
The role of epistemological models in
Veronese’s and Bettazzi’s theory of mag-
nitudes

Paola Cantú

1 Introduction

The philosophy of mathematics has been accused of paying insufficient at-
tention to mathematical practice: one way to cope with the problem, the
one we will follow in this paper on extensive magnitudes, is to combine the
‘history of ideas’ and the ‘philosophy of models’ in a logical and epistemo-
logical perspective. The history of ideas allows the reconstruction of the
theory of extensive magnitudes as a theory of ordered algebraic structures;
the philosophy of models allows an investigation into the way epistemology
might affect relevant mathematical notions.

The article takes two historical examples as a starting point for the inves-
tigation of the role of numerical models in the construction of a system of
non-Archimedean magnitudes. A brief exposition of the theories developed
by Giuseppe Veronese and by Rodolfo Bettazzi at the end of the 19th cen-
tury will throw new light on the role played by magnitudes and numbers in
the development of the concept of a non-Archimedean order. Different ways
of introducing non-Archimedean models will be compared and the influence
of epistemological models will be evaluated. Particular attention will be de-
voted to the comparison between the models that oriented Veronese’s and
Bettazzi’s works and the mathematical theories they developed, but also
to the analysis of the way epistemological beliefs affected the concepts of
continuity and measurement.

2 Giuseppe Veronese

Giuseppe Veronese is well-known to mathematicians for his studies of pro-
jective geometry, but his epistemological contributions to the foundations
of geometry have been mostly ignored by contemporary philosophers of sci-
ence, although they were quite well-known at the beginning of the 20th



2 Paola Cantú

century.1 As I have shown in previous research [9], Veronese’s epistemol-
ogy is neither naive nor inconsistent: it justifies the acceptance of many
non-Euclidean geometries, including elliptic, hyperbolic, non-Archimedean
geometry and the theory of hyperspaces. Moreover, Veronese’s epistemolog-
ical model, though apparently regressive for its recourse to synthetic tools
and its refusal of analytical means, turned out to be fruitful from both a
geometrical and an algebraic point of view.2

2.1 Veronese’s epistemology

Veronese’s mathematical theory of continuity and the geometry of hyper-
spaces contained in his main work – Fondamenti di geometria [37] – was
strongly influenced by his epistemology and especially by his conceptions of
space and intuition, which are exposed in several of his writings, including
various articles ([41], [36], [38]) and the prefaces to his geometry textbooks
([39], [40]). His epistemological model is compatible with the development
of hyperspaces and non-Archimedean continuity, because it allows the rep-
resentation of spaces with more than three dimensions and legitimates the
intuition of infinitesimals, if not empirically, at least by means of an abstract
intuitive capacity that one develops with time, experience and geometrical
practice.

Contrary to logic and mathematics, which are formal sciences, and to
physics and mechanics, which are experimental sciences, geometry was con-
sidered by Veronese as a mixed science [37, p. vii], because its objects are
partly abstracted from real objects and partly ideal and because its premises
are partly empirical, partly semi-empirical and partly abstract [5]. Empir-
ical premises are evident truths that one grasps by intuition when one ob-
serves certain physical objects: for example the property (usually attributed
to rectilinear segments) of being determined by a couple of points derives
from certain physical features of rigid rectilinear bodies. Semi-empirical
premises have an empirical origin but they cannot be verified empirically
because they assert something that goes beyond the observable domain: for
example the geometrical properties of an unlimited line cannot be verified
empirically, because the observable domain is finite, but they derive from

1Felix Klein [24] and David Hilbert [22] mentioned Veronese’s mathematical results,
Paul Natorp [27] and Ernst Cassirer [14] discussed Veronese’s non-Archimedean contin-
uum, Bertrand Russell [33] praised Veronese’s contribution to the history of the founda-
tions of geometry.

2The existence of a system of linear quantities containing infinitely small as well as
infinitely great quantities was heavily criticised by Cantor [8], Vivanti [42], and Schoenflies
[34], but it was praised by Stolz [35], Bettazzi [4], and Hilbert [22] and proved to be
consistent by Levi-Civita ([25], [26]). The fruitfulness of Veronese’s approach is clearly
visible in the reults of Hans Hahn [21], who built a complete non-Archimedean ordered
system of linear quantities [17].
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an imaginary extension of the empirical properties of the object. Purely ab-
stract premises concern ideal entities, such as infinitely great and infinitely
small quantities, that are not related to any object of the observable domain.

Geometrical premises must satisfy both the requisite of mathematical
possibility, i.e. logical soundness, and a specifically geometrical condition,
that is, conformity to the intuition of space [37, p. xi-xii]. According to
Veronese, a mathematical theory that contradicts the elementary proper-
ties of spatial objects that one knows by intuition is not ‘geometrical’, be-
cause geometry is the science of space. For example, Poincaré’s theory of a
one-sheeted hyperboloid or Hilbert’s non-Arguesian geometry are perfectly
sound mathematical theories, but they are not geometric theories, for they
contain propositions that contradict our spatial intuition. A geometrical
theory must have an empirical kernel and be compatible with our intuitions
of space: the mathematician can freely determine abstract hypotheses, pro-
vided that logical consistency and compatibility with empirical and semi-
empirical hypotheses is maintained. The logical study of the independence
of axioms is a main tool in order to define abstract hypotheses, for the in-
troduction of new objects is accomplished by a change in the axioms. For
example, non-Archimedean geometry arises from the negation of the axiom
of Archimedes and the investigation of the properties of continuity that
might be independent from it.

Veronese, who was strongly influenced by Moritz Pasch and Felix Klein,
aimed at a common foundation of metric and projective geometry and
was strongly involved in the project of establishing the theory of exten-
sive magnitudes independently from numbers. His construction of a non-
Archimedean geometry cannot be fully understood without considering his
epistemological conceptions of space and intuition [9] and his familiarity
with different models. Projective geometry led him to the introduction of
ideal entities that might extend a system, while preserving its relevant prop-
erties. The empirical approach, strictly related to the interest for the origin,
the history, and the teaching of geometry, together with the traditional in-
sight that all geometrical properties should be somehow derived from our
intuition of space, led him to the the conception of ‘the rectilinear contin-
uum’ as an ordered system of segments rather than as an ordered system
of points. The belief that geometry should be somehow distinguished from
pure mathematics and therefore grounded independently from numbers also
played a relevant role in Veronese’s construction of a new geometrical theory.
A further element that strongly influenced Veronese’s construction of hy-
perspaces and infinitesimal quantities derives from Hermann Grassmann’s
epistemology: the belief that mathematical notions should be genetically
connected to specific operations of thought.
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Veronese’s interest in an abstract and general introduction of the con-
cepts of group, equality, addition and order derives from the belief that
primitive mathematical concepts such as unity, plurality, group, order and
series reflect relevant characteristics of the way we think. Veronese elabo-
rated a general law that allows the construction of new ideal objects that
extend any thinkable domain: “Given a determinate thing A, if we have not
established that A is the group of all possible things that we might consider,
then we can think of something else that is not included in A (that is outside
A) and independent from A”. This general law allows human thought to go
beyond any given limit, because it makes it possible to assume the existence
of a new entity outside the domain that was previously considered as the
totality of the existing things.

2.2 Veronese’s non-Archimedean continuum

Veronese’s exposition of the non-Archimedean continuum is contained in
the Introduction to his book Fondamenti di Geometria. The continuum is
a system of segments endowed with an operation of addition and a relation
of order. Unlike Dedekind’s definition, Veronese’s characterization of con-
tinuity is not Archimedean. According to the postulate of Archimedes – so
called by Stolz – [35], “given two quantities a and b, if a is bigger than b,
there is a number n ∈ N such that nb > a”. On the contrary, if a system
does not contain any multiple of b being bigger than a, this means that b
is infinitely small with respect to a or, vice versa, that a is infinitely great
with respect to b. In Veronese’s theory the postulate of Archimedes does not
hold, for the geometrical continuum contains infinitely small and infinitely
great segments, which are introduced by two hypotheses: 1) if a segment
AB is taken as a unit, there is a segment AA1 that is infinite with respect
to A, or rather a whole series of segments that are infinite with respect to
A, but 2) this series, unlike Cantor’s series of transcendent numbers, has
no first element. To each segment of the new enlarged system Veronese
associates a number, thus obtaining an enlarged numerical system II that
preserves the operational properties of real numbers. A generalized version
of the Archimedes’ postulate still holds if instead of n ∈ N one considers
a number η ∈ II : “if a > b, there is an η such that ηb > a.” Infinitely
great and infinitely small numbers are introduced as symbols that can be
assigned to infinitely great and infinitely small magnitudes (segments).

Veronese’s continuity is a generalization of Dedekind’s principle: if one
does not assume the Archimedes’ postulate, there might not exist a segment
being the limit of each partition of the straight line in two parts A and
B so that each segment of A is to the left of each segment of B. This
holds only if a further condition also holds: “There is a segment x in the



Epistemological models in Veronese’s and Bettazzi’s theory of magnitudes 5

part A and a segment y in the part B so that the difference between y
and x becomes infinitely small”. If a is infinitely small with respect to b,
the difference between a and b does not become infinitely small and the
continuum contains a gap, but if we restrict ourselves to finite segments,
then Dedekind’s condition holds and there are no gaps.

2.3 How the epimestological model affects continuity

The difference between the approaches of Dedekind and Veronese is relevant
not only from a theoretical but also from an epistemological point of view.
Veronese believed that the geometrical continuum should not be defined as
a system of points but as a system of segments that should not and could
not be reduced to a system of numbers. Refusing the idea of defining the
continuity of space by means of the continuity of real numbers, Veronese did
not assume the Archimedes principle as a necessary element for the conti-
nuity of a geometrical system of magnitudes. If Veronese had assumed the
real number system as the privileged model for the description of geomet-
rical magnitudes, this would have hindered the discovery of an alternative
description of spatial continuity.

Veronese’s results, stemming from a combination of an empirical model
for continuity, a thought model for order and equality, and a projective
model for the foundation of the theory of extensive magnitudes, affected the
meaning of the concepts of order, continuity, group, magnitude and number.
Numbers were considered as essentially ordinal (cardinal numbers being, as
in Cantor’s perspective, the result of an operation of abstraction from or-
dered sets) and were introduced in two independent ways. Natural numbers
were introduced as the result of an act of thought - the counting of the ele-
ments of an ordered set. Continuous numbers – real and non-Archimedean
numbers – were introduced by association to a given system of geometri-
cal magnitudes. The properties of numbers derive from the properties of
magnitudes and not vice versa. According to Veronese, the continuity of
numbers should be modelled on (since it is derived from) the continuity of
the geometrical rectilinear line. Which numerical system should be asso-
ciated to a given system of magnitudes depends on the properties of the
magnitudes, that is to say, on the properties of the spatial continuum that
one is not able to perceive but that one can represent to oneself by means
of an abstract intuition.

3 Rodolfo Bettazzi

Rodolfo Bettazzi’s mathematical works did not receive much attention from
contemporaries and have been largely ignored both by historians of math-
ematics and by philosophers of science. Apart from some studies on Bet-
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tazzi’s criticism of the axiom of choice [13] and from recent historical re-
search on Peano’s school, there is scarcely any literature on Bettazzi’s
writings.3 Bettazzi’s main work is a monograph on magnitudes that was
awarded a prize by the Accademia Nazionale dei Lincei in 1888. Betti,
Beltrami, Cremona, and Battaglini – members of the Prize Commitee – re-
marked that Bettazzi’s Teoria delle grandezze was an original study in line
with Grassmann’s, Hankel’s, Stolz’s, and Cantor’s writings [20].

The volume [2] appeared just before Veronese’s Fondamenti di geometria
[37], but the two authors reached their results independently.4 A compari-
son between the two works shows remarkable similarities in the results and
in the epistemological background, but also a marked difference in the math-
ematical approach to the enlargement of the numerical domain and in the
general aim [11].

3.1 The epistemological model
According to Bettazzi, the objects of a science are ideal and under-determined
with respect to the properties of the objects of the real world, for only cer-
tain properties are defined and considered as relevant. Such objects are
mere concepts and their properties might have similarities with the proper-
ties of real objects (for example in geometry) but might also be introduced
independently according to certain specific aims. If the existence of an ob-
ject is accompanied by the determination of the properties of the object,
one has a definition of the object itself: so, if one says that there exists an
object with certain characteristics, that is a definition of the object [2, p. 3
ff.]. Before Frege or Peano commented on the topic, Bettazzi distinguished
between a direct definition, that is to say a definition that aims at defining
what an entity is in itself, from a relational definition that defines entities
by their reciprocal relations. Every definition is an existential definition
asserting the possibility of the attribution of certain properties to a given
concept: some properties are attributed to the introduced entity in itself or
to its relations to other previously introduced entities; some properties ex-
press relations between entities that belong to the same category one wants
to define.

Before introducing a precise definition of the concept of magnitude, Bet-
tazzi makes some remarks on mathematical entities. All scientific entities

3The oblivion of Bettazzi’s works might be partly due to the fact that he never at-
tained an academic position nor published in international reviews. A recent historical
study on non-Archimedean mathematics that dedicates a whole paragraph to Bettazzi is
Ehrlich 2006 [18] and analyses the originality of his contribution to the topic. Since it
is not focused on Bettazzi, it does not discuss Bettazzi’s epistemology nor the details of
Bettazzi’s numerical systems.

4Veronese remarked in a footnote that the work of Bettazzi came to his notice when
his own book was already getting into print.
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need to be well defined, at least with respect to their relevant properties.
Scientific entities are ideal because only some of their properties are taken
as relevant. These properties might or might not be similar to the prop-
erties of certain objects of the real world, for certain entities derive from
the observation of the external world while other entities are introduced
according to special purposes. Like Veronese, Bettazzi makes a distinction
between entities that are somehow connected to our experience and entities
that are independent from it.

Scientific entities are pure concepts whose properties are expressed by
contemporaneity of certain concepts with others: Bettazzi’s terminology
here is similar to that of Grassmann. Non-contradiction means ‘possible
contemporaneity’ of the concepts; Grassmann used the expression ‘Vere-
instimmung’ to express the coherence of different acts of thought. The
properties of the entities are called postulates and the existence of the en-
tities is itself a postulate. Bettazzi is a conceptualist, because he considers
scientific entities as ideal and believes that their properties might be arbi-
trarily chosen, provided that no contradiction arises. On the other hand
Bettazzi, like Veronese, is very much concerned with experience and seems
to believe that most mathematical concepts are derived from the observa-
tion of an external reality. Space and time cannot be a priori concepts but
are rather relational concepts that have to be introduced by defining what
it means that two spaces or two times are equal. Time cannot be defined in
itself. Analogously all concepts should be introduced by defining relations
of equality or inequality.

Refusing the idea of deriving the properties of magnitudes from the prop-
erties of the real numbers that are used to measure them, Bettazzi intends
to build a rigourous system of magnitudes without presupposing the notion
of number. He aims at deducing the properties of real numbers from the
properties of magnitudes. In an article on the concept of number [1, p. 98
ff.] Bettazzi gives some reasons for introducing magnitudes independently
from numbers. He recalls the distinction between two ways of introducing
real numbers: a synthetic and an analytic way. According to the synthetic
way, a number represents the ratio of a magnitude to a magnitude of the
same species, the unity. According to this point of view, the number indi-
cates the way a magnitude can be obtained from the unity of its category.
Examples of magnitudes are aggregates of equal, separated objects, aggre-
gates of their parts, segments, angles, surfaces, solids, times, weights, and
so on. The notion and the properties of numbers (such as commutativity
or transitivity) must derive from the correspondent properties of magni-
tudes and have to be demonstrated as theorems rather than be assumed as
definitions.
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While in the synthetic approach numbers have a concrete meaning that
derives from their being introduced as ratios of magnitudes, according to
the analytic point of view, numbers are devoid of any concrete meaning.The
properties of numbers depend on the formal properties of certain abstract
operations, because numbers are first introduced as the elements of the given
operations and can be generalized only if the properties of those operations
are preserved and certain impossibilities eliminated. For example, natural
numbers are generalized into integers so as to make subtraction possible,
integer numbers are generalized into rational numbers so as to make division
possible, rational numbers are extended by the introduction of certain real
numbers so as to allow the operation of extracting the root of any positive
number, and so on. A main difficulty of this approach consists, according to
Bettazzi, in the fact that one does not know exactly where one should stop
in this procedure of generalization or when one would have enough numbers
to measure magnitudes.

Advantages and disadvantages of the synthetic and analytic approach
are discussed in an article entitled Sui sistemi di numerazione per i nu-
meri reali [3], where Bettazzi argues that the definition of real numbers as
an extension of rational numbers is not convincing for two reasons: 1) it
introduces a dishomogeneity, for it is not based on the closure of certain op-
erations that should be made possible, but rather on a completely different
concept: the limit; 2) it presupposes a property of extensive magnitudes,
i.e. their undenumerable continuity. As a result, Bettazzi argues that those
who intend to define the real numbers as successive enlargements of the
natural numbers can never obtain a unitarian notion of number, but rather
only give many different and separate constructions of rational, irrational,
and negative numbers, so that including them all into a single concept of
real numbers would be quite arbitrary. This criticism sheds doubts on the
legitimacy of the arithmetization of analysis.

Similar remarks can be found also in Cesare Burali-Forti and Sebastiano
Catania’s works, which were, like Bettazzi’s, influenced by Grassmann’s
writings. In his book on numbers and magnitudes [15, p. vi-vii], Catania
wanted to “deduce the whole class of absolute real numbers from magnitudes
and the partial classes of integers and rational numbers therefrom. It is an
inversion of the usual procedure, which first defines different entities in
different ways and then identifies them afterwards to preserve the ordinary
properties”. Burali-Forti wrote similar remarks in his note on magnitudes
[6] and in his book Logica matematica (especially in the 1919 edition) [7, p.
323-4]. He argued that since defining real numbers from natural numbers
is quite complicated and inconvenient, the simplest and clearest way to
introduce numbers is to define them as corresponding to magnitudes.
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3.2 Bettazzi’s theory of magnitudes

In his book Teoria delle grandezze [2] Bettazzi defines magnitudes as the
entities of a category that can be compared with respect to a relation of
equality or inequality. A class of magnitudes is defined as a structure com-
posed by a set and an additive operation that is associative, commutative,
monotonic and univocal. In modern parlance, a class of magnitudes is an
abelian additive semigroup. The introduction of an order relation allows
a distinction between one-dimensional (linear ordered abelian monoids),
multi-dimensional (complex), and non-dimensional classes.

Bettazzi considers several properties of classes, such as that of being one-
directional, limited, proper, isolated. One-directional classes correspond to
what is now called positive or negative cone of a linearly ordered group. A
class is limited if it has an inferior limit which is different from the neutral
element. It is proper if the difference of two magnitudes belongs to the class
whenever the minuend is greater than the subtrahend. A limited proper
class can be ordered by a repetitive application of the additive operation
to the limiting magnitude (it is right-solvable). A limited proper class is
discrete: it contains the neutral element, a least element (the unit) and its
multiples. A class is isolated if it contains no magnitudes that are smaller
than any magnitude of the class except the neutral element and if it contains
no magnitudes that are greater than any magnitude but the absorbing ele-
ment (i.e. a class is isolated if the neutral element is the only least element
and the absorbing element is the only greatest element). Should an isolated
class be embedded into another class, any least element will be considered as
equal to the neutral element 0 and any greatest element will be considered
as equal to the absorbing element Ω:

(*) for any a in G, if a∗ < a then a∗ = 0 and for any b in G if b∗ > b then
b∗ = Ω.

The procedure of isolating a class is very interesting, for it explains how
the same class might be considered as containing or not containing infinites-
imal magnitudes. For example, Veronese’s non-Archimedean system would
be Dedekind-continuous if the class containing the unit were considered as
isolated. Bettazzi remarks that a new definition of equality is at stake when
one considers a class as isolated: two magnitudes of a class H are equal to
0 when they diverge by a magnitude that is smaller than any magnitude of
a subclass G and are equal to Ω if they contain a magnitude that is greater
than any magnitude of the subclass G. If one does not want to modify the
definition of equality, then one must assume the postulate (*) in order to
consider a class as isolated. Bettazzi acutely observes that the postulate
is implicitly assumed whenever one applies a specific name to the magni-
tudes of a certain category, because the exclusive name means that other
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things should not be considered as comparable to the given magnitudes.
For example, if one defines segments as sets of consecutive points, one is
thereby using an exclusive name that ‘isolates’ the class of magnitudes that
are called ‘segments’: infinitely small or infinitely great entities are thus
considered as not comparable to segments, that is, as equal to 0 or to Ω
respectively.

Other features of dimensional classes are related to how an ordered class
can be divided into subclasses. Connected classes contain only links or
sections. Closed classes do not contain sections but contain the limit of
every section of their subclasses. Continuous classes, being connected and
closed, contain only links. Archimedean classes contain no gaps and are
called classes of the 1st species, while non-Archimedean classes are called
classes of the 2nd species.

Having introduced all these properties of classes of magnitudes indepen-
dently of numbers, Bettazzi turns to the introduction of numbers: given a
one-dimensional class of magnitudes, Bettazzi associates a number to each
magnitude, then introduces a relation of equality and an operation of addi-
tion, and shows that these numbers form a class with the same properties
of the correspondent class of magnitudes. Since numbers are associated to
magnitudes, a relation of equality might be defined between numbers on the
basis of the equality of the corresponding magnitudes. Bettazzi analogously
defines other properties of numbers. In modern parlance, one could say that
he introduces numbers by means of a homomorphism µ between a class of
magnitudes G (which is an ordered abelian monoid) and a class of numbers
K. The system of numbers associated to a class of magnitudes is thus itself
an ordered abelian monoid.

Bettazzi remarks that numbers are mathematically relevant because the
same numerical system can be associated to different classes of magnitudes
that have something in common – or, as Bettazzi expresses it, belong to
the same category. Bettazzi defines two classes as belonging to the same
category if they can be shown to have a correspondence that preserves the
relation of order, the additive operation, the module magnitude and the
infinite magnitude. In modern parlance, two ordered monoids belong to
the same category, if they are homomorphic. The homomorphic function f
that establishes the correspondence between the two classes of magnitudes
is called a metrical correspondence; it allows a partition of classes of magni-
tudes in different categories: discrete, rational, continuous, . . . The concept
of metrical correspondence is an abstract algebraic notion that does not
presuppose the notion of number: examples of metrical correspondence are
both the mapping of a discrete (rational, continuous) class into any other
discrete (rational, continuous) class and the mapping of a class of magni-
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tudes into a numerical system.
Numerical systems are introduced as the systems that correspond to a

class of a given category (and thus to all classes of the same category,
for each class is homomorphic to each other) and can thus be used to
represent distinct categories. The class of integer numbers is the class
of numbers associated to discrete classes: it contains 0 (module magni-
tude), 1 (the unity), all multiples of the unity and ω (infinite magnitude):
I = 0, 1, (1 + 1), . . . , (1 + 1 + 1 + +1), . . . , ω. The class F of fractional num-
bers is the class of numbers associated to rational classes and it contains
0, the number associated to a rational magnitude, its multiples and ω:
F = 0, a, (a+ a), . . . , (a+ a+ a+ +a), . . . , ω. The class of fractional num-
bers contains the class of integer numbers as a subclass (for a = 1). A con-
tinuous class of numbers (real numbers) is associated to continuous classes
of magnitudes.

Bettazzi finally introduces a representation theorem, which asserts that
any continous class can be put into a metrical correspondence with the
class of real numbers. Metrical correspondence is clearly distinguished, in
Bettazzi’s terminology, from measurement. The distinction is quite sub-
tle but denotes a profound algebraic insight: a metrical correspondence is
an homomorphism of a class of magnitudes (a specific set with a certain
structure) into another class of magnitudes (a specific set with a certain
structure), whereas measurement is the mapping of any class of magnitudes
of a certain kind (a generic structure) into a class of numbers (a numerical
structure) [12]. Measurement can thus be defined only after both metrical
correspondence and numerical systems have been introduced: the represen-
tation theorem asserts that all continuous classes can be put into a metrical
correspondence with the system of real numbers. In the last paragraphs
of Teoria delle grandezze Bettazzi associates numbers to one-dimensional
classes of 2nd species and generalizes the representation theorem to non-
Archimedean classes of magnitudes.5

3.3 How the epistemological model affects measurement and
magnitude

An implication of the epistemological choice to introduce the properties
of numbers synthetically is that they can be derived from the properties
of magnitudes, which are assumed by definition. Bettazzi considers the
synthetic method as more simple, intuitive, and comprehensible, but he
acknowledges the risk of limiting the possible extensions of the notion of
number, if the last is rooted to certain concrete classes of magnitudes. The
risk might be avoided if one includes the study of classes of magnitudes that

5For a more detailed analysis of Bettazzi’s numerical systems, see [12].
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cannot be concretely imagined: this is exactly what Bettazzi does when
he considers classes of more dimensions or one-dimensional classes of 2nd

species. Bettazzi’s synthetic approach is an abstract approach to the study
of algebraic ordered structures. Although the epistemological background
is similar to that of Veronese, Bettazzi’s aim is quite different: a general
investigation of magnitudes rather than a geometrical description of the
intuitive continuum. Bettazzi is more influenced by the conceptualism of
Grassmann than by the empiricism of Pasch.

Bettazzi extends the notion of measurement to non-Archimedean classes
but assumes a continuous class of magnitudes to be Archimedean. The no-
tion of measurement does not entail Dedekind’s continuity nor monotonicity,
but it cannot be defined in classes with n dimensions, because they lack an
ordering. The definition of measurement presupposes the definition of a
class of magnitudes as an abelian ordered monoid. That is a reason why
Bettazzi’s abstract approach marks a significant step towards the axioma-
tization of the theory of magnitudes, which is usually attributed to Otto
Hölder [23].

4 The role of epistemological models

4.1 A comparison

Both Bettazzi and Veronese adopt old epistemological models in an origi-
nal and fruitful way. Bettazzi follows Grassmann’s algebraic approach and
develops a general theory of magnitudes independently of numbers, asso-
ciating numerical systems to categories of magnitudes. Veronese follows
Grassmann in the effort of developing geometry without numbers and as-
sociates a given system of numbers to a particular system of geometrical
magnitudes. Both consider systems of numbers as something that has to be
associated to previously defined classes of magnitudes.

Both Bettazzi and Veronese are concerned with the notion of ordinal
number rather than with the notion of cardinal number. Veronese does not
intend to derive cardinal numbers from ordinals: he explicitly introduces
natural numbers as concepts deriving from the act of counting. Bettazzi
tries to define real numbers without any reference to natural numbers, but
he ends by presupposing their existence in several passages of his text, as
Peano critically remarked [28].

In the writings of Veronese a new epistemological model begins to emerge:
instead of the result of a successive enlargement of the domain of natural
numbers, real numbers are considered as entities that can be defined in terms
of richer systems of numbers: they are a subclass of the non-Archimedean
numbers. This is due not only to the fact that attention is drawn to order
but also to the fact that real numbers are considered as the arrival point of
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the enterprise rather than as its point of departure.
In the writings of Bettazzi the properties of continuous classes of mag-

nitudes are similarly derived from abstract properties of general categories
of classes of magnitudes. Nonetheless real numbers play a relevant role
in Bettazzi’s system, because Bettazzi, unlike Veronese, conceives of non-
Archimedean numbers as hypercomplex numbers. Real numbers play a
similar role in some works of Grassmann, especially in the second edition
of the Ausdehnungslehre, where the philosophical approach is abandoned in
favour of a widespread analytical notation [10].

Even if, from a strictly foundational perspective, neither Bettazzi nor
Veronese develop a theory of magnitudes without numbers, what is radically
new in their effort is the conception of numbers as a special case of an
algebraic structure and the conception of the properties of real numbers as
a special case of more general properties of ordered structures.

4.2 Different ways to enlarge the domain of numbers

The abstract approach promoted by the synthetic models of Bettazzi and
Veronese did not only contribute to a better understanding of the notion
of magnitude but also induced an inversion of the defining techniques. The
construction of the real numbers is obtained by a one-to-one correspondence
with a previously given domain of magnitudes. The introduction of abstract
categories of magnitudes allows the construction of new numerical systems
that do not necessarily result from the analytical need to make certain
operations possible, as in the usual procedures for enlarging the numerical
domain.

The approach is top-down rather than bottom-up. Instead of enlarging
smaller systems, one starts from larger systems and isolates subsystems by
the introduction of new conditions. Following this approach real numbers
can be identified as the larger Archimedean sub-field of an ordered field.
This approach is radically different from the construction of hyperreal num-
bers by the enlargement of the system of real numbers: instead of assuming
real numbers as a starting point and trying to insert new entities in the
given domain, one starts from general properties of classes of magnitudes
(ordered fields) and then isolates real numbers by means of the Archimedean
property.

This approach has the advantage of avoiding ontological questions. More-
over, it is intrinsically devoted to the comparison of a plurality of models
rather than to the search for ‘the’ model of a categorical theory. Studies
concerning the definition of real and hyperreal numbers as real closed fields
are fruitful results of such an approach, which is interested not only in iso-
morphism but also in the study of common properties of non-isomorphic
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models (such as R and R*).
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