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Abstract

One of the most expected properties of a logical system is that it can be algebraiz-
able, in the sense that an algebraic counterpart of the deductive machinery could be
found. Since the inception of da Costa’s paraconsistent calculi, an algebraic equivalent
for such systems have been searched. It is known that these systems are not alge-
braizable in the sense of Blok-Pigozzi. More than this, they are non self-extensional
(i.e., they do not satisfy the replacement property). The same negative results hold
for several systems of the hierarchy of paraconsistent logics known as Logics of Formal
Inconsistency (LFIs). Because of this, these logics are uniquely characterized by se-
mantics of non-deterministic kind. This paper offers a solution for two open problems
in the domain of paraconsistency, in particular connected to algebraization of LFIs, by
obtaining several LFIs weaker than C1, each of one is algebraizable in the standard
Lindenbaum-Tarski’s sense by a suitable variety of Boolean algebras extended with op-
erators. This means that such LFIs satisfy the replacement property. The weakest
LFI satisfying replacement presented here is called RmbC, which is obtained from the
basic LFI called mbC. Some axiomatic extensions of RmbC are also studied, and in
addition a neighborhood semantics is defined for such systems. It is shown that RmbC
can be defined within the minimal bimodal non-normal logic E⊕E defined by the fu-
sion of the non-normal modal logic E with itself. Finally, the framework is extended
to first-order languages. RQmbC, the quantified extension of RmbC, is shown to be
sound and complete w.r.t. BALFI semantics.
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1 Introduction: The quest for the algebraic counter-

part of paraconsistency

One of the most expected properties of a logical system is that it can be algebraizable, in
the sense that an algebraic counterpart of the deductive machinery could be found. When
this happens, a lot of logical problems can be faithfully and conservatively translated into
some given algebra, and then algebraic tools can be used to tackle them. This happens so
naturally with the brotherhood between classical logic and Boolean algebra, that a similar
relationship is expected to hold for non-standard logics as well. And indeed it holds for some,
but not for all logics. In any case, the task of finding such an algebraic counterpart is far
from trivial. The intuitive idea behind the search for algebraization for a given logic system,
generalizing the pioneering proposal of Lindenbaum and Tarski, usually starts by trying to
find a congruence on the set of formulas that could be used to produce a quotient algebra,
defined over the algebra of formulas of the logic.

Finding such an algebraization for the logics of the hierarchy Cn of da Costa, introduced
in [26], constitutes a paradigmatically difficult case. One of the favorite methods to set up
congruences is to check the validity of a fundamental property called replacement or (IpE)
(acronym for intersubstitutivity by provable equivalents, intuitively clear, and to be formally
defined in Section 2. A logic enjoying replacement is usually called self-extensional.

It is known since some time that (IpE) does not hold for C1, the first logic of da Costa’s
family. A proof can be found in [21] (Corollary 3.65); as a consequence, a direct Lindenbaum-
Tarski algebraization for this logic is not possible. This closes the way to the other, weaker
calculi of the hiearchy Cn, since when one logic is algebraizable, so are its extensions. But
there are other possibilities for algebraization, and the search continued until a proof was
presented by Mortensen in 1980 [34], establishing that no non-trivial quotient algebra is
definable for C1, or for any logic weaker than C1. In 1991, an even more negative result,
found by Lewin, Mikenberg, Schwarze (see [31]) shows that C1 is not even algebraizable
in the more general sense of Blok-Pigozzi (see [9]). This result was generalized in [21,
Theorem 3.83] to Cila, the presentation of C1 in the language of the Logics of Formal
Inconsistency (LFIs) featuring a (primitive) consistency conective ◦. Since any deductive
extension of an algebraizable logic (in the same language) is also algebraizable, we obtain as
a consequence that no such algebraization is possible for any other of the LFIs weaker than
Cila studied in [21, 17, 14], like mbC, mbCciw, bC and Ci. The same reasoning applies
to every calculus Cn in the infinite da Costa’s hierarchy, given that they are weaker than C1.

Some extensions of C1 having non-trivial quotient algebras have been proposed in the
literature. In [35], for instance, Mortensen has proposed an infinite number of intermediate
logics between C1 and classical logic called Cn/(n+1), for n ≥ 1. Such logics were shown to
enjoy non-trivial congruences defined by finite sets of equations for each n ≥ 1, being thus
algebraizable in the sense of Blok-Pigozzi (though not in the traditional sense of Lindenbaum-
Tarski).

Some other types of algebraic counterparts have been investigated, for instance, in [19]
and [39] an algebraic variety (da Costa algebras) for the logic C1 was defined, permitting a
Stone-like representation theorem. In this way, every da Costa algebra is isomorphic to a
paraconsistent algebra of sets, making C1 closer to traditional mathematical objects.
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It can be proved, however, that for some subclasses of LFIs such intersubstitutivity results
is unattainable, as shown in Theorem 3.51 of [21] with respect to the logic Ci, one of the
central systems of the family of LFIs which is much weaker than Cila.

Some interesting results concerning three-valued self-extensional paraconsistent logics
were obtained in the literature, in connection with the limitative result [21, Theorem 3.51]
mentioned above. In [3] it was shown that no three-valued paraconsistent logic having an
implication can be self-extensional. On the other hand, in [2] it was shown that there is
exactly one self-extensional three-valued paraconsistent logic defined in a signature having
conjunction, disjunction and negation. For paraconsistent logics in general, it was shown
in [6] that no paraconsistent negation ¬ satisfying the law of double negation and such that
the schema ¬(ϕ ∧ ¬ϕ) is valid can satisfy (IpE).

Nevertheless, there was still an open question: to obtain (IpE) for extensions of Ci by
the addition of weaker forms of contraposition deduction rules, as discussed in Subsection
3.7 of [21]. The challenge was to find extensions of bC and Ci which would satisfy (IpE)
and still keep their paraconsistent character. In this paper we meet this challenge. We define
the logic RmbC, an extension by rules of mbC, and two suitable extensions of RmbC, the
logics RbC and RCi (respectively, extensions of bC and Ci) that solve the open problem.
Details are given in Example 3.9 of Section 3.1

A new kind of semantic structures, the Boolean algebras with LFI operators, or BALFIs,
a generalization of BAOs (Boolean algebras with operators) is introduced in Section 2, and
RmbC is proved to be sound and complete w.r.t. BALFIs.

The paper also investigates some other directions. Section 4 studies the limits for replace-
ment under the conditions for paraconsistency, and Section 5 proposes neigborhood semantics
for RmbC as a special class of BALFIs defined on powerset Boolean algebras. Again, RmbC
is proved to be sound and complete w.r.t. such version of neigborhood models. Moreover, in
Section 6 it is proved that RmbC can be defined within the minimal bimodal non-normal
modal logic. This neigborhood semantics is also proposed for axiomatic extensions of RmbC
in Section 7.

A special problem is studied in Section 8: the BALFI semantics for RmbC, as well as its
neigborhood semantics defined in Section 5, are degree-preserving instead of truth-preserving
(in the sense of [10]). This requires adapting the usual definition of derivation from premises
in a Hilbert calculus (cf. Definition 2.6). But it is also possible to consider global (or truth-
preserving) semantics, as it is usually done with algebraic semantics. This leads us to the
logic RmbC∗, which is defined by the same Hilbert calculus than the one for RmbC, but
where derivations from premises are defined as in the usual Hilbert calculi.

Section 9 is dedicated to extending RmbC to first-order languages, defining the logic
RQmbC, which is proved, in Section 10 and Section 11, to be complete w.r.t. BALFI
semantics. The proof is an adaptation to the completeness proof for QmbC w.r.t. swap
structures semantics given in [24], and since BALFIs are ordinary algebras, the new com-
pleteness proof offers a great simplification when compared to previous completeness results
based on non-deterministic swap structures.

1To generate heuristics and suitable models, as well as to block dead-ends by finding counter-models, we
count with the help of the proof assistant Isabelle/HOL.
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2 The logic RmbC

The class of paraconsistent logics known as Logics of Formal Inconsistency (LFIs, for short)
was introduced by W. Carnielli and J. Marcos in [21]. In their simplest form, they have a
non-explosive negation ¬, as well as a (primitive or derived) consistency connective ◦ which
allows to recover the Law of Explosion in a controlled way.

Definition 2.1 Let L = 〈Θ,`〉 be a Tarskian, finitary and structural logic defined over a
propositional signature Θ, which contains a negation ¬, and let ◦ be a (primitive or defined)
unary connective. Then, L is said to be a Logic of Formal Inconsistency with respect to ¬
and ◦ if the following holds:

(i) ϕ,¬ϕ 0 ψ for some ϕ and ψ;

(ii) there are two formulas α and β such that

(ii.a) ◦α, α 0 β;

(ii.b) ◦α,¬α 0 β;

(iii) ◦ϕ, ϕ,¬ϕ ` ψ for every ϕ and ψ.

Condition (ii) of the definition of LFIs is required in order to satisfy condition (iii) in
a non-trivial way. The hierarchy of LFIs studied in [17] and [14] starts from a logic called
mbC, which extends positive classical logic CPL+ by adding a negation ¬ and a unary
consistency operator ◦ satisfying minimal requirements in order to define an LFI.

Definition 2.2 From now on, the following signatures will be considered:

Σ+ = {∧,∨,→};

ΣBA = {∧,∨,→, 0̄, 1̄};

Σ = {∧,∨,→,¬, ◦};

ΣC = {∧,∨,→,¬};

ΣC0 = {∧,∨,→,¬, 0̄};

ΣCe = {∧,∨,→,¬, 0̄, 1̄};

Σe = {∧,∨,→,¬, ◦, 0̄, 1̄};

Σm = {∧,∨,→,∼,�,♦}; and

Σbm = {∧,∨,→,∼,�1,♦1,�2,♦2}.

If Θ is a propositional signature, then For(Θ) will denote the (absolutely free) algebra of
formulas over Θ generated by a given denumerable set V = {pn : n ∈ N} of propositional
variables.
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Definition 2.3 (Classical Positive Logic) The classical positive logic CPL+ is defined
over the language For(Σ+) by the following Hilbert calculus:

Axiom schemas:

α→
(
β → α

)
(Ax1)(

α→
(
β → γ

))
→
((
α→ β

)
→
(
α→ γ

))
(Ax2)

α→
(
β →

(
α ∧ β

))
(Ax3)(

α ∧ β
)
→ α (Ax4)(

α ∧ β
)
→ β (Ax5)

α→
(
α ∨ β

)
(Ax6)

β →
(
α ∨ β

)
(Ax7)(

α→ γ
)
→
(

(β → γ)→
(
(α ∨ β)→ γ

))
(Ax8)(

α→ β
)
∨ α (Ax9)

Inference rule:
α α→ β

β
(MP)

Definition 2.4 The logic mbC, defined over signature Σ, is obtained from CPL+ by adding
the following axiom schemas:

α ∨ ¬α (Ax10)

◦α→
(
α→

(
¬α→ β

))
(bc1)

The logic mbC is an LFI. Indeed, it is the minimal LFI extending CPL+.
Consider the Replacement property, namely: If α↔ β is a theorem then γ[p/α]↔ γ[p/β]

is a theorem, for every formula γ(p) (as usual, α↔ β is an abbreviation of the formula (α→
β)∧ (β → α), and γ[p/α] denotes the formula obtained from γ by replacing every occurrence
of the variable p by the formula α). It is well known that mbC does not satisfy replacement
in general. However, it is easy to see that replacement holds in mbC for every formula γ(p)
over the signature Σ+ of CPL+. We introduce now the logic RmbC which extends mbC
by adding replacement for every formula over Σ. From the previous observation, it is enough
to add replacement for ¬ and ◦ as new inference rules. Namely: if α↔ β is a theorem then
¬α↔ ¬β (is a theorem), and if α↔ β is a theorem then ◦α↔ ◦β (is a theorem).

Observe, however, that replacement is in fact a metaproperty (since it states that some
formula is a theorem from previous formulas which are assumed to be theorems). It is clear
that the two inference rules proposed above for inducing replacement are global instead of
local (see Section 8 below): in order to apply each rule, the corresponding premise must be a
theorem. This is an analogous situation to the Necessitation rule in modal logics. Assuming
inference rules of this kind requires changing the definition of derivation from premises in the
resulting Hilbert calculus, as we shall see below.
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Definition 2.5 The logic RmbC, defined over signature Σ, is obtained from mbC by adding
the following inference rules:

α↔ β

¬α↔ ¬β
(R¬)

α↔ β

◦α↔ ◦β
(R◦)

Definition 2.6 (Derivations in RmbC)
(1) A derivation of a formula ϕ in RmbC is a finite sequence of formulas ϕ1 . . . ϕn such
that ϕn is ϕ and, for every 1 ≤ i ≤ n, either ϕi is an instance of an axiom of RmbC, or ϕi
is the consequence of some inference rule of RmbC whose premises appear in the sequence
ϕ1 . . . ϕi−1.
(2) We say that a formula ϕ is derivable in RmbC, or that ϕ is a theorem of RmbC,
denoted by `RmbC ϕ, if there exists a derivation of ϕ in RmbC.
(3) Let Γ∪{ϕ} be a set of formulas over Σ. We say that ϕ is derivable in RmbC from Γ, and
we write Γ `RmbC ϕ, if either ϕ is derivable in RmbC, or there exists a finite, non-empty
subset {γ1, . . . , γn} of Γ such that the formula (γ1 ∧ (γ2 ∧ (. . . ∧ (γn−1 ∧ γn) . . .))) → ϕ is
derivable in RmbC.

Remarks 2.7
(1) From the previous definition, it follows that ∅ `RmbC ϕ iff `RmbC ϕ.
(2) Recall that a consequence relation ` is said to be Tarskian and finitary if it satisfies the
following properties: (i) Γ ` α whenever α ∈ Γ; (ii) if Γ ` α and Γ ⊆ ∆ then ∆ ` α;
(iii) if Γ ` ∆ and ∆ ` α then Γ ` α, where Γ ` ∆ means that Γ ` δ for every δ ∈ ∆;
and (iv) Γ ` α implies that Γ0 ` α for some finite Γ0 contained in Γ. It can be proven
that the consequence relation `RmbC given in Definition 2.6(2) is Tarskian and finitary, by
using a general result stated by Wójcicki in [40]. Specifically, in Section 2.10 of that book
it was studied the question of characterizing a Tarskian consequence relation ` in terms
of theoremhood, provided that the language contains an implication ⇒ and a conjunction
&. Namely, the problem is to find necessary and sufficient conditions in order to have that
γ1, . . . , γn ` ϕ iff ` (γ1 & (γ2 & (. . . & (γn−1 & γn) . . .))) ⇒ ϕ and still having that ` is
Tarskian and finitary.2 Thus, in item (ii) of Theorem 2.10.2 in [40] certain requirements
were found for ⇒ and & which are necessary and sufficient to guarantee that a consequence
relation defined as in Definition 2.6 is Tarskian and finitary. It is easy to prove, by using
the properties of CPL+, that → and ∧ satisfy such requirements in RmbC. From this, it
follows that RmbC is indeed a Tarskian and finitary logic.

By the properties of ∧ and → inherited from CPL+, and by the notion of derivation in
RmbC, it is easy to see that the Deduction Metatheorem holds in RmbC:3

Theorem 2.8 (Deduction Metatheorem for RmbC)
Γ, ϕ `RmbC ψ if and only if Γ `RmbC ϕ→ ψ.

2The problem was originally presented in [40] in a more general way. We are presenting here a particular
case of that problem, which is enough to our purposes. Moreover, in [40] the problem was analyzed in
terms of Tarskian consequence operators instead of Tarskian consequence relations, but both formalisms are
equivalent in this context.

3Of course the satisfaction of the Deduction Theorem is what lies behind the problem studied in [40]
mentioned in Remark 2.7(2).
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The semantics for RmbC will be given by means of a suitable class of Boolean algebras
with additional operators.4 Because of the definition of deductions in RmbC discussed
above, the semantic consequence relation will be degree preserving instead of truth preserving
(see [10]). In modal terms, the semantics will be local instead of global. We will return to
this point in Section 8.

Definition 2.9 (BALFIs) A Boolean algebra with LFI operators (BALFI, for short) is an
algebra B = 〈A,∧,∨,→,¬, ◦, 0, 1〉 over Σe such that its reduct A = 〈A,∧,∨,→, 0, 1〉 to ΣBA

is a Boolean algebra and the unary operators ¬ and ◦ satisfy: a∨¬a = 1 and a∧¬a∧◦a = 0,
for every a ∈ A. The variety of BALFIs will be denoted by BI.

Definition 2.10 (Degree-preserving BALFI semantics)
(1) A valuation over a BALFI B is a homomorphism v : For(Σ)→ B.

(2) Let ϕ be a formula in For(Θ). We say that ϕ is valid in BI, denoted by |=BI ϕ, if, for
every BALFI B and every valuation v over it, v(ϕ) = 1.
(3) Let Γ∪{ϕ} be a set of formulas in For(Θ). We say that ϕ is a local (or degree-preserving)
consequence of Γ in BI, denoted by Γ |=BI ϕ, if either ϕ is valid in BI, or there exists a finite,
non-empty subset {γ1, . . . , γn} of Γ such that, for every BALFI B and every valuation v over
it,
∧n
i=1 v(γi) ≤ v(ϕ).

Remark 2.11 Note that Γ |=BI ϕ iff either ϕ is valid in BI, or there exists a finite, non-
empty subset {γ1, . . . , γn} of Γ such that (γ1∧ (γ2∧ (. . .∧ (γn−1∧γn) . . .)))→ ϕ is valid. This
follows easily from the definitions, and from the fact that a ≤ b iff a→ b = 1 in any Boolean
algebra A.

Theorem 2.12 (Soundness of RmbC w.r.t. BI)
Let Γ ∪ {ϕ} ⊆ For(Θ). Then: Γ `RmbC ϕ implies that Γ |=BI ϕ.

Proof. Let ϕ be a an instance of an axiom of RmbC. It is immediate to see that, for every
B and every valuation v on it, v(ϕ) = 1. Now, let α, β ∈ For(Σ). If v(α → β) = 1 and
v(α) = 1 then, since v(α → β) = v(α) → v(β), it follows that v(β) = 1. On the other
hand, if v(α ↔ β) = 1 then v(α) = v(β) and so v(#α) = #v(α) = #v(β) = v(#β), hence
it follows that v(#α ↔ #β) = 1 for # ∈ {¬, ◦}. From this, by induction on the length
of a derivation of ϕ in RmbC, it can be easily proven that ϕ is valid in BI whenever ϕ is
derivable in RmbC. Now, suppose that Γ `RmbC ϕ. If `RmbC ϕ then, by the observation
above, ϕ is valid in BI and so Γ |=BI ϕ. On the other hand, if there exists a finite, non-empty
subset {γ1, . . . , γn} of Γ such that `RmbC (γ1 ∧ (γ2 ∧ (. . . ∧ (γn−1 ∧ γn) . . .)))→ ϕ then, once
again by the observation above, |=BI (γ1∧ (γ2∧ (. . .∧ (γn−1∧γn) . . .)))→ ϕ. This shows that
Γ |=BI ϕ, by Remark 2.11. 2

Theorem 2.13 (Completeness of RmbC w.r.t. BI)
Let Γ ∪ {ϕ} ⊆ For(Θ). Then: Γ |=BI ϕ implies that Γ `RmbC ϕ.

4It is worth noting that these operators not necessarily commute with joins. Thus, the algebras are not
necessarily coincident with the so-called Boolean algebras with operators (BAOs) used as semantics for modal
logics (see, for instance, [30]).

7



Proof. Define the following relation on For(Σ): α ≡ β iff `RmbC α ↔ β. It is clearly an

equivalence relation, by the properties of CPL+. Let Acan
def
= For(Σ)/≡ be the quotient set,

and define over Acan the following operations: [α] # [β]
def
= [α#β], for # ∈ {∧,∨,→}, where

[α] denotes the equivalence class of α w.r.t. ≡. Let 0
def
= [α ∧ ¬α ∧ ◦α] and 1

def
= [α ∨ ¬α].

These operations and constants are clearly well-defined, and so they induce a structure of
Boolean algebra over the set Acan, which will be denoted by Acan. Let Bcan be its expansion
to Σe by defining #[α]

def
= [#α], for # ∈ {¬, ◦}. These operations are well-defined, and it

is immediate to see that Bcan is a BALFI. Let vcan : For(Σ) → Bcan given by vcan(α) = [α].
Clearly vcan is a valuation over Bcan such that vcan(α) = 1 iff `RmbC α.

Now, suppose that Γ |=BI ϕ, and recall Remark 2.11. If |=BI ϕ then, in particular,
vcan(ϕ) = 1 and so `RmbC ϕ. From this, Γ `RmbC ϕ. On the other hand, if there exists a
finite, non-empty subset {γ1, . . . , γn} of Γ such that |=BI (γ1∧(γ2∧(. . .∧(γn−1∧γn) . . .)))→ ϕ
then, in particular, vcan((γ1 ∧ (γ2 ∧ (. . . ∧ (γn−1 ∧ γn) . . .))) → ϕ) = 1. This means that
`RmbC (γ1 ∧ (γ2 ∧ (. . . ∧ (γn−1 ∧ γn) . . .)))→ ϕ and so Γ `RmbC ϕ. 2

Definition 2.14 The pair 〈Bcan, vcan〉 defined in the proof of Theorem 2.13 is called the
canonical model of RmbC.

Example 2.15 (BALFIs over ℘({w1, w2})) Let A4 = ℘({w1, w2}) = {0, a, b, 1} be the
powerset of W2 = {w1, w2} such that 0 = ∅, a = {w1}, b = {w2} and 1 = {w1, w2}.
Then, the BALFIs defined by expanding the Boolean algebra A4 are the following (below, |
separates the possible options for the values of ¬z and ◦z for every value of z, while x stands
for any element of A4):

z ¬z ◦z
1 0 | a | b | 1 x | (0 or b) | (0 or a) | 0
a b | 1 x | (0 or b)
b a | 1 x | (0 or a)
0 1 x

On each row, each choice in the ith position of the sequence of options in the column for
¬z forces a choice in the ith position of the sequence of options in the column for ◦z. For
instance, if in the current BALFI we choose ¬1 = b then there are two possibilities for the
value of ◦1 in that BALFI: either ◦1 = 0 or ◦1 = a. On the other hand, by choosing that
¬a = 1 it forces that either ◦a = 0 or ◦a = b. Otherwise, if ¬a = b then ◦a can be arbitrarily
chosen.

Remark 2.16 Observe that the rules (R¬) and (R◦) do not ensure that `RmbC (α↔ β)→
(¬α↔ ¬β) and `RmbC (α↔ β)→ (◦α↔ ◦β) in general. Consider, for instance α = p and
β = q where p and q are two different propositional variables, and take the following BALFI
B defined over the Boolean algebra ℘({w1, w2}), according to Example 2.15:

z ¬z ◦z
1 1 0
a b a
b 1 a
0 1 b
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Now, consider a valuation v over B such that v(p) = a and v(q) = 1. Hence v(¬p) = b,
v(¬q) = 1, v(◦p) = a and v(◦q) = 0. From this v(p ↔ q) = a and v(¬p ↔ ¬q) = v(◦p ↔
◦q) = b. Therefore v((p↔ q)→ (¬p↔ ¬q)) = v((p↔ q)→ (◦p↔ ◦q)) = b. That is, none
of the last two formulas is valid in RmbC. Of course both formulas hold if `RmbC (α↔ β),
by (R¬) and (R◦).

Clearly RmbC is an LFI: in the BALFI B we just defined above, the given valuation v
shows that q,¬q 0RmbC p. Now, consider the following BALFI B′ defined over ℘({w1, w2}),
using again Example 2.15:

z ¬z ◦z
1 0 1
a 1 0
b 1 0
0 1 1

Take a valuation v′ over B′ such that v′(p) = 1 and v′(q) = a. This shows that p, ◦p 0RmbC q.
Now, a valuation v′′ over B′ such that v′′(p) = 0 and v′′(q) = b shows that ¬p, ◦p 0RmbC q. In
addition, a valuation v′′′ over B′ such that v′′′(p) = a and v′′′(q) = b shows that p,¬p 0RmbC q.
On the other hand, by Definition 2.9 it is the case that α,¬α, ◦α `RmbC β for every formulas
α and β.

3 Adding replacement to extensions of mbC: A solu-

tion to an open problem

In [21], the first study on LFIs, the replacement property was analyzed under the name
(IpE), presented in the following (equivalent) way:

(IpE) if αi a` βi (for 1 ≤ i ≤ n) then ϕ(α1, . . . , αn) a` ϕ(β1, . . . , βn)

for every formulas αi, βi, ϕ. In that article, an important question was posed: to find ex-
tensions of bC and Ci (two axiomatic extensions of mbC to be analyzed below) which
satisfy (IpE) still being paraconsistent.5 In this section, we will show a solution to that open
problem, obtained by extending axiomatically RmbC. In what follows, some LFIs which
are axiomatic extensions of mbC (bC and Ci, among others) will be considered, and the
methodology adopted for RmbC to such extensions will be adapted in a suitable way.

5In [21], page 41, we can read: “The question then would be if (IpE) could be obtained for real LFIs”.
On page 54, after observing that in extensions of Ci it is enough ensuring (IpE) for negation, since it implies
(IpE) for ◦, it is said that “We suspect that this can be done, but we shall leave it as an open problem at
this point”. Finally, they observe on page 55, footnote 17 that certain 8-valued matrices presented by Urbas
satisfy (IpE) for an extension of bC. However, this logic is not paraconsistent. After this, they claim that
“the question is still left open as to whether there are paraconsistent such extensions of bC!”.
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Definition 3.1 (Some extensions of mbC) Consider the following axioms presented in [21]
and [14]:6

◦α ∨ (α ∧ ¬α) (ciw)

¬◦α→ (α ∧ ¬α) (ci)

¬(α ∧ ¬α)→ ◦α (cl)

¬¬α→ α (cf)

α→ ¬¬α (ce)

(◦α ∧ ◦β)→ ◦(α ∧ β) (ca∧)

(◦α ∧ ◦β)→ ◦(α ∨ β) (ca∨)

(◦α ∧ ◦β)→ ◦(α→ β) (ca→)

Definition 3.2 Let B = 〈A,∧,∨,→,¬, ◦, 0, 1〉 be a BALFI, and let ϕ be a formula over
Σ. We say that B is a model of ϕ (considered as an axiom schema), denoted by B 
 ϕ, if
v(σ(ϕ)) = 1 for every substitution for variables σ : V → For(Σ) and every valuation v over
B.

The proof of the following result is immediate from the definitions:

Proposition 3.3 Let B = 〈A,∧,∨,→,¬, ◦, 0, 1〉 be a BALFI. Then:

(1) B is a model of (ciw) iff B satisfies the equation ◦a = ∼(a ∧ ¬a) for every a ∈ A;

(2) B is a model of (ci) iff B satisfies the equation ¬◦a = a ∧ ¬a for every a ∈ A;

(3) B is a model of (cl) iff B satisfies the equation ◦a = ¬(a ∧ ¬a) for every a ∈ A;

(4) B is a model of (cf) iff B satisfies the equation a ∧ ¬¬a = ¬¬a for every a ∈ A;

(5) B is a model of (ce) iff B satisfies the equation a ∧ ¬¬a = a for every a ∈ A;

(6) B is a model of (ca#) iff B satisfies the equation (◦a ∧ ◦b) ∧ ◦(a#b) = ◦a ∧ ◦b for every
a, b ∈ A, for each # ∈ {∧,∨,→}.

Let Ax be a set formed by one or more of the axiom schemas introduced in Definition 3.1,
and let mbC(Ax) be the logic defined by the Hilbert calculus obtained from mbC by adding
the set Ax of axiom schemas. Let BI(Ax) be the class of BALFIs which are models of every
axiom in Ax. Clearly, BI(Ax) is a variety of algebras. Finally, let RmbC(Ax) be the logic
obtained from RmbC by adding the set Ax of axiom schemas. It is simple to adapt the
proofs of Theorems 2.12 and 2.13 (in particular, by defining for each logic the corresponding
canonical model, as in Definition 2.14) in order to obtain the following:

Theorem 3.4 (Soundness and completeness of RmbC(Ax) w.r.t. BI(Ax))
Let Γ ∪ {ϕ} ⊆ For(Σ). Then: Γ `RmbC(Ax) ϕ if and only if Γ |=BI(Ax) ϕ.

From this important result, some properties of the calculi RmbC(Ax) can be easily
proven by algebraic methods, that is, by means of BALFIs. For instance:

6Axiom (ciw) was introduced by Avron in [1] by means of two axioms, (k1): ◦α∨α and (k2): ◦α∨¬α.
Strictly speaking, (k1) and (k2) were presented as rules in a standard Gentzen calculus.

10



Proposition 3.5 BI({ci, cf}) = BI({cl, cf}) = BI({ci, cl, cf}). Hence, the logics
RmbC({ci, cf}), RmbC({cl, cf}) and RmbC({ci, cl, cf}) coincide.

Proof. (1) Since `mbC (α ∧ ¬α)→ ¬◦α and `mbC ◦α→ ¬(α ∧ ¬α) then, for every BALFI
B and every a ∈ A, (a ∧ ¬a) ≤ ¬◦a and ◦a ≤ ¬(a ∧ ¬a). Let B ∈ BI({ci, cf}), and let
a ∈ A. Then a ∧ ¬a = ¬◦a and so ¬(a ∧ ¬a) = ¬¬◦a ≤ ◦a. Therefore B ∈ BI({cl, cf}).
Conversely, suppose that B ∈ BI({cl, cf}) and let a ∈ A. Since ◦a = ¬(a ∧ ¬a) then
¬◦a = ¬¬(a ∧ ¬a) ≤ (a ∧ ¬a). From this, B ∈ BI({ci, cf}). This shows the first part of the
Proposition. The second part follows from Theorem 3.4. 2

Example 3.6 (BALFIs for RmbCciw) The logic mbC(ciw) was considered in [14] un-
der the name mbCciw. This logic was introduced in [1] under the name B[{(k1), (k2)}],
presented by means of a standard Gentzen calculus such that B is a Gentzen calculus for
mbC. The logic mbCciw is the least extension of mbC in which the consistency connective
can be defined in terms of the other connectives, namely: ◦α is equivalent to ∼(α ∧ ¬α),
where ∼ denotes the classical negation definable in mbC as ∼α = α→ ⊥. Here, ⊥ denotes
any formula of the form β ∧ ¬β ∧ ◦β.7 Let RmbCciw be the logic RmbC(ciw). Because
of the satisfaction of the replacement property, and given that the consistency connective can
be defined in terms of the other connectives, the connective ◦ can be eliminated from the
signature, and so we consider the logic RmbCciw defined over the signature ΣC0 (recall
Definition 2.2), obtained from CPL+ by adding (Ax10), (R¬), and axiom schema (Bot):
0̄ → α. In such presentation of RmbCciw, the strong negation is defined by the formula
∼α = α→ 0̄. The algebraic models for this presentation of RmbCciw are given by BALFIs
B = 〈A,∧,∨,→,¬, 0, 1〉 over ΣCe such that its reduct A = 〈A,∧,∨,→, 0, 1〉 to ΣBA is a
Boolean algebra and the unary operator ¬ satisfies a∨¬a = 1 for every a ∈ A. On the other
hand, the expression ◦a is an abbreviation for ∼(a ∧ ¬a) in such BALFIs.

It is also interesting to observe that ◦ satisfies a sort of necessitation rule in certain
extensions of RmbC:

Proposition 3.7 Consider the Necessitation rule for ◦:

α

◦α
(Nec◦)

Then, (Nec◦) is an admissible rule in RmbC({cl, ce}).8

Proof. Assume that `RmbC({cl,ce}) α. By the rules of CPL+ it follows that `RmbC({cl,ce})
β ↔ (α ∧ β) for every formula β. In particular, `RmbC({cl,ce}) ¬α ↔ (α ∧ ¬α) and so, by
(R¬), `RmbC({cl,ce}) ¬¬α↔ ¬(α ∧ ¬α). On the other hand, from `RmbC({cl,ce}) α it follows

7Rigorously speaking, ◦ is not defined in terms of the other connectives, since ◦ is essential on order to
define ⊥. So, the right signature for mbCciw and its extensions is ΣC0

.
8Recall that a structural inference rule is admissible in a logic L if the following holds: whenever the

premises of an instance of the rule are theorems of L, then the conclusion of the same instance of the rule is
a theorem of L.
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that `RmbC({cl,ce}) ¬¬α, by (ce) and (MP). Then `RmbC({cl,ce}) ¬(α ∧ ¬α). By (cl) and
(MP) we conclude that `RmbC({cl,ce}) ◦α. 2

Now, we can provide a solution to the first open problem posed in [21]:

Example 3.8 (A paraconsistent extension of bC with replacement) Consider the logic
bC introduced in [21]. By using the notation proposed above, bC corresponds to mbC(cf).9

Then RbC (that is, RmbC(cf)) is an extension of bC which satisfies replacement while it
is still paraconsistent. Moreover, RbC is an LFI. These facts can be easily proven by using
the BALFI B′ considered in Remark 2.16. In fact, it is immediate to see that B′ is a model
of (cf). It is worth noting that B′ is not a model of (ciw): 0 = ◦a 6= ∼(a ∧ ¬a) = ∼a = b.
Therefore, B′ is neither a model of (ci) nor of (cl), given that any of these axioms implies
(ciw).

We can now offer a solution to the second open problem posed in [21]:

Example 3.9 (A paraconsistent extension of Ci with replacement) Now, consider the
logic Ci introduced in [21], which corresponds to mbC({cf, ci}), and let RCi=RmbC({cf,
ci}). By Proposition 3.5, RCi also derives the schema (cl). It can be proven that RCi is an
extension of Ci which satisfies replacement while it is still paraconsistent. In order to prove
this, consider the following BALFI B′′ defined over the Boolean algebra A16 = ℘({W4}), the
powerset of W4 = {w1, w2, w3, w4} (note that 0 = ∅ and 1 = W4):

z ¬z ◦z
{w1, w2} {w1, w3, w4} {w2, w3, w4}
{w3, w4} {w1, w2, w3} {w1, w2, w4}

X W4 \X W4

where X is different to {w1, w2} and {w3, w4}. It is immediate to see that B′′ is a BALFI
for RCi. Hence, using this model it follows easily that RCi is a paraconsistent extension of
Ci which satisfies (IpE) and (cl). Another paraconsistent model for RCi defined over A16 is
the following:

z ¬z ◦z
{w1, w2} {w2, w3, w4} {w1, w3, w4}
{w1, w3} {w2, w3, w4} {w1, w2, w4}
{w1, w4} {w2, w3, w4} {w1, w2, w3}
{w2, w3} {w1, w3, w4} {w1, w2, w4}
{w2, w4} {w1, w3, w4} {w1, w2, w3}
{w3, w4} {w1, w2, w4} {w1, w2, w3}

X W4 \X W4

9We will write mbC(ϕ), RmbC(ϕ) and BI(ϕ) instead of mbC({ϕ}), RmbC({ϕ}) and BI({ϕ}), respec-
tively.
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where the cardinal of X is different to 2.10

Example 3.10 We can offer now a model of RmbC(cl) which does not satisfy axiom (cf).
Thus, consider the following BALFI B′′′ defined over the Boolean algebra A4 = ℘({w1, w2}) =
{0, a, b, 1} according to Example 2.15:

z ¬z ◦z
1 a b
a b 1
b a 1
0 1 1

Observe that B′′′ 
 cl. However, B′′′ is not a model of (cf): ¬¬0 = a 6≤ 0.

4 Limits for replacement plus paraconsistency

In [21, Theorem 3.51] some sufficient conditions were given to show that certain extensions
of bC and Ci cannot satisfy replacement while being still paraconsistent. This result shows
that there are limits, much before reaching classical logic CPL, for extending RmbC while
preserving paraconsistency. This result will be applied now in order to give two important
examples of LFIs which cannot be extended with replacement to the price of losing paracon-
sistency.

The first example to be given is, in fact, a family of 8,192 examples:

Example 4.1 (Three-valued LFIs)
Recall the family of 8Kb three-valued LFIs introduced by Marcos in an unpublished draft, and

discussed in [21, Section 3.11] and in [17, Section 5.3]. As it was observed in these references,
the schema ¬(α∧¬α) is valid in all of these logics. In addition, all these logics are models of
axioms (ci) and (cf) (see, for instance, [17, Theorem 130]). But in [21, Theorem 3.51(ii)]
it was proved that (IpE) cannot hold in any paraconsistent extension of Ci in which the
schema ¬(α ∧ ¬α) is valid. As a consequence of this, the inference rules (R¬) and (R◦)
cannot be added to any of them to the price of losing paraconsistency. Indeed, if L is any
of such three-valued logics, the corresponding logic RL obtained by adding both rules will
derive the axiom schema ◦α (the proof of this fact can be easily adapted from the one for
Theorem 3.51(ii) presented in [21]). But then, the negation ¬ is explosive in RL, by (bc1)
and (MP). This shows that these three-valued LFIs, including the well-known da Costa and
D’Ottaviano’s logic J3 (and so all of its equivalent presentations, such as LFI1, CLuN or
LPT0), as well as Sette’s logic P1, if extended by the inference rules proposed here, are no
longer paraconsistent. Of course this result is related to the one obtained in [3], which states
that for no three-valued paraconsistent logic with implication the replacement property can
hold.

10It is worth noting that with the help of the model finder Nitpick, which is part of the automated tools
integrated into Isabelle/HOL [36], we carried out many of the experiments leading to the generation of the
two models presented here.
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The second example deals with the well-known logic C1, introduced by da Costa in 1963.

Example 4.2 (da Costa’s logic C1)
In [26] da Costa introduced his famous hierarchy of paraconsistent systems Cn (for n ≥ 1),

the first systematic study on paraconsistency introduced in the literature. As discussed above,
da Costa’s approach was generalized through the notion of LFIs. The first and stronger
system in the hierarchy is C1, which is equivalent (up to language) with Cila. The logic Cila
corresponds, with the notation introduced above, to mbC({ci, cl, cf , ca∧, ca∨, ca→}). If we
consider now RmbC({ci, cl, cf , ca∧, ca∨, ca→}), which will be called RCila, then this logic
derives (ciw). Indeed, as shown in [14, Proposition 3.1.10], axiom (ciw) is derivable from

mbC plus axiom (ci). This being so, by Example 3.6 and the fact that ⊥ def
= (α ∧ ¬α) ∧

¬(α∧¬α) is a bottom formula in Cila (hence in RCila) for any α (i.e., ⊥ implies any other
formula), the connective ◦ could be eliminated from the signature of RCila, and so the logic
RCila could be defined over the signature ΣC (recall Definition 2.2). In that case, RCila
would coincide with RC1, the extension of C1 by adding the inference rule (R¬) (and where
the notion of derivation is given as in Definition 2.6). The question is to find a model of
RCila (or, equivalently, of RC1) which is still paraconsistent.

In [21, Theorem 3.51(iv)] it was proved that (IpE) cannot hold in any paraconsistent
extension of Ci in which the schema (dm): ¬(α ∧ β) → (¬α ∨ ¬β) is valid. On the other
hand, in [14, Theorem 3.6.4] it was proved that the logic obtained from mbCciw by adding
(ca∧) is equivalent to the logic obtained from mbCciw by adding the schema axiom (dm).
Since RCila derives (ciw) and (ca∧), it also derives the schema (dm). Given that RCila is
an extension of Ci which satisfies (IpE), it is not paraconsistent, by [21, Theorem 3.51(iv)].

5 Neighborhood semantics for RmbC

Despite being very useful for finding models and countermodels, as it was shown in the
previous section, BALFI semantics does not seem to produce a decision procedure for LFIs
with replacement. In this section we will introduce a particular case of BALFIs based on
powerset Boolean algebras, which are more amenable to being generated by computational
means. These structures are in fact equivalent to neighborhood frames for non-normal modal
logics, as we shall see in Section 6. Moreover, we shall prove in that Section that, with this
semantics, RmbC can be defined within the bimodal version of the minimal modal logic E
(a.k.a. classical modal logic, see [22, Definition 8.1]).

Definition 5.1 Let W be a non-empty set. A neighborhood frame for RmbC over W is a
triple F = 〈W,S¬, S◦〉 such that S¬ : ℘(W )→ ℘(W ) and S◦ : ℘(W )→ ℘(W ) are functions.
A neighborhood model for RmbC over F is a pairM = 〈F , d〉 such that F is a neighborhood
frame for RmbC over W and d : V → ℘(W ) is a (valuation) function.

Definition 5.2 Let M = 〈F , d〉 be a neighborhood model for RmbC over F = 〈W,S¬, S◦〉.
It induces a denotation function [[·]]M : For(Σ) → ℘(W ) defined recursively as follows (by
simplicity, we will write [[ϕ]] instead of [[ϕ]]M when M is clear from the context):

[[p]] = d(p), if p ∈ V;
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[[ϕ ∧ ψ]] = [[ϕ]] ∩ [[ψ]];

[[ϕ ∨ ψ]] = [[ϕ]] ∪ [[ψ]];

[[ϕ→ ψ]] = [[ϕ]]→ [[ψ]] = (W \ [[ϕ]]) ∪ [[ψ]];

[[¬ϕ]] = (W \ [[ϕ]]) ∪ S¬([[ϕ]]); and

[[◦ϕ]] = (W \ ([[ϕ]] ∩ [[¬ϕ]])) ∩ S◦([[ϕ]]) = (W \ ([[ϕ]] ∩ S¬([[ϕ]]))) ∩ S◦([[ϕ]]).

Clearly [[ϕ]] ∪ [[¬ϕ]] = W , but [[ϕ]] ∩ [[¬ϕ]] is not necessarily empty. In addition, [[ϕ]] ∩
[[¬ϕ]] ∩ [[◦ϕ]] = ∅.

Definition 5.3 Let M = 〈F , d〉 be a neighborhood model for RmbC.
(1) We say that a formula ϕ is valid (or true) in M, denoted by M 
 ϕ, if [[ϕ]] = W .
(2) We say that a formula ϕ is valid w.r.t. neighborhood models, denoted by |=NM ϕ, if
M 
 ϕ for every neighborhood model M for RmbC.
(3) The consequence relation |=NM induced by neighborhood models for RmbC is defined as
follows: Γ |=NM ϕ if either ϕ is valid w.r.t. neighborhood models for RmbC, or there exists
a finite, non-empty subset {γ1, . . . , γn} of Γ such that (γ1 ∧ (γ2 ∧ (. . .∧ (γn−1 ∧ γn) . . .)))→ ϕ
is valid w.r.t. neighborhood models for RmbC.

Cleary, Γ |=NM ϕ if either ϕ is valid w.r.t. neighborhood models for RmbC, or there
exists a finite, non-empty subset {γ1, . . . , γn} of Γ such that, for every neighborhood model
M for RmbC,

⋂n
i=1[[γi]] ⊆ [[ϕ]].

Proposition 5.4 Given a neighborhood frame F = 〈W,S¬, S◦〉 for RmbC let ¬̃, ◦̃ : ℘(W )→
℘(W ) defined as follows: ¬̃(X) = (W \ X) ∪ S¬(X) and ◦̃(X) = (W \ (X ∩ S¬(X)) ∩
S◦(X). Then BF

def
= 〈℘(W ),∩,∪,→, ¬̃, ◦̃, ∅,W 〉 is a BALFI. Moreover, if M = 〈F , d〉 is a

neighborhood model for RmbC over F = 〈W,S¬, S◦〉 then the denotation function [[·]]M is a
valuation over BF .

Proof. It is immediate from the definitions. 2

Corollary 5.5 (Soundness of RmbC w.r.t. neighborhood models)
If Γ `RmbC ϕ then Γ |=NM ϕ.

Proof. It follows from soundness of RmbC w.r.t. BALFI semantics (Theorem 2.12) and by
Proposition 5.4. 2

Proposition 5.4 suggests the following :

Definition 5.6 Let F = 〈W,S¬, S◦〉 be a neighborhood frame for RmbC. A formula ϕ is
valid in F if M 
 ϕ for every neighborhood model M = 〈F , d〉 for RmbC over F .

In order to prove completeness of RmbC w.r.t. neighborhood models, Stone’s represen-
tation theorem for Boolean algebras will be used. This important theorem states that every
Boolean algebra is isomorphic to a Boolean subalgebra of ℘(W ), for a suitable W . This
means that, given a Boolean algebra A, there exists a set W and an injective homomorphism
i : A → ℘(W ) of Boolean algebras. Note that i(a) = W if and only if a = 1.
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Theorem 5.7 (Completeness of RmbC w.r.t. neighborhood models)
If Γ |=NM ϕ then Γ `RmbC ϕ.

Proof. Let Acan be the Boolean algebra with domain Acan = For(Σ)/≡, as defined in the
proof of Theorem 2.13, and let Bcan be the corresponding expansion to Σe. Let i : Acan →
℘(W ) be an injective homomorphism of Boolean algebras, according to Stone’s theorem as
discussed above. Consider the neighborhood frame Fcan = 〈W,S¬, S◦〉 for RmbC such that
the functions S¬ and S◦ satisfy the following: S¬(i([α])) = i([¬α]), and S◦(i([α])) = i([◦α]),
for every formula α (observe that these funcions are well-defined, since every connective in
RmbC is congruential and i is injective). The values of these functions outside the image
of i are arbitrary. For instance, we can define S¬(X) = S◦(X) = ∅ if X /∈ i[Acan]. Now, let

Mcan = 〈Fcan, dcan〉 be the neighborhood model for RmbC such that dcan(p)
def
= i([p]), for

every propositional variable p.

Fact: [[α]] = i([α]), for every formula α.

The proof of the Fact will be done by induction on the complexity of the formula α. By
convenience, and as it is usually done (see, for instance, [14]), the complexity of ◦α is defined
to be stricty greater than the complexity of ¬α. The case for α atomic or α = β#γ for
# ∈ {∧,∨,→} is clear, by the very definitions and by induction hypothesis. Now, suppose
that α = ¬β. By induction hypothesis, [[β]] = i([β]). Observe that ∼[β] ≤ [¬β] in Acan
(where ∼ denotes the Boolean complement in Acan), hence W \ i([β]) = i(∼[β]) ⊆ i([¬β]).
Thus,

[[¬β]] = (W \ [[β]]) ∪ S¬([[β]]) = (W \ i([β])) ∪ S¬(i([β]))

= (W \ i([β])) ∪ i([¬β]) = i([¬β]).

Finally, let α = ◦β. Since [◦β] ≤ ∼([β] ∧ [¬β]) in Acan then i([◦β]) ⊆ W \ (i([β]) ∩ i([¬β])).
Hence, by induction hypothesis,

[[◦β]] = (W \ (i([β]) ∩ i([¬β]))) ∩ S◦(i([β])

= (W \ (i([β]) ∩ i([¬β]))) ∩ i([◦β]) = i([◦β]).

This concludes the proof of the Fact.
Because of the Fact, Mcan 
 α iff i([α]) = W iff [α] = 1 iff `RmbC α. Now, suppose that

Γ |=NM ϕ. If |=NM ϕ then, in particular, Mcan 
 ϕ and so `RmbC ϕ. From this, Γ `RmbC ϕ.
On the other hand, suppose that there exists a finite, non-empty subset {γ1, . . . , γn} of Γ
such that |=NM (γ1 ∧ (γ2 ∧ (. . . ∧ (γn−1 ∧ γn) . . .))) → ϕ. By reasoning as above, it follows
that `RmbC (γ1 ∧ (γ2 ∧ (. . . ∧ (γn−1 ∧ γn) . . .)))→ ϕ and so Γ `RmbC ϕ as well. 2
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6 RmbC is definable within the minimal bimodal modal

logic

In this section it will be shown that RmbC is definable within the bimodal version of the
minimal modal logic E, also called classical modal logic in [22, Definition 8.1]). In terms of
combination of modal logics, this bimodal logic is equivalent to the fusion (or, equivalently,
the constrained fibring by sharing the classical connectives) of E with itself.11 This means
that the minimal non-normal modal logic with two independent modalities �1 and �2, which
will be denoted by E⊕E, contains RmbC, the minimal self-extensional LFI. As we shall see,
both modalities are required for defining the two non-classical conectives ¬ and ◦. Firstly,
the definition of modal logic E will be briefly surveyed.

Definition 6.1 ([22], Definition 7.1) A minimal model is a triple N = 〈W,N, d〉 such
that W is a non-empty set and N : W → ℘(℘(W )) and d : V → ℘(W ) are functions. The
class of minimal models will we denoted by CM.

Recall the signatures Σm = {∧,∨,→,∼,�,♦} and Σbm = {∧,∨,→,∼,�1,♦1,�2,♦2}
introduced in Definition 2.2. The class of models CM induces a modal consequence relation
defined as follows:

Definition 6.2 ([22], Definition 7.2) Let N be a minimal model and w ∈ W . N is said
to satisfy a formula ϕ ∈ For(Σm) in w, denoted by |=Nw ϕ, according to the following recursive
definition (here [[ϕ]]N denotes the set {w ∈ W : |=Nw ϕ}, the denotation of ϕ in N ):

1. if p is a propositional variable then |=Nw p iff w ∈ d(p);

2. |=Nw ∼α iff 6|=Nw α;

3. |=Nw α ∧ β iff |=Nw α and |=Nw β;

4. |=Nw α ∨ β iff |=Nw α or |=Nw β;

5. |=Nw α→ β iff 6|=Nw α or |=Nw β;

6. |=Nw �α iff [[α]]N ∈ N(w);

7. |=Nw ♦α iff (W \ [[α]]N ) /∈ N(w).

A formula ϕ is true in N if [[ϕ]]N = W , and it is valid w.r.t. CM, denoted by |=CM ϕ,
if it is true in every minimal model. The degree-preserving consequence w.r.t. CM can be
defined analogously to the one for neighborhood semantics for RmbC given in Definition 5.3.
Namely, Γ |=CM ϕ if either |=CM ϕ, or there exists a finite, non-empty subset {γ1, . . . , γn} of
Γ such that |=CM (γ1 ∧ (γ2 ∧ (. . .∧ (γn−1 ∧ γn) . . .)))→ ϕ. The latter is equivalent to say that⋂n
i=1[[γi]]

N ⊆ [[ϕ]]N .

11For the basic notions of combining logics the reader can consult [12, 16].
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Definition 6.3 ([22], Definition 8.1) The minimal modal logic (or classical modal logic)
E is defined by means of a Hilbert calculus over the signature Σm obtained by adding to the
Hilbert calculus for CPL+ (recall Definition 2.3) the following axiom schemas and rules:

α ∨ ∼α (PEM)

α→
(
∼α→ β

)
(exp)

♦α↔ ∼�∼α (AxMod)

α↔ β

�α↔ �β
(R�)

The notion of derivations in E is defined as for RmbC, recall Definition 2.6. Note that
(PEM) and (exp), together with CPL+, guarantee that E is an expansion of propositional
classical logic by adding the modalities � and ♦ which are interdefinable as usual, and such
that both are congruential. That is, E satisfies replacement.

Theorem 6.4 ([22], Section 9.2) The logic E is sound and complete w.r.t. the semantics
in CM, namely: Γ `E ϕ iff Γ |=CM ϕ.

Definition 6.5 (Minimal bimodal logic) The minimal bimodal logic E⊕E is defined by
means of a Hilbert calculus over signature Σbm obtained by adding to the Hilbert calculus for
CPL+ the following axiom schemas and rules, for i = 1, 2:

α ∨ ∼α (PEM)

α→
(
∼α→ β

)
(exp)

♦iα↔ ∼�i∼α (AxModi)

α↔ β

�iα↔ �iβ
(R�i)

Observe that E ⊕ E is obtained from E by ‘duplicating’ the modalities. There is no
relationship between �1 and �2 and so ♦1 and ♦2 are also independent.

The semantics of E⊕E is given by the class C ′M of structures of the formN = 〈W,N1, N2, d〉
such that W is a non-empty set and Ni : W → ℘(℘(W )) (for i = 1, 2) and d : V → ℘(W ) are
functions. The denotation [[ϕ]]N of a formula ϕ ∈ For(Σbm) in N is defined by an obvious
adaptation of Definition 6.2 to For(Σbm). By defining the consequence relations `E⊕E and
|=C′M in analogy to the ones for E, it is straightforward to adapt the proof of soundness and
completeness of E to the bimodal case:

Theorem 6.6 The logic E⊕ E is sound and complete w.r.t. the semantics in C ′M, namely:
Γ `E⊕E ϕ iff Γ |=C′M ϕ.
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From the point of view of of combining logics, E ⊕ E is the fusion (or, equivalently, the
constrained fibring by sharing the classical connectives) of E with itself.12

Finally, it will be shown that RmbC can be defined inside E⊕E by means of the following
abbreviations:

¬ϕ def
= ϕ→ �1ϕ and ◦ϕ def

= ∼(ϕ ∧�1ϕ) ∧�2ϕ.

In order to see this, observe that any function N : W → ℘(℘(W )) induces a unique function
S : ℘(W ) → ℘(W ) given by S(X) = {w ∈ W : X ∈ N(w)}. Conversely, any function
S : ℘(W ) → ℘(W ) induces a function N : W → ℘(℘(W )) given by N(w) = {X ⊆ W :
w ∈ S(X)}. Both functions are inverses of each other. From this, a structure (or minimal
model) N = 〈W,N1, N2, d〉 for E ⊕ E can be transformed into a neighborhood model M =
〈W,S¬, S◦, d〉 for RmbC such that S¬ and S◦ are obtained, respectively, from the functions
N1 and N2 as indicated above. Observe that

w ∈ [[�1ϕ]]N iff |=Nw �1ϕ iff [[ϕ]]N ∈ N1(w) iff w ∈ S¬([[ϕ]]N ).

That is, S¬([[ϕ]]N ) = [[�1ϕ]]N . Analogously, S◦([[ϕ]]N ) = [[�2ϕ]]N . From this, it is easy to
prove by induction on the complexity of the formula ϕ ∈ For(Σ) that [[ϕ]]M = [[ϕt]]N , where
ϕt is the formula over the signature Σbm obtained from ϕ by replacing any ocurrence of the
connectives ¬ and ◦ by the corresponding abbreviations, as indicated above. Conversely,
any neighborhood model M = 〈W,S¬, S◦, d〉 for RmbC gives origin to a unique minimal
model N = 〈W,N1, N2, d〉 for E⊕E such that [[ϕ]]M = [[ϕt]]N for every formula ϕ ∈ For(Σ).
That is, the class of minimal models for E⊕E coincides (up to presentation) with the class
of neighborhood models for RmbC, and both classes validate the same formulas over the
signature Σ of RmbC. From this, Corollary 5.5, Theorem 5.7 and Theorem 6.6 we show that
RmbC is definable within E⊕ E:

Theorem 6.7 The logic RmbC is definable within E⊕E, in the following sense: Γ `RmbC ϕ
iff Γt `E⊕E ϕt for every Γ ∪ {ϕ} ⊆ For(Σ), where Γt = {ψt : ψ ∈ Γ}.

The main result obtained in this section, namely Theorem 6.7, establishes an interesting
relation between non-normal modal logics and paraconsistent logics. Connections between
modalities and paraconsistency are well-known in the literature. In [7, 8], for instance,
Béziau proposes to consider a paraconsistent negation defined in the modal system S5 as
¬ϕ def

= ♦∼ϕ. This way of defining a paraconsistent negation inside a modal logic has been
already regarded in 1987 in [27], when a Kripke-style semantics was proposed for Sette’s three-
valued paraconsistent logic P1 based on Kripke frames for the modal logic T. This result
was improved in [20], by showing that P1 can be interpreted in T by means of Kripke frames
having at most two worlds. Moreover, in 1982 Segerberg already suggested in [38, p. 128]
the possibility of studying the (unexplored at that time) modal notion of ‘ϕ is non-necesary’,
namely ∼�ϕ (which is of course equivalent in most modal systems to ♦∼ϕ). Several authors
have explored the possibility of defining such paraconsistent negation in other modal logics
such as B [4], S4 [25] and even weaker modal systems [11]. In such context, Marcos proposes
in [33], besides the paraconsistent negation defined as above, the definition of a consistency

connective within a modal system by means of the formula ◦ϕ def
= ϕ → �ϕ (observe the

12See [12, 16].
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similarity with the definition of the paraconsistent negation within E ⊕ E). In that paper
it is shown that any normal modal logic in which the schema ϕ → �ϕ is not valid gives
origin to an LFI in this way. Moreover, it is shown that it is also possible to start from a
“modal LFI”, over the signature Σ of LFIs, in which the paraconsistent negation and the
consistency connective enjoy a Kripke-style semantics, defining the modal necessity operator
by means of the formula �ϕ

def
= ∼¬ϕ (where ∼ is the strong negation defined as in mbC,

recall Example 3.6). This shows that ‘reasonable’ normal modal logics and LFIs are two
faces of the same coin. Our Theorem 6.7 partially extends this relationship to the realm
of non-normal modal logics. The result we have obtained is partial, in the sense that the
minimum bimodal non-normal modal logics gives origin to RmbC, but the converse does
not seem to be true. Namely, starting from RmbC it is not obvious that the modalities �1

and �2 could be defined by means of formulas in the signature Σ. This topic deserves further
investigation.

7 Neighborhood models for axiomatic extensions of

RmbC

Recall the axioms considered in Definition 3.1. Because of the limit to paraconsistency
imposed by RCila (recall Example 4.2), in this section Ax will denote a set formed by one
or more of the axiom schemas introduced in Definition 3.1 with the exception of (ca#) for
# ∈ {∧,∨,→}. Let NM(Ax) the class of neighborhood frames in which every schema in
Ax is valid. Define the consequence relation |=NM(Ax) in the obvious way. By adapting the
previous results it is easy to prove the following:

Theorem 7.1 (Soundness and completeness of RmbC(Ax) w.r.t. NM(Ax))
Let Γ ∪ {ϕ} ⊆ For(Σ). Then: Γ `RmbC(Ax) ϕ if and only if Γ |=NM(Ax) ϕ.

The class of neighborhood frames which validates each of the axioms of Ax can be easily
characterized:

Proposition 7.2 Let F be a neighborhood frame for RmbC.
Then:

(1) (ciw) is valid in F iff W \ (X ∩ S¬(X)) ⊆ S◦(X), for every X ⊆ W ;

(2) (ci) is valid in F iff W \ (X ∩ S¬(X)) ⊆ S◦(X) \ S¬((W \ (X ∩ S¬(X))) ∩ S◦(X)), for
every X ⊆ W ;

(3) (cl) is valid in F iff S¬(X ∩ S¬(X)) ⊆ W \ (X ∩ S¬(X)) ⊆ S◦(X), for every X ⊆ W ;

(4) (cf) is valid in F iff (X \ S¬(X)) ∪ S¬(X \ S¬(X)) ⊆ X, for every X ⊆ W ;

(5) (ce) is valid in F iff X ⊆ (X \ S¬(X)) ∪ S¬(X \ S¬(X)), for every X ⊆ W .

Recall the minimal bimodal logic E⊕E studied in Section 6. If ϕ is a formula in For(Σbm)
then E ⊕ E(ϕ) will denote the extension of E ⊕ E by adding ϕ as an axiom schema. Let
C ′M(ϕ) be the class of structures (i.e., minimal models) N for E⊕ E such that ϕ is valid in
N (as an axiom schema). Theorem 6.6 can be extended to prove that the logic E⊕ E(ϕ) is
sound and complete w.r.t. the semantics in C ′M(ϕ). From this, and taking into account the
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representability of RmbC within E⊕E (Theorem 6.7) and the equivalence between minimal
models for E⊕E and neighborhood models for RmbC discussed right before Theorem 6.7,
Proposition 7.2 can be recast as follows:

Corollary 7.3
(1) RmbC(ciw) is definable in E⊕ E(∼(ϕ ∧�1ϕ)→ �2ϕ);

(2) RmbC(ci) is definable in E⊕ E(∼(ϕ ∧�1ϕ)→ (�2ϕ ∧ ∼�1(∼(ϕ ∧�1ϕ) ∧�2ϕ))) or,
equivalenty, in E⊕ E((�2ϕ→ �1(∼(ϕ ∧�1ϕ) ∧�2ϕ))→ (ϕ ∧�1ϕ));

(3) RmbC(cl) is definable in E⊕E((�1(ϕ∧�1ϕ)→ ∼(ϕ∧�1ϕ))∧ (∼(ϕ∧�1ϕ)→ �2ϕ));

(4) RmbC(cf) is definable in E⊕ E(((ϕ ∧ ∼�1ϕ) ∨�1(ϕ ∧ ∼�1ϕ))→ ϕ);

(5) RmbC(ce) is definable in E⊕ E(ϕ→ ((ϕ ∧ ∼�1ϕ) ∨�1(ϕ ∧ ∼�1ϕ))).

8 Truth-preserving (or global) semantics

As it was mentioned in Section 2, the BALFI semantics for RmbC, as well as its neigh-
borhood semantics presented in Section 5, is degree-preserving instead of truth-preserving
(using the terminology from [10]). This requires adapting, in a coherent way, the usual defi-
nition of derivation from premises in a Hilbert calculus, recall Definition 2.6. This is exactly
the methodology adopted with most normal modal logics in which the semantics is local,
thus recovering the deduction metatheorem. But it is also possible to consider global (or
truth-preserving) semantics, as it is usually done with algebraic semantics. This leads us to
consider the logic RmbC∗, which is defined by the same Hilbert calculus than the one for
RmbC, but now derivations from premises in RmbC∗ are defined as usual in Hilbert calculi.

Definition 8.1 The logic RmbC∗ is defined by the same Hilbert calculus over signature Σ
than RmbC, that is, by adding to mbC the inference rules (R¬) and (R◦).

Definition 8.2 (Derivations in RmbC∗) We say that a formula ϕ is derivable in RmbC∗

from Γ, and we write Γ `RmbC∗ ϕ, if there exists a finite sequence of formulas ϕ1 . . . ϕn such
that ϕn is ϕ and, for every 1 ≤ i ≤ n, either ϕi is an instance of an axiom of RmbC, or
ϕi ∈ Γ, or ϕi is the consequence of some inference rule of RmbC whose premises appear in
the sequence ϕ1 . . . ϕi−1.

Now, the degree-preserving BALFI semantics for RmbC given in Definition 2.10 must
be replaced by a truth-preserving consequence relation for RmbC∗:

Definition 8.3 (Truth-preserving BALFI semantics)
Let Γ∪{ϕ} be a set of formulas in For(Θ). We say that ϕ is a global (or truth-preserving)

consequence of Γ in BI, denoted by Γ |=g
BI ϕ, if either ϕ is valid in BI, or there exists a finite,

non-empty subset {γ1, . . . , γn} of Γ such that, for every BALFI B and every valuation v over
it, if v(γi) = 1 for every 1 ≤ i ≤ n then v(ϕ) = 1.

The proof of the following result follows by an easy adaptation of the proof of soundness
and completeness of RmbC w.r.t. BALFI semantics:
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Theorem 8.4 (Soundness and completeness of RmbC∗ w.r.t. truth-preserving
semantics) For every Γ ∪ {ϕ} ⊆ For(Θ): Γ `RmbC∗ ϕ iff Γ |=g

BI ϕ.

Remark 8.5 The definition of truth-preserving semantics restricts the number of paracon-
sistent models for RmbC∗. Indeed, let p and q be two different propositional variables. In
order to show that p,¬p 6|=g

BI q, there must be a BALFI B and a valuation v over B such
that v(p) = v(¬p) = 1 but v(q) 6= 1. That is, B must be such that ¬1 = 1. Since ¬0 = 1, it
follows that ¬¬0 = ¬1 = 1 6≤ 0 in B. This shows that there is no paraconsistent extension
of RmbC∗ which satisfies axiom (cf). In particular, there is no paraconsistent extension of
RmbC∗ satisfying axioms (cf) and (ci). Thus, the open problems solved in Examples 3.8
and 3.9 have a negative answer in this setting. This shows that the truth-preserving approach
is much more restricted than the degree-preserving approach in terms of paraconsistency.

In any case, there are still paraconsistent BALFIs for the truth-preserving logic RmbC∗

(namely, the ones such that ¬1 = 1). The situation is quite different in the realm of fuzzy
logics: in [23, 28], among others, it was studied the degree-preserving companion of sev-
eral fuzzy logics, showing that their usual truth-preserving consequence relations are never
paraconsistent.

The distinction between local and global reasoning has been studied by A. Sernadas and
his collaborators (for a brief exposition see, for instance, [16], Section 2.3 in Chapter 2).
From the proof-theoretical perspective, the Hilbert calculi (called Hilbert calculi with careful
reasoning in [16, Definition 2.3.1]) are of the form H = 〈Θ, Rg, Rl〉 where Θ is a propositional
signature and Rg ∪ Rl is a set of inference rules such that Rl ⊆ Rg and no element of
Rg \Rl is an axiom schema. Elements of Rg and Rl are called global and local inference rules,
respectively. Given Γ ∪ {ϕ} ⊆ For(Θ), ϕ is globally derivable from Γ in H, written Γ `gH ϕ,
if ϕ is derivable from Γ in the Hilbert calculus 〈Θ, Rg〉 by using the standard definition (see
Definition 8.2). On the other hand, in local derivations, besides using the local rules and
the premises, global rules can be used provided that the premises are (global) theorems. In
formal terms, ϕ is locally derivable from Γ in H, written Γ `lH ϕ, if there exists a finite
sequence of formulas ϕ1 . . . ϕn such that ϕn is ϕ and, for every 1 ≤ i ≤ n, either ϕi ∈ Γ, or
`gH ϕi, or ϕi is the consequence of some inference rule of Rl whose premises appear in the
sequence ϕ1 . . . ϕi−1 (observe that this includes the case when ϕi is an instance of an axiom
in Rl). Obviously, local derivations are global derivations, and local and global theorems
coincide.

For instance, typically a Hilbert calculus for a (normal) modal logic contains, as local
inference rules, (MP) and the axiom schemas, while the set of global rules is (Rl) plus
the Necessitation rule. As we have seen in Section 6, the same is the case for minimal
non-normal modal logics, but with Replacement for � instead of Necessitation. In this
case, the deduction metatheorem only holds for local derivations. Note that, by definition,
derivations in RmbC∗ lie in the scope of global derivations, while derivations in RmbC
are local derivations. Hence, the extension of mbC with replacement can be recast as a
Hilbert calculus with careful reasoning RmbC+ = 〈Σ, Rg, Rl〉 such that Rl contains the
axiom schemas of mbC plus (MP), and Rg contains, besides this, the rules (R¬) and (R◦).
Of course the same can be done with the axiomatic extensions of mbC (and so of RmbC)
considered in Section 3.
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At the semantical level, local derivations correspond to degree-preserving semantics w.r.t.
a given class M of algebras, while global derivations correspond to truth-preserving semantics
w.r.t. the class M.

The presentation of LFIs with replacement as Hilbert calculi with careful reasoning (as
the case of RmbC+) can be useful in order to combine these logics with (standard) normal
modal logics by algebraic fibring: in this case, completeness of the fibring of the corresponding
Hilbert calculi w.r.t. a semantics given by classes of suitable expansions of Boolean algebras
would be immediate, according to the results stated in [16, Chapter 2]. By considering, as
done in [41], classes M of powerset algebras (i.e., with domain of the form ℘(W ) for a non-
empty set W ) induced by Kripke models (which can be generalized to neighborhood models),
then the fibring of, say, RmbC+ with a given modal logic would simply be a minimal logic
E with three primitive modalities (�, �1, and �2), from which we derive the following

modalities: ♦ϕ
def
= ∼�∼ϕ, ¬ϕ def

= ϕ→ �1ϕ, and ◦ϕ def
= ∼(ϕ ∧�1ϕ) ∧�2ϕ. This opens

interesting opportunities for future research.

9 Extension to first-order logics

The next step is extending RmbC, as well as its axiomatic extensions analyzed above, to
first-order languages. In order to do this, we will adapt our previous approach to quantified
LFIs, see [18], [14, Chapter 7], [24]) to this framework. To begin with, the first-order version
RQmbC of RmbC will be introduced.

Definition 9.1 Let V ar = {v1, v2, . . .} be a denumerable set of individual variables. A first-
order signature Ω is given as follows:

- a set C of individual constants;

- for each n ≥ 1, a set Fn of function symbols of arity n,

- for each n ≥ 1, a nonempty set Pn of predicate symbols of arity n.

The sets of terms and formulas generated by a signature Ω (with underlying propositional
signature Σ) will be denoted by Ter(Ω) and For1(Ω), respectively. The set of closed formulas
(or sentences) and the set of closed terms (terms without variables) over Ω will be denoted
by Sen(Ω) and CTer(Ω), respectively. The formula obtained from a given formula ϕ by
substituting every free occurrence of a variable x by a term t will be denoted by ϕ[x/t].

Definition 9.2 Let Ω be a first-order signature. The logic RQmbC is obtained from RmbC
by adding the following axioms and rules:

Axiom Schemas:
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(Ax∃) ϕ[x/t]→ ∃xϕ, if t is a term free for x in ϕ

(Ax∀) ∀xϕ→ ϕ[x/t], if t is a term free for x in ϕ

Inference rules:

(∃-In)
ϕ→ ψ

∃xϕ→ ψ
, where x does not occur free in ψ

(∀-In)
ϕ→ ψ

ϕ→ ∀xψ
, where x does not occur free in ϕ

The consequence relation of RQmbC, adapted from the one for RmbC (recall Defini-
tion 2.6) will be denoted by `RQmbC.

Remarks 9.3
(1) It is worth mentioning that the only difference between QmbC and RQmbC is that the
latter contains the inference rules (R¬) and (R◦), which are not present in the former (besides
the different notions of derivation from premisses adopted in QmbC and in RQmbC).
(2) Recall that a Hilbert calculus with careful reasoning for RmbC called RmbC+ was defined
at the end of Section 8. This can extended to RQmbC by considering the Hilbert calculus
with careful reasoning RQmbC+ over a given first-order signature Ω, such that Rl contains
the axiom schemas of QmbC (over Ω) plus (MP), and Rg contains, besides this, the rules
(R¬), (R◦), (∃-In) and (∀-In) (over Ω).

10 BALFI semantics for RQmbC

In [24] a semantics of first-order structures based on swap structures over complete Boolean
algebras was obtained for QmbC, a first-order version of mbC proposed in [18]. Since
RQmbC is self-extensional, that semantics can be drastically simplified, and so the non-de-
terministic swap structures will be replaced by BALFIs, which are ordinary algebras. From
now on, only BALFIs over complete Boolean algebras will be considered.

Definition 10.1 A complete BALFI is a BALFI such that its reduct to ΣBA is a complete
Boolean algebra.

Definition 10.2 Let B be a complete BALFI, and let Ω be a first-order signature. A (first-
order) structure over B and Ω (or a RQmbC-structure over Ω) is a pair A = 〈U, IA〉 such
that U is a nonempty set (the domain or universe of the structure) and IA is an interpretation
function which assigns:

- an element IA(c) of U to each individual constant c ∈ C;

- a function IA(f) : Un → U to each function symbol f of arity n;

- a function IA(P ) : Un → A to each predicate symbol P of arity n.
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Notation 10.3 From now on, we will write cA, fA and PA instead of IA(c), IA(f) and IA(P )
to denote the interpretation of an individual constant symbol c, a function symbol f and a
predicate symbol P , respectively.

Definition 10.4 Given a structure A over B and Ω, an assignment over A is any function
µ : V ar → U .

Definition 10.5 Given a structure A over B and Ω, and given an assignment µ : V ar → U
we define recursively, for each term t, an element [[t]]Aµ in U as follows:

- [[c]]Aµ = cA if c is an individual constant;

- [[x]]Aµ = µ(x) if x is a variable;

- [[f(t1, . . . , tn)]]Aµ = fA([[t1]]Aµ , . . . , [[tn]]Aµ) if f is a function symbol of arity n and t1, . . . , tn
are terms.

Definition 10.6 Let A be a structure over B and Ω. The diagram language of A is the set of
formulas For1(ΩU), where ΩU is the signature obtained from Ω by adding, for each element
u ∈ U , a new individual constant ū.

Definition 10.7 The structure Â = 〈U, IÂ〉 over ΩU is the structure A over Ω extended by
IÂ(ū) = u for every u ∈ U .

It is worth noting that sÂ = sA whenever s is a symbol (individual constant, function symbol
or predicate symbol) of Ω.

Notation 10.8 The set of sentences or closed formulas (that is, formulas without free vari-
ables) of the diagram language For1(ΩU) is denoted by Sen(ΩU), and the set of terms and of
closed terms over ΩU will be denoted by Ter(ΩU) and CTer(ΩU), respectively. If t is a closed
term we can write [[t]]A instead of [[t]]Aµ , for any assignment µ, since it does not depend on µ.

Definition 10.9 (RQmbC interpretation maps) Let B be a complete BALFI, and let
A be a structure over B and Ω. The interpretation map for RQmbC over A and B is a
function [[·]]A : Sen(ΩU)→ A satisfying the following clauses:

(i) [[P (t1, . . . , tn)]]A = PA([[t1]]Â, . . . , [[tn]]Â), if P (t1, . . . , tn) is atomic;

(ii) [[#ϕ]]A = #[[ϕ]]A, for every # ∈ {¬, ◦};

(iii) [[ϕ#ψ]]A = [[ϕ]]A # [[ψ]]A, for every # ∈ {∧,∨,→};

(iv) [[∀xϕ]]A =
∧
u∈U [[ϕ[x/ū]]]A;

(v) [[∃xϕ]]A =
∨
u∈U [[ϕ[x/ū]]]A.

Recall the notation stated in Definition 10.6. The interpretation map can be extended to
arbitrary formulas as follows:
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Definition 10.10 Let B be a complete BALFI, and let A be a structure over B and Ω.
Given an assignment µ over A, the extended interpretation map [[·]]Aµ : For1(ΩU) → A is

given by [[ϕ]]Aµ = [[ϕ[x1/µ(x1), . . . , xn/µ(xn)]]]A, provided that the free variables of ϕ occur in
{x1, . . . , xn}.

For every u ∈ U and every assignment µ, let µxu be the assignment such that µxu(x) = u
and µxu(y) = µ(y) if y 6= x. Then, it is immediate to see that [[ϕ]]Aµxu = [[ϕ[x/ū]]]Aµ , for every
formula ϕ.

Definition 10.11 Let B be a complete BALFI, and let A be a structure over B and Ω.
(1) Given a formula ϕ in For1(ΩU), ϕ is said to be valid in (A,B), denoted by |=(A,B) ϕ, if
[[ϕ]]Aµ = 1, for every assignment µ.
(2) Given a set of formulas Γ∪{ϕ} ⊆ For1(ΩU), ϕ is said to be a semantical consequence of
Γ w.r.t. (A,B), denoted by Γ |=(A,B) ϕ, if either ϕ is valid in (A,B), or there exists a finite,
non-empty subset {γ1, . . . , γn} of Γ such that the formula (γ1∧(γ2∧(. . .∧(γn−1∧γn) . . .)))→ ϕ
is valid in (A,B).

Definition 10.12 (First-order degree-preserving BALFI semantics) Let Γ ∪ {ϕ} ⊆
For1(Ω) be a set of formulas. Then ϕ is said to be a semantical consequence of Γ in RQmbC
w.r.t. BALFIs, denoted by Γ |=RQmbC ϕ, if Γ |=(A,B) ϕ for every pair (A,B).

As in the case of RmbC, given that RQmbC uses local reasoning, it satisfies the deduc-
tion metatheorem without any restrictions. This is different to what happens with QmbC,
where this metatheorem holds with the same restrictions than in first-order classical logic.

Theorem 10.13 (Deduction Metatheorem for RQmbC)
Γ, ϕ `RQmbC ψ if and only if Γ `RQmbC ϕ→ ψ.

In order to prove the soundness of RQmbC w.r.t. BALFI semantics, it is necessary to
state an important result:

Theorem 10.14 (Substitution Lemma) Let B be a complete BALFI, A a structure over

B and Ω, and µ an assignment over A. If t is a term free for z in ϕ and b = [[t]]Âµ , then
[[ϕ[z/t]]]Aµ = [[ϕ[z/b̄]]]Aµ .

Proof. It is proved by induction on the complexity of ϕ. 2

Theorem 10.15 (Soundness of RQmbC w.r.t. BALFIs)
For every set Γ ∪ {ϕ} ⊆ For1(Ω): Γ `RQmbC ϕ implies that Γ |=RQmbC ϕ.

Proof. It will be proven by extending the proof of soundness of RmbC w.r.t. BALFI
semantics (Theorem 2.12). Thus, the only cases required to be analyzed are the new axioms
and inference rules. By the very definitions, and taking into account Theorem 10.14, it
is immediate to see that axioms (Ax∃) and (Ax∀) are valid in any (A,B). With respect
to (∃-In), suppose that α → β is valid in a given (A,B), where the variable x does not
occur free in β. Then [[α]]Aµ ≤ [[β]]Aµ for every assignment µ. In particular, for every u ∈ U ,
[[α]]Aµxu ≤ [[β]]Aµxu = [[β]]Aµ , since x is not free in β. But then: [[∃xα]]Aµ =

∨
u∈U [[α[x/ū]]]Aµ =∨

u∈U [[α]]Aµxu ≤ [[β]]Aµ . Hence, ∃xα → β is valid in (A,B). The case for (∀-In) is proved
analogously. 2
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11 Completeness of RQmbC w.r.t. BALFI semantics

This section is devoted to prove the completeness of RQmbC w.r.t. BALFI semantics. The
proof will be an adaptation to the completeness proof for QmbC w.r.t. swap structures
semantics given in [24].

Definition 11.1 Consider a theory ∆ ⊆ For1(Ω) and a nonempty set C of constants of the
signature Ω. Then, ∆ is called a C-Henkin theory in RQmbC if it satisfies the following:
for every formula ϕ with (at most) a free variable x, there exists a constant c in C such that
∆ `RQmbC ∃xϕ→ ϕ[x/c].

Remark 11.2 As observed in [24], it is easy to show that, if ∆ is a C-Henkin theory in
QmbC and ϕ is a formula with (at most) a free variable x then there is a constant c in C
such that ∆ `QmbC ϕ[x/c]→ ∀xϕ. Of course the same result holds for RQmbC.

Definition 11.3 Let ΩC be the signature obtained from Ω by adding a set C of new individual
constants. The consequence relation `CRQmbC is the consequence relation of RQmbC over
the signature ΩC.

Recall that, given a Tarskian and finitary logic L = 〈For,`〉 (where For is the set of
formulas of L), and given a set Γ ∪ {ϕ} ⊆ For, the set Γ is said to be maximally non-trivial
with respect to ϕ in L if the following holds: (i) Γ 0 ϕ, and (ii) Γ, ψ ` ϕ for every ψ /∈ Γ.
By straightforwardly adapting [24, Proposition 8.4] from QmbC to RQmbC, we obtain the
following:

Proposition 11.4 Let Γ ∪ {ϕ} ⊆ Sen(Ω) such that Γ 0RQmbC ϕ. Then, there exists a set
of formulas ∆ ⊆ For1(ΩC), for some nonempty set C of new individual constants, such that
Γ ⊆ ∆, ∆ is a C-Henkin theory in RQmbC and, in addition, ∆ is maximally non-trivial
with respect to ϕ in RQmbC.

Definition 11.5 Consider a set ∆ ⊆ For1(Ω) which is non-trivial in RQmbC, that is:
there is some formula ϕ in For1(Ω) such that ∆ 0RQmbC ϕ. Let ≡∆ ⊆ For1(Ω)2 be the
relation in For1(Ω) defined as follows: α ≡∆ β iff ∆ `RQmbC α↔ β.

By adapting the proof of Theorem 2.13 it follows that ≡∆ is an equivalence relation
which induces a Boolean algebra A∆

def
= 〈A∆,∧,∨,→, 0∆, 1∆〉, where A∆

def
= For1(Ω)/≡∆

,

[α]∆#[β]∆
def
= [α#β]∆ for any # ∈ {∧,∨,→}, 0∆

def
= [ϕ∧(¬ϕ∧◦ϕ)]∆ and 1∆

def
= [ϕ∨¬ϕ]∆.

Moreover, by defining #[α]∆
def
= [#α]∆ for any # ∈ {¬, ◦} we obtain a BALFI denoted by

B∆.
The construction of the canonical model for RQmbC w.r.t. ∆ requires a complete

BALFI, hence the Boolean algebra A∆ must be completed. Recall13 that a Boolean algebra
A′ is a completion of a Boolean algebra A if: (1) A′ is complete, and (2) A′ includes A as
a dense subalgebra (that is: every element in A′ is the supremum, in A′, of some subset of
A). From this, A′ preserves all the existing infima and suprema in A. In formal terms: there

13See, for instance, [29, Chapter 25].
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exists a monomorphism of Boolean algebras (therefore an injective mapping) ∗ : A → A′
such that ∗(

∨
AX) =

∨
A′ ∗[X] for every X ⊆ A such that the supremum

∨
AX exists, where

∗[X] = {∗(a) : a ∈ X}. Analogously, ∗(
∧
AX) =

∧
A′ ∗[X] for every X ⊆ A such that

the infimum
∧
AX exists. By the well-known results obtained independently by MacNeille

and Tarski, it follows that every Boolean algebra has a completion; moreover, the completion
is unique up to isomorphisms. Based on this, let CA∆ be the completion of A∆ and let
∗ : A∆ → CA∆ be the associated monomorphism.

Definition 11.6 Let CA∆ be the complete Boolean algebra defined as above. The canonical
BALFI for RQmbC over ∆, denoted by B∆, is obtained from CA∆ by adding the unary
operators ¬ and ◦ defined as follows: ¬b = ∗(¬a) if b = ∗(a), and ¬b = ∼b if b /∈ ∗[A∆];
◦b = ∗(◦a) if b = ∗(a), and ◦b = 1 if b /∈ ∗[A∆].

Proposition 11.7 The operations over B∆ are well-defined, and B∆ is a complete BALFI
such that ∗([α]∆) = 1 iff ∆ `RQmbC α.

Proof. Since ∗[A∆] is a subalgebra of CA∆, b /∈ ∗[A∆] iff ∼b /∈ ∗[A∆]. On the other hand, ∗
is injective. This shows that ¬ and ◦ are well-defined. The rest of the proof is obvious from
the definitions. 2

Definition 11.8 (Canonical Structure) Let Ω be a signature with some individual constant.
Let ∆ ⊆ For1(Ω) be non-trivial in RQmbC, let B∆ be as in Definition 11.6, and let
U = CTer(Ω). The canonical structure induced by ∆ is the structure A∆ = 〈U, IA∆

〉 over
B∆ and Ω such that:

- cA∆ = c, for each individual constant c;

- fA∆ : Un → U is such that fA∆(t1, . . . , tn) = f(t1, . . . , tn), for each function symbol f
of arity n;

- PA∆(t1, . . . , tn) = ∗([P (t1, . . . , tn)]∆), for each predicate symbol P of arity n.

Definition 11.9 Let (·). : (Ter(ΩU)∪For1(ΩU))→ (Ter(Ω)∪For1(Ω)) be the mapping such
that ( s ). is the expression obtained from s by substituting every occurrence of a constant t̄
by the term t itself, for t ∈ CTer(Ω).

Lemma 11.10 Let ∆ ⊆ For1(Ω) be a set of formulas over a signature Ω such that ∆ is a
C-Henkin theory in RQmbC for a nonempty set C of individual constants of Ω, and ∆ is
maximally non-trivial with respect to ϕ in RQmbC, for some sentence ϕ. Then, for every
formula ψ(x) with (at most) a free variable x it holds:

(1) [∀xψ]∆ =
∧
A∆
{[ψ[x/t]]∆ : t ∈ CTer(Ω)}, where

∧
A∆

denotes an existing infimum in
the Boolean algebra A∆;

(2) [∃xψ]∆ =
∨
A∆
{[ψ[x/t]]∆ : t ∈ CTer(Ω)}, where

∨
A∆

denotes an existing supremum in
the Boolean algebra A∆.
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Proof.
(1) By definition, and by the rules from CPL+, [α]∆ ≤ [β]∆ in A∆ iff ∆ `RQmbC α → β.
Let ψ(x) be a formula with (at most) a free variable x. Then [∀xψ]∆ ≤ [ψ[x/t]]∆ for
every t ∈ CTer(Ω), by (Ax∀). Let β be a formula such that [β]∆ ≤ [ψ[x/t]]∆ for every
t ∈ CTer(Ω). By Remark 11.2 and the definition of order in A∆, there is a constant c in C
such that [ψ[x/c]]∆ ≤ [∀xψ]∆. Since [β]∆ ≤ [ψ[x/c]]∆, it follows that [β]∆ ≤ [∀xψ]∆. This
shows that [∀xψ]∆ =

∧
A∆
{[ψ[x/t]]∆ : t ∈ CTer(Ω)}. Item (2) is proved analogously. 2

Proposition 11.11 Let ∆ ⊆ For1(Ω) be as in Lemma 11.10. Then, the interpretation map
[[·]]A∆ : Sen(ΩU) → CA∆ is such that [[ψ]]A∆ = ∗([(ψ).]∆) for every sentence ψ in Sen(ΩU).
Moreover, [[ψ]]A∆ = 1∆ iff ∆ `RQmbC (ψ).. In particular, [[ψ]]A∆ = 1∆ iff ∆ `RQmbC ψ for
every ψ ∈ Sen(Ω).

Proof. The proof is done by induction on the complexity of the sentence ψ in Sen(ΩU). If

ψ = P (t1, . . . , tn) is atomic then, by using Definition 10.9, the fact that [[t]]Â∆ = (t). for every
t ∈ CTer(ΩU), and Definition 11.8, we have:

[[ψ]]A∆ = PA∆([[t1]]Â∆ , . . . , [[tn]]Â∆) = PA∆((t1)., . . . , (tn).) = ∗([(ψ).]∆).

If ψ = #β for # ∈ {¬, ◦} then, by Definition 10.9 and by induction hypothesis,

[[ψ]]A∆ = #[[β]]A∆ = #(∗([(β).]∆)) = ∗([(#β).]∆).

If ψ = α#β for # ∈ {∧,∨,→}, the proof is analogous.

If ψ = ∀xβ then, by Lemma 11.10 and using that U = CTer(Ω), [∀xβ]∆ =
∧
A∆
{[β[x/t]]∆ :

t ∈ U} and so ∗([∀xβ]∆) =
∧
CA∆
{∗([β[x/t]]∆) : t ∈ U}. Then, by Definition 10.9 and by

induction hypothesis:

[[∀xβ]]A∆ =
∧
t∈U

[[β[x/t̄]]]A∆ =
∧
t∈U

∗([(β[x/t̄]).]∆) = ∗([(∀xβ).]∆).

If ψ = ∃xβ, the proof is analogous to the previous case.
This shows that [[ψ]]A∆ = ∗([(ψ).]∆) for every sentence ψ. The rest of the proof follows

by Proposition 11.7. 2

Theorem 11.12 (Completeness of RQmbC w.r.t. BALFI semantics)
For every Γ ∪ {ϕ} ⊆ Sen(Ω): if Γ |=RQmbC ϕ then Γ `RQmbC ϕ.

Proof. Suppose that Γ∪{ϕ} ⊆ Sen(Ω) is such that Γ 0RQmbC ϕ. By Proposition 11.4, there
exists a C-Henkin theory ∆ over ΩC in RQmbC, for some nonempty set C of new individual
constants, such that Γ ⊆ ∆ and, in addition, ∆ is maximally non-trivial with respect to
ϕ in RQmbC. Consider now B∆ and A∆ as in Definitions 11.6 and 11.8, respectively. By
Proposition 11.11, [[ψ]]A∆ = 1∆ iff ∆ `CRQmbC ψ, for every ψ in Sen(ΩC). But then [[γ]]A∆ =

1∆ for every γ ∈ Γ and [[ϕ]]A∆ 6= 1∆. Now, let A the reduct of A∆ to Ω. Hence, A is a structure
over B∆ and Ω such that [[γ]]A = 1∆ for every γ ∈ Γ but [[ϕ]]A 6= 1∆. From this, 6|=RQmbC ϕ. In
addition, for every non-empty set {γ1, . . . , γn} ⊆ Γ it is the case that

∧n
i=1[[γi]]

A = 1 6≤ [[ϕ]]A.
Therefore the formula (γ1 ∧ (γ2 ∧ (. . . ∧ (γn−1 ∧ γn) . . .))) → ϕ is not valid in (A,B∆). This
means that Γ 6|=RQmbC ϕ. 2
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Remark 11.13 The completeness result for RQmbC w.r.t. BALFI semantics was obtained
just for sentences, and not for formulas possibly containing free variables (as it was done
with the soundness Theorem 10.15). This can be easily overcome. Recall that the universal
closure of a formula ψ in For1(Ω), denoted by (∀)ψ, is defined as follows: if ψ is a sen-

tence then (∀)ψ def
= ψ; and if ψ has exactly the variables x1, . . . , xn occurring free then

(∀)ψ def
= (∀x1) · · · (∀xn)ψ. If Γ is a set of formulas in For1(Ω) then (∀)Γ def

= {(∀)ψ :
ψ ∈ Γ}. It is easy to show that, for every Γ ∪ {ϕ} ⊆ For1(Ω): (i) Γ `RQmbC ϕ iff
(∀)Γ `RQmbC (∀)ϕ; and (ii) Γ |=RQmbC ϕ iff (∀)Γ |=RQmbC (∀)ϕ. From this, a general
completeness for RQmbC result follows from Theorem 11.12.

12 Conclusion, and significance of the results

This paper offers a solution for two open problems in the domain of paraconsistency, in
particular connected to algebraization of LFIs. The quest for the algebraic counterpart of
paraconsistency is more than 50 years old: since the inception of da Costa’s paraconsistent
calculi, algebraic equivalents for such systems have been searched, with different degrees of
success (and failure). Our results suggest that the new concepts and methods proposed in
the present paper, in particular the neighborhood style semantics connected to BALFIs, have
a good potential for applications. As suggested in [32], modal logics could alternatively be
regarded as the study of a kind of modal-like contradiction-tolerant systems. In alternative
to founding modal semantics in terms of belief, knowledge, tense, etc., modal logic could be
regarded as a general ‘theory of opposition’, more akin to the Aristotelian tradition.

Applications of paraconsistent logics in computer science, probability and AI, just to
mention a few areas, are greatly advanced when more traditional algebraic tools pertain-
ing to extensions of Boolean algebras and neighborhood semantics, are used to express the
underlying ideas of paraconsistency. In addition, many logical systems employed in deontic
logic and normative reasoning, where non-normal modal logics and neighborhood semantics
play an important role, could be extended by means of our approach. Hopefully, our results
may unlock new research in this direction. Finally, BALFI semantics for LFIs opens the
possibility of obtaining new algebraic models for paraconsistent set theory (see [13, 15]) by
generalizing the well-known Boolean-valued models for ZF (see [5]).
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