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We are Fregean realists. Very roughly speaking, this means that we believe in a vast
type-hierarchy, and we insist that the typing is strict, so that every entity has a unique
type. For example: we believe in properties, but we never confuse properties with
objects.

Our question in this paper is whether Fregean realists should believe in universals
as well as properties. By ‘universals’, we mean object-level correlates of properties,
such as wisdom, mortality and the colour blue. There are good reasons to reject the
existence of universals, but various natural language constructions appear to force us
to believe in them. We explore a fictionalist response to this problem. Our fictionalist
theory of universals allows us to speak as if universals existed, whilst denying that any
really do.

We start by presenting our type theory in §1. Then, in §2, we introduce Fregean
realism, and sketch the Disquotation Argument for it. In §3, we motivate a fictionalist
account of universals. We present our particular brand of fictionalism in §§4–5, and
apply it to a range of natural language constructions in §§6–7. We end by discussing
the limits of our fictionalism in §8.

1 Partial-Functions Type Theory
In this paper, we will draw a sharp distinction between properties and universals. This
might initially seem like a distinction without a difference; for us, however, it marks a
crucial difference in type. We will operate with a version of Church’s typed functional
𝜆-calculus. The full details of the system are in §A, but we will start with a quick
overview.

Our system has two basic types, e and t. Type e expressions correspond to natural
language names, like ‘Socrates’ and ‘Plato’, and should be thought of as purporting
to refer to objects.¹ Type t expressions correspond to natural language sentences,
like ‘Socrates is wise’ and ‘Plato pontificates’, and should be thought of as expressing
propositions.²

1 Montague (1973: 18–19) treated natural language names as having type (et)t; Partee (1986:
360ff) instead suggests that they are ‘basically of type e’ and sometimes ‘derivatively’ lifted to type (et)t.
We side with Partee, but everything we say in this paper could be reworked according to Montague’s
scheme.

2 You might have thought that they express states of affairs rather than propositions, but see True-
man (2021: chs.11–13) for an argument that states of affairs are propositions.
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We also have complex types: if 𝛼 and 𝛽 are types, then (𝛼𝛽) is also a type. We often
omit outermost brackets in names for complex types, e.g. writing 𝛼(𝛼𝛽) rather than
(𝛼(𝛼𝛽)).

A type 𝛼𝛽 expression combines with a type 𝛼 expression to form a type 𝛽 ex-
pression, as follows: (B𝛼𝛽A𝛼)𝛽 . (If 𝛾 ≠ 𝛼, then B𝛼𝛽A𝛾 is ill-formed.) Intuitively, an
expression of type 𝛼𝛽 expresses a function from entities of type 𝛼 to entities of type
𝛽. Throughout this paper, we move back and forth between types of expression and
types of entity. As we understand it: an entity is of type 𝛼 just in case it is a value of a
type 𝛼 variable. We reserve ‘object’ for entities of type e.

Natural language predicates like ‘is wise’ and ‘pontificates’ are of type et: they
combine with names (type e) to form sentences (type t); ‘Socrates’ is a name, and
when you combine it with ‘is wise’, you get the sentence ‘Socrates is wise’. We call the
functions that these predicates express properties of objects. In other words, proper-
ties of objects are functions of type et, from objects to propositions. We also have
other types of property in the type hierarchy. For example, type (et)t functions are
properties of properties of objects. Intuitively, any function which has propositions
as values is a property of some type. However, type et properties are our main focus
in this paper, and they are the functions we mean by any unqualified use of ‘property’.

Our theory includes the various logical constants you would expect, enabling us
to handle sentential connectives and quantification over each type. We also have the
device of 𝜆-abstraction, and each type, 𝛼, has its own identity relation, =𝛼(𝛼t)

𝛼 . (In
general: an expression’s superscript indicates the expression’s type, and we omit the
superscript if it is obvious from context; an expression’s subscript is an undetachable
part of the expression, and it reminds us of a particularly salient argument-type to the
expression. So in ‘=𝛼(𝛼t)

𝛼 ’, the subscript reminds us that this is an identity relation for
type 𝛼 entities.)

So far, our type theory is essentially Church’s. We depart from Church in allow-
ing for partial functions, and so we call our logic PFTT, for Partial-Functions Type
Theory.³ We have an explicitly defined existence predicate for each type,

∃𝛼t
𝛼 ,⁴ and a

notion of ‘identical if existent’, defined as follows:

A𝛼 ≃𝛼 B𝛼 ≔ ( ∃

A ∨ ∃

B) → A =𝛼 B

As this illustrates, we will use infix notation when convenient, and we will omit
brackets, subscripts, and superscripts where doing so will improve readability and
no ambiguity will arise. Likewise, whilst all functions in this system are monadic—
so that polyadic functions are handled by currying—we often use uncurried no-
tation for readability. For example, we let B𝛼1 (𝛼2 (𝛼3𝛽)) (A𝛼1

1 ,A𝛼2 ,A𝛼3) abbreviate
((B𝛼1 (𝛼2 (𝛼3𝛽))A𝛼1

1 )A𝛼2
2 )A𝛼3

3 .
3 Allowing for non-total functions allows us to deal easily with empty definite descriptions (see e.g.

Heim and Kratzer 1998: 73–5, 154) or to handle claims like ‘There is exactly one real number 𝑛 such
that (3 ÷ 𝑛) does not exist’ (example from Tichý 1988: 9).

4 Given by

∃

𝛼A𝛼 ≔ A =𝛼 A.
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2 Fregean realism
Having outlined our type theory, we now want to discuss our philosophical attitude
towards it. Simply put, we think that PFTT describes a hierarchy of types of entity,
and that every entity has a unique type in this hierarchy. However, putting things this
way requires a grain of salt. Our first aim in this section is to present our view, which
we call Fregean realism, more carefully and without the seasoning (§2.1). After that,
we will explain what we think motivates Fregean realism (§§2.2–2.3).

2.1 What is Fregean realism?

Fregean realism is a reaction against a more traditional form of realism. According
to this traditional realism, every entity of every type is also an object; there is no type
of entity which cannot (at least in principle) be named. Take properties, for example:
properties are type et functions, which can be expressed by type et predicates, like
‘is wise’; but according to traditional realism, properties are also type e objects, which
can be referred to by type e names, like ‘wisdom’.⁵

Fregean realists reject traditional realism. Roughly, Fregean realism is the doctrine
that every entity has a unique type. So, for example, no property is an object:⁶ the type
et function expressed by ‘is wise’ cannot be referred to by any type e name, not even
by ‘wisdom’. (We call this ‘Fregean’ realism, because Frege famously insisted that no
property—or in his terminology, no concept—is an object.)⁷

Unfortunately, though, that really is a rough statement of Fregean realism. The
trouble is that, if every entity has a unique type, then it is impossible to say that every
entity has a unique type. Focus on properties and objects again. If properties are not
objects, then no function of type et can take a property as argument; in other words,
nothing that can be said of an object can also be said of a property. We can say of an
object that it is an object, and so ‘is an object’ must be a predicate of type et. (You
might formalize it in PFTT as (𝜆𝑥e∃𝑦e 𝑥 =e 𝑦)et.) But that means that it must be
nonsense to say of a property that it is an object. And since the negation of nonsense is
also nonsense, it follows that we cannot say of a property that it is not an object. (And,
indeed, both (𝜆𝑥e∃𝑦e 𝑥 =e 𝑦)etAet and its negation are ill-formed in PFTT.)

This is the heart of Frege’s notorious concept horse paradox. To avoid this para-
dox, wemust steadfastly avoid saying things like ‘Properties are not objects’. Wemight

5 Traditional realists include the early Russell (1903), Gaskin (1995, 2008), Wright (1998), Hale
(2010, 2013: ch.1), Hale and Wright (2012), Hale and Linnebo (2020), MacBride (2011), Menzel (forth-
coming: §1.4), Liebesman (2015), Price (2016), and Rieppel (2016, 2018).

6 More generally, no function is an object, where ‘function’ is understood in the sense of PFTT. So,
in particular, the functions of PFTT are not to be thought of as sets, or any other objects.

7 Frege (1892). As many of the papers in this volume demonstrate, Fregean realism has enjoyed
a recent surge of popularity (though not always by that name). Fregean realists include Prior (1971),
Geach (1976), Rayo and Yablo (2001), Williamson (2003, 2013), Noonan (2006), Krämer (2014), True-
man (2015, 2021), Dorr (2016), Jones (2016, 2018), and Goodman (2017). (Prior would have resented
being called a ‘realist’, but see Trueman (2021: chs 7 & 9) for discussion of just how minimal that label
is in a higher-order setting.)
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instead try to articulate Fregean realism as follows: different types of entity are in-
comparable, in the sense that what can be said of one type of entity cannot be said of
another. That is certainly an improvement, but even this statement of Fregean realism
is self-undermining. After all, to say that properties and objects are incomparable is
still to try to compare them.

Really, then, Fregean realism should not be seen as a doctrine at all. Rather, Fregean
realism is best seen as a kind of non-propositional attitude towards PFTT. To be a
Fregean realist is to accept the limits of PFTT as the limits on what can be expressed,
and so to dismiss any attempt to transcend them as nonsense: Bet = Ae is ill-formed
in PFTT, and so we dismiss any attempt to say that properties are, or are not, objects.⁸
Still, though, it can often be convenient to speak as if Fregean realism were the doc-
trine that every entity has a unique type, and we will do so whenever that would not
be too seriously misleading.

2.2 Against the abductive argument for Fregean realism

We are Fregean realists. Wewill give our reasons for adopting Fregean realism in §2.3.
First, we would like to set aside a bad argument for Fregean realism.

A Fregean realist might try to motivate their view with a kind of abductive argu-
ment. The argument would go like this: Metaphysicians are aiming to find the meta-
physical theory with the best balance of virtues (or perhaps just ametaphysical theory
with a sufficiently good balance of virtues). Having the power to solve philosophical
puzzles is high on the list of virtues for a metaphysical theory. And, happily, Fregean
realism offers neat solutions to a range of longstanding puzzles. Here is one of the
simplest (although not necessarily one of the deepest) examples:⁹

Platonists believe that properties are not spatiotemporally located; aristotelians believe that
properties are located when and where their instances are. However, it only makes sense to
say that an object is or is not located: ‘is located’ is a predicate of type et. So, given Fregean
realism, it does not really make sense to say that a property is, or is not, located. If we tried,
we would end up saying something nonsensical, like ‘is wise is (not) located’. So, if Fregean
realism is right, then the whole debate between platonists and aristotelians is misguided.

According to the abductive argument, solutions like this provide us with (defeasible)
reasons to adopt Fregean realism.

We think that this abductive argument is extremely weak. Fregean realism does
provide ‘solutions’ to several puzzles, but these ‘solutions’ will only satisfy those who
already embrace Fregean realism. Every Fregean ‘solution’ to a puzzle is really a dis-
solution: it works by pointing out that any statement of the puzzle tries to say of a
property something that can be said of an object, which is nonsensical by Fregean

8 See Trueman (2021: ch. 9) for related discussion.
9 Jones (2018), Trueman (2021: ch.10), and Skiba (2020) discuss this and other examples in more

detail.
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lights.¹⁰ Such abduction-to-nonsensicality should have little sway with an impartial
judge.

For one thing, the purported benefits of abduction-to-nonsensicality are not ob-
viously benefits. To illustrate, return to the platonist/aristotelian debate. Fregean re-
alists purport to resolve this debate by denying that it makes any sense. But, at least
initially, the debate does seem tomake sense: philosophers have certainly been arguing
over it for some time, and, by and large, they appear to have understood one another.
It is, then, not obvious that we should want our theory to dissolve the debate.

For another thing, the costs of abduction-to-nonsensicality can seem astronom-
ical. The expressive limits imposed by Fregean realism do not just prevent us from
formulating (for example) the platonism/aristotelianism debate; they also prevent us
from formulating Fregean realism itself (see §2.1). Now, we have offered a way around
the threat of self-stultification—by denying that Fregean realism should be thought
of as a doctrine—but we recognise that many philosophers will consider this to be a
serious cost of the view.¹¹

Given all this, we doubt that an impartial judge should be won over to Fregean
realism, if all they have to go on is the abductive argument. In fact, at this stage, they
are much more likely to regard Fregean realists as trying to have their cake and eat
it too: Fregean realists apparently help themselves to a rich ontology of functions,
whilst attempting to excuse themselves from any deep metaphysical inquiry into that
ontology on the (avowedly unintelligible) grounds that functions are not objects.

2.3 The Disquotation Argument for Fregean realism

Fortunately, there is a much better argument for Fregean realism, previously pre-
sented by Trueman.¹²

Suppose you want to say that some entities belong to more than one type. In
particular, suppose you want to say that some property (type et) is an object (type
e).¹³ As we noted in §2.1, that is not something that can be said within PFTT: there is
no reading of ‘=’ on which Bet = Ae is well-formed. So to say that some property is
an object, you will have to find some way of transcending PFTT. But there are only
two strategies for trying to do that, and both fail.

10 Not that this is always obvious. For example, Williamson (2003) has shown that Fregean realists
can account for absolutely unrestricted first-order quantification without running into Russell’s Para-
dox. On the face of it, this has nothing to do with denying that certain claims make sense. However,
Fregean realists can only accommodate unrestricted quantification because they deny that it makes
sense to ask whether a domain could include both properties and objects (see Button and Trueman
2022: §7, contra Florio and Jones 2019).

11 For example, see Linnebo (2006: §.4), Hale and Wright (2012: §III), Proops (2013), and Hale and
Linnebo (2020).

12 Trueman (2021: chs 1–9).
13 We focus on this case, but a similar argument will work no matter what types you choose.
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Strategy 1: relaxing the formation rules. In PFTT, names and predicates are never
intersubstitutable salva congruitate: if 𝜙(Ae) is a well-formed sentence, then 𝜙(Bet)
is not. But we could relax those formation rules, and allow names and predicates to
be intersubstitutable in some, or even all, contexts.¹⁴ If we did, then there would be
nothing stopping us from admitting Bet = Ae as a well-formed formula.

However, it is important to remember that the formation rules built into PFTT
are not just arbitrary syntactic impositions. Type e expressions are meant to corre-
spond to natural language names like ‘Socrates’ and ‘Plato’; and type et expressions
are meant to correspond to natural language predicates like ‘is wise’ and ‘pontificates’.
Names and predicates play two very different semantic roles. Consider the following
natural language sentence, along with its formalization in PFTT:

(1) Socrates is wise
wiseet(socratese)

In this sentence, ‘Socrates’ refers to Socrates, and ‘is wise’ says of him that he is wise.
More generally, names refer to objects, and predicates say things of objects. (That is
the sense in which predicates express functions from objects to propositions.) These
roles are clearly designed to work together, and if we try to intersubstitute them, we
end up with meaningless nonsense, such as:

(2) Socrates Plato
platoe(socratese)

(3) pontificates is wise
wiseet(pontificateset)

Crucially, (2) is not just ungrammatical, butwhollymeaningless: ‘Plato’ is a name, and so
its job is merely to refer to an object, not to say anything of the referent of ‘Socrates’.¹⁵
Similar remarks apply to (3): ‘pontificates’ is a predicate, and so its job is to say some-
thing of an object, not merely to provide a referent for ‘is wise’ to say something of.¹⁶

It is not an option, then, simply to relax PFTT’s formation rules. If type e expres-
sions behave as names, and type et expressions behave as predicates, then it would
be meaningless to intersubstitute them.

Strategy 2: metalinguistic ascent. Rather than trying to say that some property is
an object directly in PFTT, we might try to say it indirectly in a metalanguage. For
example, here is how we might try to say that property 𝑏et is identical to object 𝑎e:

14 Linnebo and Rayo’s (2012) cumulative type theory relaxes its formation rules in just this way; for
criticism, see Button and Trueman (2022).

15 Magidor (2009) claims that (2) is meaningful but false; we think this overlooks the crucial differ-
ence in semantic role between names and predicates.

16 This argument does not assume that ‘pontificates’ is non-referring. (That assumption would be
question-begging in the current context.) The point is that, even if ‘pontificates’ refers to an object, it
is alsomeant to say something of an object, which is a role it cannot discharge in (3).
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(4) the referent of ‘𝑏et’ = the referent of ‘𝑎e’

But why should we think of (4) as an indirect way of identifying 𝑏et with 𝑎e? The
answer must be that we are presupposing that 𝑏et is the referent of ‘𝑏et’, and 𝑎e is
the referent of ‘𝑎e’. In other words, we are presupposing that we can use reference to
disquote ‘𝑏et’ and ‘𝑎e’.¹⁷ However, since (as we have just argued) names and predicates
cannot be meaningfully intersubstituted, no single notion of reference could be used
to disquote predicates as well as names. Instead, we will need two referent functions,
one of type ee to disquote names, and one of type e(et) to disquote predicates:¹⁸

(5) referenteee (‘𝑎e’) =e 𝑎e
(6) referente(et)et (‘𝑏et’) =et 𝑏et

And now that we have drawn this distinction between referente and referentet, we
face the same problem in the metalanguage that we previously faced in the object-
language: ‘referente(“𝑎e”)’ and ‘referentet(“𝑏et”)’ have different types—respectively e
and et—so that ‘referente(“𝑎e”) = referentet(“𝑏et”)’ is ill-formed.¹⁹ (Of course, you
might try to sidestep this problem by relaxing the formation rules in your metalan-
guage, but that would just be a re-run of Strategy 1.)

That, in a nutshell, is the Disquotation Argument for Fregean realism. We should em-
phasise that this is a quick summary of a complex argument, presented fully elsewhere
(Trueman 2021: chs 1–9). There are a number of points at which youmight object. Ul-
timately, though, we think that this argument succeeds, and this is whywe are Fregean
realists.

3 Universals and Nominalization
Althoughwe are Fregean realists, wemust admit that natural languages appear to flout
Fregean realism’s strict type-distinctions. In particular, natural languages provide us
with a variety of devices for nominalizing predicates, i.e. for converting predicates
(expressions of type et) into names (expressions of type e). To illustrate, consider
these two natural English sentences:

(1) Socrates is wise
(7) Wisdom is a virtue
17 We are not assuming that reference is exhausted by disquotational principles; only that disquota-

tional principles are correct (for the home language).
18 As in §1: the subscripts on ‘referente’ and ‘referentet’ are undetachable; they serve as mnemonics

for the types of expression they can disquote.
19 Equally, ‘(𝜆𝑥e∃𝑦e 𝑥 =e 𝑦)et (referentet (“𝑏et”))’ is also ill-formed.
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‘Wisdom’ is a nominalization of ‘wise’.²⁰ But intuitively, despite this type difference,
the name ‘wisdom’ should refer to the very property expressed by the predicate ‘wise’:
what (7) declares to be a virtue should be precisely the property that (1) applies to
Socrates.

What is more, nominalization appears to be a feature, not a bug, of natural lan-
guage. Anyone who has spent any time working within a strictly typed system will
know just how difficult it can be to obey type-restrictions consistently. (To give just
one example, in a strictly typed system, it is impossible to generalize over every type
of entity all at once; at best, we can simulate such generalizations with typically am-
biguous schemes.) Pushing every entity down into type e, where old type distinctions
can safely be ignored, makes natural language a far more convenient communicative
tool.

The main aim of this paper is to resolve this tension between Fregean realism and
natural language. In this section, we will sketch (§3.1) and motivate (§§3.2–3.4) our
preferred resolution.

3.1 Fictionalism about universals

The first thing to be clear about is that Fregean realism does not forbid nominaliza-
tion. All that Fregean realism tells us is that nominalized predicates, being type e
names, cannot refer to type et properties. At best, they can refer to special, object-
level correlates of properties, which we will call universals. (This is stipulative but not
unmotivated: the argument we are about to present is one of Armstrong’s arguments
for universals.²¹) Given Fregean realism, it would be a type-confusion to identify a
property with a universal.

In our new terminology, then, nominalized predicates are nameswhich purport to
refer to universals. But do they actually succeed? Are there any universals, or are nom-
inalized predicates systematically empty names? A familiar style of argument seems
to show that some nominalized predicates do, indeed, successfully refer to universals.
Return to (7):

(7) Wisdom is a virtue

Intuitively, this sentence is not just meaningful, but also true.²² And given standard
semantic clauses, (7) cannot be true unless ‘wisdom’ is a referring name. So ‘wisdom’
refers, and at least one universal exists.²³

20 In principle, you could try to dispute this. In particular, you could try claiming that ‘wisdom’ is
really type et, just like ‘wise’. However, the cases of mixed-predication discussed in §7.1—e.g. ‘Plato
loves Socrates andwisdom’—provide clear linguistic evidence that nominalized predicates are genuine
names. This point is rightly emphasized by Hofweber (2018: §3).

21 Armstrong (1978: ch. 6).
22 If you disagree that (7) is intuitively true, substitute in your favourite example.
23 Closely related arguments have been presented by: Pap (1959), Jackson (1977), Armstrong (1978:

ch. 6), Schiffer (2003: §2.3), and Thomasson (2014: ch. 3). There is, of course, another famous argument
for universals, namely the Problem of Universals (see Armstrong 1978, 1980, 1989: 88–9, 2004: 39–42;
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We want to resist this argument, and so we deny that (7) is really true. More gen-
erally, we deny that any atomic sentence featuring a nominalized predicate is true.
However, we do not wish to deny that many of these sentences are still assertible. In-
stead, we advocate a fictionalism about universals, according to which a sentence about
universals is assertible iff it is true in the fiction of universals. We lay out the details of
this fictionalism in §§4–5. First, though, we will present three reasons why a Fregean
realist should be a fictionalist about universals.²⁴

3.2 Motivating fictionalism: representational aids

Here is a natural story for Fregean realists to tell about the usefulness of nominaliza-
tion:

As we conceded earlier, actually speaking in a strictly typed language is often inconvenient.
Indeed, even the most ardent Fregean realists usually allow themselves to speak ‘loosely’, as if
properties were objects. But what we are really doing when we speak ‘loosely’ is introducing
objects to represent real properties. These are the objects that we are now calling ‘universals’.
These universals are really nothing more than representational aids: it is worth asserting sen-
tences about universals because those sentences have implications about properties, and it is
those implications that really matter.

We think that this story is basically right. And it would be a small step from here to a
fictionalism about universals.

Granted, it would still be a step. You could consistently concede that universals
are just representational aids, whilst insisting that they really exist.²⁵ But fictionalism
seems like the more attractive option (assuming its details can be worked out). If the
whole value of an assertion about universals is its implications for properties, it would
seem gratuitous to postulate any special entities just to make that assertion true.²⁶

3.3 Motivating fictionalism: philosophical puzzles

In §2.2, we noted that Fregean realism promises to solve various philosophical puzzles
about properties. Now, to repeat: we do not think that these solutions by themselves
provide any motivation for Fregean realism; rather, Fregean realism is motivated by

Rodriguez-Pereyra 2000). We will not consider that argument here, since Trueman (2021: §10.1) has
already argued that the Problem of Universals has no force against Fregean realists.

24 Båve (2015) also recommends combining higher-order logic with fictionalism about universals.
However, he does not provide a Conservativeness Theorem (contrast our §§4.2 & C), and he does not
discuss mixed-predication (contrast our §§7.1 & E). For further discussion of Båve, see footnote 30.

25 In fact, this seems to have been Frege’s (1892) view at one time. By way of contrast, see Frege
(1891–5, 1924/5: 269–70).

26 This motivation for fictionalism about universals is structurally identical to one of the standard
motivations for fictionalism about mathematical entities (see Field 1980/2016; Balaguer 1996; Yablo
2005). However, that does not mean that these two fictionalisms stand or fall together. It might be,
for example, that fictionalism about mathematical entities faces special difficulties that do not confront
our fictionalism about universals.
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the Disquotation Argument of §2.3. Nonetheless, once you have been convinced by
the Disquotation Argument, it is philosophically pleasing that you can now (dis)solve
these puzzles.

However, if we admit universals into our ontology, then all those old puzzles will
threaten to return as puzzles about universals. As we explained in §2.2, the Fregean
solutions work by observing that, since properties are not objects, the traditional puz-
zles about properties are really just nonsensical pseudo-problems. But universals are
objects. So Fregean realists could not so easily dismiss these problems, if they were
reworked to concern universals. For example, the debate between platonists and aris-
totelians would start back up, this time as a debate over whether universals are spa-
tiotemporally located.

Now, that would not be a complete disaster. Even if all the old puzzles did return
as puzzles about universals, we would still have made progress by demonstrating that
they do not concern the notion of property involved in predication.²⁷ Nonetheless,
Fregean realismundeniably gives us themost philosophical bang for our philosophical
buck if we deny that there are any universals.

3.4 Motivating fictionalism: Cantor’s Theorem

Any systematic theory of universals needs a device of nominalization.²⁸ Intuitively,
given an input property, this device should output the corresponding universal. For
now, we will represent this device by underlining, so that wise is wisdom. Now, con-
sider two attractive principles:

Nom-Coext. ∀𝑢et∀𝑣et(𝑢 =e 𝑣 → ∀𝑥e(𝑢𝑥 ↔ 𝑣𝑥))
Nom-Always. ∀𝑢et ∃

𝑢

PrincipleNom-Coext says that properties which correspond to the same universal are
coextensive. This allows that some properties may not correspond to any universal.
But that is ruled out by Nom-Always, which says that every property corresponds to
a universal.

Unfortunately combining Nom-Coext with Nom-Always immediately leads to
inconsistency, by an unsurprising version of Cantor’s Theorem.²⁹ We must, then,
choose between Nom-Coext and Nom-Always.³⁰

27 In fact, the Fregean realist solution to Bradley’s Regressworkswhether or not there are universals;
it requires only that we not identify universals with properties. See Trueman (2021: §10.2) for details.

28 For other uses of a nominalization operator, see e.g. Cocchiarella (1974: 552–3), Chierchia (1984:
47ff, 1985: 422ff), Chierchia and Turner (1988: 266ff), Partee (1986: 362–3), and Hale and Linnebo
(2020: 86ff).

29 See Corollary 3 in §A.3. This holds in PFTT, so the problem could in principle be blocked by
(substantially) revising PFTT (e.g. by embracing paraconsistency, or by modifying Comprehension).
We do not have space to explore alternative logics, but we remark that the cost is high: PFTT seems
perfectly suited for Fregean realists, up until the moment we are forced to consider universals.

30 In footnote 24, wementioned Båve’s fictionalism about universals. In our terms, Båve’s (2015: 29)
fiction includes Nom-Always and ∀𝑥e∀𝑢et ((𝑥 instantiates 𝑢) ↔ 𝑢𝑥). Given standard comprehension,
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The choice is easy, and independent of our advocacy of Fregean realism. If Nom-
Coext fails, then there are 𝑎et and 𝑏et, such that 𝑎-ness is 𝑏-ness, even though some
object is 𝑎 but not 𝑏, i.e. some 𝑥e is such that 𝑎𝑥 but¬𝑏𝑥. Since 𝑎𝑥 but¬𝑏𝑥, presumably
also 𝑥 instantiates 𝑎-ness but not 𝑏-ness. But, despite all this, we are supposed to insist
that 𝑎-ness is 𝑏-ness. That is surely absurd.³¹ We therefore embrace Nom-Coext.

Accordingly, we must reject Nom-Always, and allow that some properties cor-
respond to no universal. Indeed, since we are dealing with Cantor’s Theorem, most
properties correspond to no universal.³² So we face an obligatory question: which
properties have corresponding universals? Fictionalists offer two pleasingly simple an-
swers:

Literally speaking: no property has a corresponding universal.
Fictionally speaking: all and only the real properties (i.e. the properties which exist,

literally speaking) have corresponding universals.

The literal answer follows immediately from the fictionalist’s (literal) denial that there
are any universals. The fictional answer is just a well-motivated principle which we
can (and will) embrace when setting up our fiction (see §4).

This provides our final motivation for fictionalism about universals: realists about
universals have no similarly simple answer to the obligatory question. To begin with,
they cannot mirror the fictionalist’s fictional answer. After all, being realists, they
draw no real/fictional distinction. So if they try to say that, literally, all and only the
real properties have corresponding universals, this amounts to the claim that every
property has a corresponding universal; and that is precisely the (catastrophic) prin-
ciple Nom-Always.³³ Realists about universals cannot, then, treat all real properties
equally: they can only allow a select few to correspond with universals. But it will still
be useful to speak as if all real properties corresponded to universals, for the reasons
given in §3.2. So, even would-be realists should be fictionalists about most univer-
sals. And, at this point, it is not clear what there is to be gained from resisting our
thoroughgoing fictionalism, which applies to all universals across the board.

these are inconsistent: just consider 𝜆𝑥e¬(𝑥 instantiates 𝑥). Båve gives no suggestion as to how he
would avoid this inconsistency.

31 Although one person’s ponens is another’s tollens: Cocchiarella (1972: 169, 1974, 1975a: 41–2,
1975b: 346–7) developed a system which can be (re-)interpreted as rejecting Nom-Coext in favour of
Nom-Always.

32 Pace Partee’s (1986: 363) claim that nominalization ‘is “almost” total’.
33 Some pragmatist-inclined philosophers accuse fictionalists of drawing a spurious distinction be-

tween the real and the fictional (Schiller 1912: 99–100; Blackburn 1987: 56–60, 2005; Thomasson 2013:
1039, 2014: 197). In general, we think that this is an important challenge against fictionalists. How-
ever, the reasoning we just offered gives us a good answer to it in this particular case: collapsing the
real/fictional distinction would plunge us right back into the tricky predicament we just raised against
realists about universals.
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4 A formal theory of universals
We have outlined our reasons for favouring fictionalism about universals. Our aim
in this section is to provide a formal theory which can handle universals. In the next
section, we will develop our fictionalist interpretation of that formal theory.

4.1 Restricting to real entities

Let 𝑇 be a PFTT-theory which we use to assert sober, literal truths, without making
any mention of universals. So, 𝑇 will not include any nominalization operators. The
idea is to move from 𝑇 to some fictional theory, 𝑇u, which does admit universals.

We start by modifying𝑇 itself. Implicitly,𝑇 talks only about real entities (i.e. enti-
ties that literally exist); this needs to be made explicit. We do this by introducing new
constants, real𝛼t𝛼 , for each 𝛼, reading ‘real𝛼t𝛼 (A𝛼)’ as ‘A is real’. (Inwhat follows, we tend
to suppress both subscripts and superscripts on ‘real’, since they are obvious from con-
text.) We then replace each sentenceAt of𝑇 withAt

r , where the latter results from the
former by restricting all discourse to real entities. If we were simply using first-order
logic, we could achieve this by mapping each formula ∀𝑥𝜙 to ∀𝑥(real(𝑥) → 𝜙). Since
PFTT is a much richer logic, the specification of the restriction is inevitably more
complicated, but the intuitive idea is just the same (see §B for the details). The result
is the real-restricted version of 𝑇 , the theory 𝑇r = {At

r : 𝑇 ⊢ At}.

4.2 Nominalization and Application Theory, NAT

The next step is to augment 𝑇r with a theory which describes the behaviour of nomi-
nalization in general. We call this NAT, for Nominalization and Application Theory.
To spell it out, we begin with some intuitive ideas.

Nominalization. We need devices for nominalizing (real) higher-typed entities. To
this end, we have a constant, nom𝛼e

𝛼 , for any type 𝛼 ≠ e.³⁴ For readability, we extend
the convention developed in §3.4 and abbreviate nom𝛼 (A𝛼) asA𝛼 . (So, we continue to
regardwisdom aswise.) Mnemonically, think of underlining as pulling an entity down
to the level of objects. To make certain principles easier to formulate, we sometimes
also write Ae as an alternative to Ae, even though there is no operator nome, and no
need for one.

Application. In PFTT, we apply higher-order entities to one another. We want a
way to keep track of this among their nominalizations.³⁵ So, for each 𝑛, we intro-

34 Natural languages actually allow us to nominalize expressions in a variety of different ways, and
you might think that different kinds of nominalization refer to different kinds of object. For example,
you might think that the gerund ‘Sharon’s laughing’ refers to an event, whereas the clause ‘that Sharon
laughs’ refers to a reified-proposition (see §6.4). Our focus in this paper is exclusively on nominaliza-
tions which intuitively appear to co-refer with their de-nominalized counterparts (cf. the argument at
the start of §3), and this focus is reflected in the axioms of NAT.

35 Strictly speaking, nominalization is a language-level operation, but for ease of expression, we will
also use ‘nominalization’ to describe the corresponding world-level operation; so we will call the name
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duce a new constant, appe(...(ee)...)𝑛 , with 𝑛+2-occurrences of e, i.e. it will map 𝑛+1
input objects to an object. We read ‘app𝑛(B,A1, . . . ,A𝑛)’ as ‘the result of applying B
to A1, . . . ,A𝑛 in that order’. So app2(lovese(et) , plato, socrates) is the result of apply-
ing Love to Plato and Socrates (in that order), and we want this to be identicale to
lovese(et) (plato, socrates).

We can now lay down the axiom schemes of NAT:³⁶

Nom-real real(𝑥𝛼) =t

∃

𝑥 all 𝛼 ≠ e
Nom-nonreal ¬reale(𝑣𝛼) all 𝛼 ≠ e

Prop-real real(𝑥t)
Nom-inj ( ∃

𝑢𝛼 ∧ ∃

𝑣𝛼) → (𝑢 =𝛼 𝑣) =t (𝑢 =e 𝑣) all 𝛼 ≠ e
Nom-diff 𝑢𝛼 ≠e 𝑣

𝛽 𝛼, 𝛽, e all distinct
Application ( ∃

𝑢𝛼1 (𝛼2 (...(𝛼𝑛𝛽)...)) ∧ ∃

𝑣
𝛼1
1 ∧ . . . ∧ ∃

𝑣
𝛼𝑛
𝑛 ) →

app𝑛(𝑢, 𝑣1, . . . , 𝑣𝑛) ≃e 𝑢(𝑣1, . . . , 𝑣𝑛) all 𝛼1, . . . , 𝛼𝑛, 𝛽

The Nom-real scheme tells us that all and only real entities have nominalizations,
and Nom-nonreal says that nominalizations are never real. However, all propositions
are real, by Prop-real. Next, Nom-inj and Nom-diff schemes tell us that nominaliza-
tion is injective, i.e. that nominalizations of entities are identical iff those entities are
identical.³⁷ Finally, the Application scheme says that application among nominalized
entities tracks the behaviour of higher-typed entities.

This completes the specification of NAT. We now define 𝑇u as 𝑇r ∪ NAT, i.e. the
addition of NAT to 𝑇 , when the latter’s implicit restriction to real entities is made
explicit. Our central result is that 𝑇u is a conservative extension of 𝑇 , in this sense (see
§C):

Conservativeness Theorem: Let 𝑇 be a PFTT theory in some signature,L, which
is disjoint from NAT’s non-logical vocabulary. If 𝑇u ⊢ Ar then 𝑇 ⊢ A, for any L-
sentence At.

‘wise’ a nominalization of the predicate ‘wise’, but we will also call the object wise a nominalization of
the property wise.

36 Here, and throughout, A ≠𝛼 B abbreviates ¬(A =𝛼 B). NAT bears some similarities to Hale
and Linnebo’s (2020: 102–3) theory of nominalization. Compare our Nom-inj with their (Bridge-=);
and our Application with their (Bridge-App). The main technical differences concern: our use of PFTT
(Hale and Linnebo use monadic relational type theory); our desire that 𝑇u should obey unrestricted
Comprehension (contrast Hale and Linnebo 2020: 103n.53); and our subsequent inclusion of bridge-
principles which will ultimately allow for self-predication (see §7.3). Note also that Hale and Linnebo
are traditional realists.

37 In fact, Nom-inj gives us more than the biconditional (𝑢 =𝛼 𝑣) ↔ 𝑢 =e 𝑣); it gives us a
propositional-identity (𝑢 =𝛼 𝑣) =t (𝑢 =e 𝑣). Certain realists about universals might favour the weaker
principle. But we are fictionalists, aiming for the Conservativeness Theorem; and the conservativeness
of the stronger principle immediately entails the conservativeness of the weaker principle. (Similar
remarks apply to Nom-real.) That said, our definition of instantiation relies explicitly on identity; see
§4.3 and footnote 42.
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This Theorem immediately entails NAT’s consistency.³⁸ But it is worth specifically
noting that NAT avoids the inconsistency we discussed in §3.4 by disavowing Nom-
Always (importantly, Nom-inj is a conditional). Moreover, as promised, NAT proves
Nom-Coext,³⁹ and states that all and only the real properties correspond to universals
(via Nom-real).

4.3 Definable notions and richer fictions

Within NAT, we can define some further notions, which will be extremely useful in
what follows.

Flattening. Any type 𝛼1(. . . (𝛼𝑛t) . . .) property can be flattened. We write the flat-
tening of A as A. Intuitively, some objects satisfy A iff those objects are the nominal-
izations of entities that satisfy A. In detail, for each A𝛼1 (...(𝛼𝑛t)...) :⁴⁰

A(𝑣𝛼11 , . . . , 𝑣
𝛼𝑛
𝑛 ) =t A(𝑣1, . . . , 𝑣𝑛) if

∃

𝑣𝑖 for all 1 ≤ 𝑖 ≤ 𝑛

A(𝑥1, . . . , 𝑥𝑛) =t Falset for all other cases

To illustrate, PFTT allows us to symbolize the claim that something is wise as
Σe(wiseet); Σe(wise) is then identicalt to Σe(wise).

Instantiation. We can also define a notion of instantiation. Specifically, we can
define a formula A 𝜀 B, which should be read ‘A instantiates B’. Thus, ‘Socrates in-
stantiates wisdom’ can be formalized as ‘socratese 𝜀 wiseet’. More generally, for each 𝑛,
we can explicitly define an 𝑛+1-place instantiation relation, 𝜀e(...(et)...)𝑛 , as follows (we
drop the subscript on ‘𝜀𝑛’, when no confusion can arise):⁴¹

( 𝑦e1 , . . . , 𝑦e𝑛 𝜀𝑛 𝑥e) ≔
{
𝑠t if 𝑠 =e app𝑛(𝑥, 𝑦1, . . . , 𝑦𝑛)
Falset if there is no such 𝑠t

We might pronounce the left-hand-side here as ‘𝑦1, . . . , 𝑦𝑛, in that order, instantiate
𝑥’. So, to say that (plato, socrates 𝜀2 lovese(et)) is to say that Plato and Socrates, in that
order, instantiate Love. Now NAT proves the following scheme, which is analogous
to Application:⁴²

38 This is because an inconsistent theory is conservative only over inconsistent theories. More for-
mally: let 𝑇 be the PFTT theory with no axioms; suppose NAT is inconsistent, i.e. NAT ⊢ ⊥; then
𝑇u ⊢ ⊥, so, by the Conservativeness Theorem, 𝑇 ⊢ ⊥, which is absurd.

39 Indeed, it proves the stronger principle 𝑢et =e 𝑣et → 𝑢 =et 𝑣. Proof. Suppose 𝑢et = 𝑣et. So

∃

𝑢

and

∃

𝑣, by Crt (see §A.3); now 𝑢 =et 𝑣 by Nom-inj and our initial supposition.
40 At the expense of legibility, this definition can be presented austerely in PFTT. For example, let

D abbreviate ( 𝜄𝑥𝛼𝑣e =e 𝑥); then A𝛼t is 𝜆𝑣e 𝜄𝑠t (( ∃

D → 𝑠 =t AD) ∧ (¬ ∃

D → 𝑠 =t Falset)).
41 At the expense of legibility, this definition can be presented austerely in PFTT. For example, let

A abbreviate app1 (𝑥, 𝑦); then 𝜀1 is 𝜆𝑦e𝜆𝑥e 𝜄𝑠t ((

∃

A → 𝑠 =e A) ∧ (¬ ∃

A → 𝑠 =t Falset)).
42 Proof. By Prop-real and Nom-real,

∃(𝑢(𝑣1, . . . , 𝑣𝑛)). So app𝑛 (𝑢, 𝑣1, . . . , 𝑣𝑛) =e 𝑢(𝑣1, . . . , 𝑣𝑛) by
Application. Now use Nom-inj and the definition of 𝜀𝑛. As mentioned in footnote 37, this (essentially)
relies upon the propositional-identity in Nom-inj, which some realists about universals might reject.
Indeed, they are likely to eschew the identification, (𝑣1, . . . , 𝑣𝑛 𝜀𝑛 𝑢) =t 𝑢(𝑣1, . . . , 𝑣𝑛), in favour of the
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( ∃

𝑢𝛼1 (𝛼2 (...(𝛼𝑛t)...)) ∧ ∃

𝑣
𝛼1
1 ∧ . . . ∧ ∃

𝑣
𝛼𝑛
𝑛 ) →

(𝑣1, . . . , 𝑣𝑛 𝜀𝑛 𝑢) =t 𝑢(𝑣1, . . . , 𝑣𝑛) for all 𝛼1, . . . , 𝛼𝑛

So: (socrates 𝜀 wise) is identicalt to wise(socrates).
For all its strengths, the theory NAT is very far from complete. To illustrate:

NAT is compatible with the claim that (platoe 𝜀 socratese), which is the sort of thing
we might want to rule out, since no one, surely, wants to say that Plato instantiates
Socrates. We can easily enrich NAT to rule out such things; the result remains con-
servative; and indeed NAT can be enriched further still, whilst retaining the Conser-
vativeness Theorem. We say more about this in §7 and §D, but we will not dwell on it
now since, for the time being, we will only need the principles mentioned in §4.2.

5 Fictionalism
We think that NAT is literally false. In fact, we can locate its falsity very precisely:
five of NAT’s six schemes are true; but Nom-real is false. After all, since no universals
exist, ‘

∃(wise)’ is false, but ‘real(wise)’ is true, so that ‘real(wise) =t

∃(wise)’ is false.
But although NAT is literally false, it is still a useful fiction. Specifically, and as we

will now explain, our Conservativeness Theorem allows us to advance a fictionalism
about universals, modelled after Field’s fictionalism about numbers.⁴³

Our fictionalism is primarily intended to answer the following obligatory ques-
tion:Why is it that, barring occasional mistakes by individual speakers, speaking as if uni-
versals existed does not lead us from obvious truths to obvious falsehoods? Realists about
universals have an easy answer to this question: because universals really do exist. But
our Conservativeness Theorem provides us with an alternative answer: even though
there are no universals, positing such universals is conservative over the literal truths, and
this is why they never lead us astray.

Here is that answer in a little more detail. Suppose we start with some PFTT the-
ory, 𝑇 . We then make explicit the implicit assumption that 𝑇 concerns only real en-
tities, and so move to 𝑇r. Now, by the Conservativeness Theorem, any real-restricted
claim (i.e. any claim which exclusively concerns real entities) which can be proven
using 𝑇r together with the machinery of nominalization, could have been proved
without relying upon such devices. So the machinery of nominalization is provably
reliable for reasoning about what is real. Specifically, it never leads us from a true
real-restricted claim to a false real-restricted claim.

weaker biconditional, (𝑣1, . . . , 𝑣𝑛 𝜀𝑛 𝑢) ↔ 𝑢(𝑣1, . . . , 𝑣𝑛). In that case, rather than defining instantiation
explicitly, they should take each instantation-predicate as a primitive, governed by schemes: 𝑠t =e
app𝑛 (𝑥e, 𝑦e1 , . . . , 𝑦e𝑛 ) → (( 𝑦1, . . . , 𝑦𝑛 𝜀𝑛 𝑥) ↔ 𝑠) and ( 𝑦1, . . . , 𝑦𝑛 𝜀𝑛 𝑥) → ∃𝑠t 𝑠 =e app𝑛 (𝑥, 𝑦1, . . . , 𝑦𝑛).

43 See Field (1980/2016, 1989/1991). In particular, we share Field’s (1980/2016: P4) response to the
distinction between hermeneutic and revolutionary fictionalism (see Burgess and Rosen 1997: pt. I ch. A;
Stanley 2001; Burgess 2004). Our (limited) interest in that distinction can be summed up as follows: we
recommend that Fregean realists should not (falsely) believe that universals exist, and so should engage
in pretence insofar as they want to continue to use universals-discourse.
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This answer also allows us to continue to speak as if universals exist, even though
we deny that they do. 𝑇u is a convenient tool for drawing inferences between true,
real-restricted claims; and it is provably reliable, in this regard. So there is no need
to jettison this tool. Indeed, the Conservativeness Theorem allows Fregean realists to
pretend that universals exist, with a perfectly clear conscience. And that is what we
recommend.

In the next few sections, we will illustrate 𝑇u’s utility. First, we should empha-
sise that (Field-style) fictionalism is the live option, rather than eliminativism. It is
easy to eliminate the nominalizations from some sentences. For example, the fictional
sentence ‘Socrates instantiates wisdom’ can easily be replaced with the real-restricted
sentence ‘Socrates iswise’; indeed,𝑇u proves their equivalence (see §4.3).⁴⁴ However, it
is not always possible to paraphrase nominalizations away. For example, the fictional
sentence ‘Socrates is not identical to wisdom’ is a theorem of 𝑇u (by Nom-nonreal),
but there is no equivalent real-restricted sentence.

6 Some simple applications
In the remainder of this paper, we will apply our fictionalism to a variety of natural
language constructions. The basic idea is this: plenty of natural English constructions
seem to require us to move between types; strictly-typed logics, like PFTT, struggle
with this; but our fictionalism has the resources to make it easy.

6.1 On virtues

We started §3 with this example:

(7) Wisdom is a virtue

As we explained, we think that (7) is literally false, because we do not believe in the
universal wisdom. However, we also think that there is a nearby literal truth about
the property wiseet:

(7a) virtue(et)t(wiseet)

It is essential that we sharply distinguish virtue(et)t from the notion of virtue at play
in the original (7): the English predicate ‘is a virtue’ is type et, and it expresses a type
et property that is supposed to apply to certain universals; by contrast, virtue(et)t is a
type (et)t property that applies to certain type et properties. (If you are wondering
where this new type (et)t property came from, or what it could possibly have to
do with virtue, please hold that thought; we will come back to it in §6.2.) Unlike (7),

44 Here (and throughout) we assume that Socrates is a real object, and that wise is a real property,
and that both ‘socrates’ and ‘wise’ are atomic constants. Similar points apply for other examples in §§6–7
(e.g.: virtue, believes, plato, lovee, and lovee(et) ).
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sentence (7a) makes nomention of universals, and sowe are free to accept it as a literal
truth.

But now that we have (7a) as a literal truth, our fiction allows us to infer the fol-
lowing claim about the universal wisdom:

(7b) virtue(et)t(wiseet)

(Indeed, in the fiction, (7a) is identical to (7b); see §4.3.) We would like to offer (7b)
as our formalization of (7). In other words, our proposal is that ‘is a virtue’ should
be formalized in PFTT as ‘virtue(et)t’, just as ‘wisdom’ should be formalized as ‘wiseet’.
On this proposal, (7) is literally false but assertible nonetheless, since its formalization,
i.e. (7b), is true in our (conservative) fiction.

6.2 Reverse-engineering fictions

In our efforts to make (7) true within our fiction, we helped ourselves to a new type
(et)t property, virtue(et)t. But this might seem to raise a number of questions, for
example: What does it take for a type et property, such as wiseet, to satisfy virtue(et)t?
Or to put the question another way: What exactly is (7a) meant to say? And: What
justifies our proposal to formalize ‘is a virtue’ as ‘virtue(et)t’? These might seem like ur-
gent questions for our fictionalist account of universals. In fact, they can be bypassed
entirely. To explain why, we need to outline two ways of thinking about our fiction.

Our discussion in §§4–5 might suggest the following picture:

The Bolt-On Picture. We start with a real theory, 𝑇 , which expresses a body of literal truths
without using any nominalization-devices. We then enrich 𝑇 , moving to 𝑇u, by bolting on
NAT’s nominalization-devices. This move is justified by the Conservativeness Theorem.

If the Bolt-On Picture were taken as a description of the actual, temporal process of
howhumans arrive at𝑇u, then the above questions about virtue(et)twould be pressing.
But that is not the point of the Bolt-On Picture. The Bolt-On Picture can be used to
explain why, given𝑇 , we can employ𝑇u and act as if universals existed. But, of course,
no one actually starts out (in the temporal sense of ‘starts out’) with the real theory,
𝑇 , pristine and fully acceptable to Fregean realists. Rather, they arrive at𝑇 after some
reflection. That process of reflection is more accurately described using an alternative
picture:

The Reverse-Engineering Picture. We start out with a class of assertible sentences. Some
of these sentences feature nominalized predicates in referential position. Philosophical argu-
ment, however, makes us leery of universals. So: rather than accepting the sentences in our
class as literally true, we grant them the status true in the fiction of universals. Now our job is
to reverse-engineer this fiction, to arrive at our real theory, 𝑇 .⁴⁵

45 This is probably still an oversimplification. It assumes that every sentence in our initial class of
sentences will make its way into our fiction. In fact, in the course of regimenting the real/fictional
distinction, we might be led to revise our view of which sentences are really assertible; indeed, we may
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This alternative Picture offers us a way around the apparently pressing questions
about virtue(et)t. Our initial class of assertible sentences includes a variety of sen-
tences that describe certain universals as virtues, including:

(7) Wisdom is a virtue

Since (7) is assertible, its formalization should be true in our fiction. To achieve this,
we hypothesize that the English predicate ‘is a virtue’ expresses the flattening of some
real type (et)t property, 𝑥(et)t, such that 𝑥(wise). It is only at the end of this process
of reverse-engineering that we introduce the label ‘virtue(et)t’ for 𝑥: it is really just a
helpful mnemonic, to remind us that this is the real type (et)t property we posited
in order to make sentences like (7) true in our fiction.⁴⁶

6.3 Instantiation

Now that we have explained how to use our fiction, we would like to offer two more
examples of it in action. As we noted in §4.3, NAT allows us to define a notion of
instantiation, and hence to formalize a claim like ‘Socrates instantiates wisdom’ via:

(1b) socrates 𝜀 wise

This allows us to explain the validity of various natural language inference-patterns.
For example, consider this intuitively valid inference:

(1) Socrates is wise
(7) Wisdom is a virtue
(8) Therefore, Socrates has a virtue

We can formalize this inference as follows:

(1a) wise(socrates)
(1b) ∴ socrates 𝜀 wise
(7b) virtue(et)t(wise)
(8b) ∴ ∃𝑥e((socrates 𝜀 𝑥) ∧ virtue(et)t(𝑥))

This argument is valid within our fiction, since (1a) implies (1b) in the fiction,⁴⁷ and
then (8b) follows from (1b) and (7b) by elementary inference rules.⁴⁸ Moreover, given

need to go back and forth repeatedly, until we reach a reflective equilibrium. However, this complica-
tion does not affect our point here.

46 Our discussion of reverse-engineering is somewhat reminiscent of easy-road mathematical fic-
tionalism (e.g. Balaguer 1998: §3.2; Melia 2000; Leng 2010). Easy-road fictionalists also start with a
class of assertible sentences—those delivered by mathematical science—and work backwards to (what
they take to be) the literal truth. However, there is also an important difference. Easy-road fictionalists
deny, or at least refuse to assert, that it is possible to state (what they take to be) the literal truth directly,
without going via their fiction. By contrast, the end-product of our reverse-engineering is precisely a
direct statement of (what we take to be) the literal truth.

47 Indeed, in the fiction, they are identicalt.
48 Note that 𝑇u is a PFTT-theory, and hence uses the natural deduction system outlined in §A.3.
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that (1a) and (7b) are both true in the fiction, the argument is not just valid but sound
in the fiction.

6.4 Propositions

Our focus in this paper is on the nominalization of type et expressions. But our fiction
can smoothly nominalize other types too. Consider the following natural language
sentence:

(9) Gottlob believes that arithmetic is reducible to logic

Some philosophers and linguists take the complementizer ‘that’ to function as a device
for nominalizing sentences (type t).⁴⁹ They take ‘believes’ to express a type e(et)
relation between Gottlob and a reified proposition, i.e. the nominalization of a type
t proposition. The argument for universals that we presented in §3.1 can now be
reworked as an argument for reified propositions: (9) is true; (9) cannot be true unless
‘that arithmetic reduces to logic’ refers to a reified proposition; therefore at least one
reified proposition exists.

We do not believe in reified propositions any more than we believe in universals,
and sowewant to resist this argument. We distinguish two possible lines of resistance.
The first was proposed in earlier work by Trueman.⁵⁰ He suggested that, rather than
being a device of nominalization, the complementizer is actually semantically vacu-
ous. According to this suggestion, then, we should formalize (9) in PFTT as:

(9a) believese(tt) (gottlobe, (arithmetic-is-reducible-to-logic)t)

If this is the right way to formalize (9), then it does not express a relation between
Gottlob and a reified proposition (type e); it expresses a relation between Gottlob and
a proposition proper (type t).

The second line of resistance is made available by our fictionalism (and should be
compared with our discussion of ‘virtue(et)t’ in §6.1). We can grant that the comple-
mentizer in (9) is a nominalization device, but then deny that (9) is literally true; it is
really only true within the fiction of universals. This result can be secured in three
steps. First, we take (9a) to be a literal truth. Second, we use our fiction to infer:

(9b) believese(tt) (gottlobe, (arithmetic-is-reducible-to-logic)t)

Third, and finally, we offer (9b) as our formalization of (9). In otherwords: we propose
that the English predicate ‘believes’ should be formalized as ‘believese(tt) ’.

We do not want to take a final stand on the best way to formalize (9) itself. That
said, it is worth noting that the fictionalist strategy is forced upon us in at least some
cases. Consider:

49 This view is extremely widespread; see e.g. Cresswell (1973: 166–9), Parsons (1979: 132), Künne
(2003), and King et al. (2014).

50 Trueman (2018, 2020, 2021: ch.12–13). Trueman’s discussions draw heavily on Prior (1971: esp.
ch.2). See also Montague (1973: 18–19) and Rosefeldt (2008).
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(10) Gottlob believes logicism

‘Logicism’ is clearly a nominalization,⁵¹ and so when it comes to (10), we have no
choice but to deploy our fiction.

Our fiction not only copes with simple belief-reports like (9), but it can also handle
iterated belief-reports, such as:

(11) Bertrand believes that Gottlob believes that arithmetic is reducible to logic

We can formalize this in either of the following ways:

(11a) believese(tt) (bertrande, believese(tt) (gottlobe, (arithmetic-is-reducible-to-logic)t))
(11b) believese(tt) (bertrande, believese(tt) (gottlobe, (arithmetic-is-reducible-to-logic)t))

Fregean realists can, of course, regard (11a) as literally true. Moreover, in the fiction,
it entails (11b); indeed, in the fiction, they are identicalt.⁵²

7 Bridge-Principles
So far, we have focussed on relatively simple natural language constructions. In this
section, we will discuss two more challenging kinds of case: mixed-predication (§7.1)
and pseudo-self-predication (§7.3). As we will see, these cases can be handled if we
augment our fiction with certain bridge-principles, whose status we explore in §7.2.

7.1 Mixed-predication

Natural language allows us to construct cases of mixed-predication, where one and
the same thing is predicated of a universal and of an ordinary object. Here are some
examples:⁵³

(12) Plato loves Socrates and wisdom
(13) Not only are individual electrons physical, but so is electronhood itself
(14) Mary can see roses, but not the colour red
(15) The M25 is dangerous, and so is reckless driving
(16) Hillary talked about Nancy and running for president
(17) Logicism and Ludwig both frustrated Gottlob
51 We can use cases of mixed-predication to show that ‘logicism’ is a name; see e.g. (17) below.
52 By the definition of flattening, (9a) =t (9b); so believese(tt) (bertrand, (9a)) =t

believese(tt) (bertrand, (9b)); so believese(tt) (bertrand, (9a)) =t believese(tt) (bertrand, (9b)), hence
(11a) =t (11b). Note that we are here substituting sentences within the the scope of propositional
attitudes; that is not entirely uncontroversial, but we will not attempt to settle the proper logic for
hyper-intensional contexts here.

53 Chierchia (1982: 310–3, 1984: 8–9) seems to have been the first author to raise mixed-predication
as a problem for Montagovians (focussing on gerunds and infinitives; see also Chierchia and Turner
1988: 293); we adapt (15) and (16) from him. See also Parsons (1979: 130) for an example similar to
(16).
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(18) This book is about Lovelace and exponentiation

Now, some of these examples may strike you as puns, on a par with the following
zeugma:

(19) My mother taught me how to prove dough and theorems.

If so, our aim is not to convince you otherwise. Our point is only that (12)–(18) strike
us as reasonable assertions, which illustrate a general phenomenon. We will offer a
way to handle this phenomenon, focussing on the case of (12). However, our discus-
sion naturally extends to cover any cases of mixed-predication which you do notwant
to dismiss as puns.

Unfortunately, as it stands, our fiction cannot accommodate (12). To see why, let
us split (12) into two parts:

(20) Plato loves Socrates
(21) Plato loves wisdom

Sentence (20) obviously does not pose any problems. We can formalize it as:

(20a) lovese(et)e (plato, socrates)

This makes no mention of universals, and so we can accept it as a literal truth.
Sentence (21) is a little trickier, but we can approach it in much the same way that

we approached (7) in §6.1. We help ourselves to a type e((et)t) relation, lovese((et)t)et .
We then take it to be literally true that Plato bears this relation to wiseet:

(21a) lovese((et)t)et (plato,wise)

Finally, we use the fiction of universals to infer:⁵⁴

(21b) lovese((et)t)et (plato,wise)

We think this a good formalization of (21). But, even though we now have formaliza-
tions for (20) and (21), we still cannot yet formalize (12). The trouble is that, even in
the fiction, lovese is distinct from loveset.⁵⁵

To solve this problem, we need to augment our fiction with a principle that, in
effect, extends lovese to include pairs of objects which stand in the loveset relation too.
More precisely, we lay down the following bridge-principle:

(real(𝑢e) ∧ real(𝑣et)) → lovese(𝑢, 𝑣) =t loveset(𝑢, 𝑣)

Given this bridge-principle, (21a) implies:
54 We should repeat the assumption, from footnote 44, that we are tacitly assuming that the various

wffs in these examples are atomic.
55 Indeed, in the fiction, (20a) is true but loveset (plato, socrates) is false. Recall, in the fiction:

loveset (𝑥e, 𝑦e) iff 𝑥e and 𝑦e are nominalizations of entities between which loveset obtains; but socrates
is not the nominalization of any type et entity (by Nom-nonreal).



22

(21c) lovese(plato,wise)

Together with (20a), this finally implies:

(12a) lovese(plato, socrates) ∧ lovese(plato,wise)

which is our formalisation, within our fiction, of (12).

7.2 Licensing the use of bridge-principles

We have dealt with mixed-predication using bridge-principles. We now need to ad-
dress two questions concerning the use of such principles.

The most immediate question is: what permits us to add these bridge-principles
to our fiction? Roughly put, our answer is that, if we take even a modicum of care,
then adding bridge-principles to our fiction will still be conservative. To make this
more precise, we must define some notions. We stipulate that a bridge-principle is any
formula of this shape:(

real(𝑢𝛼11 ) ∧ . . . ∧ real(𝑢𝛼𝑛𝑛 )
)
→ Ae(...(et)...) (𝑢1, . . . , 𝑢𝑛) =t B𝛼1 (...(𝛼𝑛t)...) (𝑢1, . . . , 𝑢𝑛)

where A and B are 𝑇-constants, and some type 𝛼𝑖 is not e. (This last clause ensures
that some nominalization is, in fact, being invoked.) Then we can prove, roughly, that
a set of bridge-principles, Δ, can be conservatively added to 𝑇u, provided that it is
impossible for the bridge-principles to conflict with each other.

Of course, this notion of ‘impossibility of conflict’ needs to be made more pre-
cise. So let us start by thinking about some cases where conflict is possible. Conflict is
clearly possible if we insist, for example, both that lovese(𝑢e, 𝑣et) =t loveset(𝑢, 𝑣)
and that lovese(𝑢e, 𝑣et) =t hateset(𝑢, 𝑣). Only slightly less clearly: imagine that
𝑇 ⊢ ploveset =et lovese(plato). (Recall that we tend to write the decurried expres-
sion ‘lovese(plato, 𝑥e)’ in place of ‘(lovese(plato)) (𝑥e)’; but here we are relying on the
fact that ‘lovese(plato)’ is a type et expression, roughly corresponding to the English
predicate ‘Plato loves . . . ’.) In that case, conflict would be possible between a bridge-
principle which mentioned lovese and one which mentioned ploves. Fortunately, it is
not hard to lay down a condition which rules out exactly these kinds of conflicts; this
is the notion of𝑇-friendliness (see Definition 7 of §E). And we can then prove that any
set of𝑇-friendly bridge-principles is conservative over𝑇 . (For full details, though, the
reader will have to consult §E.)

This explains what permits us to introduce bridge-principles. But we should also
ask: what motivates their introduction? For example, why should we introduce a
bridge-principle between lovese(et)e and lovese((et)t)et ? It is tempting to answer that
lovese and loveset are two types of loving-relation. But that answer would be strictly
nonsensical, given Fregean realism, since nothing that can be said of one type can be
said of another.

As in §6.2, this question can be addressed by recalling that we are reverse-
engineering our fiction. To illustrate, consider our example of mixed-predication, and
its formalization:
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(12) Plato loves both Socrates and wisdom
(12a) lovese(plato, socrates) ∧ lovese(plato,wise)

Suppose that (12) is assertible. In that case, (12a) should be true in our fiction. Now,
since lovese(plato, socrates) is assertible and makes no reference to universals, we can
accept it as a literal truth (and hence also as true in the fiction). And, given the assert-
ibility of lovese(plato,wise), we reverse-engineer our fiction to include some ‘corre-
sponding’ relation of type e((et)t) which holds between plato and wise. Our bridge-
principles simply formalize the intuitive talk of a ‘corresponding relation’. So, these
bridge-principles serve as a formal link (within the fiction) between the familiar type
e(et) relation lovese, and the reverse-engineered type e((et)t) relation.

7.3 Pseudo-self-predication

Now that we have a general licence to invoke bridge-principles, we can put them to
further work. For example, consider this case:

(22) Plato loves love

This is much like (21), except that it is a case of pseudo-self-predication, where a relation
is applied to its own nominalization.⁵⁶ To handle this, as in §7.1, we introduce another
type of love, lovese((e(et))t)

e(et) , and accept the following as a literal truth:

(22a) lovese(et) (plato, lovese)

Within our fiction, (22a) is identicalt to:

(22b) lovese(et) (plato, lovese)

But lovese(et) is distinct from lovese, and so (22b) does not apply a relation to its own
nominalization. To overcome this, we lay down another bridge-principle:(

real(𝑢e) ∧ real(𝑣e(et))
)
→ lovese(𝑢, 𝑣) =t lovese(et) (𝑢, 𝑣)

Using this, (22a) is identicalt in the fiction to:

(22c) lovese(plato, lovese)

And this is a genuine case of pseudo-self-predication, in which lovese is applied to its
own nominalization.

The approach generalises. Using bridge-principles, we can easily handle other
cases which have been thought to pose difficulties for strictly typed theories, such
as:⁵⁷

56 It is only pseudo-self-predication: Fregean realism prohibits the application of a relation to itself.
57 Example (23) is modelled off Chierchia (1984: 12, 1985: 418) and Chierchia and Turner (1988:

293).
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(23) Kindness is kind
(23a) kinde(kinde)
(24) Plato loves loving love
(24a) lovese(plato, 𝜆𝑥e lovese(𝑥, lovese))

We leave it to the reader to specify the suitable bridge-principles.

8 Limits of the fiction
In §§6–7, we gave a sense of the power and flexibility of our fiction. Our hope is
that this will allow us to accommodate enough of the ordinary use of nominalized
predicates, to allow us to continue speaking as if there were universals in everyday
and scientific contexts. Whilst there is obviously no way to prove that our hope has
been fulfilled, we think it is extremely plausible.

However, we should also admit that there are limits to our fiction. In particular,
our fiction cannot handle cases that involve nominalizing the unreal entities intro-
duced by NAT. Here is a particularly striking example. Consider these two sentences:

(25) Socrates does not instantiate himself
(26) Socrates instantiates non-self-instantiation

We can easily formalise (25) as follows, where A /𝜀 A abbreviates ¬(A 𝜀 A):⁵⁸

(25a) socrates /𝜀 socrates

However, there is no adequate way to formalise (26). In the fiction, we can consider
the property of non-self-instantiation, 𝑑et =et (𝜆𝑥e 𝑥 /𝜀 𝑥); so we might offer:

(26a) socrates 𝜀 𝑑

But, since 𝑑 is not real, it has no nominalization,⁵⁹ so (26a) is false.
This is, then, a limitation on NAT. But, given our aims, it is no real shortcom-

ing. As we explained in §5, the point of our fictionalism is to explain why ordinary
discourse about universals does not lead from real-restricted truths to real-restricted
falsehoods, without conceding that universals really exist. We doubt that (26) is any
part of the ordinary discourse about universals. Of course, (26) is part of the philo-
sophical discourse about universals. But notoriously, philosophers have been led from
truths to falsehoods by sentences like (26), which are just one step away from Russell’s
Paradox, in the form ‘non-self-instantiation instantiates non-self-instantiation’.

58 By itself, NAT does not entail (25a), for reasons noted at the end of §4.3, but see §D.
59 For reductio, suppose

∃

𝑑. By the instantiation-scheme of §4.3, we have (𝑑 𝜀 𝑑) =t (𝑑 𝜀 𝑑) =t 𝑑𝑑.
Also, 𝑑𝑑 =t (𝑑 /𝜀 𝑑) by Red and

∃

It (see §A.3). So (𝑑 𝜀 𝑑) =t (𝑑 /𝜀 𝑑), which is a contradiction.
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9 Conclusion
Fregean realists reject the suggestion that properties are objects (see §2). Nevertheless,
Fregean realism is compatiblewith the claim that (at least some) properties correspond
to certain special objects, which we call universals. Moreover, various ordinary nat-
ural language constructions imply that universals exist. At the same time, however,
Fregean realists have good reason to deny that there really are any universals (see §3).
So, Fregean realists have good reason to embrace fictionalism about universals. We
have gone someway to showing how this can be done: Fregean realists can help them-
selves to a provably conservative fiction of universals (see §§4–5).

This fiction allows us to provide a face-value semantics for a wide variety of natu-
ral language constructions (see §6), including cases of mixed-predication and pseudo-
self-predication (see §7). Inevitably, Russell’s Paradox places limits on what can be
achieved within the fiction, but these limits seem somewhat recherché (see §8). In-
deed, it seems that wherever one might naturally want to speak as if there were uni-
versals, Fregean realists can do just that, and in good conscience, by invoking their
conservative fiction.

A PFTT’s deductive system
In this appendix, we outline the formal system PFTT. This retains bivalence, but re-
mains suitable for partial functions. It is a minor modification of Farmer’s (1990)
system PF; the main difference is that PFTT allows there to be more than two propo-
sitions.

A.1 PFTT’s grammar

We have two basic types: e and t. For any types 𝛼 and 𝛽, we have the type (𝛼𝛽). These
are our only types. Since we have no product-types, we officially handle relations by
currying. However, for readability, we often use decurried expressions. (See §1 for
this, and other, notational conventions.)

For each type 𝛼, we have primitive symbols as follows:⁶⁰

• Improper symbols: 𝜆, (, )
• Logical constants: Falsett,¬tt,∨t(tt) ,∧t(tt) ,→t(tt) , =𝛼(𝛼t)

𝛼 , Σ(𝛼t)t𝛼 ,Π(𝛼t)t
𝛼 , 𝜄(𝛼t)𝛼𝛼

• Variables: 𝑎𝛼 , . . . , 𝑧𝛼 , with subscripts as necessary
• Non-logical constants: as we see fit

60 Farmer’s (1990) PF allows for only two t-entities; so he adapts an equational Henkin–Andrews
system (see e.g. Andrews 2002: ch.5). To allow for multiple t-entities, we must revert from an equa-
tional system to a system more like Church’s (1940) original. We have more primitives than usual, but
treat↔ as a conjunction of conditionals.
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We indicate the types of expressions with superscripts. The grammar is standard:⁶¹
every constant or variable of type 𝛼 is a wff𝛼; if x𝛼 is a variable and B𝛽 is a wff𝛽 , then
(𝜆x𝛼B𝛽)𝛼𝛽 is a wff𝛼𝛽 ; if A𝛼 is a wff𝛼 and B𝛼𝛽 is a wff𝛼𝛽 , then (BA)𝛼 is a wff𝛽 ; nothing
else is a wff.

It is convenient to introduce some definitions:⁶²

∀x𝛼At ≔ Π𝛼 (𝜆x𝛼A)
∃x𝛼At ≔ Σ𝛼 (𝜆x𝛼A)

𝜄x𝛼At ≔ 𝜄𝛼 (𝜆x𝛼A)

Uni(𝛼t)t𝛼 ≔ 𝜆𝑣𝛼t∃𝑥𝛼∀𝑦𝛼 (𝑣( 𝑦) ↔ 𝑥 =𝛼 𝑦)

∃

A𝛼 ≔ A =𝛼 A
A𝛼 ≃𝛼 B𝛼 ≔ ( ∃

A ∨ ∃

B) → A =𝛼 B

Intuitively: Uni𝛼 indicates that a property is uniquely instantiated;

∃

A indicates that
A exists; and A ≃ B indicates that they are identical if either exists.

A.2 Handling empty terms

Our system allows for empty terms. Intuitively, applying any term to an empty term
causes a ‘crash’. Our precise implementation of this idea follows Farmer. We recur-
sively specify two kinds of types:

Definition 1: e is e-kind; t is t-kind; and 𝛼𝛽 is the same kind as 𝛽.

Intuitively, ‘crashing’ for e-kinds will amount to undefinedness; ‘crashing’ for t-kinds
will amount to falsity. More precisely:

(i) e-kind expressions stand for partial functions. If 𝛽 ise-kind thenB𝛼𝛽A𝛼 denotes
iff: B denotes some 𝑏, and A denotes some 𝑎, and 𝑏(𝑎) is defined; in that case,
BA denotes 𝑏(𝑎).

(ii) t-kind expressions stand for total functions. If A is empty, then B𝛼tA𝛼 is false.

Clause (ii) allows us to have a negative-free logic. In fact, we will want to extend the
condition on falsity, to deal with the general case of B𝛼𝛽A𝛼 when 𝛽 is t-kind. We use
the following recursive definition:

False𝛼𝛽
𝛼𝛽

≔ 𝜆𝑥𝛼False𝛽
𝛽
, for all t-kind 𝛽

So, Falsett is a logical constant, which we will treat as a primitive, canonical, falsity;
then the various False𝛼𝛽s allow us to push higher-typed entities (ultimately) to Falset.
To illustrate this: suppose that 𝑐𝛼 is non-existent; then (=𝛼𝑐

𝛼) should be a function
which yields Falset for any type 𝛼 input, i.e. we want that (=𝛼𝑐

𝛼) =𝛼t False𝛼t.
61 ‘wff𝛼 ’ abbreviates ‘wff of type 𝛼’. Bold capital letters stand for wffs of the indicated type. Bold

lowercase letters stand for variables of the indicated type.
62 See Church (1940: 58) for ∀ and 𝜄; cf. Farmer (1990) for False𝛼𝛽 ; and our

∃

is based on Farmer’s ↓.
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A.3 PFTT’s natural deduction system

We provide a natural deduction system for PFTT.⁶³ We help ourselves to some stan-
dard classical introduction and elimination rules for Falset, ¬, ∨, ∧, and→; here are
the new rules (where ‘⊩’ indicates a permissible inference):⁶⁴

Red:

∃

A𝛼 ⊩ (𝜆x𝛼B𝛽)A ≃𝛽 B[A//x] where B[A//x] is the result of replacing every
instance of x in B with A, if neither x nor any of A’s free variables are bound in B

≃E: A𝛼 ≃𝛼 B𝛼 ,Ct ⊩ C[B/A] where C[B/A] is the result of replacing any occurrence
of A in C with an occurrence of B, if that occurrence is not immediately preceded by 𝜆

ΠE: Π𝛼B𝛼t,

∃

A𝛼 ⊩ BA
ΠI: B𝛼tx𝛼 ⊩ Π𝛼B if x is not free in B or in any open assumption
ΣE: Σ𝛼B𝛼t,Bx𝛼 → At ⊩ A if x is not free in B, in A, or in any open assumption
ΣI: B𝛼tA𝛼 ⊩ Σ𝛼B
𝜄I: Uni𝛼A𝛼t ⊩ A( 𝜄𝛼A)

𝜄Ee:

∃( 𝜄𝛼A𝛼t) ⊩ Uni𝛼A if 𝛼 is e-kind
𝜄Et: ( 𝜄𝛼A𝛼t) ≠𝛼 False𝛼 ⊩ Uni𝛼A if 𝛼 is t-kind∃

Ie: ⊩

∃

A𝛼 if A is a variable, a logical constant, or a 𝜆-term∃

It: ⊩

∃

A𝛼 if 𝛼 is t-kind
Cre:

∃(B𝛼𝛽A𝛼) ⊩ ∃

B if 𝛽 is e-kind
Cre:

∃(B𝛼𝛽A𝛼) ⊩ ∃

A if 𝛽 is e-kind
Crt: ¬

∃
A𝛼 ⊩ B𝛼𝛽A𝛼 =𝛽 False𝛽 if 𝛽 is t-kind

Ext: (A𝛼𝛽x𝛼) ≃𝛽 (B𝛼𝛽x) ⊩ A ≃𝛼𝛽 B if x is not free in A, in B, or in any open assumption

To illustrate the character of this deductive system, here is a useful theorem scheme,
which provides a generalization of higher-order Cantor’s Theorem.⁶⁵ Our informal
proof is easily formalizable within the strict deductive system we just outlined:

Theorem 2 (for any 𝛼, 𝛽): Fix a function 𝑓 (𝛼𝛽)𝛼 , a relation 𝑟𝛼(𝛼t) , and distinct type 𝛽
entities 0𝛽 ≠𝛽 1𝛽 . Consider the function 𝑐𝛼𝛽 such that:⁶⁶

𝑐𝑥𝛼 ≔

{
1 if ∃𝑣𝛼𝛽 (𝑟(𝑥, 𝑓 𝑣) ∧ 𝑣𝑥 =𝛽 0)
0 otherwise

If 𝑟(𝑓 𝑐, 𝑓 𝑐), then 𝑐(𝑓 𝑐) =𝛽 1, so that also ∃𝑑𝛼𝛽 (𝑟(𝑓 𝑐, 𝑓 𝑑) ∧ 𝑑(𝑓 𝑐) =𝛽 0).

Proof. For reductio, suppose 𝑐(𝑓 𝑐) =𝛽 0; so ∀𝑣𝛼𝛽 (𝑟(𝑓 𝑐, 𝑓 𝑣) → 𝑣(𝑓 𝑐) ≠𝛽 0). Instantiat-
ing, 𝑟(𝑓 𝑐, 𝑓 𝑐) → 𝑐(𝑓 𝑐) ≠𝛽 0. By assumption, 𝑟(𝑓 𝑐, 𝑓 𝑐); so 𝑐(𝑓 𝑐) ≠𝛽 0, a contradiction.
Discharging the reductio, 𝑐(𝑓 𝑐) =𝛽 1. □

63 Farmer (1990) offers a Hilbert-style axiomatization.
64 So we write e.g. A,B ⊩ C for what you might write in a Gentzen-style system as A B

C . Since
Falset is our canonical absurdity, the rule ex falsomight be given as: Falset ⊩ .

65 Compare e.g. Linnebo (forthcoming: §3).
66 i.e. 𝑐 =𝛼𝛽 𝜆𝑥𝛼

𝜄

𝑧𝛽 ((𝜙(𝑥) → 𝑧 =𝛽 1) ∧ (¬𝜙(𝑥) → 𝑧 =𝛽 0)), with 𝜙(𝑥) abbreviating ∃𝑣(𝑟(𝑥, 𝑓 𝑣) ∧
𝑣𝑥 =𝛽 0).
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Corollary 3: If 𝑓 (𝛼e)𝛼 is total, then 𝑓 is not injective. Indeed, in this case there are
non-coextensive 𝑐𝛼e and 𝑑𝛼e such that 𝑓 𝑐 =𝛼 𝑓 𝑑.

Proof. Use Theorem 2, with 𝛽 as t, 0t as Falset, 1t as ¬Falset, and 𝑟𝛼(𝛼t) as =𝛼 . Since
𝑓 (𝛼t)𝛼 is total, 𝑓 𝑐 =𝛼 𝑓 𝑐. So 𝑐(𝑓 𝑐) =t ¬Falset, and there is 𝑑et such that 𝑓 𝑐 =𝛼 𝑓 𝑑 and
𝑑(𝑓 𝑐) =t Falset. Now ¬(𝑐(𝑓 𝑐) ↔ 𝑑(𝑓 𝑐)). □

This corollary is the unsurprising version of Cantor’s Theorem mentioned in §3.4.

A.4 Henkin semantics for PFTT

PFTT has a (sound and complete) Henkin semantics. Again, this follows Farmer
closely. Note that the Henkin semantics assigns wffs, of all types, to objects from set
theory with urelements. So we do not regard the Henkin semantics as our intended
semantics for PFTT (see §2.1, especially footnote 6); rather, we regard it as a useful
mathematical instrument.

A PFTT-interpretation, M, comprises non-empty domains 𝑀𝛼 for each type 𝛼,
with a particular subset 𝑀des ⊆ 𝑀t, and a particular entity f. Intuitively, 𝑀des will be
our ‘designated values’ (our true propositions) and f will be a canonical falsehood. We
let 𝑀 =

⋃
𝛼 𝑀𝛼 , and insist:

(1) f ∈ 𝑀t \ 𝑀des
(2) If 𝛼 is e-kind, then 𝑀𝛼𝛽 is a set of partial functions from 𝑀𝛼 to 𝑀𝛽

(3) If 𝛼 is t-kind, then 𝑀𝛼𝛽 is a set of total functions from 𝑀𝛼 to 𝑀𝛽

(4) If 𝛼 is t-kind, then fM𝛼 ∈ 𝑀𝛼 , where fMt ≔ f and fM
𝛼𝛽
(𝑎) ≔ fM

𝛽
for all 𝑎 ∈ 𝑀𝛼

(5) If a constant C𝛼 is assigned, it is assigned to some CM ∈ 𝑀𝛼; and C𝛼 must be
assigned if 𝛼 is t-kind

(6) Every logical constant is assigned; their assignments meet these rules:⁶⁷

FalseMt = f = fMt
¬M(𝑎) ∈ 𝑀des iff 𝑎 ∉ 𝑀des

(𝑎 ∨M 𝑏) ∈ 𝑀des iff either 𝑎 ∈ 𝑀des or 𝑏 ∈ 𝑀des

(𝑎 ∧M 𝑏) ∈ 𝑀des iff both 𝑎 ∈ 𝑀des and 𝑏 ∈ 𝑀des

(𝑎 →M 𝑏) ∈ 𝑀des iff either 𝑎 ∉ 𝑀des or 𝑏 ∈ 𝑀des

(𝑎 =M
𝛼 𝑏) ∈ 𝑀des iff 𝑎 = 𝑏

ΣM𝛼 (𝑏) ∈ 𝑀des iff 𝑏(𝑥) ∈ 𝑀des for some 𝑥 ∈ 𝑀𝛼

ΠM
𝛼 (𝑏) ∈ 𝑀des iff 𝑏(𝑥) ∈ 𝑀des for all 𝑥 ∈ 𝑀𝛼

𝜄M𝛼 (𝑏) = the 𝑥 ∈ 𝑀𝛼 such that 𝑏(𝑥) ∈ 𝑀des, if there is one

𝜄M𝛼 (𝑏) crashes, if there is not

67 We assume suitable domains. That is: the domain of ¬M is𝑀t; the domain of (Π𝛼)M and ( 𝜄𝛼)M
is 𝑀(𝛼t) ; etc. We tend to leave this assumption implicit in what follows.
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Here, and in what follows, the sense of ‘crashes’ is as in §A.2: so 𝜄M𝛼 (𝑏) is unde-
fined if 𝛼 is e-kind; and 𝜄M𝛼 (𝑏) = fM𝛼 if 𝛼 is t-kind.

Given a PFTT-interpretationM, a variable assignment forMmaps every type 𝛼 vari-
able to an element of 𝑀𝛼 . Where 𝜎 is a variable assignment for M, this is extended
to a (partial)⁶⁸ function providing values for AM

𝜎 , for all wffs A, via these recursive
clauses. (We omit the superscript ‘M’ where it is obvious from context.) The clauses
for variables, x𝛼 , and constants, C𝛼 , are obvious:

x𝜎 = 𝜎 (x)
C𝜎 = CM if C is assigned inM
C𝜎 is undefined otherwise

Where possible, we distribute assignments over application. So, with (B𝛼𝛽A𝛼):

(BA)𝜎 = B𝜎A𝜎 if A𝜎 ,B𝜎 and B𝜎A𝜎 are all defined
(BA)𝜎 crashes otherwise

where, recall, crashing amounts to: if 𝛽 is e-kind then (BA)𝜎 is undefined; if 𝛽 is
t-kind then (BA)𝜎 = fM

𝛽
. (Note: when 𝛽 is t-kind, clause (4) of our semantics guar-

antees that both B𝜎 and B𝜎A𝜎 are defined.) Finally, we consider 𝜆-terms: (𝜆x𝛼B𝛽)𝜎 is
the function in 𝑀𝛼𝛽 such that for all 𝑎 ∈ 𝑀𝑎:

(𝜆xB)𝜎 (𝑎) = B𝜎 [x:𝑎] if B𝜎 [x:𝑎] is defined
(𝜆xB)𝜎 (𝑎) is undefined otherwise

where 𝜎 [x:𝑎] is the variable assignment which differs from 𝜎 , if at all, by mapping x
to 𝑎.

A PFTT-interpretationM is a PFTT-structure iff, for every variable assignment 𝜎
and everyA𝛼 : if 𝛼 is e-kind then eitherA𝛼

𝜎 is undefined orA𝛼
𝜎 ∈ 𝑀𝛼; and if 𝛼 is t-kind

then A𝛼
𝜎 ∈ 𝑀𝛼 .

WhenM is a PFTT-structure and A is a closed wff, AM
𝜎 does not depend on the

choice of 𝜎 ; so we can write simply AM. We writeM ⊨ At iff AM ∈ 𝑀des. We write
M ⊨ 𝑇 iffM ⊨ At for all At ∈ 𝑇 ; in this case, we can say thatM is a model of 𝑇 .

The natural deduction system is provably sound and complete for PFTT-
structures. This can be shown by making minor adjustments to Farmer’s proof of
soundness and completeness for his system PF.

A.5 Fineness of grain in PFTT

To repeat: PFTT is a minor adjustment to Farmer’s PF, which modifies Church’s the-
ory of types. Our main departure is to allow more than two t entities. We should
briefly comment on our reasons for this departure.

68 Farmer (1990) provides a total function by having a ‘default’ value of ⊥ ∉ 𝑀 such that, where we
would say that AM

𝜎 is undefined, he lets AM
𝜎 = ⊥.
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One might worry that PFTT’s rule Ext makes the framework rather coarse-
grained. For example, the apparently analogous principle of second-order logic,
∀𝑥(𝐹𝑥 ↔ 𝐺𝑥) → 𝐹 = 𝐺, identifies all coextensive properties. However, since PFTT
allows for more than two t entities, its rule Ext does not have the same consequence.
To illustrate, in PFTT: cordateet and renateet are distinct properties iff there is some
𝑥e such that cordate(𝑥) ≠t renate(𝑥); since PFTT allows that there can be more than
two propositions, this situation is compatible with ∀𝑥e(cordate(𝑥) ↔ renate(𝑥)).

Indeed, PFTT deliberately says as little as possible about what it takes for propo-
sitions to be identical. If you want to say more about how finely grained you think
propositions should be, then you are free to do so. For example: perhaps you favour
Booleanism, according to which 𝑢t =t (¬¬𝑢), and (¬𝑢t ∧ ¬𝑣t) =t ¬(𝑢 ∨ 𝑣), and
so forth.⁶⁹ Feel free to add such claims; in the interests of inclusivity, we will remain
silent about them.⁷⁰ Our desire for inclusivity also explains why PFTT has so many
distinct logical primitives.⁷¹

B The fictional theory
As explained in §5, the Fregean realist’s fictional theory,𝑇u, is obtained by addingNAT
to the result of explicitly restricting the Fregean realist’s theory, 𝑇 , to real entities.
Having defined NAT in §4.2, it only remains to define a recursive translation, r, such
that Ar can be thought of as ‘A as restricted to real entities’. We define the recursive
translation in this appendix, justifying the clauses in small groups. We start with the
easiest:

Cr is C, if C is a variable or a constant other than Σ, Π, 𝜄 or =

We do not really have any choice concerning variables or non-logical constants. For
the sentential connectives, i.e. Falset,¬,∧,∨,→, we could have provided amore com-
plicated definition. However, by NAT’s scheme Prop-real, no new (non-real) proposi-
tions are addedwhenwemove to the fictional theory; so they should just be translated
verbatim. We next consider the quantifier-like constants:

69 See Dorr (2016: 62–70) for discussion.
70 Note, though: if you want these new principles also to hold in the fiction, 𝑇u, you may need to

adjust the proof of the Conservativeness Theorem (albeit in routine ways).
71 That said, we should flag an area where we coarse-grain more than some would like. Roughly:

by Crt, ‘Freya is divine’ and ‘Odin is ticklish’ both express the same proposition, Falset. Greater fine-
graining for such crashes would require making substantial adjustments to PFTT.
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(Σ𝛼)r is 𝜆𝑣𝛼t 𝜄𝑥t
(
(real(𝑣) → 𝑥 =t (∃𝑧𝛼 (real(𝑧) ∧ 𝑣𝑧))) ∧
(¬real(𝑣) → 𝑥 =t Falset)

)
(Π𝛼)r is 𝜆𝑣𝛼t 𝜄𝑥t

(
(real(𝑣) → 𝑥 =t (∀𝑧𝛼 (real(𝑧) → 𝑣𝑧))) ∧
(¬real(𝑣) → 𝑥 =t Falset)

)
( 𝜄𝛼)r is 𝜆𝑣𝛼t 𝜄𝑥𝛼

(
(real(𝑣) → 𝑥 =𝛼

𝜄

𝑦𝛼 (real( 𝑦) ∧ 𝑣𝑦)) ∧
(¬real(𝑣) → 𝑥 =𝛼 False𝛼)

)
, if 𝛼 is t-kind

( 𝜄𝛼)r is 𝜆𝑣𝛼t 𝜄𝑥𝛼
(
(real(𝑣) → 𝑥 =𝛼

𝜄

𝑦𝛼 (real( 𝑦) ∧ 𝑣𝑦)) ∧
(¬real(𝑣) → 𝑥 =𝛼

𝜄

𝑧𝛼Falset)), if 𝛼 is e-kind

The intuitive idea behind these definitions is that a real-restricted quantifier should
have its domain restricted to the real entities. In the particular case of existential quan-
tification, this comes down to two ideas: (i) if 𝑣𝛼t is a real property, then “something
is 𝑣” should be really true iff some real thing is 𝑣; (ii) if 𝑣𝛼t is a non-real property, then
“something is 𝑣” should not really be true. Since Σ𝛼𝑣𝛼t can be rewritten as ∃𝑥𝛼𝑣𝛼t𝑥,
ideas (i) and (ii) respectively motivate the two conjuncts in the definition of (Σ𝛼)r. A
similar line of thought justifies our clauses Π and 𝜄. Next, we consider = and 𝜆-terms:

(=𝛼)r is 𝜄

𝑣𝛼(𝛼t)
(
real(𝑣) ∧ ∀𝑥𝛼∀𝑦𝛼 ((real(𝑥) ∧ real( 𝑦)) → 𝑣(𝑥, 𝑦) =t (𝑥 =𝛼 𝑦))

)
(𝜆x𝛼B𝛽)𝛼𝛽r is 𝜄

𝑣𝛼𝛽
(
real(𝑣) ∧ ∀𝑦𝛼 (real( 𝑦) → 𝑣𝑦 ≃𝛽 (𝜆xBr) 𝑦)

)
The intuitive idea is that the real-restriction of fictional-= should be the (unique) real
entity which agrees precisely with fictional-= over all real entities; likewise for 𝜆-
terms. Finally, r distributes over application:

(B𝛼𝛽A𝛼)r is (BrAr)

This completes our definition of r, and it allows us to define 𝑇u from 𝑇 :

Definition 4: Let𝑇 be any PFTT theory in some signature,L, which is disjoint from
NAT’s non-logical vocabulary. 𝑇 ’s fictionalization is then 𝑇u = NAT ∪ {At

r : 𝑇 ⊢ A}.

C Conservativeness
We can now state and prove our main result:

Conservativeness Theorem: Let 𝑇 be a PFTT theory in some signature,L, which
is disjoint from NAT’s non-logical vocabulary. If 𝑇u ⊢ Ar then 𝑇 ⊢ A, for any L-
sentence At.

We prove this result via expansion-conservation.⁷² We will show how to transform any
Henkin model,M, into a richer model,M∗, so that the following holds:

72 See e.g. Button and Walsh (2018: 60–2).
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Lemma 5: For anyM with signatureL:

(1) M∗ ⊨ Ar iffM ⊨ A, for anyL-sentence At; and
(2) M∗ satisfies NAT.

The Conservativeness Theorem will then follow straightforwardly:

Proof of Conservativeness Theorem from Lemma 5. Suppose that 𝑇u ⊢ Ar. By Sound-
ness, 𝑇u ⊨ Ar. Let M be any PFTT-structure such that M ⊨ 𝑇 ; then M∗ ⊨ 𝑇u by
Lemma 5 and henceM∗ ⊨ Ar, so thatM ⊨ A by Lemma 5. Generalising, 𝑇 ⊨ A. By
Completeness, 𝑇 ⊢ A. □

It just remains to explain how to constructM∗ fromM, and to prove Lemma 5. The
basic idea is simple. For each higher-type entity inM, we create a new object to serve
as its nominalization; we close under all possible (partial) functions; then we interpret
the new vocabulary in the most obvious way. Admittedly, the details are fiddly, and
spelling them out will take several steps (and the rest of this appendix). But there is
nothing essentially more complicated than this very simple idea.

Proof of Lemma 5. In what follows,M can be any PFTT-structure in some signature
L. Recall that 𝑀𝛼 is the set of entities which are values of type 𝛼 variables in M,
with 𝑀 =

⋃
𝛼 𝑀𝛼 . We describe the construction ofM∗ fromM in several steps. To

avoid a rash of asterisks, we will refer to M∗ as N , but this should not obscure that
N functionally depends onM. Our proof has five steps.

Step 1. Denizens of N . We will wantN to have the same propositions asM, and
to treat the same propositions as designated. So we stipulate:

𝑁t ≔ 𝑀t

𝑁des ≔ 𝑀des

However, we will wantN to contain some new nonreal objects, i.e. our universals. To
this end, for each 𝛼 ≠ e, we fix simultaneously a set𝑈𝛼 and a bijection 𝜇𝛼 : 𝑀𝛼 −→ 𝑈𝛼 .
Intuitively, 𝑈𝛼 will supply the universals obtained from nominalizing type 𝛼 entities.
We also insist that 𝑀 and all the𝑈𝛼s are pairwise disjoint, and (for convenience) that
𝜇e is the identity function on 𝑀e. Our type e domain is then:

𝑁e ≔ 𝑀e ∪
⋃
𝛼≠e

𝑈𝛼

We then flesh out the domains of complex types as richly as possible:

𝑁𝛼𝛽 ≔

{
the set of all partial functions from 𝑁𝛼 to 𝑁𝛽 if 𝛽 is e-kind
the set of all total functions from 𝑁𝛼 to 𝑁𝛽 if 𝛽 is t-kind

Step 2. Picking out ‘real’ entities. We now isolate some of N ’s denizens as ‘real’.
Roughly, these should just be the denizens of 𝑀𝛼 . However, that idea is too rough.
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Where 𝛽 is t-kind, a function of type 𝛼𝛽 must be total; but the functions of 𝑀𝛼𝛽 will
not be total for 𝑁𝛼 , since 𝑁𝛼 will contain entities not in 𝑀𝛼 . We must make these
functions total.

To achieve this, we provide a recursive construction, simultaneously defining sets,
𝑅𝛼 , for each type 𝛼 and a function, ★. Intuitively, 𝑅𝛼 comprises the ‘real’ entities of
type 𝛼, and ★ provides a bijection 𝑀𝛼 −→ 𝑅𝛼; this allows us to treat 𝑎★ as an ersatz
for 𝑎 ∈ 𝑀.

We define 𝑅e ≔ 𝑀e and 𝑅t ≔ 𝑀t. Then, for each 𝑎 ∈ 𝑀e∪𝑀t, we stipulate that
𝑎★ ≔ 𝑎. For complex types: having defined 𝑅𝛼 , 𝑅𝛽 , and ★ over the types 𝛼 and 𝛽, we
will define 𝑎★ for each 𝑎 ∈ 𝑀𝛼𝛽 as a function with domain 𝑁𝛼 , stipulating:

𝑎★(𝑥★) ≔ (𝑎(𝑥))★ if 𝑎(𝑥) is defined
𝑎★( 𝑦) crashes otherwise

As before (and throughout), to say that 𝑎★( 𝑦) crashes is to say: 𝑎★( 𝑦) is undefined if
𝛽 is e-kind; and 𝑎★( 𝑦) = fN

𝛽
if 𝛽 is t-kind. Finally, we define:

𝑅𝛼𝛽 ≔ {𝑎★ : 𝑎 ∈ 𝑀𝛼𝛽}

A routine induction confirms that this is well-defined and that, for each 𝛼, restricting
★ to 𝑀𝛼 is a bijection 𝑀𝛼 −→ 𝑅𝛼 .

Step 3. Non-logical constants. When C is a nonlogicalL-constant, we stipulate

CN ≔ (CM)★ if C is assigned inM
CN crashes otherwise

We now turn to NAT’s non-logical constants. For each 𝛼, we stipulate:

realN𝛼 (𝑎★) ≔ (𝑎 =M
𝛼 𝑎) if 𝑎★ ∈ 𝑅𝛼

realN𝛼 (𝑏) ≔ f if 𝑏 ∈ 𝑁𝛼 \ 𝑅𝛼

We handle nominalization by stipulating, for each 𝛼 ≠ e:

nomN
𝛼 (𝑎★) ≔ 𝜇𝛼 (𝑎) if 𝑎★ ∈ 𝑅𝛼

nomN
𝛼 (𝑏) crashes if 𝑏 ∈ 𝑁𝛼 \ 𝑅𝛼

For readability, in what follows, we write 𝑎 for nomN
𝛼 (𝑎) if 𝑎 ∈ 𝑁𝛼 with 𝛼 ≠ e, and

also write 𝑎 as an alternative to 𝑎 when 𝑎 ∈ 𝑁e. To handle application, we stipulate
that, for all 𝛼1, . . . , 𝛼𝑛, 𝛽:⁷³

73 Since app𝑛 is e-kind, this leaves a tiny amount of choice over implementation. Specifically, sup-
pose that appN2 (𝑑, 𝑥) should crash for all 𝑥: thenwe can either let appN2 (𝑑) be the trivial partial function
which crashes for every input, or let appN2 (𝑑) crash. For concreteness, choose the former.
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appN𝑛 (𝑏, 𝑎1, . . . , 𝑎𝑛) ≔ 𝑏(𝑎1, . . . , 𝑎𝑛) if 𝑏 ∈ 𝑁𝛼1 (...(𝛼𝑛𝛽)...) , and each 𝑎𝑖 ∈ 𝑁𝛼𝑖 ,
and 𝑏 and each 𝑎𝑖 exist,
and 𝑏(𝑎1, . . . , 𝑎𝑛) is defined

appN𝑛 (𝑑, 𝑐1, . . . , 𝑐𝑛) crashes in all other cases

Step 4. Logical constants. It remains to interpret the logical constants. Since 𝑁t =

𝑀t, we retain the interpretations of sentential connectives, i.e.:

FalseNt ≔ FalseMt ¬N ≔ ¬M ∨N ≔ ∨M ∧N ≔ ∧M →N ≔ →M

Concerning =, for each 𝛼, we stipulate that:

(𝑎★ =N
𝛼 𝑏★) ≔ (𝑎 =M

𝛼 𝑏) if 𝑎★, 𝑏★ ∈ 𝑅𝛼

(𝑎★ =N
e 𝑏★) ≔ (𝑎 =M

𝛼 𝑏) if 𝑎★, 𝑏★ ∈ 𝑅𝛼 and 𝛼 ≠ e

(𝑐 =N
𝛼 𝑐) ≔ ¬M(f) if 𝑐 ∈ 𝑁𝛼 \ 𝑅𝛼 and 𝛼 ≠ e

(𝑐 =N
𝛼 𝑑) ≔ f in all other cases

We must handle Σ and Π more carefully (since we want to guarantee Fact 2, below).
For each 𝑎 ∈ 𝑀𝛼t, let 𝑎Σ be the function which arises by “restricting” 𝑎★ to real inputs,
i.e., let 𝑎Σ(𝑥) ≔ (realN𝛼 (𝑥) ∧N 𝑎★(𝑥)) for each 𝑥 ∈ 𝑁𝛼 . Now stipulate:

ΣN𝛼 (𝑎Σ) ≔ ΣM𝛼 (𝑎) if 𝑎 ∈ 𝑀𝛼t

ΣN𝛼 (𝑏) ≔ ¬M(f) if 𝑏(𝑥) ∈ 𝑁des for some 𝑥 ∈ 𝑀𝛼 , and 𝑏 ≠ 𝑎Σ for any 𝑎 ∈ 𝑀𝛼t

ΣN𝛼 (𝑏) ≔ f in all other cases

Similarly, let 𝑎Π(𝑥) ≔ (realN𝛼 (𝑥) →N 𝑎★(𝑥)) for each 𝑥 ∈ 𝑁𝛼 , and stipulate:

ΠN
𝛼 (𝑎Π) ≔ ΠM

𝛼 (𝑎) if 𝑎 ∈ 𝑀𝛼t

ΠN
𝛼 (𝑏) ≔ ¬M(f) if 𝑏(𝑥) ∈ 𝑁des for all 𝑥 ∈ 𝑀𝛼 , and 𝑏 ≠ 𝑎Π for any 𝑎 ∈ 𝑀𝛼t

ΠN
𝛼 (𝑏) ≔ f in all other cases

Finally, define each 𝜄N𝛼 exactly as instructed by clause (6) of §A.4. This completes the
construction of N . It is easy to check that N is a PFTT-structure, and it is standard
by construction.

Step 5. Confirming Lemma 5. By construction, N ⊨ NAT. This delivers Lemma
5.2. To secure Lemma 5.1, we first establish two facts:

Fact 1. If 𝑎, 𝑏 ∈ 𝑅𝛼𝛽 and 𝑎(𝑥) ≃ 𝑏(𝑥) for all 𝑥 ∈ 𝑅𝛼 ,⁷⁴ then 𝑎 = 𝑏.
Fact 2. (CM)★ ≃ (Cr)N for each 𝑇-constant C, whether logical or non-logical.

74 i.e. either 𝑎(𝑥) = 𝑏(𝑥), or both 𝑎(𝑥) and 𝑏(𝑥) are undefined.
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We constructedN to satisfy Fact 1; the non-logical cases of Fact 2 are given explicitly,
and the logical cases can be easily check, using Fact 1 in the case of identity.

Using these Facts, we can secure Lemma 5.1 as follows. Where 𝜎 is any variable
assignment onM, let 𝜎★ be the assignment onN given by 𝜎★(𝑥) = (𝜎 (𝑥))★. Relying
on Facts 1 and 2, a routine induction shows that (AM

𝜎 )★ ≃ (Ar)N𝜎★ for each L-wff
A𝛼 . So, in particular,M ⊨ At iffN ⊨ At

r , for anyL-sentence At. This completes the
proof of Lemma 5 (and hence of the Conservativeness Theorem). □

D Richer conservative fictions
Asmentioned in §4.3, we could have used a richer theory thanNAT, and still obtained
a Conservativeness Theorem. For example, consider these three schemes:

(a)

∃(app𝑛(𝑢e, 𝑥e1 , . . . , 𝑥e𝑛)) → ¬real(𝑢)
(b)

∃(app𝑛(𝑢𝛼1 (𝛼2 (...(𝛼𝑛t)...)) , 𝑥e1 , . . . , 𝑥e𝑛)) → (∃𝑣𝛼11 𝑥1 = 𝑣1 ∧ . . . ∧ ∃𝑣𝛼𝑛𝑛 𝑥𝑛 = 𝑣𝑛)
(c) (real(𝑢𝛼𝛽) ∧ real(𝑣𝛼𝛽) ∧ ∀𝑥𝛼 (real(𝑥) → 𝑢(𝑥) ≃𝛽 𝑣(𝑥))) → 𝑢 =𝛼𝛽 𝑣

The first says that no real object applies to any objects; this is sensible, since real objects
are not nominalizations of higher-order entities. (The same principle prevents any-
thing from instantiating Socrates.) The second ensures that meaningful applications
really must keep track of the behaviour of higher-order entities. (The same princi-
ple prevents Socrates from instantiating virtue(et)t.) The third says that real entities
which agree on all real inputs are identical (cf. Step 5 Fact 2, above). All three schemes
can be added to NAT, and the result would still be conservative: this is immediate
from our proof of the Conservativeness Theorem, since N , as constructed, satisfies
these schemes.

But there is no need to stop just with principles which we can read off fromN ; we
can also tweak the construction a little. For example: in constructing the structure,
we might decide to add fictitious entities, which enable us to ‘tag’ each object which
is the nominalization of some type 𝛼-entity with a label indicating that this is so. To
do this, we would need a formal theory of such tags—some theory of syntax would
do—and then we would add some scheme like:

(d) tag(𝑥e) =e ⌜𝛼⌝ ↔ ∃𝑣𝛼 (real(𝑣) ∧ 𝑥 = 𝑣) all 𝛼 ≠ e.

We could then go on to formulate principles concerning the higher-order origins of
nominalizations, within the fictional object language.⁷⁵ To ensure the result is conser-
vative, we just need to take suitable care in constructingN ; but this is straightforward,
given what has come before, and we leave the details to enthusiastic readers whowant
to put the fiction to even greater work.

75 Cf. Hale and Linnebo’s (2020: 102–3) schemes (Bridge-OC) and (5.1).
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E Bridge-principles
As discussed in §7.2, we can also add bridge-principles conservatively. Let r𝑛 be the
type of an 𝑛-place first-level relation, i.e. e(. . . (et) . . .), with 𝑛-occurrences of ‘e’.
Then we can restate the definition of a bridge-principle, which we gave in §7.2, to
include a useful index, P:

Definition 6: A bridge-principle, P, for a theory 𝑇 is a wfft of this form:(
real(𝑢𝛼

P
1

1 ) ∧ . . . ∧ real(𝑢𝛼
P
𝑛

𝑛 )
)
→ Ar𝑛

P (𝑢1, . . . , 𝑢𝑛) =t B
𝛼P1 (...(𝛼P𝑛t)...)
P (𝑢1, . . . , 𝑢𝑛)

where AP and BP are 𝑇-constants and 𝛼P
𝑖
≠ e for some 1 ≤ 𝑖 ≤ 𝑛.

The intuitive idea behind conservative addition of bridge-principles is this: bridge-
principles which cannot conflict with each other cannot disrupt 𝑇u. Here is a precise
way to spell out the impossibility of conflict:

Definition 7: Where Δ is a set of bridge-principles for 𝑇 , say that Δ is 𝑇-friendly iff
𝑇 proves every grammatical instance of this scheme, for all P,Q ∈ Δ:

AP(𝑢e1 , . . . , 𝑢e𝑖 ) = AQ (𝑣e1 , . . . , 𝑣e𝑗 ) → BP(𝑢1, . . . , 𝑢𝑖) = BQ (𝑣1, . . . , 𝑣𝑗)

Note that, for example, we allow instances where AP has type r𝑛 and 𝑖 < 𝑛; then
AP(𝑢e1 , . . . , 𝑢e𝑖 ) has type r𝑛−𝑖.

The reader can confirm that Definition 7 covers the intuitive cases of possible conflict
whichwe raised in §7.2. We can nowprove the following strengthening of our original
Conservativeness Theorem:

Bridged Conservativeness Theorem: Let 𝑇 be a PFTT theory in some signature,
L, which is disjoint from NAT’s non-logical vocabulary. Let Δ be a set of 𝑇-friendly
bridge-principles. If 𝑇u ∪ Δ ⊢ Ar then 𝑇 ⊢ A, for anyL-sentence At.

The proof strategy is exactly as for the original Conservativeness Theorem in §C: we
show how to ‘expand’ any modelM of 𝑇 into a modelN of 𝑇u ∪NAT∪ Δ. The only
part of our original proof which needs adjustment is Step 2, where we define ★ and
the 𝑅𝛼s; these definitions must be tweaked, to ensure that N ⊨ Δ. The remainder of
this appendix spells out that tweak.

For each type which is not some r𝑛, we define ★ and 𝑅𝛼 exactly as in Step 2 of §C.
We provide special treatment, though, for the r𝑛s. For each 𝑖 ≤ 𝑛 ∈ N, each 𝑎 ∈ 𝑀r𝑛 ,
all 𝑥1, . . . , 𝑥𝑛−𝑖 ∈ 𝑀e, and all 𝑦1, . . . , 𝑦𝑖, say:⁷⁶

76 We use ® to abbreviate lists, allowing context to indicate their length. So 𝑎★ ( ®𝑥, ®𝑦) abbreviates
𝑎★ (𝑥1, . . . , 𝑥𝑛−𝑖, 𝑦1, . . . , 𝑦𝑖).
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𝑎★( ®𝑥, ®𝑦) ≔


𝑎( ®𝑥, ®𝑦) if ®𝑦 ∈ 𝑀e (1)
BM
P (®𝑧, ®𝑠) if P ∈ Δ, and 𝑦𝑘 = 𝜇𝛼𝑚−𝑖+𝑘 (𝑠𝑘) for all 1 ≤ 𝑘 ≤ 𝑖, and

𝑧1, . . . , 𝑧𝑚−𝑖 ∈ 𝑀e, and 𝑎( ®𝑥) = (Ar𝑚
P )M(®𝑧) (2)

f otherwise (3)

Then, as before, we define 𝑅r𝑛 ≔ {𝑎★ : 𝑎 ∈ 𝑀r𝑛}.
We must confirm that ★ is well-defined. First, observe that clauses (1) and (2)

cannot conflict. Assume clause (2) applies. Then 𝛼P
𝑚−𝑖+𝑘 ≠ e for some 1 ≤ 𝑘 ≤ 𝑖 by

Definition 6, so that 𝑦𝑘 = 𝜇𝛼P
𝑚−𝑖+𝑘

(𝑠𝑘) ∉ 𝑀e, as the 𝑈𝛼s are disjoint (see Step 2 of §C).
So clause (1) does not apply.

To complete the demonstration that ★ is well-defined, it suffices to show that
clause (2) never causes conflict. So suppose that 𝑎★( ®𝑥, ®𝑦) is to be defined using clause
(2) and two witnessing bridge-principles P,Q ∈ Δ. So we have ®𝑢, ®𝑣 ∈ 𝑀e, and
𝑎( ®𝑥) = (Ar𝑙

P )M(®𝑢) = (Ar𝑚
Q )M(®𝑣), and we are to assign both:

𝑎★( ®𝑥, ®𝑦) ≔ BM
P (®𝑢, ®𝑠) where 𝑦𝑘 = 𝜇𝛼P

𝑙−𝑖+𝑘
(𝑠𝑘) for all 1 ≤ 𝑘 ≤ 𝑖

𝑎★( ®𝑥, ®𝑦) ≔ BM
Q (®𝑣, ®𝑡) where 𝑦𝑘 = 𝜇

𝛼
Q
𝑚−𝑖+𝑘

(𝑡𝑘) for all 1 ≤ 𝑘 ≤ 𝑖

Since M ⊨ 𝑇 and Δ is 𝑇-friendly, BM
P (®𝑢) = BM

Q (®𝑣). For each 1 ≤ 𝑘 ≤ 𝑖, we have:
𝑦𝑘 = 𝜇𝛼P

𝑙−𝑖+𝑘
(𝑠𝑘) = 𝜇

𝛼
Q
𝑚−𝑖+𝑘

(𝑡𝑘), so that 𝑠𝑘 = 𝑡𝑘 by the bijectivity of the 𝑈𝛼s. Hence

BM
P (®𝑢, ®𝑠) = BM

Q (®𝑣, ®𝑡). This completes the proof that ★ is well-defined.
We now check that ★, as redefined, still possesses the key properties which we

invoked in Steps 3–5 of §C.
First: restricting ★ provides a bijection 𝑀𝛼 −→ 𝑅𝛼 . When 𝛼 = r𝑛 for some 𝑛, this

is immediate from clause (1); otherwise, this holds as in §C.
Second: ★ is distributive, in that 𝑎★(𝑥★) = (𝑎(𝑥))★, whenever 𝑎(𝑥) is defined. If

𝑎 ∉ 𝑀r𝑛 for any 𝑛, this holds by definition (see Step 2 of §C); so it suffices to consider
𝑎 ∈ 𝑀r𝑛 and 𝑥 ∈ 𝑀e. Since then 𝑥★ = 𝑥, it suffices to show that 𝑎★(𝑥) = (𝑎(𝑥))★.
For readability, let 𝑏 = 𝑎(𝑥); we want to show that 𝑎★(𝑥, ®𝑦) = (𝑎★(𝑥)) ( ®𝑦) = 𝑏★( ®𝑦)
for all ®𝑦 ∈ 𝑁e. There are three cases to consider, corresponding to the three clauses
we used to define ★:

Case (1). We have some ®𝑦 ∈ 𝑀e such that 𝑎★(𝑥, ®𝑦) = 𝑎(𝑥, ®𝑦) = 𝑏( ®𝑦); now also
𝑏★( ®𝑦) = 𝑏( ®𝑦) by clause (1).

Case (2). We have some P ∈ Δ and ®𝑧 ∈ 𝑀e such that, relabelling ®𝑦 as ®𝑢, ®𝑣 and where
each 𝑣𝑘 = 𝜇𝛼𝑚−𝑖+𝑘 (𝑠𝑘), we have 𝑎★(𝑥, ®𝑦) = 𝑎★(𝑥, ®𝑢, ®𝑣) = BM

P (®𝑧, ®𝑠) and 𝑎(𝑥, ®𝑢) =
(Ar𝑚

P )M(®𝑧). Since 𝑏(®𝑢) = (Ar𝑚
P )M(®𝑧), now also 𝑏★( ®𝑦) = 𝑏★(®𝑢, ®𝑣) = BM

P (®𝑧, ®𝑠)
by clause (2).

Case (3). Similarly, 𝑏★( ®𝑦) = 𝑏( ®𝑦) = f by clause (3).

This shows that ★, as redefined, still possesses the key properties which we invoked
in Steps 3–5 of §C. It follows, as before, thatN satisfies 𝑇u ∪NAT.

It remains to show thatN ⊨ Δ. Fix any P ∈ Δ. Recalling that AP and BP are both
t-kind, as in Step 5 both (AM

P )
★
= AN

P and (BM
P )

★
= BN

P . Fix 𝑥1 ∈ 𝑅𝛼1 , . . . , 𝑥𝑛 ∈ 𝑅𝛼𝑛 ;
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by the properties of ★, for each 1 ≤ 𝑖 ≤ 𝑛 there is some unique 𝑠𝑖 ∈ 𝑀𝛼𝑖 such that
𝑥𝑖 = (𝑠𝑖)★, and moreover 𝑥𝑖 = 𝜇𝛼𝑖 (𝑠𝑖). NowN ⊨ P as:

AN
P (𝑥1, . . . , 𝑥𝑛) = (AM

P )
★
(𝜇𝛼1 (𝑠1), . . . , 𝜇𝛼𝑛 (𝑠𝑛))

= BM
P (𝑠1, . . . , 𝑠𝑛)

= (BN
P (𝑠1, . . . , 𝑠𝑛))★

= (BM
P )

★
((𝑠1)★, . . . , (𝑠𝑛)★)

= BN
P (𝑥1, . . . , 𝑥𝑛)

The second equality invokes clause (2), letting 𝑚 = 𝑖 = 𝑛; the third equality is as in
Step 5; and the fourth equality uses ★’s distributivity.
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