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According to one of the better known constraints on epistemic utility functions,
each probabilistically coherent function should be immodest in a particular sense:
for any probabilistically coherent credence function P and any alternative Q ≠ P
to P, the expected epistemic utility of P relative to P should be greater than that
of Q relative to P. �is constraint, o�en known as Strict Propriety, is usually
motivated by appealing to a combination of two independent claims. �e �rst
is a certain kind of admissibility principle: that any probabilistically coherent
function can sometimes be epistemically rational.1 �e second is an abstract
principle linking epistemic utility and rationality: that an epistemically rational
credence function should always expect itself to be epistemically better than any
of its alternatives.2 If we assume, as most typically do, that the alternatives to
any probabilistically coherent function are all and only those credence functions
with the same domain, these two principles arguably entail Strict Propriety.
What happens if we enlarge the class of alternatives to include a wider range

of probability functions, including some with a di�erent domain? �is would
strengthen the principle linking epistemic utility and rationality: it would no
longer su�ce, for a credence function to be deemed epistemically rational, that
it expects itself to be doing better, epistemically, than credence functions with
the same domain. And this stronger principle would arguably give us a more
plausible theory of epistemic rationality, at least on some ways of widening the
range of alternatives. Suppose an agent with a credence function de�ned over a
collection of propositions takes herself to be doing better, epistemically, than she
would be by having another credence function de�ned over the same collection
of propositions. But suppose she thinks she would be doing better, epistemically,
having a credence function de�ned over a smaller collection of propositions—
perhaps she thinks she would be doing better, epistemically, not having certain
defective concepts and thus that she would be doing better, epistemically, simply

1 Cf. Joyce 2009, p. 279 on ‘Minimal Coherence’.
2 Cf. the principle ‘Immodest Dominance’ in Pettigrew 2016, p. 24. See also Joyce 2009, p. 280 on
what he calls ‘Coherent Admissibility’.
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not having propositions with those concepts as constituents in the domain of
her credence function. Such an agent would seem to be irrational in much the
same way as an agent who thinks she would be doing better, epistemically, by
assigning di�erent credences to the propositions she assigns credence to.3
Now, my interest here is not with the question what is the right principle

linking epistemic utility and rationality. Rather, I am interested in understanding
how strong a principle we can consistently endorse: I am interested in the kinds
of constraints on epistemic utility functions that come from di�erent views on
how epistemic utility and epistemic rationality are related to one another. So I
start by considering the strongest version of a principle linking epistemic utility
and rationality, one that says that an epistemically rational credence function
should take itself to be doing better than any other credence function, regardless
of its domain. As we will see, the resulting immodesty constraint is far too strong,
in that, perhaps surprisingly, it cannot be satis�ed by any reasonable epistemic
utility function—that this is so is a consequence of the main results in this paper
(§3.1–§3.2).4
I then consider di�erent possible ways of weakening this principle and study

the resulting constraints on epistemic utility functions, their relationship to one
another, and establish a few characterization results for the class of epistemic
utility functions satisfying these constraints (§3.3). Before concluding, I discuss
(§4) how my results relate to recent work on the question whether epistemic
utility theory is incompatible with imprecise, or ‘mushy’, credences.

1 Introduction

Fix a collectionW of possible worlds and a �nite partition π ofW—a collection
of pairwise disjoint, jointly exhaustive subsets ofW , which we call cells.
I will say that a real-valued function P de�ned over π is coherent i� for each

s ∈ π, P(s) ∈ [0, 1], and ∑s∈π P(s) = 1. A coherent function over π uniquely
determines a probability function over the Boolean closure of π. Accordingly, and
slightly abusing notation, I will refer to coherent functions over π as probability
functions over π.5

3 Cf. Pérez Carballo 2022, esp. §3.2.
4 Previous work on related issues include Carr 2015, Pettigrew 2018, Talbot 2019. Unlike those authors,
I make veryminimal assumptions about the nature of epistemic utility—I do not assume, for example,
that epistemic utility functions are simply measures of accuracy (my results are thus independent
of whether we endorse the program of ‘accuracy �rst’ epistemology), nor that the epistemic utility
of a credence function at a world is determined by the epistemic utility of individual credence
assignments to propositions (my results do not rely an atomistic (in the sense of Joyce 2009, § 5)
conception of epistemic utility).

5 Since I will be taking Probabilism for granted, we can work with these simpli�ed de�nitions without
loss of generality.
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Let Pπ denote the collection of probability functions over π. An epistemic
utility function (for π) is a function u ∶ Pπ ×W Ð→ R ∶= R ∪ {−∞,∞} such
that for each P ∈ Pπ , u(P, ⋅) ∶W Ð→ R is π-measurable—where f ∶W Ð→ R is
π-measurable i� for each r ∈ R, {w ∶ f (w) = r} is in the Boolean closure of π.6

�roughout, I assume that epistemic utility functions are bounded above (for
each u there exists a �niteM such that u < M) and truth-directed in the following
sense: for all w ∈W , if (i) for any proposition s in π, P(s) is at least as close as
P′(s) is to the truth-value of s in w,7 and (ii) for some proposition s in π, P(s)
strictly closer than P′(s) is to s’s truth-value in w, then u(P,w) > u(P′ ,w).8
By de�nition, for �xed u and Q ∈ Pπ , u(Q , ⋅) is a discrete random variable.

Accordingly, for P ∈ Pπ I will let EP[u(Q)] ∶= EX∼P[u(Q , X)] denote the
expectation of u(Q) relative to P, so that

EP[u(Q)] = ∑
s∈π

P(s)u(Q ,ws),

where s ↦ ws is a choice function, in that for each w and s, ws ∈ s. �e π-
measurability of u(Q , ⋅) ensures that our de�nition does not depend on our
choice function. Indeed, I will simply write u(Q , s) to denote u(Q ,ws), so that
EP[u(Q)] = ∑s∈π P(s)u(Q , s).
I will say that an epistemic utility function u for π is proper i� for each

P,Q ∈ Pπ ,
EP[u(P)] ≥ EP[u(Q)].

I will say that u is strictly proper i� for each P ≠ Q ∈ Pπ , the above inequality
is always strict. (When u is proper but not strictly proper I will sometimes say
that u is weakly proper.) A variety of characterization results can be found in the
literature—see especially (Gneiting & Ra�ery 2007).
Strictly proper epistemic utility functions have been the subject of consider-

able interest. In discussions of how to reward a forecaster’s predictions, strictly
proper functions are of interest because they reward honesty—someone whose
forecasts will be rewarded using a strictly proper epistemic utility function can-
not expect to do better than by reporting her true credences (Brier 1950, Savage
1971). In general discussions of epistemic value, strictly proper functions are of
interest because they incorporate a certain kind of immodesty—if your epistemic
values are represented by a strictly proper epistemic utility function and you are

6 �e standard de�nition of π-measurability of course requires that the preimage of any open set in
R be in the Boolean closure of π. But since π is �nite, this simpler de�nition is equivalent to the
standard one.

7 I identify the truth-value of s in w with 1 if s is true in w (w ∈ s) and 0 otherwise.
8 Arguably, epistemic utility functionswould need to satisfy additional constraints to count as genuinely
epistemic ways of comparing probability functions relative to a given state of the world. For a sense
of the wide range of possible constraints, see Joyce 2009.
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rational, you will never expect any other credence function to be doing better,
epistemically, than your own (Gibbard 2008, Greaves &Wallace 2006, Horowitz
2014, Joyce 2009, inter alia).9
And in discussions of justi�cations of Probabilism—the requirement on de-

grees of belief functions that they satisfy the axioms of the probability calculus—
strictly proper utility functions have played a starring role in a range of dom-
inance results to the e�ect that probabilistic credences strictly dominate non-
probabilistic credences and are never dominated by any other credence function
(Joyce 1998, 2009, Leitgeb & Pettigrew 2010, Pettigrew 2016, Predd et al. 2009).10
One natural question to ask is how to generalize the framework of epistemic

utility theory to allow for comparisons of probability functions de�ned over
distinct algebras of propositions. And given such a generalization, an equally
natural question is how to generalize the notion of (strict) propriety. Let me take
each of these questions in turn.

2 Generalizing the Framework

Let Π denote the collection of �nite partitions ofW . For π, π′ ∈ Π, say that π
is a re�nement of π′ i� for each s ∈ π there is s′ ∈ π′ such that s ⊆ s′. If π is a
re�nement of π′, I will say that π′ is a coarsening of π. Of course, the re�nement
relation induces a partial ordering over Π, which I will denote by ⊑, where π′ ⊑ π
i� π′ is a re�nement of π. In fact, the resulting partially ordered set constitutes
a lattice, in that any subset S of Π admits of an in�mum (a coarsest partition
that is a re�nement of all elements of S) and an supremum (a coarsening of each
element of S that re�nes any other partition that coarsens each element of S).
De�ne now P ∶= ⋃Π Pπ , and, for a given P ∈ P , let πP denote the domain

of P. If π′ ⊑ π, P ∈ Pπ , and Q ∈ Pπ′ , I will say that Q is an extension of P to π′

(and P is a restriction of Q to π) i� for each s ∈ π,

∑
s′⊆s

Q(s′) = P(s),

where s′ ranges over elements of π′.

9 Strictly speaking, immodesty alone is not enough to motivate something as strong as Strict Propriety.
�e assumption that epistemic rationality is immodest ensures at best that at any one time, an agent’s
epistemic values at that timemust be such as to render her current credence function immodest:
it must judge that it is doing better, by the light of the agent’s current values, than any alternative
credence function. In order to motivate Strict Propriety, we would need additional assumptions,
e.g. that an agent’s epistemic values at a time should never by themselves rule out as irrational any
coherent credal state, or that there is a single admissible epistemic utility function.

10 See, however, Campbell-Moore & Levinstein 2021 for arguments that in the context of additive and
truth-directed epistemic utility functions, weak propriety su�ce; relatedly, see Nielsen 2022 for
generalizations of the results of Predd et al. 2009 using a condition weaker than strict propriety.

4



I will say that P is a restriction of Q (and Q an extension of P) i� πP ⊒ πQ
and P is a restriction of Q to πP .
A generalized epistemic utility function is a real-valued function u de�ned

over P ×W such that for each π ∈ Π, the restriction11 of u to Pπ ×W is a truth-
directed, epistemic utility function for π. I will say that a generalized epistemic
utility function u is partition-wise proper i� for each π ∈ Π, the restriction uπ of
u to Pπ ×W is proper. I will say that u is (partition-wise) strictly proper i� uπ is
strictly proper for all π ∈ Π.
It is straightforward to de�ne generalized epistemic utility functions that

are partition-wise proper. For example, take the generalized version of the Brier
score, de�ned by

b(P,w) = − ∑
s∈πP

(P(s) − 1{w ∈ s})2 ,

where 1{w ∈ s} equals 1 if w ∈ s and 0 otherwise. It is easy to check that b is
a generalized epistemic utility function that is partition-wise strictly proper.
Indeed, for any family {uπ ∶ π ∈ Π} of functions such that uπ is a partition-wise
strictly proper utility function for each π, the function u(P,w) = uπP(P,w) is a
generalized epistemic utility function that is partition-wise strictly proper.
If we are working with a �xed partition and only considering probability

functions de�ned over that partition, a strictly proper epistemic utility function
for that partition ensures the kind of immodesty that is allegedly a feature of
epistemic rationality (Lewis 1971). And in the context of elicitation, strictly
proper epistemic utility functions for a given partition can be used to devise
systems of penalties and rewards that ensure the kind of honest reporting of
forecasts over that partition that made epistemic utility functions, or scoring
rules, play the starring role in a wide body of literature.12
Once we relax the assumption that we are working with a �xed partition,

however, partition-wise strict propriety does not su�ce to ensure immodesty,
nor to encourage honest reporting. To see why, �rst note that or any Q, our
assumptions so far allow us to de�ne the expectation of u(Q) relative to any P
de�ned over a re�nement of πQ ,13 and in fact, where PQ is the restriction of P

11 I’m using ‘restriction’ here in the standard way, where the restriction of a function f de�ned
over X to some Y ⊆ X just is a function f ↾Y whose domain is Y and is such that for all y ∈ Y ,
f ↾Y (y) = f (x). �e terminological ambiguity here is merely apparent: if P is a credence function
over π, π′ ⊒ π, and Q the restriction of P to π′, we can identify P with a unique probability function
de�ned over the smallest algebra Aπ containing π and Q with the restriction of that probability
function to the smallest algebra containing π′, which of course is a subset of Aπ .

12 Again, see Gneiting & Ra�ery 2007 and references therein.
13 �is is because our assumptions ensure that uu(Q , ⋅) is measurable with respect to P, and thus that
the expectation is well-de�ned.
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to the domain of Q, we have:

EP[u(Q)] = EPQ [u(Q)]. (1)

We can now see that any probability function that is notmaximally opinion-
ated—any probability function that assigns a value other than 0 or 1 to some
proposition—will assign a greater expected epistemic utility to a probability
function other than itself.14 (Consequently, if we do not �x a partition but al-
low a forecaster to choose which partition to report her forecasts on, she will
expect to do better, according to the Brier score, by reporting a strict restriction
of her credence function as long as her credence function is not maximally
opinionated.15)
Example 1. Suppose P is not maximally opinionated. Let π∗ a the coarsening of
πP such that the restriction P∗ of P is maximally opinionated. Note now that for
s ∈ π∗ with P∗(s) ≠ 0, b(P∗ , s) = 0, and hence that

EP[b(P∗)] = EP∗[b(P∗)] = 0.

Now let s0 ∈ πP be such that P(s0) ∈ (0, 1), and let π−P = πP ∖{s0}. By de�nition,

b(P, s0) = −(P(s0) − 1)2 − ∑
s∈π−P

P(s)2 < − ∑
s∈π−P

P(s)2 ≤ 0,

and thus
EP[b(P)] < 0 = EP[b(P∗)].

An interesting question, then, is whether there are epistemic utility func-
tions that capture the relevant kind of immodesty once we consider probability
functions de�ned over any partition. In other words, the question is whether
there are epistemic utility functions such that, for any probability function P, P
‘takes itself’ to be doing better than any other Q ≠ P in terms of epistemic utility.
But in order to answer this question, of course, we need to make clear what it
is for some probability function to ‘take itself’ to be doing better than another
in terms of epistemic utility. A�er all, we cannot just use the familiar notion of
expectation here since, in general, for given P,Q ∈ P , the expectation of u(Q)

relative to P is not well-de�ned.

14 Cf. Carr 2015, Pettigrew 2018 and Pérez Carballo 2022.
15 Note that the example below su�ces to show that the normalized version of the Brier score, de�ned
by

b∗(P,w) = −
1

∣πP ∣
∑
s∈πP

(P(s) − 1{w ∈ s})2 ,

is also not downwards proper.
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Before turning onto this question, let me introduce a few more pieces of
terminology. Fix P and let π be some partition ofW . I will denote by [P]π the
collection of all extensions of P to the coarsest common re�nement of πP and
π—thus, each P+ in [P]π will be an extension of P whose domain re�nes both
πP and π.16 Slightly abusing notation, for a given Q and P, I will use [P]Q as
shorthand for [P]πQ . (Note that if π is a re�nement of πP , [P]π is just the set of
extensions of P to π, and that if π is a coarsening of πP , [P]π is just the singleton
set of the restriction of P to π.)
It will be convenient to also have at our disposal three di�erent quantities

which (albeit imperfectly) summarize some of the information about how u(P)
and u(Q) compare relative to members of [P]Q . First, de�ne the lower expecta-
tion17 of u(Q) relative to P, which I denote by EP[u(Q)], by

EP[u(Q)] ∶= inf
P′∈[P]Q

EP′[u(Q)].

Similarly, de�ne the upper expectation of u(Q) relative to P, which I denote by
EP[u(Q)], by

EP[u(Q)] ∶= sup
P′∈[P]Q

EP′[u(Q)].

Finally, for α ∈ [0, 1], we can de�ne the α-expectation of u(Q) relative to P,
which I denote by Eα

P[u(Q)], by

Eα
P[u(Q)] ∶= α ⋅EP[u(Q)] + (1 − α) ⋅EP[u(Q)].

Intuitively, the lower expectation of u(Q) relative to P can be thought of as
P ’s worst-case estimate for the value of u(Q); similarly, the upper expectation
of u(Q) relative to P can be thought of as P ’s best-case estimate for the value
of u(Q). (For a given α, the α-expectation of u(Q) relative to P is a weighted
average of the two estimates.)
Clearly,

EP[u(Q)] ≤ EP[u(Q)],

16 Note that [P]π is always non-empty, since whenever A and A′ are �nite Boolean algebras, and
A ⊆ A′, any probability function over A can be extended to A′.

17 Note that we can think of [P]π as an imprecise probability function, most naturally identi�ed with a
representor in the sense of van Fraassen 1990, viz. a set of probability functions. In this case, we can
think of [P]π as an imprecise probability function that assigns precise values to each member of πP
and imprecise values to any other member of π. �e de�nitions to follow can thus be seen as variants
of the familiar de�nition of upper and lower expectation for imprecise probabilities (Gilboa 1987,
Satia & Lave 1973), at least assuming that all representors are convex, in the sense that representors
are closed under convex combinations (linear combinations with non-negative weights adding up to
one).
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with equality if πP ⊑ πQ , in which case

EP[u(Q)] = EP[u(Q)] = EP[u(Q)].

Also note that for any α ∈ [0, 1],

EP[u(Q)] = E0P[u(Q)] ≤ Eα
P[u(Q)] ≤ E1P[u(Q)] = EP[u(Q)], (2)

so that for any α ∈ [0, 1], we have:

If πP ⊑ πQ , then EP[u(Q)] = EP[u(Q)] = Eα
P[u(Q)] = EP[u(Q)]. (3)

Given all of these resources, we have two ways of formulating a generalized
immodesty principle.18 Say that an epistemic utility function u is universally
u-proper i� for each P ≠ Q,

EP[u(P)] ≥ EP[u(Q)],

and strictly universally u-proper i� the above inequality is always strict. Say that
it is universally l-proper i� for each P ≠ Q,

EP[u(P)] ≥ EP[u(Q)],

and strictly universally l-proper i� the above inequality is always strict. �e
two generalized immodesty principles I will consider are (strict) universal u-
propriety—the claim that all epistemic utility functions must be (strictly) univer-
sally u-proper—and (strict) universal l-propriety—the claim that all epistemic
utility functions must be (strictly) universally l-proper. My question will be
whether there are any epistemic utility functions that satisfy any of these princi-
ples.
Before turning to this question, I want to spend some time explaining why

these two principles stand out among other plausible generalizations as worthy
of our attention. (�ose who �nd u-propriety and l-propriety independently
interesting are welcome to skip to the next section.)
One way to think about immodesty is as the claim that epistemic utility func-

tions should make all coherent credence functions immodest in the following
sense: an agent with that credence function will think her own credence func-
tion is choice-worthy—and perhaps uniquely so—among alternative credence

18 To anticipate, while I will focus on these two formulations, the reason is not that I think either one
of them is the best way to generalize immodesty to allow for alternatives to a credence function with
di�erent domains. Rather, it is because these two principles stand at the extreme ends of a much
larger family of plausible generalizations: one is stronger and the other is weaker than any other
generalization.
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functions she could have and relative to that epistemic utility function. When
the alternatives all have a well-de�ned expectation, and on the assumption that
an option is choice-worthy if it maximizes expected utility, immodesty thus
understood amounts to the claim that any epistemic utility function should be
proper or strictly proper. So in order to formulate generalizations of immodesty
to the case where alternative credence functions lack a well-de�ned expectation,
we need to consider alternative ways of identifying when a credence function is
choice-worthy among a given set of alternatives.

�e literature on decision-making with imprecise probabilities contains a
number of options we can make use of: rules for deciding between options
whose outcomes depend on the state of the world when we do not have well-
de�ned credences for each of the relevant states of the world.19 Each of them
can be used to formulate a way to understand what it is for a credence function
to take itself to be choice-worthy when the alternatives include all credence
functions regardless of their domain, and accordingly to formulate a generalized
immodesty principle.20
First, we could say that P takes itself to be choice-worthy i� it has greater

expectation relative to all members of [P]Q :

For each Q ≠ P and each P+ ∈ [P]Q , EP+[u(P)] ≥ EP+[u(Q)] (4)

Alternatively, we could say that P takes itself to be choice-worthy i� there is no
other option that gets greater expectation relative to all members of [P]Q :

For each Q ≠ P, there is P+ ∈ [P]Q such that EP+[u(P)] ≥ EP+[u(Q)] (5)

We could instead say that P takes itself to be choice-worthy i�

For each Q ≠ P, EP[u(P)] ≥ EP[u(Q)], (6)

Or that P takes itself to be choice-worthy i�

For each Q ≠ P, EP[u(P)] ≥ EP[u(Q)]. (7)

19 See e.g. Tro�aes 2007 for a recent overview of the relevant literature. For reasons that will emerge in
§4, however, my concerns are somewhat orthogonal to questions those animating the debate over
the rationality of imprecise probability functions, so we do not want to take the analogies here too
seriously.

20 Speci�cally, (4), below, corresponds to the fourth preference ranking listed in §5.4.3 of Halpern
2003; (5) corresponds to using what is sometimes called theMaximality rule (e.g. Walley 1991); (6)
to using the Γ-Maximax rule (e.g. Satia & Lave 1973); (7) to using the Γ-Maximin rule (e.g. Gilboa
& Schmeidler 1989); (8) to using Interval Dominance (e.g. Ramoni & Sebastiani 2001); and (9)
corresponds to using the so-calledHurwicz Criterion (Hurwicz 1951). I should note that the list above
is incomplete. Some of the rules that have been discussed in the literature are—for example, the
so-called ‘Ellsberg’s rule’ (Ellsberg 1961) andMinimax regret (Savage 1951)—do not correspond to
any of the principles above. As far as I can tell, whether an immodesty principle could be formulated
using one of these other decision rules is an interesting question le� open by anything I have to say.
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We could also say that P takes itself to be choice-worthy i�

For each Q ≠ P, EP[u(P)] ≥ EP[u(Q)]. (8)

Finally, we could say that P takes itself to be choice-worthy i� for a given α ∈

(0, 1),
For each Q ≠ P, Eα

P[u(P)] ≥ Eα
P[u(Q)]. (9)

For each of these ways of understanding what it is for P to take itself to be
choice-worthy, we could have a generalized version of weak propriety. Now,
any objection to using one of the above principles—the detailed formulation of
the principles to the more general decision-theoretic setting need not concern
us here—can arguably be used to object to a particular way of making precise
the fully general version of immodesty.21 But since it remains largely an open
question whether any of the objections to the above principles are decisive, I want
to remain neutral as to which is the best way of characterizing a fully general
immodesty principle.
Fortunately, these generalizations are not logically independent of one an-

other. To see that, start by �xing u and noting that the supremum and in�mum in
the de�nitions of upper and lower expectations can be replaced with a maximum
and a minimum. (�is follows from the fact that {EP+[u(Q)] ∶ P+ ∈ [P]Q} is
compact in R.22) It follows from this and the observation in (3) that (5) and (7)
are equivalent to each other; that (4), (6), and (8) are equivalent to each other;
and that (6) entails (7). As a result, (7) is weaker than all of (4), (5), (6), and (8).
Further, since for a �xed P, any counterexample to (7) is itself a counterexam-
ple to (6), we have that the weakest form of immodesty we could hope for is
given by (7): if u does not satisfy (7) for all P, it cannot satisfy any of the other
generalizations.
Similarly, it follows from these observations that (6) is the strongest gener-

alization of immodesty from among those we have considered. In short, the
most we can hope for when formulating a generalized immodesty principle is
essentially the requirement that all epistemic utility functions satisfy (6)—that
is, universal u-propriety; but at the very least, we want a generalized immodesty
principle equivalent to the claim that all epistemic utility functions satisfy (7)—
that is, universal l-propriety. �e question now is whether there are epistemic
utility functions satisfying either of these generalizations.

21 As an anonymous referee rightly points out, all of these principles violate the arguably unobjectionable
principle of weak dominance—that any rational agent should prefer A to B if A is never worse and
sometimes strictly better than B. We can avoid these concerns by reformulating our principles as
principles of choice from among non-weakly-dominated options (as in Tro�aes 2007, e.g.). Even
then, objections to each of the rules considered above remain, especially when dealing with sequential
choice problems. For discussion, see e.g. Seidenfeld 1988 and Bradley 2018.

22 It can also be seen as a direct consequence of Fact 3.2, below.
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3 On Some Generalized Immodesty Principles

I begin by asking whether there are any universally u-proper epistemic utility
functions. �e answer, perhaps unsurprisingly, is no, at least if we restrict our
attention to strictly partition-wise proper epistemic utility functions.

3.1 There are no (strictly) universally u-proper epistemic utility functions

Say that an epistemic utility function u is downwards proper i� for each P and
each Q de�ned over a coarsening of πP ,

EP[u(P)] ≥ EP[u(Q)],

and strictly downwards proper i� the above inequality is always strict. Say that u
is upwards u-proper i� for each P and each Q de�ned over a re�nement of πP ,

EP[u(P)] ≥ EP[u(Q)]

and strictly upwards u-proper i� the above inequality is always strict.23
Using these de�nitions we can make a few simple observations. First, and

most clearly, (strict) downwards propriety and (strict) upwards u-propriety indi-
vidually su�ce for (strict) partition-wise propriety. Second, for partition-wise
proper epistemic utility functions, (strict) downwards propriety (resp. (strict)
upwards u-propriety) can be established by looking only at comparisons between
credence functions and their restrictions (resp. extensions).

Fact 3.1. Suppose u is partition-wise proper. �en:

(i) u is downwards proper i� for each P and each restriction Q of P,EP[u(P)] ≥
EP[u(Q)]; u is strictly downwards proper i� EP[u(P)] > EP[u(Q)] when-
ever Q is a restriction of P.

(ii) u is upwards u-proper i� for each P and each extension Q of P, EP[u(P)] ≥
EP[u(Q)]; u is strictly upwards u-proper i� EP[u(P)] > EP[u(Q)] when-
ever Q is an extension of P and Q ≠ P.

Proof. Only the right to le� direction of each biconditional is non-trivial, and
that of (i) follows immediately from (1) and the fact that if Q is de�ned over a
coarsening of P and PQ is the restriction of P to πQ , partition-wise propriety
ensures that EPQ [u(PQ)] ≥ EPQ [u(P)].

23 A helpful mnemonic: for downwards propriety you compare by going down in size: you compare a
credence function only with those de�ned over a smaller domain; for upwards propriety, you go up
in size: you check only those with a larger domain.
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For the right to le� direction of (ii), simply note that for P and Q with
πQ ⊑ πP , our assumptions ensure that for each extension P+ of P to πQ ,

EP[u(P)] ≥ EP+[u(P+)] ≥ EP+[u(Q)],

which ensures EP[u(P)] ≥ EP[u(Q)].

Say that an extension Q of P is opinionated i� for each s ∈ πP there is sQ ∈ πQ
with sQ ⊆ s and Q(sQ) = P(s)—in other words, an extension is opinionated
if for each cell of πP , Q assigns all of the probability P assigns to it to a single
one of its subsets in πQ . In order to determine the value of the upper or lower
expectation of any extension Q of P, all we need to look at are the opinionated
extensions of P de�ned over πQ .

Fact 3.2. Fix an epistemic utility function u, a probability function P and any Q
de�ned over a re�nement of πP . �ere are opinionated extensions P+Q and P−Q of P
de�ned over πQ such that

EP[u(Q)] = EP+Q [u(Q)] and EP[u(Q)] = EP−Q [u(Q)].

Proof. For each s ∈ πP , pick s+Q , s−Q ∈ πQ , with s+Q ⊆ s and s−Q ⊆ s, such that for
all t ∈ πQ with t ⊆ S

u(Q , s+Q) ≥ u(Q , t) and u(Q , s−Q) ≤ u(Q , t),

and let P+Q and P−Q be the unique opinionated extensions of P such that for all s,
P+Q(s

+
Q) = P(s) and P−Q(s−Q) = P(s).

A consequence of the last two results is that for determining whether u is
upwards u-proper, we don’t really need to compute upper-expectations.

Corollary 3.3. A partition-wise proper epistemic utility function u is upwards
u-proper (resp. strictly upwards u-proper) i� for each P and each opinionated
extension Q of P, EP[u(P)] ≥ EQ[u(Q)] (resp. EP[u(P)] > EQ[u(Q)] when
Q ≠ P.)

Proof. �e le� to right direction follows immediately from (1) and the de�nition
of upper expectation. For the right to le� direction, take P and �x Q de�ned
over a re�nement of πP . From Fact 3.2, we know that there is an opinionated
extension P+Q of P to πQ such that EP[u(Q)] = EP+Q [u(Q)].
But by assumption,

EP[u(P)] = EP[u(P)] ≥ EP+Q [u(P
+
Q)]

12



(resp. the above inequality is strict when Q ≠ P), and from partition-wise
propriety we know that

EP+Q [u(P
+
Q)] ≥ EP+Q [u(Q)].

We can thus conclude thatEP[u(P)] ≥ EP[u(Q)] (resp. EP[u(P)] > EP[u(Q)]

when Q ≠ P.) From Fact 3.1, we conclude that u is upwards u-proper (resp.
strictly upwards u-proper).

Corollary 3.4. A partition-wise proper epistemic utility function u is upwards
u-proper (resp. strictly upwards u-proper) i� for each P and each extension Q of
P, EP[u(P)] ≥ EQ[u(Q)] (resp. EP[u(P)] > EQ[u(Q)] when Q ≠ P.)

Proof. �e right to le� direction is an immediate consequence of Corollary 3.3.
For the converse, simply note that if P+Q is an opinionated extension of P such
that

EP[u(Q)] = EP+Q [u(Q)],

the de�nition of upper expectation entails that EP+Q [u(Q)] ≥ EQ[u(Q)], so the
le� to right direction of Corollary 3.3 yields the desired result.

Now, a natural question to ask is whether there are epistemic utility functions
that are both (strictly) upwards u-proper and (strictly) downwards proper. But
this just turns out to be the question whether there are universally u-proper
epistemic utility functions.

Fact 3.5. An epistemic utility function is universally u-proper (resp. strictly univer-
sally u-proper) i� it is downwards proper (resp. strictly downwards proper) and
upwards u-proper (resp. strictly upwards u-proper).

Proof. �e le� to right direction is immediate. For the right to le� direction,
suppose u is downwards proper and upwards u-proper and �x P ≠ Q. Let PQ be
an arbitrary probability function in [P]Q , so that PQ is an extension of P to the
coarsest partition that re�nes both πP and πQ . From the fact that u is upwards
u-proper, together with Corollary 3.4, we know that

EP[u(P)] ≥ EPQ [u(PQ)].

And since u is downwards proper, we know that

EPQ [u(PQ)] ≥ EPQ [u(Q)].

We thus have that for any PQ in [P]Q , EP[u(P)] ≥ EPQ [u(Q)], which entails
EP[u(P)] ≥ EP[u(Q)], as desired. If u is both strictly upwards u-proper and
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strictly downwards proper, then for any P ≠ Q we know that PQ cannot equal
both P andQ, and thus either we haveEP[u(P)] > EP[u(PQ)] orEPQ [u(PQ)] >
EPQ [u(Q)]; either way, we can conclude that EP[u(P)] > EPQ [u(Q)], and thus
that EP[u(P)] > EP[u(Q)], as desired.

And as announced above, there just are no strictly universally u-proper
epistemic utility functions.

�eorem 3.6. �ere are no strictly universally u-proper epistemic utility functions.

Proof. Suppose u is strictly downwards proper. Fix P and π∗ ⊑ πP with π ≠

πP , and let P∗ be some extension of P to π∗. Strict downwards propriety en-
tails EP∗[u(P∗)] > EP∗[u(P)]. And combined with the de�nition of upper-
expectation and (1), this entails

EP[u(P∗)] ≥ EP∗[u(P∗)] > EP∗[u(P)] = EP[u(P)],

which shows that u is not strictly upwards u-proper.

Finally, we can strengthen�eorem 3.6 if we restrict ourselves to the class of
partition-wise strictly proper epistemic utility functions.

�eorem 3.7. �ere are no universally u-proper epistemic utility functions that
are strictly partition-wise proper.

Proof. Letu be strictly partition-wise proper, and supposeu is downwards proper.
Pick P and let π∗ be a re�nement of πP such that such that for all s ∈ πP ∖ π∗,
P(s) ≠ 0. Let Q be an extension of P to π∗ that is not opinionated and pick
s0 ∈ πP and s∗0 ∈ π∗ such that s∗0 ∈ s0 and Q(s∗0) ≠ P(s0). From Fact 3.2 and the
fact that u is downwards proper we know, again using (1) and the de�nition of
upper-expectation, that there is an opinionated extension P+Q of P de�ned over
πQ such that

EP+Q [u(Q)] = EP[u(Q)] ≥ EQ[u(Q)] ≥ EQ[u(P)] = EP[u(P)].

Since by construction P+Q ≠ Q, strict partition-wise propriety ensures that

EP+Q [u(P
+
Q)] > EP+Q [u(Q)].

Putting all of this together and using the de�nition of upper-expectation, we
have that there is an extension P+Q of P such that

EP[u(P+Q)] ≥ EP+Q [u(P
+
Q)] > EP+Q [u(Q)] ≥ EP[u(P)],

which shows that u is not upwards u-proper.
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3.2 There are no (strictly) universally l -proper epistemic utility functions

�e next question to ask is whether there are any universally l-proper epistemic
utility functions. If we require that epistemic utility functions be continuous,24
the answer to this question also turns out to be no—again, at least if we restrict
ourselves to the class of strictly downwards proper epistemic utility functions.
Much like in the previous section, I will de�ne an analogue of upwards u-

propriety that relies on the lower expectation, rather than on upper expectation,
in the obvious way: u is upwards l-proper i� for each P and each re�nement Q
of P,

EP[u(P)] ≥ EP[u(Q)];

u is strictly upwards l-proper i� the above inequality is always strict.
Before asking whether there are strictly universally l-proper epistemic utility

functions, we could ask whether there are any epistemic utility functions that
are both strictly downwards proper and strictly upwards l-proper. If we restrict
ourselves to the class of continuous epistemic utility functions, we can answer
this question in the negative.25

�eorem 3.8. If u is continuous and strictly downwards-proper, then it is not
upwards l-proper.

So we can conclude that if u is continuous, it is not strictly universally l-proper.

Corollary 3.9. �ere are no continuous, strictly universally l-proper epistemic
utility functions.

Proof of �eorem 3.8. �is result is a straightforward consequence of the follow-
ing lemma (essentially due to Grünwald & Dawid 2004), a proof of which is in
the appendix.

Lemma 3.10. Suppose u is continuous and partition-wise proper. For any P ∈ P

and any π ⊑ πP , there is some P̂ ∈ [P]π such that, for all Q ∈ Pπ , and all P∗ ∈ [P]π

EP[u(Q)] ≤ EP[u(P̂)] = EP̂[u(P̂)] ≤ EP∗[u(P∗)].

24 For a given u and π, we can think of the restriction of u to Pπ ×W as a function f π
u ∶ ∆N−1 Ð→ R,

where N = ∣π∣ and for each n, ∆n is the standard n-simplex, that is,

∆n ∶= {x = ⟨x1 , . . . , xn+1⟩ ∈ Rn+1 ∶ ∑ x i = 1, and for all i ≤ n + 1, x i ≥ 0}.

(Simply �x an enumeration of π and identify each P ∈ Pπ with the vector ⟨P(s1), . . . , P(sN)⟩.)
An epistemic utility function u is continuous i� for each π and w, the function x ↦ f π

u (x,w) is
continuous.

25 In fact, something slightlyweaker than the full continuity assumptionmay be all that is really needed—
see Grünwald & Dawid 2004 for a more general result, especially their �eorem 6.2 together with
their Corollary 4.2.
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Suppose now u is continuous and strictly downwards proper, �x P, and let
π ⊑ πP with π ≠ πP . Lemma 3.10 ensures that there is P̂ with

EP[u(P̂)] = EP̂[u(P̂)].

And since u is strictly downwards proper and P is a restriction of P̂, we can
conclude that

EP[u(P̂)] > EP̂[u(P)] = EP[u(P)],
which means u is not upwards l-proper.

Before concluding this subsection, letmenote two consequences of Lemma 3.10,
which serve as counterparts to Corollary 3.4 and Fact 3.5.

Fact 3.11. Suppose u is partition-wise proper and continuous. �en u is upwards
l-proper (resp. strictly upwards l-proper) i� for each P and each π ⊑ πP there is
P∗ ∈ [P]π such that EP[u(P)] ≥ EP∗[u(P∗)] (resp. EP[u(P)] > EP∗[u(P∗)] if
π ≠ πP).

Proof. From Lemma 3.10, we know that for each P and each π ⊒ πP there is
P̂ ∈ [P]π such that

max
Q∈PP

EP[u(Q)] = EP[u(P̂)] = EP̂[u(P̂)] = minQ∈[P]π
EQ[u(Q)].

�e le� to right direction now follows immediately (simply let P̂ = P∗). For the
right to le� direction, simply note that for each P and π ⊒ πP we have P∗ ∈ [P]π
with EP[u(P)] ≥ EP∗[u(P∗)] (resp. EP[u(P)] > EP∗[u(P∗)]). But of course,

EP∗[u(P∗)] ≥ min
Q∈[P]π

EQ[u(Q)] = max
Q∈PP

EP[u(Q)],

where the last equality follows from Lemma 3.10. We can thus conclude that u is
upwards l-proper (resp. strictly upwards l-proper).

Fact 3.12. A continuous epistemic utility function u is (strictly) universally l-proper
i� it is (strictly) upwards l-proper and (strictly) downwards proper.

Proof. Again, we only need to show the right-to-le� direction, so �x P ≠ Q.
From Fact 3.11 and the fact that u is continuous and upwards l-proper, we know
that there is P∗ ∈ [P]Q such that EP[u(P)] ≥ EP∗[u(P∗)]. But the fact that u is
downwards proper entails that EP∗[u(P∗)] ≥ EP∗[u(Q)], so that

EP[u(P)] ≥ EP[u(Q)],

as desired. If u is strictly upwards l-proper and strictly downwards proper, then
repeat the above reasoning a�er �rst assuming πQ is neither a re�nement nor a
coarsening of πP , so that P∗ is either di�erent from P or from Q.
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3.3 Downwards propriety and upwards propriety

We have seen that there are no strictly universally u-proper or l-proper epistemic
utility functions. But we can easily �nd examples of downwards proper and
upwards u-proper (and hence upwards l-proper) epistemic utility functions.
Say that an epistemic utility function u is an additive accuracy measure26 i�

there is a function u ∶ [0, 1] × {0, 1} Ð→ R such that

u(P,w) = ∑
s∈πP

u(P(s),1{w ∈ s}).

Say that a function u ∶ [0, 1] × {0, 1} Ð→ R is proper i� for all x ≠ y ∈ [0, 1],

x ⋅ u(x , 1) + (1 − x) ⋅ u(x , 0) ≥ x ⋅ u(y, 1) + (1 − x) ⋅ u(y, 0),

and say that u is strictly proper i� the above inequality is always strict.
If u is an additive accuracy measure, I will call u its local accuracy measure.

It is easy to see that an additive accuracy measure is partition-wise proper (resp.
strictly proper) i� its local accuracy measure is proper (resp. strictly proper).
For a given local accuracy measure u I will call ϕu ∶ [0, 1] Ð→ R its self-

expectation function, where

ϕu(x) ∶= x ⋅ u(x , 1) + (1 − x) ⋅ u(x , 0).

�e linearity of expectation ensures that if u is an additive accuracy measure
with local accuracy measure u,

EP[u(P)] = ∑
s∈πP

ϕu(P(s)).

From this we can easily derive the following characterization result.27

�eorem 3.13. An additive accuracy measure u with a proper local accuracy mea-
sure u is downwards proper (resp. strictly downwards proper) i� its self-expectation
function ϕu is subadditive, in that for x , y ∈ [0, 1], with x + y ∈ [0, 1]

ϕu(x + y) ≤ ϕu(x) + ϕu(y),

(resp. strictly subadditive, in that the above inequality is always strict).

26 I am thus implicitly assuming that accuracy measures satisfy what Joyce 2009, p. 273 calls
‘Extensionality’. Nothing hinges on this assumption, of course—you can simply read ‘additive
accuracy measure’ as shorthand for ‘extensional, additive accuracy measure’.

27 See Pérez Carballo (2022, Proposition 2), for a slightly more general result.
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Proof. For the le� to right direction, start by taking a three celled partition
π = {s0 , s1 , s2} and let π∗ = {s0 , s∗} be a coarsening of π (and hence, s∗ = s0∪s1).
Fix x , y ∈ [0, 1] with x + y ∈ [0, 1] and let P be the unique probability function
in Pπ assigning x to s1 and y to s2. Let P∗ be the restriction of P to π∗ and note
that

EP[u(P)] = ∑
s∈π

ϕu(P(s)) = ϕu(1 − (x + y)) + ϕu(x) + ϕu(y)

and

EP∗[u(P∗)] = ∑
s∈π∗

ϕu(P∗(s)) = ϕu(1 − (x + y)) + ϕu(x + y).

Sinceu is downwards proper, we know thatEP∗[u(P∗)] = EP[u(P∗)] ≤ EP[u(P)],
and hence that ϕu(x + y) ≤ ϕu(x) + ϕu(y), as required.
For the converse, �x P and π ⊒ πP with ∣πP ∣ − ∣π∣ = 1. In other words, π is

a coarsening of πP such that there are s0 , s1 ∈ πP with s0 ∪ s1 = s∗ ∈ π such that
π = {s∗} ∪ (πP ∖ {s0 , s1}). Let P∗ be the restriction of P to π, set x0 = P(s0),
x1 = P(s1), and note that, letting t range over elements of π,

EP[u(P)] = ∑
s∈πP

ϕu(P(s)) = ϕu(x0) + ϕu(x1) + ∑
t≠s∗

ϕu(P(t))

and

EP∗[u(P∗)] = ∑
s∈π∗

ϕu(P∗(s)) = ϕu(x0 + x1) + ∑
t≠s∗

ϕu(P∗(t))

= ϕu(x0 + x1) + ∑
t≠s∗

ϕu(P(t))

Since ϕu is subadditive, we conclude thatEP∗[u(P∗)] = EP[u(P∗)] ≤ EP[u(P)].
A simple inductive argument on the size of ∣πP ∣ − ∣πQ ∣ shows that for any P and
any restriction Q of P, EP[u(P)] ≥ EP[u(Q)], as required.
Parallel reasoning shows that, for proper u, strict subadditivity is equivalent

to strict downwards propriety.

As we saw in Example 1, the (generalized) Brier score is not downwards
proper, but the (generalized version of the) well-known spherical score (which,
like the Brier score, is an additive accuracy measure) is strictly downwards
proper.
Example 2. De�ne s ∶ [0, 1] × {0, 1} Ð→ R by

s(x , i) ∶= ∣1 − (i + x)∣
√
x2 + (1 − x)2

18



and let
s(P,w) ∶=∑

s∈πP

s(P(s),1{w ∈ s}).

Clearly, the restriction of s to any partition is just the familiar spherical score,
which is strictly proper, so that s is strictly partition-wise proper. But s is also
strictly downwards proper.
To see why, note that for any x ∈ [0, 1],

ϕs(x) = x ⋅
⎛

⎝

x
√
x2 + (1 − x)2

⎞

⎠
+ (1 − x) ⋅

⎛

⎝

1 − x
√
x2 + (1 − x)2

⎞

⎠
=
√
x2 + (1 − x)2

= ∥⟨x , (1 − x)⟩∥,

where ∥⋅∥ is the Euclidean norm.
Since the Euclidean norm is a norm, it satis�es the triangle inequality, and

thus for any x , y ∈ [0, 1] with x + y ∈ [0, 1],

ϕs(x) + ϕs(y) = ∥⟨x , 1 − x⟩∥ + ∥⟨y, 1 − y⟩∥
≥ ∥⟨x + y, 1 + 1 − (x + y)⟩∥ > ∥⟨x + y, 1 − (x + y)⟩∥ = ϕs(x + y),

which means ϕs is strictly subadditive and thus that s is strictly downwards
proper.

We also need not look far to �nd an example of an upwards proper additive
accuracy measure.
Example 3. Let

l(P,w) = log(P([w]P)),
where [w]P is the unique s ∈ πP with w ∈ s. As is well known, l is partition-wise
proper. But it is also upwards u-proper. To see that, �rst note that for any P,

EP[l(P)] = ∑
s∈πP

P(s) ⋅ l(P, s) = ∑
s∈πP

P(s) log(P(s)).

Fix now P, let P∗ be an opinionated extension of P, and for each s ∈ πP let s∗
denote the unique t ∈ πP∗ with t ⊆ s and P∗(t) ≠ 0. Note now that

EP[l(P)] = ∑
s∈πP

P(s) ⋅ log(P(s)) = ∑
s∈πP

P∗(s∗) ⋅ log(P∗(s∗)).

And of course,

∑
s∈πP

P∗(s∗) ⋅ log(P∗(s∗)) = ∑
t∈πP∗

P∗(t) ⋅ l(P∗ , t) = EP∗[l(P∗)].

From Corollary 3.3 we conclude that l is upwards u-proper, and thus upwards
l-proper.
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Note that the log score is also an additive accuracy measure with local accu-
racy measure l, where

l(x , i) = i ⋅ log(x).

Note too that l(0, 0) = 0. Interestingly, any additive accuracy measure u whose
local accuracy measure u satis�es u(0, 0) = 0 will be upwards u-proper, as the
following makes clear.

�eorem 3.14. An additive accuracy measure u is upwards u-proper (resp. strictly
upwards proper) i� u(0, 0) ≤ 0 (resp. u(0, 0) < 0), where u is u’s local accuracy
measure.

Proof. Suppose u is an upwards u-proper additive accuracy measure with local
accuracy measure u. Take a two cell partition π = {s0 , s1} ofW . Let P0 be the
unique probability function in Pπ that assigns probability 1 to s0 and let P⊺
be the unique probability function de�ned over the trivial partition {W}. Of
course P0 is an opinionated extension of P⊺, so that the upwards u-propriety of
u and Fact 3.2 entails EP⊺[u(P⊺)] ≥ EP0[u(P0)]. But EP⊺[u(P⊺)] = u(1, 1), and
EP0[u(P0)] = u(1, 1) + u(0, 0), and thus u(0, 0) ≤ 0. A similar argument shows
that if u is strictly upwards u-proper, then u(0, 0) < 0.
To establish the other direction, �x P and let P∗ be an opinionated extension

of P. For each s ∈ πP , let s∗ be the unique t ∈ πP∗ such that t ⊆ s and P∗(t) ≠ 0,
and let ns = ∣{t ∈ πP∗ ∶ t ⊆ s}∣.
Note now that

EP∗[u(P∗)] = ∑
t∈πP∗

ϕu(P∗(t)) = ∑
s∈πP

ϕu(P∗(s∗)) + ∑
s∈πP

(ns − 1) ⋅ u(0, 0).

And since clearly
∑
s∈πP

ϕu(P∗(s∗)) = EP[u(P)],

u(0, 0) ≤ 0 (resp. u(0, 0) < 0) entails that EP∗[u(P∗)] ≥ EP[u(P)] (resp.
EP∗[u(P∗)] > EP[u(P)]), and hence, using Fact 3.2, we can conclude that u is
upwards u-proper (resp. strictly upwards u-proper).

Now, it is well-known28 that if u a proper local accuracy measure (resp.
strictly proper), the function ϕu is convex (resp. strictly convex), in the sense
that for each α ∈ (0, 1) and x , y ∈ [0, 1],

ϕu(αx + (1 − α)y) ≤ αϕu(x) + (1 − α)ϕu(y)

28 �e canonical reference here is Savage 1971 (§4). See also �eorem 2 in Gneiting & Ra�ery 2007.
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(resp. the above inequality is always strict). And it is well-known (see e.g.
Bruckner 1962) that for a convex f over [0, 1], f (0) ≤ 0 (resp. f (0) < 0) i� f is
superadditive (resp. strictly superadditive), in the sense that for x , y ∈ [0, 1] with
x + y ∈ [0, 1],

f (x + y) ≥ f (x) + f (y)

(resp. the above inequality is always strict). Since by de�nition of ϕu, ϕu(0) =
u(0, 0), we can put all these observations together with�eorem 3.14, to establish
the following analogue�eorem 3.13:

Corollary 3.15. An additive accuracy measure u is upwards u-proper (resp. strictly
upwards u-proper) i� its local accuracy measure u is proper and ϕu is superadditive
(resp. strictly superadditive).

To conclude this section, let me state one �nal characterization result, this
time for the class of upwards l-proper additive accuracy measures.

�eorem 3.16. A continuous, additive accuracy measure u with a strictly proper
local accuracymeasure u is upwards l-proper (resp. strictly upwards l-proper) i� for
each z ∈ [0, 1] there are x , y ∈ [0, 1]with x+ y = x and ϕu(x+ y) ≥ ϕu(x)+ϕu(y)
(resp. ϕu(x + y) > ϕu(x) + ϕu(y)).

Proof. We know from Fact 3.11 that u is upwards l-proper i� for each P and each
π ⊒ πP there is P∗ ∈ [P]π such that

EP[u(P)] ≥ EP∗[u(P∗)],

and that u is strictly upwards l-proper i� the above inequality is always strict
whenever π ≠ πP . For the le� to right direction, assume u is upwards l-proper
(resp. strictly upwards l-proper). Given z ∈ [0, 1], take P de�ned over a two-
celled partition {s0 , s1} with P(s0) = z and take a three-celled re�nement π =

{s00 , s10 , s1} of π. From Fact 3.11 we know that there is some P∗ ∈ [P]∗ such
that EP[u(P)] ≥ EP∗[u(P∗)] (resp. EP[u(P)] ≥ EP∗[u(P∗)]). Let x = P∗(s00)
and y = P∗(s01 ), and note that the above inequality entails that ϕu(x + y) ≥

ϕu(x) + ϕu(y).
For the right to le� direction, start by �xing P, π ⊒ πP with ∣π∣ − ∣πP ∣ = 1,

and let s∗ ∈ πP and s∗0 , s∗1 ∈ π be such that s∗ = s∗0 ∪ s∗1 . Let z = P(s∗) and �x
x , y ∈ [0, 1] with x + y = z such that ϕu(z) ≥ ϕu(x) + ϕu(y). Let P∗ be the
unique extension of P to π that assigns probability x to s∗0 , and note that, letting
s range over πP ,

EP[u(P)] = ϕu(x + y) + ∑
s≠s∗

ϕu(P(s))
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and
EP∗[u(P∗)] = ϕu(x) + ϕu(y) + ∑

s≠s∗
ϕu(P(s)),

whence EP[u(P)] ≥ EP∗[u(P∗)]. A simple induction argument on the size of
∣π∣ − ∣πP ∣ allows us to conclude that for each π ⊑ πP there is P∗ with EP[u(P)] ≥
EP∗[u(P∗)], and thus that u is upwards l-proper. Parallel reasoning shows that
if for each z ∈ [0, 1] there are x , y ∈ [0, 1] with x + y = z such that ϕu(x + y) >
ϕu(x) + ϕu(y), u is strictly upwards l-proper.

Surprisingly, it follows from this that for additive accuracymeasures, upwards
u-propriety and l-propriety coincice:

Corollary 3.17. A continuous, additive accuracy measure u with a strictly proper
accuracy measure is upwards l-proper (resp. strictly upwards l-proper) i� it is
upwards u-proper (resp. strictly upwards u-proper).

Proof. Apply �eorem 3.16 with z = 1, to conclude that if u is upwards l-proper
(resp. strictly upwards l-proper), then ϕu(0) ≤ 0, since

ϕu(1) = ϕu(1 + 0) ≥ ϕu(1) + ϕu(0).

Using�eorem 3.14, we conclude that u is upwards u-proper. Strictly parallel
reasoning shows that if u is strictly l-proper, then it is strictly upwards u-proper.

4 Imprecise probabilities and partial credence functions

According to the standard, Bayesian picture we have been taking for granted, an
agent’s epistemic state can be adequately represented with a single probability
function. But many think this is a mistake: on their view, an agent’s epistemic
state is best represented not with a single probability function but with a set
thereof. �is view can model any agent the more standard Bayesian picture can
equally well—identify each probability function with its singleton set. But it is,
at least on the face of it, more �exible. It can, for example, represent the kind
of epistemic state most of us are arguably in with respect to the proposition
that the last person to arrive in Australia in the year 2000 was wearing a white
shirt: a state that seems hard to represent by assigning any one number to that
proposition.
Grant that proponents of this dissenting view are right—grant, in other

words, that one can be in the kind of epistemic state that is better modeled
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with a set of probability functions than with a single probability function.29 An
interesting question is whether it is ever epistemically rational to be in the kind
of state that cannot be aptly represented with a unique probability function.

�ere has been much debate around this question and it is not my purpose
here to take a stance either way.30 But a family of related and interesting results
that emerged from this debate bear some resemblance to the results established
in this paper and it is worth clarifying exactly how they di�er from my results.31
In the literature on epistemic utility theory, it is by and large taken for granted

that something like the following principle captures an important relationship
between epistemic utility and epistemic rationality:32

dominance: If for any worldw, the epistemic utility of P atw is strictly lower
than that of P′ at w, and if for some world w, the epistemic utility of P at
w is strictly less than that of P′ at w, then P is epistemically irrational.

So, much attention has been paid to the question what kinds of reasonable
epistemic utility functions can be de�ned that allow us to compare the epistemic
utility of a ‘precise’ credence function at a world with that of an ‘imprecise’ one—
here we think of sets of probability functions as ‘imprecise’ or ‘indeterminate’
credence functions since for many propositions they do not determine a unique
degree of credence.

29 Cf. Joyce 2010, p. 283: ‘‘It is rare, outside casinos, to �nd opinions that are anywhere near de�nite or
univocal enough to admit of quanti�cation. An agent with a precisecredence for, say, the proposition
that it will rain in Detroit next July 4th should be able to assign an exact ‘fair price’ to a wager that
pays $100 if the proposition is true and costs $50 if it is false. �e best most people can do, however,
is to specify some vague range.’’

30 See e.g. Joyce 2005, Levi 1974, White 2010. For a helpful overview of this vast body of literature, see
Bradley 2019.

31 See e.g. Berger & Das 2020, Konek forthcoming, Mayo-Wilson &Wheeler 2016, Schoen�eld 2017,
Seidenfeld, Schervish & Kadane 2012.

32 I say ‘something like’ because the principle as stated is in need of clari�cation and arguably subject to
a number of powerful objections. For one thing, we need to clarify whether the principle holds for any
admissible measure of epistemic utility, or whether it needs to be understood as quantifying over all
admissible ways of measuring epistemic utility—Schoen�eld 2017 opts for the latter, in formulating a
principle she calls ‘Permission’, but Pettigrew 2016 opts for the former (see especially his discussion
of the well-known ‘Bronfman objection’ in ch. 5). (As stated, the principle is perhaps closest to what
Joyce 2009 calls ‘Admissibility’.) For another, the principle might be subject to counterexamples
in cases where every credence function su�ers from a similar defect—if any credence function
is dominated by another, say (if for any P there is some P′ that has always at least as much and
sometimes more epistemic utility than P), we may think some dominated credence functions are
rationally permissible, even if not rationally required (see again the formulation of ‘Permission’ in
Schoen�eld 2017). Other, weaker, alternatives to Dominance include the principles Pettigrew 2016
calls ‘Undominated Dominance’ and ‘Immodest Dominance’, as well as the principle that Joyce
1998 relies on in his argument for Probabilism—the principle Pettigrew 2016 calls ‘Dominance’,
which is weaker than what we are calling ‘Dominance’.
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For example, generalizing some results in (Schoen�eld 2017), Berger & Das
(2020) have argued that for any imprecise credence function there is a precise
credence function that is at least as accurate relative to any world—at least given
some assumptions about what a measure of accuracy must be like. And this, at
least if we think that epistemic utility functions should be measures of accuracy,
arguably shows that no epistemic utility function can be strictly upwards l-
proper, and a fortiori that no epistemic utility function can be strictly universally
l-proper or strictly universally u-proper.
To see why, note that for a �xed π and a re�nement π′ of π, we can identify

any probability function P de�ned over π with an imprecise probability function
de�ned over π′—essentially, we identify P with [P]π (see fn. 17). Berger & Das’s
results can then be used to show that on any reasonable measure of accuracy,
for any P de�ned over π there is some P′ de�ned over π′ that is as accurate as P
relative to any state of the world. �us, if we identify epistemic utility functions
with measures of accuracy satisfying their constraints, their result can be used
to show that for any π, any re�nement π′ of π, and any P de�ned over π, there
is P′ de�ned over π′ such that for any w, the epistemic utility of P at w equals
that of P′ at w. And this in turn would su�ce to show that there are no strictly
upwards l-proper epistemic utility function.
Now, we can �rst observe that in a sense my results are more general, in that

they do notmake any substantive assumptions about epistemic utility functions—
at most, we assume that epistemic utility functions are continuous and truth-
directed.33 I do not, for instance, assume that epistemic utility is atomistic (I
do not assume that the epistemic utility of a credence function at a world is
determined by the utility of the individual credence assignments that make up
that credence function at that world), nor that it is extensional (I do not assume
that the epistemic utility of a credence function at a world is independent of the
content of the propositions it assigns credence to).34
But there is a more signi�cant di�erence between my results and those from

the literature on imprecise probability functions. �e question at the center of
impossibility results for imprecise probability functions takes as given a �xed
partition and asks whether there are reasonable ways of measuring accuracy or
epistemic utility for that partition that will sometimes have imprecise probability
functions doing better than precise probability functions. And one assump-
tion all in the literature seem to take for granted—an assumption which seems

33 An additional assumption, worth pointing out since it may go unnoticed, is that epistemic utility
functions are real-valued. For a way of thinking about epistemic utility for imprecise probabilities
that does without this assumption—a view on epistemic utility on which imprecise probabilities are
only partially ranked in terms of epistemic utility relative to any world—see Seidenfeld, Schervish &
Kadane 2012.

34 �e results in Seidenfeld, Schervish & Kadane 2012 and Schoen�eld 2017 rely on similar assumptions.
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perfectly natural given the presuppositions of the question—is that any reason-
able measure of accuracy for a given partition π should satisfy the following
constraint:35

perfection: For any w, there is a credence function Pw that has maximal
epistemic utility with respect to π: the epistemic utility of any credence
function, precise or not, de�ned over π and di�erent from Pw , is strictly
less than that of Pw .

To get a handle on what Perfection says, it helps to focus on a simple case
with a two-cell partition π∗ = {s1 , s2}. Take some world w ∈ s1 and consider
the credence function Pw that assigns 1 to s1 and 0 to s2. It seems natural to
say that, with respect to π∗, any credence function di�erent from Pw has lower
epistemic utility, atw, than Pw has. In particular, relative tow, any (non-trivially)
imprecise credence function—any set of probability functions de�ned over π
with more than one element—is worse, epistemically and with respect to π∗,
than Pw . A�er all, relative to w, Pw has a legitimate claim to being as good as it
gets, epistemically with respect to π∗.
Now, in this paper I have not tra�cked in anything quite like the notion of

epistemic utility relative to a partition. So it is not completely straightforward to
translate Perfection into a constraint on the kind of epistemic utility functions we
have been interested in. But there is a somewhat natural way to recast Perfection
into a constraint on generalized epistemic utility functions in my sense. And
once we see what that constraint amounts to, we will see both that it is not quite
so plausible (as a constraint on generalized epistemic utility functions) and that
my results do not depend on it.
Recall that in comparing the discussion of imprecise probability functions

over a partition with my discussion of credence functions whose domain does
not include elements of that partition, I identi�ed a (precise) credence function
de�ned over a coarsening π′ of π with an imprecise credence function de�ned
over π. Hence, saying that P is better, epistemically and relative to w, than any
imprecise credence function de�ned over the same domain as P, entails that
that for any coarsening of π, P is better, relative to w, than any other credence
function de�ned over that coarsening. So in my framework, Perfection amounts
to the claim that relative to any π, any non-trivial coarsening π′ of π, and any w,
there is some credence function Pw de�ned over π that is better, epistemically
relative to w, than any credence function de�ned over π′. Equivalently, in my
framework Perfection amounts to the claim that for any partition, any world w,

35 Cf. the principle Schoen�eld 2017 calls ‘Boundedness’ (p. 672), and what Berger & Das 2020 call
‘Local Boundedness’ (p. 13), a principle which is implicitly assumed in Seidenfeld, Schervish &
Kadane 2012 (see e.g. the proof of their Proposition 5 in p. 1256).
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and any re�nement of π, there is a credence function de�ned over that re�nement
that is better relative to w than any credence function de�ned over π:

refinement: For any π, any re�nement π′ of π, and any w, there is Pπ′
w

de�ned over π′ such that for any P de�ned over π, u(Pπ
w ,w) > u(P,w).

Now, it should be clear that my results do not depend on anything like
Re�nement. A�er all, Re�nement rules out as admissible any upwards u-proper
epistemic utility function, whereas my assumptions are compatible with the
admissibility of such epistemic utility functions. So, strictly speaking, this is
another sense in which my results are more general. But it is worth highlighting
that, whereas in the discussion of imprecise probability functions something like
Re�nement may well be uncontroversial, in the present context it is far from it.

�e constraint imposed by Re�nement is incompatible with thinking of
some re�nements as an unalloyed epistemic bad: if epistemic utility satis�es
Re�nement, there can be no proposition such that that you are epistemically
worse o� nomatter what when you come to form an opinion on that proposition.
Whether it be a proposition about phlogiston, or about miasma, Re�nement
entails that it is always in principle possible to do better, epistemically, by forming
a view on that proposition.
Of course, it may be that this is the right way to think about epistemic utility,

but it is certainly not obviously the right way to think about it. One might, for
example, think that there is an ideal language for theorizing about the world, and
that the ideal epistemic state is the one that is maximally accurate with respect to
propositions expressible in that ideal language and simply fails to even entertain
hypotheses that cannot be formulated in that language. If that’s how we think
about epistemic utility, we will want to reject Re�nement.36
At any rate, it is not my goal here to suggest that the right way to think about

epistemic utility is incompatible with Re�nement. But we do want to point that
is yet another substantive assumption about epistemic utility that is required for
the impossibility results mentioned above to go through. In contrast, my results
make no substantive assumptions about epistemic utility. Rather, they establish
that no matter how we think of epistemic utility, there are hard limits on the
degree of immodesty we can expect to come from epistemic rationality.37

36 Note that this view is incompatible with Extensionality—the thesis that the epistemic utility of a
credence function at a world is independent of the content of the propositions it assigns credence to.
Indeed, it may be that a commitment to Extensionality all but requires a commitment to Re�nement.

37 I should add that whereas my results rely on much weaker assumption than those from the literature
on imprecise credence functions, they are not stronger than them, since the conclusions they derive
from their stronger assumptions are stronger than those we derive frommy weaker assumptions. For
instance, as mentioned above, Berger & Das show that, given their assumptions on epistemic utility
functions, for any imprecise credence function there will be precise credence function with the same
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5 Conclusion

In contexts where probability functions are stipulated to all be de�ned over a �xed
domain, strictly proper epistemic utility functions arguably capture a certain
kind of immodesty. Once we move on to contexts where probability functions
are allowed to be de�ned over di�erent domains, strictly proper epistemic utility
functions do not capture the relevant sense of immodesty. My question was
whether there was a way of characterizing immodesty in this general setting. I
considered a variety of strong, generalized immodesty principles and showed
that, under minimal assumptions, no epistemic utility function satis�es any of
these stronger immodesty principles.
I also considered some very weak generalizations of strict propriety and

showed that some of the familiar epistemic utility functions satisfy one or another
of these weak immodesty principles. One interesting question le� outstanding
is how strong an immodesty principle can be imposed without ruling out every
reasonable epistemic utility function. In particular, one interesting question
is whether there are immodesty principles that distinguish among partitions—
say, immodesty principles that say that for any partition of a certain kind, all
credence functions de�ned over that partition take themselves to be doing better,
in terms of epistemic utility, than any of their restrictions without thereby taking
themselves to be worse than any of their extensions.
I have not, of course, argued that epistemic utility functions ought to satisfy

any of these stronger immodesty principles. But it is at the very least not obvious
that strict partition-wise propriety su�ces to capture the sense inwhich epistemic
rationality is said to be immodest. What else, if anything, su�ces to capture that
kind of immodesty is a question for some other time.38

domain that is as good, epistemically, than the imprecise credence function relative to any world.
�e analogous conclusion, in my framework, would be that for any credence function P de�ned
over some partition π, and any re�nement π′ of π, there is a credence function de�ned over π that
is as good, epistemically, than P relative to any world. Without any additional assumptions on what
epistemic utility functions are like, this cannot be guaranteed. (For one thing, without additional
assumptions, we could have epistemic utility functions that make any credence function de�ned
over π dominate any credence function de�ned over π′.) It is an interesting question, beyond the
scope of this paper, what additional constraints on generalized epistemic utility functions are needed
to establish this analogous result.

38 For helpful conversations, comments, and advice, I am grateful to Kenny Easwaran, Richard Pettigrew,
Itai Sher, and Henry Swi�. Special thanks to Chris Meacham who, in addition to indulging me on
many conversations about the material in this paper, went through an earlier dra� of the paper with
great care. Last but not least, thanks are also due to two anonymous referees for this journal for their
many generous and extremely helpful comments.
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Appendix

My proof of Lemma 3.10 will rely on a fundamental result in game theory, which
I will simply state without proof.39 Before stating the result, I need to introduce
some minimal background.
A two-person, zero-sum game (henceforth, a game) is a tripe G = (A, B, f ),

where A is the set of pure strategies for player I, B is the set of pure strategies for
player II, and f ∶ A× B Ð→ R is a payo� function. When player I chooses to play
a ∈ A and player II chooses to play b ∈ B, player I gets f (a, b) from player II
if f (a, b) > 0 and gives player II − f (a, b) if f (a, b) < 0 (nothing is exchanged
if f (a, b) = 0, and let’s not bother to think of an ‘intuitive’ interpretation of a
situation in which f (a, b) is non-�nite).

�e lower value of the game, V is de�ned as

V ∶= sup
a∈A
inf
b∈B

f (a, b).

�is is the maximum payo� that player I can guarantee, since for each a ∈ A,

inf
b∈B

f (a, b)

is the best player I can do. �e upper value of the game, V is analogously de�ned
as

V ∶= inf
b∈B
sup
a∈A

f (a, b).

In general,
V ≤ V .

We say that G has a value i�
V = V .

If a game has a value, we say that player I has an optimal strategy i� there is
a∗ ∈ A that achieves

sup
a∈A
inf
b∈B

f (a, b).

Similarly, we say that player II has an optimal strategy i� there is b∗ ∈ B achieving

inf
b∈B
sup
a∈A

f (a, b).

If the game has a value and both players have an optimal strategy, the pair
of optimal strategies corresponds in an intuitive way to an equilibrium in the

39 My proof strategy follows some of the reasoning in the �rst �ve sections of Grünwald & Dawid 2004.
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game—a pair of strategies such that neither player prefers unilaterally deviating
from it. Such a pair of strategy is called a saddle-point—thus, a saddle point in a
game G is a pair of strategies (a∗ , b∗) such that for all a ∈ A, b ∈ B, f (a, b∗) ≤
f (a∗ , b∗) ≤ f (a∗ , b).
Not all games have a value. Some of the foundational results in game theory

allow us to characterize classes of games that have a value. I will be relying on
one such result for the proof of Lemma 3.10.
Recall that a function f on a vector space that takes values in R is convex i�

for each λ ∈ (0, 1), λ f (x) + (1 − λ) f (y) ≥ f (λx + (1 − λ)y) whenever the term
on the le� hand side is well-de�ned. We say that f is concave i� − f is convex,
and that f is a�ne i� it is both convex and concave.
If X is a topological space, we say that a function f ∶ X Ð→ R is upper-semi-

continuous (or u.s.c.) i� f < ∞, and for each r ∈ X, the set {x ∈ X ∶ f (x) ≥ r} is
closed in X. We say that f is lower-semi-continuous (or l.s.c.) i� f > −∞ and for
each r ∈ R, the set {x ∈ X ∶ f (x) ≤ r} is closed in X. (Here we follow Mertens,
Sorin & Zamir 2015.) Of course, f is u.s.c. i� − f is l.s.c. �e result below is
essentially Sion’s minimax theorem (Sion 1958).40

�eorem A.1. Let A and B be two convex topological spaces and suppose f ∶
A× B Ð→ R is concave and u.s.c. on the �rst argument, and convex and l.s.c. on
the second—that is, for any b ∈ B and a ∈ A, f (x , b) and − f (a, y) are concave,
u.s.c. functions of x and y (respectively). �en the game G = (A, B, f ) has a value.
If A and B are compact, then the game has a saddle-point.

We can apply �eorem A.1 to show that, whereas many games of interest
do not contain a saddle-point, if we allow players to randomize their choice of
strategy, the resulting game does have a saddle-point. Let me explain.
For any compact X ⊆ Rn , let ∆(X) denote the space of all Borel probability

functions on X—the space of all countably additive probability functions on X
whose domain is the smallest σ-algebra that contains all the open subsets of X.
Of course, ∆(X) is a convex set, and from the fact that X is a compact subset of
Euclidean space, we know that ∆(X) is compact.41
Now, �x G = (A, B, f ), with A ⊆ Rn and B ⊆ Rm compact. We say that

G∗ = (A∗ , B∗ , f ∗) is a mixed extension of G i� A∗ (resp. B∗) is a closed and
convex subset of ∆(A) (resp. ∆(B)) and, for any α ∈ A∗, β ∈ B∗,

f ∗(α, β) = EX∼αEY∼β f (X ,Y).

40 See e.g. Mertens, Sorin & Zamir 2015, �eorem i.1 . 1, for a proof.
41 See e.g. Kechris 1995, �eorem 17.22.
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Since each a ∈ A (resp. b ∈ B) can be identi�ed with the unique probability
function αa ∈ ∆(A) (resp. βb ∈ B) that assigns probability one to {a} (resp. {b}),
I will abuse notation and think of f ∗ as also de�ned over elements of A× B.
If f is continuous and f < ∞, f ∗ is concave (since linear) and u.s.c. on the

�rst argument and convex (since linear) and l.s.c. on the second. And since any
closed subset of a compact topological space is compact, we know that A∗ and
B∗ are compact and convex topological spaces. So we can apply �eorem A.1 to
show that any mixed extension G∗ has a saddle-point.

Corollary A.2. Suppose A ⊆ Rn and B ⊆ Rm are compact and f ∶ A× B Ð→ R
is separately continuous. If f < ∞, then any mixed extension of G = (A, B, f ) has
a saddle-point.

I can �nally present the proof of Lemma 3.10.

Proof of Lemma 3.10. Suppose u is a continuous epistemic utility function that is
partition-wise strictly proper. Fix a probability function P and a re�nement π of
πP . We de�ne a game GP = (A, B, f ) as follows. First, let N = ∣π∣, �x an enumera-
tion {S i} of π, and let A be those elements ofRN of the form ⟨Q(s1), . . .Q(sN)⟩
for q ∈ Pπ . Abusing notation, I will use Q ,Q′ , etc. to denote elements of A, even
though I will think of them as members of RN . Next let

B ∶= {Q ∈ A ∶ Q(s i) = 1 for some i}.

Again abusing notation, I will use s1 , s2 , . . . , sN to denote the elements of B in
the obvious way (with s i corresponding to that Q ∈ A assigning probability 1 to
s i). Finally, let

f (Q , s i) = u(Q , s i).
Note that A and B are compact subsets of RN , and since u < ∞, we know that
any mixed extension of GP has a saddle point.
Our next step is to de�ne a particular mixed extension of GP and apply

Corollary A.2. Before doing so, however, let me make a couple of observations.
First, any element of ∆(A) corresponds to a probability function over Pπ . I will
use µ, µ′ , etc. to denote elements of ∆(A), and will continue to abuse notation
and use Q, Q′, etc. to denote the element of ∆(A) that assigns probability 1 to
the corresponding element of Pπ . Second, any element of ∆(B) corresponds to
a probability function over π. I will thus abuse notation and use Q ,Q′, etc. to
denote elements of ∆(B).
Let now A∗ = ∆(A) and B∗ = [P]π , and note that B∗ is indeed a subset of

∆(B). Moreover, both A∗ and B∗ are closed and convex subsets of ∆(A) and
∆(B) (respectively), so that G∗P = (A∗ , B∗ , f ∗) is indeed a mixed extension of
GP , with

f ∗(µ,Q) = EX∼µEQ[u(X)],
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and accordingly f ∗(Q′ ,Q) = EQ[u(Q′)].
From Corollary A.2, we know that our game G∗P has a saddle point (µ∗ , P̂).

We claim that this saddle point is in fact of the form (P̂, P̂). To see why, note that
since µ∗ is an optimal mixed strategy for player I, it follows that for any Q ∈ Pπ ,

f ∗(Q , P̂) ≤ f ∗(µ∗ , P̂),

and thus that
µ∗ (argmax

Q∈Pπ

f ∗(Q , P̂)) = 1.

But since u is strictly partition-wise proper,

argmax
Q∈Pπ

f ∗(Q , P̂) = {P̂}.

Summing up, we have a saddle point of the form (P̂, P̂), and thus we know
that for any P∗ ∈ [P]π and any Q ∈ Pπ ,

f ∗(Q , P̂) ≤ f ∗(P̂, P̂) ≤ f ∗(P̂, P∗).

In other words,

EP̂[u(Q)] ≤ EP̂[u(P̂)] for all Q ∈ Pπ , (10)

and
EP̂[u(P̂)] ≤ EP∗[u(P̂)] for all P∗ ∈ [P]π . (11)

But note that (10) entails both

EP̂[u(P̂)] = EP[u(P̂)], (12)

by de�nition, and

EP̂[u(P̂)] ≤ EP∗[u(P∗)] for all P∗ ∈ [P]π , (13)

since u is partition-wise proper.
Hence, from (11), (12), and (13), we have that for any P∗ ∈ [P]π and any

Q ∈ Pπ ,
EP̂[u(Q)] ≤ EP̂[u(P̂)] = EP[u(P̂)] ≤ EP∗[u(P∗)],

as desired.
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