use to take it into account.  

Those who reject theodicy agree that we should assign no (or very low) probability to naïve theism in 

light of the evidence from evil and the history of theodicy.  And if the evidence from evil and the history 

of theodicy is appropriately characterized as exactly “A theism that asserts we know what goods there are 

is incompatible with the level and type of evil in our world,” (in short: naïve theism is incompatible with 

evil) then introducing skeptical theism as a potential hypothesis cannot blunt the force of the blow for the 

theist, since the initially most plausible specification of theism is ruled out without changing the relative 

probability of other versions of theism as compared with naturalism.  However, if the evidence is 

appropriately characterized as “If God exists, then our knowing the goods there are is incompatible with 

the level and type of evil in our world,” then hope remains for the skeptical theist. 
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