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ABSTRACT

Recent work on hypercomputation has raised new objections against the Church-Turing
Thesis. In this paper, I focus on the challenge posed by a particular kind of hypercom-
puter, namely, SAD computers. I first consider deterministic and probabilistic barriers
to the physical possibility of SAD computation. These suggest several ways to defend
a Physical version of the Church-Turing Thesis. I then argue against Hogarth’s anal-
ogy between non-Turing computability and non-Euclidean geometry, showing that it
is a non-sequitur. I conclude that the Effective version of the Church-Turing Thesis is
unaffected by SAD computation.
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Across a series of papers, Mark Hogarth has defined and investigated SAD
computers. These are hypercomputers, in the sense that they can carry out
calculations that would otherwise require supertasks. The aim of this paper
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is to investigate the significance of SAD computers for two versions of the
Church-Turing Thesis.

In his early work, Hogarth ([1994]) suggested that SAD computers might
offer counterexamples to the Physical Church-Turing Thesis.! Likewise, Davies
([2001]) has suggested that unrestricted physical Turing computation is as
fraught with difficulty as physical SAD computation. I contest this, by raising
deterministic and probabilistic problems for SAD computation. These prob-
lems suggest several ways to defend the Physical Church—Turing Thesis against
the challenge that SAD computers pose (Section 2).

In more recent work, Hogarth ([1996], [2004], [2009]) argues that SAD com-
puters show that there is no ‘fundamentally distinguished” computer. This
leads him to reject the very idea of an Effective Church-Turing Thesis. I ar-
gue that Hogarth’s argument is a non-sequitur, and that we have good reasons
for remaining interested in effective finitary computability. I conclude that the
Effective Church—Turing Thesis is untouched by SAD computers (Section 3).

Before proceeding, I should offer a word of caution. In this paper, I discuss
several different notions of computability. They divide into two categories:
finitary computations, which must deliver any output in finitely many steps,
and infinitary SAD computations, which may take infinitely many steps. Both
categories subdivide further into three kinds: purely formal computability (e.g.,
Turing computability), physical computability, and effective computability. So
we have six notions of computability in all. To avoid ambiguity, I shall have
to say things like ‘effectively finitarily computable’ when most other authors
would simply say ‘recursive’. I trust the reader will not find this too burdensome.

1 SAD Computability

In this section, I shall present the basic idea behind SAD computability. T will
start by informally characterizing it, and discussing some of its motivations. I
will then present two physical models for SAD computers, due to Davies and
Hogarth, and end by summarizing Welch’s technical results concerning the
extent of SAD computation.

In what follows, I shall generally consider computers that have been pro-
gramed to test whether a natural number #n is a member of some set S C N.
This is for simplicity; to generalize things, we need only suppose that n
(finitarily) encodes an m-tuple of natural numbers, and that S'is a set of m-tuples
of natural numbers.

' Hogarth ([1994], p. 129) coined the acronym ‘SAD’ to abbreviate ‘arithmetical sentence deciding’.

As Hogarth’s computers have been investigated, this acronym has proved misleading: Welch
([2008]) has shown that certain SAD computers can decide iyperarithmetical sets (see Section
1.5). Nevertheless, I shall retain the name ‘SAD’ to describe the kind of infinitary computer that
Hogarth has in mind.
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1.1 The basic idea of SAD computation

Suppose that we have some two-place finitarily computable predicate ¢. We
can use this to define an w-sequence of sets:

Ay = {n : ¢(n, 0)}
Ay ={n: ¢, 1)}
Ay :i={n: ¢(n,2)}

For any given natural number #, a finitary computer can determine whether n
is in A;; it just follows some algorithm to check whether ¢(, i) holds or not.
But now we define the X set:?

B:= U A = {n: (3x)p(n, x)}.

In general, a finitary computer cannot be relied upon to test whether an ar-
bitrary natural number is in B. We might make our finitary computer run the
following program:
i=0
loop until (n is in A;):
i=1i+1
print "n is in B"

If n is in B, this program will eventually output ‘n is in B’, and terminate
gracefully. Unfortunately, if # is not in B, we will never reach the last line of the
code; the computer will loop through an w-sequence of calculations without
terminating.

But suppose that we had some way to stand ‘after’ the (potential) w-sequence
of calculations. Then we could use the preceding code to test whether # is in B.
If nisin B, the program will tell us so. If z is not in B, the program will not have
outputted anything after the w-sequence of calculations, and we will be able to
infer, from the silence, that » is not in B.

Since B is an arbitrary ¥; set and n is an arbitrary natural number, we could
use this method to determine whether any natural number is in any ¥; set. And
what goes for B goes equally well for its complement, B, which is an arbitrary
I1; set: we can test whether # is in B using the procedure that I have described,
adding just a little extra inference to cover the fact thatn € Biffn ¢ B.

2 A setis % iff it can be defined using a ¥; formula. A ¥; formula starts with an existential
quantifier, only contains quantifiers at the beginning of the formula, has k blocks of quantifiers
of the same type, and then has a finitarily computable predicate. For example, where Fis finitarily
computable, this is a X4 formula:

Fx1) @)V y)(Y2)Qz))(Yw)(Yw2)(Yw3) F(x1, X2, Vi, V2, 21, Wi, W2, W3).

A Tl set is defined similarly, but a IT; formula starts with ‘v’ rather than ‘3.
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Call this infinitary setup a ‘SAD; computer’, since it enables us to decide
membership for some of the arithmetical sets, namely, the 1) and X; sets
(Hogarth [1994], p. 127; see footnote 1, above).

1.2 Avoiding supertasks

In the procedure just described, I did not need to review all the workings of
the infinitely looping computer. Instead, the computer communicates to me by
printing (at most) a single finite string, and I only need to check whether it has
printed anything once. As such, I do not need to perform any supertask.

This is a good thing, since there are excellent reasons to be sceptical of the use
of supertasks in hypercomputation. Suppose that the print command displays
a line of text on a computer monitor. Now let us modify the preceding program
slightly, so that whenever the computer tests whether 7 is in 4;, it also prints
‘1’if i is odd, and ‘0’ if i is even, i.e.,

i=0

loop until (n is in A;):
if (i is odd) then (print "1")
else (print "O")
i= i+l

print "n is in B"

If n is not in B, then the monitor will be in no determinate state ‘after’ the
w-sequence of calculations (since the sequence of numerals that appear on the
monitor is divergent). This is a computational version of Thomson’s Lamp
(Thomson [1954], pp. 5-6; this version appears in Earman and Norton [1993],
p. 28).

We could block this specific worry by stipulating that the looping com-
puter can only ever print once. But to make certain that we have avoided a//
paradoxical implications, we need to find some way to make the infinitely loop-
ing computer seem like an ordinary, non-paradoxical, supertask-free device.
If we can do this, then SAD; computers, although infinitary, will not require
supertasks.

The basic challenge is this. From the perspective of the user, we need to
squeeze the computer’s w-sequence of calculations into a finite period of time.
Consequently, from the perspective of the user, the frequency of the computer’s
calculations must increase exponentially. Prima facie, this suggests that the
computer must perform a supertask.

In the next two subsections, I will outline two physical models of SAD com-
putation that might claim to avoid appeal to supertasks. I will leave discussion
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of physical problems associated with these models to Section 2, and I return to
the need to avoid supertasks in Sections 3.4 and 4.

1.3 Davies’s model of SAD computation

The first model is Davies’s ([2001]). The strategy is to replace the single infinitely
looping computer with infinitely many finitary machines. Davies’s model can
be presented in any dense spacetime, but his model requires the controversial
assumption that matter is infinitely divisible.

We first build an ordinary, finitary machine. This machine is programed to
build an exponentially smaller finitary machine, which it programs to build an
exponentially smaller finitary machine, and so on, so that every machine builds
an exponentially smaller successor. This gives us an w-sequence of finitary ma-
chines, packed into a finite region of space. We also construct our machines so
that each machine has an exponentially better clockspeed, and exponentially
more memory, than its predecessor. Consequently, an w-sequence of calcula-
tions can be squeezed into a finite duration of time.

It is easy to turn this physical configuration into a SAD; setup. Suppose we
want to check whether n is in a ¥; set B = | J; 4;. The Oth machine starts the
process, by checking whether 7 is in 4y. If (and only if) the ith machine finds
that » is not in A4;, the (i + 1)th machine checks whether # is in 4,;;.> But if
the ith machine finds that 7 is in A;, the machine passes a signal up the chain,
from machine to machine, until it reaches the Oth machine in the chain, which
then prints ‘n is in B’. After a fixed finite time period, all the calculations will
have been completed, at which point we just check whether ‘n is in B’ has
been printed or not.

Each machine in the array only does three things at most: test a problem,
build the next machine, and send a signal. A SAD computation is therefore
performed without any individual component performing a supertask, and so
Thomson’s Lamp, and its kin, are avoided (Davies [2001], pp. 676-7).

1.4 Hogarth’s model of SAD computation

The second model of SAD computation is Hogarth’s ([1992], [1994], p. 126,
[1996], pp. 91-4, [2004], pp. 681-2, [2009], pp. 281-3). The strategy is to find a
relativistic spacetime structure that allows a human user to survey the entire, in-
finite worldline of some finitary computer. This requires a Malament—Hogarth
spacetime, which is a time-oriented differentiable manifold with a Lorentz met-
ric and three essential components (Hogarth [1992], p. 176):

3 Actually, we need to be slightly subtler; see (Davies [2001], p. 675) for details.
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q

Figure 1. A toy Malament-Hogarth spacetime (see Hogarth [1994], p. 127).

y: a time-like path with a start-point but no end-point, such that fy dt
is infinite.
r: a point that contains y in its past.

o: a time-like path, from some point ¢ to r, such that fg d is finite.

(q.1)

By way of illustration, Earman and Norton ([1993], p. 28) construct a toy
Malament—Hogarth spacetime from a Minkowski spacetime (R*, ). Choose
a compact set of points C C R* and a point / € C, and define a scalar field
that is 1 at every point outside C, and that inside C approaches +o0o as we ap-
proach /. Now (R* \ {/}, %) is a Malament-Hogarth spacetime, as depicted in
Figure 1.

To perform a SAD; computation in this spacetime, I simply send a computer
on the worldline y, whilst I sit on the worldline ¢. Suppose that the computer
is able to obtain enough energy to continue functioning indefinitely on its
worldline, that its memory may grow without limit as it ages, and that its
components never wear out. Since fg(w) dr is finite, and the computer’s eternal
history is in the past of point r, the computer can have completed an w-sequence
of calculations after only a finite amount of my proper time has elapsed. So
to test whether # is in some ¥; set B = |J; 4;, the computer is programed to
loop through each A;, checking whether # is in 4;. If the test is successful, the
loop terminates and the computer sends a signal (a beam of light) to me on my
worldline. All I need to do is wait until I am at r, and then draw an inference
from whether I have received a signal or not.

Again, no component in this setup performs a supertask. In particular, the
looping computer does nothing more than plod through routine calculations
on its worldline, sending at most one signal to me. ‘One is tempted to say
the beauty of the setup is that there is no supertask!” (Hogarth [2009],
p. 283; see also Hogarth [1996], pp. 78-81, [2004], p. 682; Earman and Norton

€102 ‘vZ |1dy uo 159nb Aq /Bio'sfeulnolpio)xorsdlg//:dny woij papeojumoq


http://bjps.oxfordjournals.org/

SAD Computers and Two Versions of the Church—Turing Thesis 771

[1993], p. 30, [1996], p. 255; Németi and David [2006], Section 5.1; Welch
[2008], p. 670).

1.5 Generalizing SAD computers

SAD; computers are powerful, but they have their limitations: they cannot
determine membership of arbitrary IT, or X sets.* Informally, the reason for
this limitation is as follows (for formal proofs, see Earman and Norton [1996],
pp. 251-4; Hogarth [1994], p. 128). Suppose that we want to use a SAD; setup
to determine whether n is in a ¥, set:

C:={n:@)Vy)Y(», x, y)}

The procedure we have used so far would be to ask our machine to loop through
the natural numbers, looking for a witness, x, that shows that n is in C. But, for
any particular x, a machine cannot ‘know’ that every y is such that ¥ (n, x, y),
until it has inspected every y. There is no stage in the loop at which it has done
this, so there is no stage at which it can be sure that it possesses a witness for
the claim that n is in C.

We overcame the limitations of finitary computation and reached the dizzy
heights of SAD; computation by allowing someone to stand ‘after’ an w-
sequence of ordinary computations. We can pull the same trick here: we over-
come the limitations of a SAD; computation by allowing someone to stand
‘after’ an w-sequence of SAD; computations. Consider the w-sequence of X;
sets given by

Bi = {I’l : (HY)_‘W(”L L y)}

and note that U,E = C. For each B;, there is an w-sequence of finitarily
computable sets given by

Ai,j ={n:=y¥(n,i j)}

such that | ; 4; ; = B;. So, for each i, we use a SAD; computer to test whether
n is in each B;, in the normal way. We then chain these setups together to
determine whether n is in C. Call this a SAD; computer.

It is instructive to think of this SAD, computer as given by the tree of
Figure 2. Each node of the tree is associated with a computer performing a

4 T assumed (Section 1.2) that the looping finitary computer is only allowed to send a single
communication to the user. Welch ([2008], pp. 670-1) shows that if the looping computer can
send any arbitrary finite number of communications to its user, then a SAD; computer can
determine membership of all and only the IT, N X, sets.

Davies ([2001], p. 676) states that his setup, as described in Section 1.3, can test I, sentences,
such as the Twin Primes conjecture. This is mistaken: the same restrictions that apply to Hogarth’s
model apply to Davies’s. If Davies’s machines can only pass a single signal up the chain, then his
computers are restricted to testing arbitrary X; and IT; sets; if his machines can pass arbitrary
finite numbers of signals up the chain, then his computers are restricted to testing arbitrary
I, N X, sets.
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Figure 2. A SAD, computational tree.

test for set membership, and the lines of the tree are thought of as possible
signalling paths. In more detail:

A,',j:

|

Each node labelled ‘ 4; ;’ is associated with a computer testing whether
nisin A; ;. This is, of course, a finitarily computable test. If one of
these tests succeeds, the computer signals to the computer at its parent
node. (In Davies’s model, each test 4; ; will be performed by a different
computer. In Hogarth’s model, for each i, there is a single computer
that tests 4; ; for all j.)

: Each node labelled ‘B;’ is associated with a computer that tests

whether 7 is in B;. Since B = J ; A; j, n is in this set iff the com-
puter received a signal from one of its children. If so, it sends a signal
to its parent, indicating that the test passed.

.. Each node labelled ‘B’ is associated with a computer that tests

whether nis in B;. Since n € B; iff n ¢ B;, this computer signals to its
parent iff it did not receive a signal from its child.

Finally, the top node (the root) is associated with the test whether n

isin C. Since C = |, B, nis in this set iff the computer at this node
received a signal from one of its children.

We thus have a sound and complete test for membership of arbitrary X, sets.
To test arbitrary IT, sets, we simply add a single node, labelled ‘C’, to the top
of the tree.

This tree-based treatment of SAD computation follows (Welch [2008],
pp. 664-7), and Welch has generalized it as follows. Finite path trees for SAD
computers may be constructed using the following rules, and any tree that

cannot be constructed using these rules is not the tree for any SAD computer:
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(1) Terminal nodes (i.e., nodes with no children) are associated with fini-
tarily computable sets, that is, [Ty or X sets.

(2) A node associated with a 3, set 4 (with « > 1) has one parent,
associated with A, which is a IT,, set.

(3) Given a sequence of sets A4;, 4, ... such that both:
(i) (Vi e N)(3B;)(4; is Ig,); and
(ii) there is a finitarily computable function, f, such that for every
i € N the value of f(i) is the code of a program, and this program
can be run by a SADg, machine to determine whether any natural
number is a member of 4;;
then the nodes associated with these sets have a single parent, associ-
ated with 4 = | J; 4;. In this case, 4 is X, where « is the least ordinal
greater than every ordinal B;.

Condition (1) is justified by the fact that a finitary computer can reliably de-
termine membership of all and only the finitarily computable sets. Condition
(2) is justified by the fact that the complement of a ¥, set is a I, set, and
that a finitary computer can, trivially, infer whether » is in 4 from knowing
whether n is in 4 (and hence signal upwards iff it receives no signal). Condition
(3) captures the idea of standing ‘after’ an w-sequence of tests. (For example,
when testing the ¥, set C above, we aggregated the result of infinitely many IT;
queries.)

By induction, to determine whether 7 is in a IT,, set, we require a tree whose
branches have no more than 2m + 1 nodes (Welch [2008], p. 666).

Consequently, given any arithmetical set, we can describe a setup that would
be able to determine membership of that set (Hogarth [1994], pp. 128-32,
[2004], pp. 684-9; Welch [2008], p. 666).

By considering SAD computers corresponding to trees with no fixed finite
upper bound on the length of their branches, we can determine membership of
3, or I, sets, for transfinite ordinals o. However, condition (3) entails that the
entire tree must be (finitarily) recursively describable, and hence that o must
be less than the least non-recursive ordinal, »®. Thus, the extent of SAD
computability is the class of the hyperarithmetical sets (Welch [2008], p. 667).

2 Physical Computability

This completes my explanation of SAD computers. For the remainder of this
paper, I shall investigate whether SAD computation should affect our views
about which functions are computable.

> The relationship between finite path trees and the (finitarily) recursive ordinals is discussed
in (Rogers [1967], pp. 392-7). For a general treatment of the hyperarithmetical hierarchy and
hypercomputation, see (Rogers [1967], Chapter 16).
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This question can be understood in two ways, which should be kept firmly
distinct. In Section 3, I consider the question in terms of effective computability.
In this section, I consider the question in terms of physical computability. For
convenience, in this section I confine my attention to SAD; computers: they are
physically possible if any SAD computers are, and they raise serious questions
about physical computability.

2.1 The Physical Church—Turing Thesis

I treat the notion of physical computability as follows:

Physical Computability: A function, f, is physically computable at a world if
and only if there is a machine ‘blueprint’ such that, for all x, it is physically
possible for there to be a machine instantiating that blueprint which physically
outputs f(x) on input x.

Understood in this way, the answer to the question ‘which functions are physi-
cally computable?’ obviously depends upon which notion of physical possibility
is in play. I will discuss the appropriate sense of physical possibility in some
detail below.

The Physical Church-Turing Thesis states that the physically computable
functions are exactly the Turing computable functions. So, if there is some
sense in which it is possible to build a SAD computer, the Physical Church—
Turing Thesis is false in that sense.®

I have no desire to show that the Physical Church-Turing Thesis is true, nor
to determine what the physically computable functions are. I simply want to
show how the Physical Church-Turing Thesis will have to be defended, given
that we have described physical models of SAD computability. My discussion
comes in two halves. In Section 2.2, I consider deterministic barriers to phys-
ical computations. In Section 2.3, I consider probabilistic barriers to physical
computations.

2.2 Deterministic barriers to physical computation

Suppose we are using a SAD computer to test whether 7z is in some X; set
{n : (Ax)¢p(n, x)}. The machine must be able to test, for every x, whether ¢(n, x).
But there may be deterministic physical barriers that prevent it from doing so.’
For example, note that the computer’s memory must be allowed to grow without

® Earman ([1995], p. 120) notes that there is a way of reading the Physical Church-Turing Thesis
in which it is untouched by such considerations. I discuss this in Section 3.4, footnote 22.

7 A deterministic barrier is a non-probabilistic barrier that is deductively entailed by the physical
laws of the world, plus the initial conditions for those laws, plus any further physical constraints in
that world (e.g., conditions that prevent the existence of certain kinds of singularity; see Earman
[1995], Chapter 3).
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limit, even if only to store the increasing values of x. Consequently, the mass
of the computer’s memory must be permitted to grow without limit.® But if
there is a deterministic finite upper bound on the amount of mass/energy in the
universe, then there is a clear sense in which this is not possible. In which case
SAD computation will be physically impossible in this sense. (Again, whether
this is the right sense of physical possibility will be discussed below.)

Before proceeding, I should note that there is no particular reason for us
to focus on mass/energy. It is merely a simple, illustrative example of a de-
terministic barrier that would prohibit physical SAD computation. Earman
and Norton ([1993], pp. 30-40) have raised several rather more sophisticated
barriers to the physical realization of one of Hogarth’s SAD computers. Etesi,
Németi, and David have addressed many of these barriers by locating their
SAD computers in the Kerr spacetime, which is a special kind of Malament—
Hogarth spacetime (Etesi and Németi [2002]; Németi and David [2006]). I shall
not attempt to argue that there are any deterministic physical barriers to phys-
ical computation; if there are none, then the Physical Church-Turing Thesis
is false (pending the discussion in Section 2.3). I just want to consider how
the Physical Church-Turing Thesis stands, given that there are such barriers.
So, for convenience, I shall continue to discuss the toy example of a barrier
imposed by mass/energy.

In the presence of this barrier, SAD computers are physically impossible.
But one might think that, even in this situation, SAD computation poses an
interesting philosophical challenge to the Physical Church-Turing Thesis. In
an early paper, Hogarth wrote:

You don’t want to rubbish a hypothetical computer—Turing or non-
Turing—simply because it can’t fit into our universe. If you do, you’ll leave
your precious Turing machine to the mercy of the cosmologists. (Hogarth
[1994], pp. 136-7)°

In a similar vein, Davies writes:

[TThe rejection of [SAD] machines on the grounds of physical implausibility
should imply the same attitude towards Turing machines. (Davies [2001],
p. 679)

I suspect that the following argument is at work. Suppose we have a physical
Turing machine, programed with some algorithm for testing whether a natural
number 7 is in some set S. The amount of tape and energy required to test

Assuming that matter is not infinitely divisible. The fact that matter is not infinitely divisible
imposes a similar deterministic barrier to the physical possibility of Davies’s SAD machines.

He has since distanced himself from this line of argument, favouring the arguments discussed in
Section 3 (Hogarth [1996], p. 116; [2004], [2009]).

€102 ‘vZ |1dy uo 159nb Aq /Bio'sfeulnolpio)xorsdlg//:dny woij papeojumoq


http://bjps.oxfordjournals.org/

776 Tim Button

whether nis in S will grow without limit as we give our machine larger and larger
values of n. So if there is some deterministic finite upper bound on the amount
of mass/energy in the universe, then there will be some natural number 7 such
that our machine cannot physically compute whether 7 is in S, even though S'is
Turing computable.!? This would falsify the Physical Church-Turing Thesis. In
order to keep the Thesis alive, we must relax the notion of ‘physical possibility’
in question. We must be permitted to abstract from certain upper bounds to
physical computability, such as those imposed by limited mass/energy. But if
it is legitimate for advocates of Turing computability to relax the notion of
‘physical possibility’ in question, then advocates of SAD computability should
be allowed to do exactly the same. In which case (the argument runs) the SAD
computable functions are physically computable in exactly the same sense that
the Turing computable functions are physically computable.

This argument raises a dilemma against proponents of the Physical Church—
Turing Thesis. Either the notion of physical possibility is too strict to allow
unrestricted physical Turing computation, or it is too weak to prevent physi-
cal SAD computation. I contend that the dilemma is spurious, since physical
Turing machines and physical SAD machines require different notions of phys-
ical possibility. Consequently, there is room to defend the Physical Church—
Turing Thesis.

The most obvious objection to the dilemma is that there may be determin-
istic barriers to SAD computation that are not barriers to unrestricted Turing
computation. For example, if matter is not infinitely divisible, we cannot build
Davies’s SAD computers.!! Likewise, whilst Malament—Hogarth spacetimes
are consistent with the equations of general relativity, they violate strong cosmic
censorship, ‘which states that naked singularities do not develop in physically
reasonable models of general relativity theory’ (Earman and Norton [1993],
p- 35; also see Earman [1995], Chapter 3). So if strong cosmic censorship holds,
then it is physically impossible to build one of Hogarth’s SAD computers. But
neither the finite divisibility of matter, nor strong cosmic censorship, would pre-
vent us from constructing physical Turing machines that can run for arbitrary
finite periods of time. In short: there may be a perfectly good, natural sense
of physical possibility according to which the physically computable functions
are exactly the Turing computable functions.

A more interesting objection to the dilemma arises when we consider deter-
ministic barriers that affect physical Turing and physical SAD computers alike,

10" Of course, a different physical setup—perhaps an Abacus machine rather than a Turing machine,
running a better algorithm, and using better hardware—might be able to determine whether # is
in S within these limits. But there will be some finite n’ > n such that this setup cannot determine
whether n’ is in S.

Even if matter were infinitely divisible, it might not be possible to make miniature computers ‘all
the way down’. For example, there might be an ineliminable level of background thermal noise
that deterministically disrupts machines beneath a certain mass.
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such as a finite limit on mass/energy. Even here, there is an important differ-
ence in kind between Turing computers and SAD computers. Suppose that,
for each physically possible world, there is some finite upper limit 7 on the
mass/energy in that world (Yw3Im Lmw). Then, for reasons stated earlier, there
is no world in which a SAD computation can be performed. But we cannot
infer from this that there is some upper limit m such that, for every world, the
amount of mass/energy in that world is less than m (ImVw Lmw). That would
just be a quantifier—shift fallacy. Indeed, it is consistent with this situation to
suppose that, for any finite value of m, there is a world with m matter/energy.
In which case, for any Turing computable set S, any input #, and any fixed
physical realization of a mathematical algorithm for computing membership
of S, there is a world containing a physical realization of a Turing machine that
computes whether 7 is in S.!? That is: every Turing computable function will
be physically computable.

Accordingly, even if there is an actual deterministic upper barrier to Turing
computability, the Physical Church-Turing Thesis may be defensible. We just
need to find a legitimate sense of physical possibility such that:

(i) for every physically possible world, there is some deterministic upper
barrier to finitary physical computation within that world;

and

(i1) for every deterministic upper barrier to finitary physical computation,
there is a world that transcends that barrier.

The first condition prevents SAD computation in every world; the second
makes every Turing computation physically possible. We can illustrate these
conditions in terms of mass/energy as follows. Suppose (i') that for any initial
conditions, the physical laws of the actual world combined with those initial
conditions entail that the quantity of matter/energy is finite; and (ii") that for
any finite quantity m of matter/energy, there are possible initial conditions
which, together with the physical laws of the actual world, entail the existence
of m matter/energy. Both (i) and (ii) are now satisfied, by treating the physically
possible worlds as exactly those worlds that have our physical laws, but that
may differ in their initial conditions.

To reiterate: I have used a toy example to illustrate a plausible way in which
one could defend the Physical Church-Turing Thesis. To actually defend the
Physical Church-Turing Thesis in this way, we would need to show that there
is some genuine, natural, non-ad hoc notion of physical possibility that satisfies
both (i) and (ii). So, this subsection simply points the way to further work that

12 ¢f. Cotogno’s ([2003], p. 189) remarks on the actual infinity required by a hypercomputer. For

commentary on Cotogno’s paper, see (Welch [2004]).
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can be done to defend the Physical Church-Turing Thesis against the attack
from SAD computation on deterministic grounds.

2.3 Probabilistic barriers to physical computation

I now wish to consider probabilistic barriers to physical computation. In par-
ticular, I shall consider the barrier posed by the probability that a machine
malfunctions during the course of running a computation.'> My aim is to
show that, even if there is no legitimate notion of physical possibility that sat-
isfies both (i) and (ii), the Physical Church-Turing Thesis can be defended on
probabilistic grounds.

A machine may malfunction for many reasons: because there is a defect in
the physical material that comprises the machine; because of some intrinsically
unavoidable probabilistic event somewhere within the machine’s hardware; be-
cause of interference by background noise; because it collides with another
object; etc. As mentioned above, Hogarth’s machines must be capable of un-
limited growth. But as a machine grows in size, so (naively) does the likelihood
that it will malfunction for any of the reasons just mentioned. It therefore seems
that, in the infinite limit, the probability that one of Hogarth’s machines has
malfunctioned is 1. But since SAD computation depends essentially upon the
machine’s behaviour in the infinite limit, it seems that physical SAD computers
are essentially useless.

In slightly more detail, let s, be the probability that a machine successfully
executes the nth stage of a computation. The probability of success in the infinite
limit is the infinite product [;_, s,. If the sequence (s,) does not converge to 1,
then this infinite product will be 0. Hogarth’s machines must add new material
at each stage. So the probability of a defect at each stage is to some extent
independent of the probability of a defect at any previous stage. Indeed, the
probability of failure due to intrinsically probabilistic events somewhere within
the machine’s memory will plausibly increase with the number of stages, since
the memory must increase with each stage. In which case, the sequence (s,)
will certainly not converge to 1, and the probability that one of Hogarth’s SAD
machines will malfunction is therefore 1.

Davies believes that this argument may not apply to his model of SAD
computation, for he believes that (s,) may converge to 1:

If the failure is due to impurities in the raw material then the successful
operation of the first # machines may indicate that the particular sample of
raw material used is very pure and hence may lead to a very much higher
probability that the later machines will also work as intended. (Davies
[2001], p. 678)

13 For the purposes of the argument, it seems not to matter whether we think of probabilities as
objective or subjective.
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The difference is that, whereas Hogarth’s machines must add new material
during the computation, Davies’s machines are constructed from a fixed starting
‘lump’. Nonetheless, I doubt that Davies’s claim is warranted. Presumably,
miniscule impurities in the material will only affect very small machines; but
then the successful operation of the first » machines is expected whether the
material is pure or impure. As before, the probability of failure due to impurity
therefore increases at each stage. Furthermore, there are other potential sources
of failure to consider. For example, on Davies’s model, the probability of failure
due to thermal noise must surely be larger at each stage than it was at any
previous stage, since smaller computers will be more likely to be significantly
disrupted by very minor levels of background noise. So the probability of failure
due to thermal noise, and hence the probability of failure simpliciter, is 1 in the
limit. '

SAD computers would therefore be useless, for probabilistic reasons. But we
should ask whether these probabilistic arguments generalize to physical Turing
machines.'”> As we noted earlier, there are Turing computations that will take
any actual physical Turing machine an extremely long time to perform, and
that will require an enormous tape. In such cases, the likelihood that the Turing
machine will malfunction during the course of the computation is extremely
close to 1. This would seem to compromise the Physical Church—Turing Thesis.

There is a difference in kind here. Turing computers may be unlikely to
succeed; SAD computers have probability 0 of succeeding. In certain situations,
Turing computers are unlikely to be useful, but might be made more useful by
repeating the computation many times over; SAD computers are genuinely
useless, and cannot be made useful.!®

This difference in kind can also be illustrated by returning to an idea ex-
pressed in the previous subsection. Given a fixed algorithm for computing
whether any number is in a Turing computable set S, a defender of the Physical
Church-Turing Thesis may be able to establish the following claim. For every
natural number #, there is a world in which there is an acceptable probability
that a physical Turing machine successfully tests whether 7 is in S. In contrast,
in every world, the probability that a SAD machine malfunctions when testing
whether 7 is in some X set is 1 (if n is not in that set). Accordingly, the Physical

14 Davies ([2001], p. 678) refuses to engage with the problem posed by thermal noise, on the grounds
that our current best theory of thermal noise rests on the assumption that matter is not infinitely
divisible. But this simply highlights that Davies’s model is physically impossible for deterministic
reasons, and that these deterministic reasons do not render Turing machines physically impossible
(see Section 2.2).

Thanks to an anonymous referee for raising this question.

Of course, to have probability 0 of succeeding is not the same as necessarily failing. There is a
possible state of affairs in which the SAD computer succeeds, even though the probability of
obtaining that state of affairs is 0.
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Church-Turing Thesis could be defended on probabilistic grounds, if we could
claim that:

(i*) for every physically possible world, the probability that a machine
successfully completes an actual w-sequence of steps in a physical
computation is 0;

and

(ii*) for any physical computation consisting of a finite number of steps,
there is a physically possible world in which a machine has a proba-
bility greater than 0 of successfully completing that computation.

As before, the first condition makes SAD computers useless in every world; the
second leaves Turing computers useful.

To conclude this section: I have suggested there may be a sense of physical
possibility in which all and only the physically computable functions are Turing
computable. This does not show that the Physical Church—Turing Thesis is true;
rather, it shows where further debates concerning the Physical Church-Turing
Thesis should focus. Moreover, it shows that the Physical Church—Turing Thesis
is not refuted by the very idea of SAD computation.

3 Effective Computability

In this final section, I wish to consider whether thinking about SAD com-
putability should change our views about effective computability.

Hogarth has argued that considering SAD computability reveals a deep
analogy between geometry and the theory of computation. He maintains that
this analogy shows that we should simply abandon the notion of effectiveness.

I'will argue that Hogarth’s attack on effective computability is a non-sequitur,
and will contest the depth of his analogy between geometry and computability.
My claim is that SAD computability casts no shadow over the notion of finitary
effective computability, and so has no consequences for the Effective Church—
Turing Thesis.

3.1 The Effective Church—-Turing Thesis

The notion of effective computability requires some explication, since it is very
different from the notion of physical computability.!”

17 T am here restricting my attention to finitary algorithms; in Section 3.4 T will consider ‘SAD-
algorithms’. I follow Smith ([2007], pp. 315-23) in linking effective computability to the semi-
formal notion of an algorithm. Be warned that some authors differ: for example, Etesi and Németi
([2002], p. 348) use ‘effective computability’ to mean ‘physical computability’.
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Effective computability: A function, f, is effectively computable if and only if
there is an algorithm that takes any input argument x to f(x).

An algorithm is a finitely describable, step-by-step process, followed ‘dumbly’,
which delivers any output in finitely many steps. This is a semi-formal concept,
but the concept is relatively precise in its application, since relevant idealizations
have already been made.'®

One such idealization is the length of the computational procedure. So long
as any output from an algorithm is delivered in a finite number of steps (on
each input), it is irrelevant how many steps it takes (on each input).

Another idealization is atemporality. A mathematics teacher might legiti-
mately use temporal vocabulary while proving that Euclid’s algorithm is guar-
anteed to terminate ‘eventually’, but we should treat this as an heuristic gloss.
Her point is simply that, applied to any pair of numbers, there is always an m
such that the output is constant for n > m steps in the algorithm. To grasp her
proof, the students require the notion of a well-ordered sequence, so that they
can see the sequence of steps during an application of Euclid’s algorithm as a
sequence. But there is no reason to demand that their notion of a well-ordered
sequence must be a temporal notion. So, for just this reason, the notion of an
algorithm should not be thought of as intrinsically temporal.

The notion of an effective procedure, or algorithm, is central to mathematics
and logic. Mathematicians employed many algorithms long before Church’s
and Turing’s work (see Chabert [1999]), and they continue to. Here are some
examples. The syntax of a (finitary) formal language is defined recursively, so
there is an effective test to determine whether any given string is a formula.
When we show that two theories with different axiomatizations are equivalent,
we may do this by offering an effective method for transforming any proof in
one theory into a proof in the other. For any putative proof in a formal system,
there is an effective procedure for determining whether or not it is indeed a
proof. And as a final example: if the Effective Church—Turing Thesis is correct,
then Peano Arithmetic tracks the notion of an effective procedure, since the
Turing computable functions are exactly those functions that Peano Arithmetic
can capture.'’

It is precisely because the notion of effective computability is central to
mathematics and logic that Church, Turing, and everyone else wanted to

18 Shapiro ([2007]) provides a fascinating discussion of ‘open-texture’ in the notion of computability.
Open-texture seems primarily to affect pre-formal, relatively inchoate concepts; by the time we
have reached the semi-formal notion of an algorithm, 1 think that we are relatively free from
open-texture. In this spirit, see (Smith [2007], pp. 324-5).

19 The same goes for Robinson Arithmetic. See, for example, (Smith [2007], pp. 277-8). I follow
Smith’s ([2007], pp. 35-6) use of ‘captures’. A theory T captures the function fiff there is a formula
¢ in the language of T such that, for all m, n: if f(m) = n then T & ¢(m, n), whereas if f(m) # n
then T = =¢(m, n).
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characterize the notion of effective computability in the first place. They wished
to provide extensionally correct necessary and sufficient conditions for follow-
ing an algorithm. The Effective Church-Turing Thesis supplies these condi-
tions, by stating that the effectively computable functions are exactly the Turing
computable functions.

3.2 Hogarth’s challenge to the Effective Church—Turing Thesis

Hogarth dismisses the notion of effective computability altogether. This leads
him to maintain that the Effective Church—Turing Thesis is not so much false
as misguided. He rejects effective computability by analogy with Euclidean
and non-Euclidean geometry, and by elucidating the notion of a ‘two-sided
concept’ (Hogarth [2004], pp. 689-90, [2009], pp. 287-8). In this subsection,
I shall simply summarize Hogarth’s argument and discuss its scope; I shall
postpone all criticism of the argument until the next subsection.

On the one hand, there are various formal theories of geometry. There are
Euclidean geometries, and there are canonical non-Euclidean geometries, such
as Lorentz and Riemannian geometry. These formal theories of geometry are,
inasense, on a par. They are equiconsistent and they ‘do not compete’ with each
other (Hogarth [2004], pp. 689-90), except in the weak sense that one theory
may be more interesting for mathematicians to work with than the other.

On the other hand, physics employs some formal theory of geometry to
describe the spacetime structure of our physical world. As physical theories,
Euclidean and non-Euclidean geometries are in competition with one another:
they vie to be the geometry that physicists use. Geometry is therefore a ‘two-
sided concept’: it has a formal side and a physical side.

Hogarth maintains that geometry is only two-sided. When someone asks
whether the ratio between the circumference and the diameter of every circle is
7, they might be asking ‘is 7 the ratio for all physical circles?’, or they might
be asking ‘in the formal theory T, is 7 the ratio for all circles? Both of these
are sensible questions, and we know what it takes to answer them. But suppose
our questioner insists that she is not asking about physical or formal circles;
she insists that she is instead asking about the circles that are given to us by
our ‘intuitive concept of a circle’, or asking about ‘real circles’, or some-such.
Hogarth maintains that there is nothing we can say to such a person; they need
to be re-educated, rather than answered.

Hogarth maintains that the same is true of Turing computability and non-
Turing computabilities. There are various formal theories of computability,
such as (formal) Turing computability, (formal) Abacus computability, and
(formal) SAD computability. Then there is physical computability, which we
considered in Section 2. But, for Hogarth, there is no third notion of com-
putability:
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[The Effective] Church-Turing Thesis is explained away, for the very ques-
tion it proposes to answer— ‘which computational procedure, or computer,
captures what is “intuitively computable[”’]?”’—is premised on there being a
fundamentally distinguished computational procedure or computer. There
is none. (Hogarth [2004], p. 690)

This is how Hogarth’s challenge is meant to work. In the next subsection, I
shall argue that the challenge is misdirected. Before that, it is worth considering
the scope of Hogarth’s challenge.

If Hogarth is right that the concept of effectiveness is bankrupt, then all
supposedly effective procedures will have to be replaced with physical or formal
procedures. We can get a taste of what this would mean by reconsidering two
examples (from Section 3.1) of the use of effective procedures.

Example 1. Suppose we have proved the equivalence of two theories by sup-
plying an effective method for translating any proof in one theory into a proof
in the other. Hogarth will not accept this ‘effective’ method. He might replace
it with a formal procedure in some formal system, but then our translation
method only shows that the theories are equivalent relative to that formal sys-
tem; relative to other formal systems, with other formal procedures, they will
not be equivalent. So if no formal system is privileged over any other, then it
is impossible to show the absolute equivalence of any two theories. But, for
Hogarth, the only way that a formal system can be privileged is by being
physically privileged. So, for Hogarth, we can only demonstrate the absolute
equivalence of two theories by undertaking some physical demonstration. If
our ‘effective procedure’ depended on induction on the complexity of proofs,
say, then we would have to hope that induction on complexity is physically
legitimate.

Example 2. Suppose we want to know whether some finite sequence of
sentences, p, counts as a proof in a finitary formal deductive system, A. There
is an effective procedure to determine this—we just check whether each step of
p follows some rule/axiom of A—but Hogarth will not accept this ‘effective’
procedure. He might replace it with a formal procedure in some formal system,
T, but this will only establish that, relative to T, p is a proof in A; we cannot show
this absolutely. Alternatively, Hogarth might treat the procedure for inspecting
putative proofs as a physical procedure. But then whether p is a proof in A or
not depends upon whether it is physically possible to check the legitimacy of
each step in the sequence p. For Hogarth, provability and deducibility turn out
to depend upon physics.

I should emphasize that these two examples are not presented as arguments
against Hogarth’s challenge. They simply illustrate that we are playing for
high stakes. They show that, if Hogarth’s challenge is successful, we shall
have to become naturalists (or formalists) about large swathes of logic and
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mathematics. Whilst this does not constitute an argument against Hogarth’s
challenge, it does highlight a difference between computability and geometry. I
take it that we are willing to jettison the idea that there is a ‘privileged’ geometry
because (with apologies to Kantians) we think that geometry has no central,
foundational role in mathematics or logic: we can deny that Euclidean geometry
is a priori, without becoming widespread naturalists (or formalists). The case
of computability seems rather different: the preceding examples showed that
abandoning any ‘privileged’ notion of computability would have revisionary
naturalist (or formalist) consequences.

Of course, if there are good general arguments for naturalism (or formal-
ism), then we shall have to accept such revisionary naturalism (or formalism)
anyway. But completely general arguments for naturalism (or formalism) will
render Hogarth’s own challenge against effective computability superfluous: if
we are convinced of naturalism (or formalism) in general, then we shall certainly
only be interested in physical (or formal) questions about any particular subject
area, such as computability. In what follows, therefore, I shall only consider
arguments against effectiveness that arise directly from considering SAD com-
putability, and do not presuppose a prior general commitment to naturalism
(or formalism).

3.3 Arguing from SAD computability is a non-sequitur

In particular, I shall focus on the following argument, which I think fairly
summarizes Hogarth’s attack on effectiveness:

(a) Which functions can be computed by a (configuration of) physical
Turing machine(s) depends upon the structure of spacetime.

(b) The structure of spacetime is either to be determined by physicists, or
to be stipulated within some formal system; there is no third way.

(c) So which functions can be computed by a (configuration of) Turing
machine(s) is either a purely formal or purely physical question; there
are no interesting questions about effective computability.

I will not contest premise (b). My contention is with premise (a), which begs
the question from the outset.

Premise (a) reflects Hogarth’s interest in ‘painting ordinary Turing ma-
chine hardware on a variety of different geometries’ ([2009], p. 277). It also
reflect’s Hogarth’s belief that ‘[plure computability is concerned with the
logico/mathematical structure of each of the many computers now on of-
fer’ (J2004], p. 690). This is to treat formal theories of computability merely as
formalizations of some physical theory of computability.

In this context, this simply misses the point of Church’s, Turing’s, and every-
one else’s efforts. An attempt to formalize the notion of effective computability
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is not an attempt to characterize the logical structure of some physical com-
puter. It is an attempt to characterize a notion that has a central, foundational
role in logic and mathematics. (One might even say that it is an attempt to
characterize large parts of the structure of logic and mathematics itself.) This
role is distinct from any particular physical or formal theory, unless naturalism
(or formalism) is the correct approach to logic and mathematics.

In short, unless we already think that naturalism (or formalism) is the correct
approach to logic and mathematics, we shall think that effectiveness is neither a
physical nor a formal concept. As I have explained, if we are already naturalists
(or formalists), we shall have no need for Hogarth’s argument against effective
computability. But if we believe that effectiveness is neither physical nor for-
mal, then painting physical realizations of a formal theory of computability (a
physical Turing machine) onto a strange geometry cannot present any chal-
lenge to the non-physical, non-formal idea of an effective procedure. Hogarth’s
argument is simply misdirected.

We can illustrate this point dramatically by modifying Hogarth’s setup
slightly. Instead of painting physical Turing computers onto a Malament—
Hogarth spacetime, we shall paint effective computers onto a Malament—
Hogarth spacetime. To do this, we can simply replace the machines in Hogarth’s
model with tribes of people. These people work as ‘computers’ in Turing’s orig-
inal sense: that is, they dumbly follow a finite set of instructions, step-by-step
([1936], Section 9). As tribe members approach death, younger members of the
tribe take on the work of their dying predecessors. The result is an unbroken
w-sequence of calculations on a collective worldline, and a SAD; computer.
But in this case, we are constructing SAD computability from a core of effective
computability, rather than from a core of physical computability: we have an
effective SAD computer.’

Evidently, it is just a non-sequitur to argue from the idea of SAD com-
putability to the claim that the notion of effectiveness is bankrupt. Far from
getting rid of the notion of effectiveness, introducing SAD computability just
allows us to consider both finitary and SAD effective computability. The very

20" This describes a temporal model of an ‘effective SAD computer’. It is worth noting that this does
not conflict with the claim, made in Section 3.1, that the notion of a (finitary) algorithm is not
intrinsically temporal. We might come to the notion of a (finitary) algorithm by idealizing away
the specifically temporal aspects of Turing’s description of a (finitary) effective computer. In the
same way, having described the intuitive model of an effective SAD computer, we idealize away
the temporal aspects of the model, reaching the notion of an atemporal ‘SAD algorithm’, or an
‘effective SAD procedure’.

One might worry that the tribe could be wiped out by a plague; but this is not essentially
different from the case where Hogarth’s machine is destroyed by collision with a passing asteroid,
or where the machine malfunctions due to defects in its components. One might worry that the
tribe will not be able to get enough matter/energy to continue computing forever; but the same
sort of problems arise with Hogarth’s original machine. Any solutions that Hogarth offers to the
problems posed in Section 2 can be used here.
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idea of an effective procedure—as something neither formal nor physical—is
entirely unscathed by thinking about SAD computability.

3.4 SAD computability is built from finitary computability

Nonetheless, SAD computability presents some challenge to the Effective
Church-Turing Thesis. If finitary and SAD effective computability are on a
par (in some sense), then there is no single privileged notion of effective com-
putability. In which case, if the Effective Church-Turing Thesis assumed that
there is a single privileged notion of effective computability, then the Thesis
would still be fundamentally wrong-headed. This would be a different kind of
‘wrong-headedness’ from the kind that Hogarth has in mind (Hogarth holds
that the very notion of effectiveness, whether finitary or infinitary, is bankrupt),
but it would still pose serious problems for the Thesis.

In this subsection, I argue that effective finitary computability is privi-
leged over effective SAD computability. In doing so, I establish the following
disanalogy between geometry and computability. In geometry, Euclidean par-
allel lines are merely special cases of geodesics, and they generate no particular
interest outside of Euclidean geometry. By contrast, I shall show that fini-
tary computation is absolutely central to SAD computation, and so is always
interesting in computability theory.?! This will demonstrate that finitary com-
putability is privileged over SAD computability and, a fortiori, finitary effective
computability is privileged over SAD effective computability.

Considering Hogarth’s model of SAD; computation, Earman notes that

two levels of computation need to be distinguished: the first corresponding
to what the [computer on the worldline y] can do, the second to what [the
user] can infer by having access to all of [the computer]’s labors. (Earman
[1995], p. 120)*

In brief, we do not know what SAD; computability amounts to until we know
what a finitary computer can achieve. This will be readily conceded by Hogarth,
given that his physical model of SAD; computation arises by ‘painting ordinary
Turing machine hardware on a variety of different geometries’ ([2009], p. 277).

The relevance of finitary computation to SAD; computation does not depend
upon the particular details of Hogarth’s physical model of SAD; computation.
As explained in Section 1.1, SAD; computers are created simply by allowing

2l Thanks to an anonymous referee for suggesting I consider Hogarth’s challenge in terms of
geodesics.

22 Earman continues by suggesting that the Physical Church-Turing Thesis can be treated as a
thesis about what finitary computers can do on their worldline, rather than as a thesis about what
can be physically computed fout court. Treated in this way, considerations of SAD computability
will leave the Physical Church-Turing Thesis untouched. My discussion in Section 2 treats the
Thesis as aimed at physical computability tout court.
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someone to stand ‘after’ an w-sequence of computations performed by an
essentially finitary computer. So finitary computation is central to the very idea
of a SAD; computer. (At least, as I have presented it; I shall soon discuss
whether alternative presentations might be preferred.)

The importance of finitary computation becomes even more obvious when
we consider Welch’s ([2008]) completely general characterization of the hier-
archy of SAD computers, as summarized above in Section 1.5. Condition (1)
states that, at base, all the computation that takes place in a SAD, computer
must be built up from finitary computers. Furthermore, condition (3) ultimately
entails that the tree-structure of any SAD,, computer must be given by a (fini-
tarily) recursive ordinal; that is, the structure of the computational tree must
itself be finitarily computable.?® In short, SAD computation is built up from
finitary computation in finitarily computable steps.

This all contrasts sharply with the case of geometry. Euclidean geometry
is not built up from Lorentz geometry, and Lorentz geometry is not built up
from Euclidean geometry.?* On the contrary: these two geometric theories have
mutually contradictory axioms concerning parallel lines and so have different
theorems about circles (for example). By contrast, the axioms of the formal
theory of SAD computability will contain all of the axioms of the formal
theory of Turing computability. So this is the point at which Hogarth’s analogy
with geometry collapses.

With all of this in mind, let us return to the story of indentured tribes, as
told in Section 3.3. If we could send indentured tribes off towards Malament—
Hogarth singularities, then the finitarily effectively computable functions might
not exhaust the effectively computable functions simpliciter. But even in this
case, finitary effective computability will remain an extremely important notion.
To know whether the effective SAD,, computable functions are all and only the
Turing SAD, computable functions, it is necessary and sufficient to know
whether the finitarily effectively computable functions are all and only the
Turing computable functions. Consequently, whether or not we are interested in
SAD computability, the answer to the question ‘what are the finitarily effectively

2 To be fair to Hogarth, note that condition (3) is Welch’s, not Hogarth’s. But I do not think that
Hogarth could reject the condition. Welch ([2008], p. 667) argues that Hogarth must adopt condi-
tion (3) since, without it, the ‘description of this sequence may itself be beyond the computational
powers of us or our spacetime-regions’, which would render the computer essentially useless to
us. To supplement this argument, I note the following. If we impose no constraint on the function
/., we quickly reach triviality. Any subset of the naturals can be formed by countable union of
Iy sets, since the union of all the sets that are singletons of members of S is just S, and every
singleton set is ITp. So if we impose no constraints upon f, we can determine membership of any
set using a (meagre) SAD; setup.

That we can construct models of n-dimensional Lorentz geometry in (n + 1)-dimensional Eu-
clidean geometry is irrelevant here. We are talking about theories of computability and geometry,
not models of those theories. Furthermore, Lorentz geometry has models in its own right; we
do not need to think of it as having Euclidean geometry at its heart, in the way that SAD
computability has finitary computability at its heart.

24
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computable functions?’ will be of paramount importance. Reading the Effective
Church-Turing Thesis in this way, it seems anything but misguided.

Before concluding, it is worth asking whether SAD computability’s reliance
on finitary computability is an artefact of the way that Hogarth, Welch, and
I have presented the theory of SAD computability, or whether it is essential
to SAD computability. We have built SAD computers ‘from the bottom up’,
starting with finitarily computable sets, and ultimately constructing the hyper-
arithmetical hierarchy on top of them. Perhaps this is an unfairly constructivist
prejudice, which could be avoided by starting ‘from the top’ and working down-
wards. If we can do this, then finitary computability might have a less central
role in SAD computability.

But recall from Section 1.2 that we wanted to construct a notion of hyper-
computability that did not require any individual component of the hypercom-
puter to complete a supertask. To demonstrate that no component completes
a supertask, we have to consider the behaviour of the individual components.
So, even if we start from the top, we will have to consider what happens at
the bottom. Considerations of finitary computation will still be central to any
theory that looks like SAD computability.

To be sure, we can develop alternative theories of hypercomputability that
do involve supertasks. In the extreme case, one need only postulate the exis-
tence of an oracle that can determine membership of any hyperarithmetical
set.”> But simply stating that ‘there could be an oracle’, or ‘there could be
a supertask machine’ presents no philosophical challenge for any notion of
computability. After all, if God exists, She can compute any function; but Her
possible existence does not threaten to collapse the distinction between com-
putable and non-computable functions, or threaten to undermine the Effective
Church-Turing Thesis.?®

I therefore take it that finitary computability must be at the heart of any
theory of hypercomputability that could reasonably claim to have any effect
on the Effective Church-Turing Thesis. But then my previous comments will
go through exactly as before: we shall be right to privilege questions about
effective finitary computability. In short, the Effective Church-Turing Thesis
seems to address a very significant question in the philosophy of mathematics.

25 In the less extreme case, Hamkins and Lewis ([2000]) describe a hypercomputer consisting of
a Turing machine with an infinitely long tape consisting of an w-sequence of cells. If, during
any w-sequence of computations, the value printed in a cell converges to a limit /, then the
value printed in the cell at the limit stage is /; otherwise, it is some default value. As such, this
computer must genuinely perform a supertask (or operate in infinite time). But note that this
kind of hypercomputer is formed simply by adding new rules to govern the behaviour of Turing
machines in limit stages; that is, it is built up from finitary computability. (Also, note that Hamkins
and Lewis do not endorse Hogarth’s claim that hypercomputability undermines the very notion
of effective computability; they are simply interested in the logical/mathematical structure of
these machines.)

26 Cf. (Benardete [1964], pp. 190-3; Dummett [1991], pp. 347-51).
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4 Concluding Remarks

I have aimed to show that there is space to defend the Physical Church-Turing
Thesis, and also to raise serious probabilistic concerns about the possibility
of physical SAD computation. At the very least, this shows that the very idea
of SAD computation does not refute the Physical Church-Turing Thesis. But,
for all that I have said, SAD computers may one day pose problems for the
Physical Church—Turing Thesis (see Section 2).

By contrast, the notion of SAD computation casts no shadow upon the
notion of effective computability. How could it, when we can easily construct a
theory of effective SAD computability? And when finitary computability (phys-
ical, effective, or Turing) is the very kernel around which SAD computability
(again, physical, effective, or Turing) is constructed? Hogarth has suggested that
we should jettison effective computability, since the idea assumes that there is ‘a
fundamentally distinguished computational procedure or computer’ (Hogarth
[2004], p. 690). Indeed, it assumes that there is a fundamentally distinguished
non-physical, non-formal computational procedure, and Hogarth’s arguments
do not show that this assumption is unreasonable (see Section 3).

Nonetheless, everything I have said so far leaves open the possibility that
SAD computability might have some foundational role in logic and mathemat-
ics. For example, one might allow that the procedure for checking whether a
sequence of sentences constitutes a proof or not should be an effective SAD
procedure (rather than an effective finitary procedure). This will give rise to a
deviant, infinitary notion of proof.?’ I have shown that effective finitary com-
putability is privileged, and this suggests that the standard (finitary) notion of
proof is privileged over the deviant, infinitary notion. But it would require a
further argument to show that the deviant notion should be ignored altogether
as a useful notion of proof. This argument would need to establish that we

27 ¢f. Example 2 of Section 3.2. I am greatly indebted to Philip Welch for pointing out that this

‘deviant’ notion of proofis the admissible fragment of the proof theory for the admissible fragment
of the infinitary logic L, «,. A brief explanation is in order. L, ., allows countable infinitary
conjunctions and disjunctions, but only finitary quantification (all quantification is first-order).
Infinitary disjunction is defined explicitly as \/ ® =4r = A{—¢ : ¢ € ®}. The proof system for
this logic, A, ., has all the inference rules and axioms of standard finitary proof systems, plus:
(i) a new axiom scheme ‘/\ ® — ¢’ for any countable set of formulae ¢ and any formula ¢ € @,
and (ii) a new inference rule ‘gg, 1, ..., ¢, ... & N;cn @i’ A proofin A, o, is any countable
sequence of sentences formed according to these rules/axioms (Scott [1965], p. 332; Bell [2006],
Section 2). SAD computers could be used to test sequences of formulae to determine whether
they are formed by these rules/axioms; but restrictions will apply. Recall that the tree-structure
of any SAD computer must correspond to an ordinal < o{® (see Section 1.5). Consequently,
SAD computers can only handle proofs corresponding to trees with order-type < wlCK. For the
same reason, both the new axiom scheme and the inference rule must be restricted: any set of
formulae ®, and any formula ¢, occurring in a putative proof must be associated with ordinals
< . In sum, we are restricted to the admissible fragments of L,, ., and A, ,. See (Barwise
[1969]) for details.

€102 ‘vZ |1dy uo 159nb Aq /Bio'sfeulnolpio)xorsdlg//:dny woij papeojumoq


http://bjps.oxfordjournals.org/

790 Tim Button

should take no notice of effective SAD computability. Can such an argument
be supplied?

Lingering doubts about supertasks might provide a reason to dismiss the
notion of effective SAD computability outright. When I presented the two
models of SAD; computability, I showed that no single component of either
model performs a supertask. But equally, when a SAD; computer shows that
n is not in some X; set, no single component does this. So if it is correct
to say that the procedure demonstrated that » is not in the set, then surely
it is correct to say that a supertask was performed. It is just that both the
demonstration and the supertask are performed by the plurality (or fusion) of
all the components in the SAD; setup (either the entire chain of machines, in
Davies’s model, or the machine-plus-user, in Hogarth’s model). One might then
go on to argue that, since supertasks keep bad company, such as Thomson’s
Lamp, we should not allow supertasks to infect the idea of effective com-
putability. It would follow that we should ignore the notion of effective SAD
computability.

SAD-enthusiasts are likely to respond by claiming that it is a mere finitistic
prejudice to tar all supertasks with the same brush:

[T]he fact that some supertasks are kinematically or dynamically impossible
is no more surprising or disturbing than the fact that some ordinary tasks
are kinematically or dynamically impossible. (Earman and Norton [1996],
p. 235)

In a similar vein, Hogarth ([2009], pp. 287-8) asks us to beware of prejudices
inculcated by years of non-exposure to Malament-Hogarth spacetimes.

At this point, an impasse is likely to ensue, between those who regard all
supertasks as equally conceptually impossible, and those who do not. I have
nothing to add to break this particular impasse. However, I think it may be
possible to bypass it.

Certain conceptions of logic and mathematics would give us reason to ignore
the notion of effective SAD computability altogether. Consider the Fregean
view that the laws of logic and mathematics are ‘the laws of thought’ (developed
in Dummett [1991], p. 1ff). Since effective procedures are central to logic and
mathematics (see Section 3.1), it would be natural to treat the notion of an
effective procedure as an aspect of the laws of thought. Suppose we also make
explicit two further constraints: first, that the laws of thought are the laws of
thought for an individual; second, that no individual can perform an effective
SAD computation (since no individual can have completed an w-sequence
of computations). It will follow that we shall simply have no interest (apart,
perhaps, from idle curiosity) in effective SAD computability; a fortiori, we will
have no interest in the ‘deviant’ infinitary notion of proof.
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To evaluate whether this is a good reason to restrict our attention to effective
finitary computability, we will have to answer the general question: What is the
status of logic and mathematics? If logic and mathematics should generally be
naturalized, for example, then we shall have to abandon Frege’s conception of
logic and mathematics, and the preceding argument will not go through. But in
that case, as I have already discussed, we will have no need for a non-physical,
non-formal notion of effective computability. Conversely, the question ‘what is
the status of logic?’ cannot be answered by appeal to SAD computers.

In short, to answer these questions, we shall have to look beyond SAD
computability. The philosophical usefulness of the SAD computer has run its
course.
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