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Abstract

Possibility semantics offers an elegant framework for a semantic analysis of
modal logic that does not recruit fully determinate entities such as possible
worlds. The present papers considers the application of possibility semantics
to the modeling of the indeterminacy of the future. Interesting theoretical
problems arise in connection to the addition of object-language determinacy
operators. We argue that adding a two-dimensional layer to possibility se-
mantics can help solve these problems. The resulting system assigns to the
two-dimensional determinacy operator a well-known logic (coinciding with
the logic of universal modalities under global consequence). The paper con-
cludes with some preliminary inroads into the question of how to distinguish
two-dimensional possibility semantics from the more established branching

framework.

1 Introduction

Possibility semantics offers an elegant framework for a semantic analysis of modal
logic that does not recruit fully determinate entities such as possible worlds.! This
paper investigates conceptual and technical issues emerging from the application
of possibility semantics to the modeling of the indeterminacy, or openness, of the

IThe phrase “possibility semantics” was coined by Humberstone (1981). The tools undergirding
the framework have longer histories, including (Fine, 1975, especially §2), Humberstone (1979), as well
as deep roots in the algebraic logic tradition. For a contemporary and comprehensive introduction, see
Holliday (2022). Possibility semantics is one of a variety of styles of theories that do not rely on worlds,
but on coarser objects. In addition to possibility semantics, the general family of “pointless” theories
includes various kinds of states-based semantic analyses (Aloni 2018, Willer 2018), truthmaker
semantics (Fine, 2017b), as well as several varieties of situation semantics (Barwise and Perry, 1981;
Kratzer, 2021). It would be desirable to have a comparative study of these frameworks highlighting
the commonalities, as well as the differences, between them.



future, and some related forms of metaphysical indeterminacy. Possibility semantics
is plausibly viewed as an alternative to more established branching-time models
(Thomason 1970, 1984, 2007, Belnap et al. 2001, MacFarlane 2003, 2014) in which
indeterminacy is grounded in the overlap of complete possibilities—sometimes
referred to as “histories”. The key finding is that explicit modeling of indeterminacy

within the object language requires the semantics to be two-dimensional.

As understood here, the open-future hypothesis states that some future events
and states are objectively, and not merely epistemically, unsettled.? The recurring
illustrative example will be the proposition that some specific random coin will
land heads on its next toss, under the stipulation that the outcome of the coin’s toss
is not settled by the facts about the past and the present of the tossing apparatus.
If in actuality there are no such setups, the case may be entertained as a thought-

experiment.

The indeterminacy associated with the future seems unlike other kinds of
indeterminacy that have attracted the attention of philosophers. For example,
it seems unlike the indeterminacy that some theories associate with vagueness.
For one thing, it does not appear to give rise to higher-order indeterminacy. It
is generally agreed by those who think that vagueness is grounded in some kind
of indeterminacy that it may itself be indeterminate whether Joe is borderline
tall. By contrast, it is common to assume that, as far as the unsettledness of the
future is concerned, there are no states or events whose determinacy status is itself
indeterminate. It might be unsettled whether there will be a sea battle tomorrow, but
it cannot be unsettled whether it’s unsettled. A second marker of the indeterminacy
of the future is that it is not plausibly associated with unusual effects on credence.
Many different philosophers have been attracted to the view that there is something
non-classical about credence in the contents of vague statements. One form of this
is Field’s (2000) claim that vague contents require low credence in certain instances
of the law of excluded middle; another is Williams’s claim that vague contents
seem to require imprecise probability (2014).> By contrast, statements about the
future appear to be paradigmatic examples for the application of classical theories
of credence. In prototypical cases, it is perfectly warranted to have a sharp credence
that the coin will land heads. The fact that the indeterminacy of the future has these
characteristics licenses us to theorize about this specific type of indeterminacy on
its own (cf. §2.3 of Torza, forthcoming, on pluralism about indeterminacy).

There is much literature on what constitutes the (alleged) openness of the future. The present
discussion leans in various ways on Thomason (1970); Belnap and Green (1994); Belnap et al. (2001);
MacFarlane (2003, 2014); Barnes and Cameron (2009, 2011); Torre (2011); Cariani and Santorio (2018);
Cariani (2021b); Todd (2022).

3The matter is complicated, in ways that go beyond the basic demarcation point that is made here.
For a sophisticated discussion, see Bacon (2018).



As a last disclaimer, exploring the indeterminacy hypothesis involves no com-
mitment to the claim that the future is open. We only need to assume that the
hypothesis is worth taking seriously. As Stalnaker (2019, p.197) puts it, “You don’t
have to sign on to this metaphysical theory (as I do not) in order to find it intel-
ligible (as I do) and to use it as a kind of precedent for a case where the thesis of
metaphysical indeterminacy may be less controversial.” Moreover, the discussion is
not restricted in scope to the alleged indeterminacy of the future. It pertains to any
application of possibility semantics to concepts of indeterminacy that do not give
rise to higher-order indeterminacy and are not associated with non-classical effects

on credences.*

We lead with a general introduction to possibility semantics for a sentential
modal language (§2). The next section focuses on the representation of indeter-
minacy in possibility semantics (§3). The framework itself already incorporates
a representation of indeterminacy in the model theory. However, contrary to the
inclination of Humberstone (1981), it seems important to capture the notion of
indeterminacy in the object language. We observe (§3) that it is not possible to add
a determinacy operator with the right profile to the system—not at least without
other interventions. After considering some local interventions (§4), we consider
an attractive solution to the problem, which lies in the integration of possibility
semantics with a two-dimensional framework (§5). The last sections explore the
resulting system (§6), extend the approach to incorporate temporal operators (§§7,
8).

The insight behind the approach proposed in §5 is owed to remarks in Fine
(1975). The Cliffs notes on Fine’s paper focus on the fact that it applies supervalua-
tionist techniques to vague language. However, it is also a central juncture for the
logical development of semantics based on partial objects, since Fine builds up to
supervaluationism by first analyzing a system in which precisifications of a vague
language are viewed as partial. (NB: this account is only considered in passing in
Fine 1975, and Fine’s theory of vagueness has significantly changed, e.g. in Fine
2017a.) We aim to recast some of those insights about determinacy operators in a

different theoretical context, allowing some distinct issues and theoretical choice

4Stalnaker (1984) famously suggests that counterfactual selection results in a kind of indetermi-
nacy, and has more recently suggested that this kind of indeterminacy might be viewed as a ‘milder’
version of the indeterminacy that is associated with the future (Stalnaker, 2019, p.197-ff).



points to come to light.>

2 Background on possibility semantics

The basic ideological tenet of possibility semantics is that formulas are not evaluated
against worlds, but against “coarser” objects called possibilities. This ideology
deviates from the standard account of the indeterminacy of the future—which is
broadly within the framework of branching time (Thomason, 1970, 1984, 2007;
Belnap et al., 2001). According to the branching time picture, indeterminacy is
adequately captured by the overlap of multiple complete possibilities with equal
claim to fit the settled facts.

Possibility semantics proceeds differentl. Instead of taking a maximally precise
representation as its basic modeling object, it deploys primitive objects that are
themselves incomplete. That incompleteness is naturally associated with a con-
cept of indeterminacy: possibilities settle the truth values of some sentences of a
language, while leaving others unsettled.

The present formulation of possibility semantics originates from Humberstone
(1981). The language is a sentential modal language, whose signature features a
non-empty countable set of modal operators. (Later, we will add a determinacy
operator D.) Models for this language are quadruples of the form, (P,>,R, V).
Here P is a non-empty set of possibilities; > is a refinement relation over the
possibilities. Structurally, > is a weak partial order (thus, it is reflexive, transitive
and antisymmetric). Intuitively, Y > X holds when everything that is settled
as either true or false by X is settled in the same way by Y. In short, Y agrees
on all the determinate facts that X settles. (Explicit assumptions are needed in
order to guarantee that models satisfy this intuition, and they will be provided
shortly.) R is a non-empty set of accessibility relations, and finally V is a partial
valuation function: in this setting a valuation function inputs an atomic formula
and a possibility, and, if defined, outputs either 0 or 1. When V(A, X) is undefined,
we write V(A,X) T, otherwise V(A,X) |. Occasionally, when it is important to
disambiguate, and a model M is salient in context, a subscripted “M” will be used
to indicate its coordinates. For example, “Py,” refers to the set of possibilities in M.

Models for this language are ordinarily assumed to satisfy two constraints.
Refinability. For all atomic A and possibilities X, if V(A, X) T, then there
are Y,Z such that Y > X and Z > X, s.t. V(A,Y)=1and V(A ,Z)=0.

Persistence. For all atomic A, if V(A,X) | then for every Y > X,
V(A X)=V(AY).

>The idea of modeling the unsettledness of the future via partial objects is also explored in a
preliminary way in Boylan (2021), although Boylan’s development is incompatible with the present
one.



Persistence says that whenever atomic A is settled at X, it stays settled in the same
way through X’s refinements. Refinability says that whenever an atomic formula
Ais unsettled at a possibility X, there are Y and Z—both refinements of X—that
settle A as true and false respectively. ©

Persistence provides formal representation to the intuitive conception of refine-
ment. Indeed, under persistence, it is tempting to think of refinement structures

as mirroring the structure of the branching models for future contingency, as illus-

trated by Figure 1.

X3 [A:B:C:l ] [A:B:I,C:O] [A:C:I,B:()] [A:I,B:C:O,]

Figure 1: The branching structure of refinements (X3 > X, > X;)

However, an important lingering difference — which the formal theory ought to help
disentangle — is that standard branching models are built on the idea of maximal
histories, which at any moment assign a definite truth-value to all the formulas of
the language. Indeed, the linear paths through the tree can naturally be viewed
as temporally structured possible worlds. No such assumption of completeness is

imposed on possibility models.

Another important observation is that our assumptions on possibility models
do not, by themselves, rule out backwards branching. For example, the model in
Figure 2 satisfies Refinability and Persistence and yet, the possibility X3 has two

arrows going into it.

Figure 2: Backwards branching possibility model

®Refinability is related to, but logically distinct from, the assumption that any partial possibility
might be refined all the way to a complete one (which Fine 1975 calls “Completability”). In a language
with infinitely many atomic sentences, refinability might be satisfied, without completability being
satisfied.



If we wanted to rule these models out, we would need to impose a "no backwards
branching" condition, similar to those that are standardly used in defining branching
models. Specifically, we would have to stipulate that whenever X > Y and X > Z,
then either Y > Z or Z > Y. We implicitly restrict attention to models that satisfy
this condition, but none of our results require imposing it.

Humberstone defines a notion of support between possibilities and formulas of
the whole language as follows:

M, X |FAABiff M, X |FAand M, X || B

MX|F-AffVY > X, M, Y [FA

MX |FOAffVY € P, st. RXY, MY |FA

As for other operators, such as vV, —, &, a common approach recovers entries by
fixing some standard equivalences. In the case of disjunction, one option is to
characterize it by conjunction, negation and DeMorgan’s laws. This results in the

following entry:
e M X|FAVBIiff VY > X, thereis Z>Y,s.t. M,Z|FAor M,Z | B

Another route to the same goal would be to stipulate some general principles about
what it takes for possibilities to settle a disjunction (Holliday, 2022).

* A possibility X settles a disjunction AV B as false iff it settles A as false and
settles B as false.

Assume that a possibility settles A as false iff it settles —A as true. Next, note that
the entries for negation and conjunction tell us that:

* A possibility X settles a conjunction A A B as true iff it settles both A and B as

true.

* A possibility X settles A as false iff every refinement of X fails to settle A as

true.

These assumptions are sufficient to pin down the same entry for disjunction as
above. A similar analysis could be carried out for the other operators.”
Lastly we follow Humberstone in defining consequence as preservation of

support.

7While the analysis of necessity lifts Kripke semantics to the level of possibilities, an account of
modality also involves the specification of interplay conditions connecting accessibility and refinement.
Humberstone proposed:

(uR) VX,Y,Z,if Z> X and RZY, then RXY



Definition 1 Ay,..., A, | B iff for all models M and any X in Py, if Vi, M, X | A;,
then M, X | B.

It is a well established fact about this formalism that the logic of the sentential
sub-language is classical, both in the sense that the logical truths coincide with the
classical tautologies, and in the sense that the valid arguments in this sub-language
coincide with the tautologically valid arguments (Humberstone, 1981, pp.320-321).

3 Adding object language determinacy operators

It is reasonable to view possibility semantics as incorporating a model of indeter-
minacy: an atomic formula A is indeterminate at a possibility X when X leaves A
undefined. Imagine a possibility X and an atomic formula, heads, symbolizing the
English sentence The coin will land heads (on a specific toss that will take place tomor-
row at noon). In a clear sense, the metatheoretic fact that Vy(heads, X) T represents
the relevant indeterminacy from the perspective of the model theory. This warrants
the view that indeterminacy is captured in standard possibility semantics at the

metatheoretic level.

However, as the system is set up, there is no object language device to express
the concept of indeterminacy. We have not identified an operator that expresses
things like it is determinate that the coin landed heads on today’s toss, but it is not
determinate that it will land heads tomorrow. This is unfortunate because, for various
modeling purposes, it’s important to have determinacy operators in the object
language. For example, determinacy operators help characterize the interaction
of indeterminacy with other concepts. To take just one example, Cariani (2021a)
explores interactions between (in)determinacy operators and epistemic operators,
such as =DA — —KA—the principle that if A is not determinately true, then it is
not known. Such principles, and the constraints they impose on models, are best
analyzed from the perspective of a formalized language.®

Let us then introduce a determinacy operator D to the formal language—with
the interpretation that its argument is determinately true. Thus =DA is interpreted
as claiming that the proposition expressed by A is not determinately true, while

(Rd) VX,Y,Z,if Z> Y and RXY, then RXZ
(R) ¥X,Y,if RXY then AX’ > X, VX" > X/, RX"'Y

Holliday (2014, forthcoming) noted that condition (R) is overly strong. One suitable weakening is a
condition that Holliday calls R-refinability (see Lemma 5.3.7 of Holliday (2022)).

(RR) forall X,Y,if RXY, then AX’ > X, VX" > X', Y’ > Y,RX"Y’

In addition to ‘RR’, the names given here to these conditions are abbreviations of Holliday’s names:
‘(uR)’ is for Holliday’s ‘up-R’ for (uR) and ‘(Rd)’ is for Holliday’s ‘R-down’.

8For additional considerations in favor of introducing object language determinacy operators, see
also Barnes and Williams (2011, §5)



leaving it open that it might be determinately false. To express the claim that A
is indeterminate, add an indeterminacy operator I governed by the condition in
Definition 2, which is standardly taken to be definitional of indeterminacy (e.g. in
Fine, 1975):

Definition 2 A=, “-DAA-~D-A

It is important however to keep in mind that in the present terminology ‘indeter-
minacy’ denotes a two-sided status, in the sense that it requires that both A and its
negation fail to be determinate. By contrast, non-determinacy (the obtaining of —D)
is a one-sided status: a proposition may fail to be determinate, while its negation is
determinate.

Determinacy operators should be governed by some key constraints. A natural
one within possibility semantics is to suppose that object language indeterminacy is

to align with metatheoretic indeterminacy, in the following sense:
Constraint 1 (Alignment) For atomic A, M, X |F TAiff V(A X) T.

The trouble is that Alignment is incompatible with the framework we have devel-
oped. To see why, note that (given the framework) it entails a second constraint:
formulas expressing non-determinacy (and indeterminacy) claims must violate a

generalization of Persistence.

Constraint 2 (Non-persistence of non-determinacy) There is a formula A, and model
M with possibilities X,Y € Pygand Y > X such that M, X | -DA but M,Y |- =DA

The route from Alignment to non-persistence is relatively straightforward: possibil-
ity X might support that it’s indeterminate whether the coin will land heads, while
being refinable into a possibility Y that settles that the coin will land heads.

Fact 1 Given Definition 2 and Refinability, Alignment entails non-persistence of non-

determinacy.

Proof. Consider a model M with two possibilities X and Y drawn from
its possibility set P, such that Y > X. Suppose Y settles some atomic
formula A that X leaves unsettled. Without loss of generality suppose
that Y settles A as true, V(A Y) = 1. The existence of such a Y is guar-
anteed by Refinability. Then V) (A, X) T but V(A Y) = 1. Definition 2
yields M, X | =DA and M, Y | DA, so M, Y |- =DA. O

This result does not sit well, or indeed at all, with the analysis of negation.
Fact 2 The following are inconsistent (given the framework):

8



NP. Thereare M, A, X, Y > X with M, X |F =DA but M,Y |- -DA.

NE. M, X |F -AiffVY > X, M,Y | A

Proof. Consider witnesses, M, X,Y,A for NP. So, (i) M, X |- =DA (ii)
Y > X and (iii) M, Y [ =DA. By the clause for negation (NE) and (i), DA
cannot be supported throughout any refinements of X. That is, VZ > X,
M, Z |- DA. However, since any refinement of Y is a refinement of X,
we must also have M, Y | =DA . This contradicts (iii). O

This inconsistency is related to a less specific unease with object language indeter-
minacy operators that is already expressed by Humberstone (1981). Humberstone
claims that an indeterminacy operator like the one just introduced would go “against
the spirit of the present enterprise, since it would give rise to formulas which were
not persistent into refinement [...], and thus undermines the idea of refinements as

mere resolvers of indeterminacy”.

However, the problem is not with the idea of determinacy operators: a plausible
initial diagnosis is that the tension arises because the negation operator forces
persistence: —A must always be persistent, whether A is persistent or not. This
entails that the indeterminacy operator I cannot be both defined in terms of negation
and also such that formulas like A and —=DA are non-persistent.

4 A preliminary journey around the options

Are there ways of integrating object language determinacy operators within possi-
bility semantics? One option is to introduce persistent determinacy operators. One
might support a plea for persistence by thinking in terms of temporally indexed
indeterminacy operators. Start by noting that, in the relevant applications, there
is a connection between refinement and temporality: when Y strictly refines X
(Y > X but X % Y), it is both the case that Y resolves some of X’s indeterminacy
and that Y represents a later moment in time.® Perhaps, then we should entertain
determinacy operators that are relativized to a specific point in time. Under this
approach, the object language would feature a collection of operators {D; | t € T},
where T is a designated set of times in the model. Simplifying somewhat, imagine
that T is countable. Then consider operators Dy, Dy, D5,..., D,,, ..., each marking what
is determinate at a certain time in the development of history, with each D; anchored
to some specific time t;. To complete the proposal say that the language does not
contain any unrelativized determinacy operators, and thus that all determinacy

discourse is captured by means of relativized ones.

9This is not essential, and §§7-8 will separate these two traits.

9



This proposal works by undermining some of the motivation for non-persistence.
Suppose again that X,;,, represents Monday’s possibility, in which the coin has
not yet landed heads, and Xyy.; represents the state of affairs on Wednesday, after
the coin has been tossed and has landed heads. In the original approach, with
unrelativized determinacy operators, one would say that —D(heads) is supported at
Xpon but unsupported at Xy 4. By contrast, the relativized framework opens up a
different option: Xy;,, supports =Dy, (heads), while Xy .4 supports Dyy,4(heads).
Crucially, the formulas —Dy,,, and =Dy .4 can be assumed to be persistent (even
when the operator is embedded under negation). The intuitive meaning of Dj;,,A
would be something like “A is/was settled true on Monday”. From Wednesday’s
point of view—i.e., as far as X4 is concerned—=-D),,,,A remains supported. Re-
latedly, the claim =Dyfonday(heads) A Diednesday(heads) is perfectly consistent (from

any point in time).!? Evidently, these operators violate Alignment.
yp y P 8

This approach is valuable and instructive, but it also seems flawed: it is not
especially controversial to claim that people possess an unrelativized concept of
indeterminacy — plausibly one that can be captured at the level of the theory by
an operator that satisfies Alignment. There is no special reason to think that there
are barriers to expressing that concept in the object language. It is at the very least
worth asking whether such a concept is definable consistently with the general

insights motivating possibility semantics.

Before moving to the positive proposal, let us entertain one more option. The
initial hunch was that the tension is due to the persistence-forcing effect of negation.
The obvious alternative would be to introduce a negation operator that does not
force persistence. To this end, introduce ‘~’ as the connective characterized by the
clause: M, X | ~A iff M, X |- A. This alternate negation operator does not force
persistence, and would make correct predictions for non-determinacy claims in the

proof of Fact 2.

An evident problem is that ‘~” cannot be the correct negation operator for the
entire language. Outside of determinacy claims, ‘~’ conflates non-support with
rejection: it’s not the case that the coin will land heads should not be supported by a
possibility that merely fails to settle the matter. More generally, ‘~’ is not the correct
negation operator for the sentential sub-language. In response, one might consider
a language in which the two negation operators, ‘=" and ‘~, coexist.!! However,

having both operators around is not well-motivated. There is no principled reason

10A notational variant of this approach: we can have a single concept of indeterminacy that is
relational, so that the canonical logical form for determinacy claims is D(Monday, A). The critique to
be made below of the indexed operator approach applies to this as well.

HEootnote 15 of Humberstone (1981) identifies a minor expressive advantage to having both
operators (though Humberstone does not endorse the suggestion currently under consideration):
their combination, ‘= ~’, is a plausible candidate for a determinacy operator, as it expresses universal
quantification over all refinements. (So M, X |- — ~ A iff all refinements of X support A).

10



why one negation operator (—) should apply in the D-free sub-language, while
the other should apply to formulas involving D. Additionally, any attempt at
formulating a generalization concerning which operator is appropriate for a given
formula would have to deal with the thorny problem of choosing the correct negation
for mixed formulas (like A A DA).

5 Introducing two-dimensional possibility semantics.

This section presents a two-dimensional version of possibility semantics that is capa-
ble of retaining the fundamental motivation for the framework while incorporating
a non-persistent, non-relativized determinacy operator that is “aligned” with the
metatheoretic concept of indeterminacy.'?

The opening move in crafting such a framework is to distinguish two dimensions
of evaluation. The support relation is relativized to a triple (M, X,Y) consisting
of the model and two possibilities. The first, ‘primary’, possibility is operated on
by connectives, while the other, ‘secondary’, coordinate is read by the determinacy
operator D and unaffected by the connectives. The unidimensional notion of support
is still part of the theory because we continue to focus on a concept of truth, or
support, at a possibility as the target of the theory. A standard diagonal principle

helps us pin it down:
Diagonal principle: M, X | Aiff M, X, X | A

As an additional benefit, the diagonal principle allows the two-dimensional system

to inherit the earlier definition of logical consequence.

Recursive clauses for the connectives and for the determinacy operator are
specified at the level of two-dimensional evaluation. Note that the secondary

possibility only affects the entry for the determinacy operator.

(i) M, X,Z |F piff Viu(p,X) =1

(ii) M,X,Z |- AABiff M,X,Z |FAand M, X,Z |- B
(iii) M, X,Z |- -AiffVY > X, M,Y,Z |- A

(iv) M,X,Z |F ;A ff VY € P, s.t. R;XY, M,Y,Z |- A

(v) for v, —, ¢, use standard equivalences to infer clauses.

12Ror general surveys two-dimensional semantics see Humberstone (2004); Kuhn (2013); Schroeter
(2021). A two-dimensional treatment of the determinacy operator is explored in Fine (1975). Fine
rightfully questions the ability of such an operator to handle higher-order indeterminacy, but of
course this is not salient in the present application. An alternative two-dimensional determinacy
operator is also introduced in Burgess and Humberstone (1987, §6.2).

11



(vi) M,X,Z | DAiff M,Z,Z | A

Under this analysis, the determinacy operator resembles an actuality operator
in more standard applications of two-dimensional semantics. It evaluates the
argument of DA after setting the primary evaluation possibility so as to match the

secondary one.

Logical consequence remains defined as preservation of unidimensional sup-
port, as per Definition 1. Furthermore, Refinability and Persistence, understood
as constraints on atomic formulas, continue to be in place. While they have gen-
eralizations for the full language, the status of those generalizations is not settled
by the status of their atomic variants. Thus, saying that the complex formula IA is
non-Persistent is fully compatible with saying that atomic formulas persist through

refinements.

6 Temporary victory lap

This section illustrates how the system fulfills the main desiderata for adding an
object language determinacy operator, and offers a way out of the central incompat-
ibility from Fact 2. A key intermediate step in establishing these objectives is the

characterization of the logic of the system, identified below as Theorem 1.

Recall the suggestion that non-determinacy and indeterminacy should violate a

generalization of Persistence.

Fact 3 (Non-persistence of non-determinacy and indeterminacy) Let A be an atomic
formula. Then there is a model M and a possibility X € Py, such that M, X |- =DA but
Y > X, M, Y |- =DA. (Same for I1A.)

Proof. Consider a model with three possibilities X;, X, and X3 with
X,,X3 > X; and such that V(A X;) T, V(A X,) =1, V(A X3) = 0. Then,
M, X, |F =DA, but M, X, |- =DA (since M, X, | DA).!3

The same model also illustrates the non-persistence of IA. O

An easy induction establishes that this non-persistent behavior does not apply to
formulas that lack determinacy operators.

It is also easy to establish that the Alignment constraint is met.

Fact 4 (Alignment) M, X [ IAiff M, X |[F Aand M, X | -A

13The support conditions for ~DA, when A is atomic are as follows.

e MX|F-DAe MX,X|F-DAoVYW>X:MW,X|FDASYW > X: XX |FAo
MX XA V(AX)=1.

It is easy to check that M, X;=DA holds but M, X; | =DA does not.

12



MX|FIAo M, X |F -DAA-D-Ao M, X, X |F -DAA-D-A &S
M,X,X ”— -DA and M,X,X “— -D-A &
MXX|FAand M, X, X |F-Ao M, X |F Aand M, X | -A O

This shows that there is no way of setting the accessibility relation R to define
a modal operator on the primary evaluation coordinate that is equivalent to the
determinacy operator. Any modal that operates on the primary evaluation coordi-
nate would collapse the two-dimensional framework into the one-dimensional one.

However, Facts 3 and 4 assure us that the systems do not collapse.

There is, however, an important relationship between the two-dimensional de-
terminacy operator in a language with no other modals, and certain ordinary modals
as evaluated in some designated submodels. Given a model M and X € Py, let My
be the submodel of M that is generated by X. This is the model (Px,>',R’, V")
where Py is the closure of {X} under > and any accessibility relation in M, and
all the other elements of the model are restrictions of the remaining relations and
functions in M to this set. Let ||y be the support relation generated by interpreting
formulas of our formal language according to the unidimensional rules, while inter-
preting D as the universal modality in Mx (i.e. by assuming YRZ for any Y and Z
in Py, ). Note that in our specific case there are no modals other than D, and so R is

empty, and so is R’.

Fact5 Forany Y > X, M,Y, X |F Biff Mx, Y |y B.

Proof: Reason by induction on the complexity of B. If B is a negated
formula —A, and Y is an arbitrary element of Py, VZ > Y, M, Z, X |F A iff
Mx, Z |y A, but since Z is a refinement of Y, it is also a refinement of
X, so this follows from the induction hypothesis. Setting aside the trivial
case in which B is a conjunction, the remaining case of interest is where
B = DA for A satisfying the induction hypothesis. Consider Y refining X:
then M, Y, X |F DAiff M, X, X |F Aiff My, X |Fy Aiff My, Y |y DA. O

Fact 5 is key to characterizing the logic of D, at least in the special case in which
the language does not contain other modal operators. Let =55 denote the S5 conse-
quence relation, and |:§ 5 the global consequence relation as characterized on Kripke
models (Blackburn et al., 2001, §1.3). The consequence relation on two-dimensional
possibility models coincides with the global consequence relation on universal
Kripke models.!*

l4gee the appendix of Schulz (2010) for a similar result involving the logic of Yalcin’s (2007)
semantics for epistemic necessity—albeit one that is presented wholly at the level of worlds-based
semantics.
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Theorem 1 If the language does not contain modals other than D, Aq,..., A, |F Ciff
DAy, ..., DA, Ess DCiff Ay,..., A, Eis C

Proof. Universal modalities in Kripke frameworks have the same logic
(i.e. S5) as universal modalities in the possibility framework. So, let
|Fu be the logic of a possibility framework for a language with a single
modal D with Rp as the universal relation. Then:

DA,,..,DA, |Fy DCiff DA,, ..., DA, Ess DC
What is left to prove is:
Ai,.., A, |F Ciff DA,,..., DA, |-y DC

This is proven by a chain of equivalences. Let I' ={Ay,...,A,;}, and DI =
{DA,...,DA,}.

(i) AM and X € Py, M, X | T, but M, X |- C.

(i) IM and X € Py, M, X, X |- T, but M, X, X |- C.
(iii) IMand X € Py, VZ > X, M, Z, X |- T, but M, X, X |- C.
(iv) M and X € Py, , VZ > X, Mx,Z |y T, but Mx, X |- C.
(v) AMand X € Py, Mx, X |-y DT, but My, X |[f-; DC

Ad (ii)&(iii): evaluation along the primary coordinate is persistent even
in the two-dimensional system. Ad (iii)<(iv): this follows from Fact 5
and persistence in the unidimensional framework. Ad (iv)&(v): if DC
fails at X, C must fail at some possibility in the model—i.e. at some
refinement of X. But if so, C must also fail at X (or else persistence
would force it to hold throughout the entire model). O

Theorem 1 enables us to ascertain the satisfaction of many of our design principles.
The remaining facts in this section are all presented without explicit proof, on the
understanding that they are elementary corollaries of Theorem 1. First, notice that
it entails that the logic in the sentential sub-language remains classical. It is also a
simple corollary that the theorems of the two-dimensional theory with D as the sole
modal operators are exactly the theorems of S5.

Fact 6 |- Ciffless DCiff s C
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Another important consequence of the theorem is that there are consistent state-
ments of indeterminacy, in the object language. Thus IA is consistent (i.e. |
DAV D-A) and D(AV B) |- DAV DB.!>

Per our design specifications, there is no higher-order indeterminacy in this
system. We have A |- DA, and in particular, DA | DDA and -=DA | D-DA. This is
not, of course, the same as the claim that truth and settled truth coincide. Indeed,
we also have: |- A & DA; | DA < DDA; | =DA < D-DA.

Theorem 1 illustrates that the system has a familiar non-classical profile when
it comes to its metarules. Though the consequence relation in the D-free fragment
matches that of classical sentential logic, adding expressive capacity to the language
in the form of the determinacy operator results in some non-classical behavior.
For example, the consequence relation does not contrapose over the full language:
as noted, A | DA holds, but -DA | —=A does not. This mirrors the standard
behavior of systems based on S5 global consequence relations. For example, it is
observed in supervaluationist analyses based on the idea of “global” validity (Fine,
1975; Williamson, 1994; Varzi, 2007; Asher et al., 2009; Bacon, 2018) and also in
informational analyses of consequence for languages with epistemic modals, as
in (Yalcin, 2007; Bledin, 2014; Schulz, 2010; Incurvati and Schléder, 2022). More
specifically, Theorem 1 entails the following failures:

Fact 7

* No Conditional proof : A|l- DA, but |- A— DA
* No Reductio: AN -DA|F DAand AN -DA | -DA but [ -(AA-DA)

* No Contraposition: Al DA but =DA|f- -A

Disjunctive syllogism may fail too, depending on its exact characterization.!®

It is valuable to reflect on exactly how the system avoids the inconsistency
in Fact 2. Recall, that the inconsistency pits the claim that indeterminacy is non-
persistent (N P) against the analysis of negation (NE). The two-dimensional system
avoids the inconsistency by violating the negation condition, NE. There is no

guarantee that if X supports —A, then all of X’s refinements will fail to support A.

15The failure of this last entailment is relevant for comparison with an alternate system involving
determinacy operators and two-dimensional semantics (Burgess and Humberstone, 1987, pp. 220-
221).
16The following form of disjunctive syllogism fails:
IfA|IFC B|FC,thenAVB|-C

If it didn’t, then we would have AV -A | DAV D-A (contradicting the finding that determinacy is
non-trivial). Alternatively, it is possible to formulate disjunctive syllogism as follows:

If|FA—>C,|FB—C, then|F(AVB)—>C

Theorem 1 entails that this reformulated schema is correct.
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Since unidimensional evaluation follows the diagonal principle, what’s supported
at X depends on evaluation triples of the form (M, X, X), whereas what’s supported
at Y depends on evaluation triples of the form (M, Y, Y). These may come apart in
ways that undermine (NE). Of course, much of the semantic effect of the negation
operator is preserved because there is an analogous operator at the level of two-
dimensional evaluation. However, that operator only quantifies over refinements

along the primary dimension.

Relatedly, although the two-dimensional framework allows violations of per-
sistence understood as a constraint on the unidimensional support relation, it

continues to satisfy a local version at the level of two dimensional evaluation.

Local Persistence. If M, X,Y |F AthenVZ > X, M,Z,Y |F A.

7 Adding tense operators.

The framework of section 5 is founded on a distinctive structural assumption
concerning the relationship between refinement and temporality: the refinement
relation corresponds to the temporal precedence. For example, we have supposed
that a possibility in which the coin toss is indeterminate splits, after a step of

refinement, into two possibilities that immediately follow the initial one.

This assumption has both simplifying and heuristic value, but it may, with
reason, be viewed with some suspicion. For example, it obfuscates how one might
sensibly add temporal operators to the language. Relatedly, the assumption seems
to force an eternalist understanding of propositions—the idea that propositions
do not vary in their truth-value from time to time. Eternalism is not obviously
mistaken, and indeed it is probably the dominant theory of propositions, but it
also is not obviously mandated by any arguments we have made. This concluding
section explores the prospects for lifting this assumption, and sketches a theory
of tenses that integrates with two-dimensional possibility semantics.!” This will
serve as proof of concept that the integration is possible but we will stop short of
developing the theory in full.

Following (Holliday, 2022, §5.3), we sever the connection between refinement
and temporality, by giving temporal operators their own accessibility relations.
Specifically, add temporal operators (F), for sometime in the future, and (P) for
sometime in the past, respectively governed by accessibility relations Rf and R”.
(So, for example RF XY means that Y is in the future of X, and R’ XY means that
Y is in the past of X) We assume RF and R” to be at least irreflexive, transitive,

17Fans of eternalist propositions can also convert the present discussion into their framework, by
introducing quantificational operators with the appropriate logical properties.
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and asymmetric. For reasons that will become clear momentarily, we refrain from
assuming that R is always the converse of RF. Suppose ‘p’ is an atomic formula of

our object language, to be interpreted as meaning that it’s raining. Then the model

Figure 3: Simple temporal model

in Figure 3 diagrams a situation in which X; precedes X,, and such that from X;’s
perspective it will be raining in the future and from X,’s perspective it was not
raining in the past.

To improve readability, introduce the notation Rf (X) to denote {Y | RF XY} —
the set of possibilities in the future of X. With this we can informally read Y € RF(X)
as “Y is in the future of X”. It is worth keeping in mind that, under the open future
view, multiple possibilities might be in the future of a given base possibility (see
Figure 4 below).

One immediate idea is to apply the standard analysis of modal operators to
the semantics of (F) and (P). We begin by applying the three interplay conditions
entertained in §5.3 of Holliday (2022) to Rf and RP. Letting R be some arbitrary

accessibility relation, these are:

(uR) VX,Y,Z,if Y > X and Z € R(Y), then Z € R(X)
(Rd) VX,Y,Z,if Y > X and X € R(Z), then Y € R(Z)

(RR) VX,Y,if Y € R(X), then 3X’ > X, VX" > X', Y > Y,Y" € R(X")

Applied to RF, (uR) says that any possibility Z that is in the future of a refinement of
X is also in the future of X; (Rd) says that any possibility Y that refines a possibility
that is in the future of Z is also in the future of Z; (RR) states that for any Y in
the future of X, there is a refinement X’ of X every refinement of which has some

refinement of Y in its future.

Treat (F) and (P) as duals of universal modals [F] and [P] with the standard

semantics from §5.
e M,X,Z|F[F]Aiff VY e RE(X), M, Y, Z |F A
« M,X,Z|F[PJAiff VY e RP(X), M,Y,Z |F A
* (A =45 -[F]-A
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Figure 4: Holliday’s model of the Sea Battle puzzle

* (PYA=ger —~[P]-A
Under condition (Rd), the support conditions for (F) and (P) simplify to:!8
(F1) M, X, Z |- (FP)Aiff VY > X, AK e RF(Y), M,K, Z |- A
(P1) M,X,Z |F (P)Aiff VY > X, IK e RP(Y), M,K, Z |F A

Call (F1) and (P1) “unidimensional tenses”. A notable — and ultimately problematic
— feature of the unidimensional tenses is that their support conditions are insensitive

to the secondary coordinate of evaluation.

For now, we note the clean separation between temporality and refinement.
Refinement relations track the resolution of metaphysical indeterminacy, without
shifting the locus of temporal evaluation. This idea may be best illustrated with
Holliday’s own model of the sea battle puzzle. Suppose that there are two salient
times, Monday and Tuesday and that p represents the proposition that there is
a sea battle on Tuesday. Define a model SB (for “sea battle”) as follows, and as
diagrammed in Figure 4. Let X,,, be Monday’s state of affairs both with regards to
categorical facts and also with regards to which facts are determinate. Now, X,,
can be refined into two possibilities Y,,, and Z,, without changing the temporal
perspective from which we evaluate. That is, both Y, and Z,, represent the world
as it is on Monday. Where they differ is that they resolve (some of) Monday’s
indeterminacy in different ways: in Z,,’s future there is a sea battle (i.e., at Z;); in
Y,,’s future (Y;) there isn’t one. In light of condition (uR), both Y; and Z; must also
be futures of X,,: after all, Z,, (viz. Y,,) refines X,,, and Z; (viz. Y;) are in the future
of Z,, (viz. Z,,).

Remarkably, in this model R is not the converse of RF. The intuition behind

this is that, “looking backwards” from Z,’s perspective, the past has a new veneer of

18Gee Lemma 5.3.8 in Holliday 2022. In the current setup: M, X, Z |- -0;-Aiff VY > X, M, Y, Z |f
—Oj-Aiff VY > X, 3K € Ri(Y), M,K, Z |- -Aiff YY > X, 3K € R;(Y),AK’ > K, M,K’, Z |- A. Now, fix
Y > X and K € R;(Y). Suppose K’ > K. Then, by (Rd), K’ € R;(Y). Thus K’ would be available as
witness to the existential in (F1) and (P1).
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determinacy. Here is Holliday’s gloss, with adaptations to our notation in square
brackets:

Thus, the future is presently [i.e. at X,,| open. Yet if there is a sea battle,
so [Z;] is realized, then the past will turn out to be [Z,,], in which there
would be a future sea battle, whereas if there is no sea battle, so [Y;] is
realized, then the past will turn out to be [Y,,], in which there would
be no future sea battle. Come tomorrow, we might say, “the past is not
what it used to be.” (Holliday, 2022, §5.3)

While we carry along this interesting assumption, it does bear further scrutiny, so
as to determine the theoretical tradeoffs it involves.

The model verifies what we might call minimal openness:
(MO) SB, X, [F(F)p Vv —(F)p while SB,X,, |- (F)p and S5, X,, - —(F)p.

With our determinacy operator, we further verify SB, X,, |- =D{F)p A =D—(F)p.1?
This is indeed a minimal standard for capturing a concept of openness of the future.
However, the addition of two-dimensional determinacy operators to the temporalist
version of the theory presents some difficulties. Here is one: in the combined theory
determinacy statuses are permanent.

The two-dimensional system augmented with unidimensional tenses incorrectly
predicts that DA |}- [P]DA, and so that DA,(P)T |- (P)DA. More generally:

Fact 8 (Determinacy is forever) For any model M, X,Z € Py,
(i) M,X,Z | DAiff M,X,Z |}- [PIDA
(ii) M,X,Z | DAiff M,X,Z |- [FIDA

Proof of (i): the left side reduces to M, Z, Z |- A given the support condi-
tions for D. Unpacking on the right side: M, X, Z |I- [P]DAiff VY € RP(Y),
M,Y,Z | DA, which also reduces to M, Z, Z |- A. For (ii), replace ‘ [P]’
with ‘ [F]” in this argument. O

Since the D operator overwrites the primary coordinate of evaluation with the value
of the secondary coordinate, temporal operators scoping over D are irrelevant.
Within the present framework, there is an obvious alternative: treat the tenses

as two-dimensional operators in their own right.

19 While Holliday (2022) discusses this model within a unidimensional possibility semantics (with
operators (F) and (P) also being given standard unidimensional entries), his discussion can easily be
exported to the two-dimensional setting with no essential alteration. The observation concerning the
determinacy operators is not in Holliday (2022), but it is also noted in slides for Holliday’s NASSLLI
course on possibility semantics. To verify the first of these claims: SB, X,,,, X, [F =D(F)p iff VX’ > X,,,,
SB,X’, Xy, I D(F)p iff SB, Xy, X,y |- (F)p, which is indeed the case since it’s not the case that every
refinement of X,;, has a future in which p holds (e.g. Y, does not).
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(F2) M,X,Z |- [F]Aiff VK € RF(X), M,K,K |F A
M, X, Z |F(FYAiff VY > X, K e RF(Y), M,K,K |- A
(P2) M,X,Z |F [P]JAiff YK € RP(X), M,K,K |- A

M, X, Z | (PYAiff VY > X,IK e RP(Y), M,K,K |F A

It can be quickly checked that this modified system retains the duality relationship
between (F) and [F].%°

The modified system also fixes the bug with the previous proposal by blocking
the analogue of Fact 8. The model in Figure 4 illustrates that determinacy is not
forever. Specifically: SB,Z,, Z, | Dp, but SB,Z,,, Z,, |- =Dp, and yet {Z,,} = R"(Z,),
and so SB,Z;,Z;, |} (P)=Dp. Furthermore, after this modification, the semantics

continues to meet the minimal openness benchmark.

8 Preliminary analysis of the tensed system

This is progress towards the goal of keeping a theoretical distinction between
refinement and temporal precedence. Whether this integration is successful requires
substantial additional work. Here we touch on two questions: are the operators
in (F2) and (P2) properly called temporal operators? And how much of the open
future lore can be retrieved within the modified theory?

Both questions may be addressed by exploring the logic of the system. Having
added temporal operators, Fact 5 fails, and so does the path we followed to charac-
terize the logic of D. Even without a characterization, however, we can answer our
questions in a more piecemeal fashion. To start, D continues to mirror the logic of
universal necessity modals — e.g. by validating axioms T (DA — A) , 4 (DA — DDA),
and 5 (-DA — D-DA). These can be checked directly by applying the evaluation
rule for material conditionals, which is derived from (A — B) =45 (A A =B), and
simplifies to:?!

(MC) M, X,Z|-A—Biff VX" > X, M, X', Z |- AM, X', Z |- B.

With regards to the temporal logic, we can study whether the system satisfies at
least the “minimal temporal logic” (Goranko and Rumberg, 2024), consisting of the

axioms:

204, X, Z |F —[P]-A unpacks to VY >» X,3K € RP(Y),3Q > K, M,Q,K |- A Under (Rd) this is
equivalent to VY > X, 3K € RP(Y), M,K,K | A, since Q > K, K € RP(Y), and (Rd) entail Q € RP(Y).

2lgee Holliday (2022), §4.2.2. Holliday’s proof is for the unidimensional system and requires
appeals to Persistence and Refinability across the language. The analogue of this proof in the two-
dimensional system, goes through by appeal to the local versions of Persistence and Refinability as
identified at the end of §6.
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(KF) [F](A—B)— ([F]A— [F]B)
(KP) [P](A—B) — ([P]JA— [P]B)
(PF) A— [PKF)A
(FP) A — [F(P)A

The first two follow immediately from the support conditions for the tenses and
(MC). The case of the conversion principles is more complex. Instances of (PF) where
A does not involve determinacy operators (or tenses) — call them basic instances —
can be proven by adopting the standard frame condition that if X € RP(Y), then
Y € RF(X). (Its non-basic instances can be proven given a principle I am about to
introduce modeling the Fixity of the Past, but I won’t provide the proof here.) As for

(FP), its basic instances can be proven on the basis of a weaker frame condition:??

Step conversion. If Y € RF(X), then either X € RP(Y) or AX’ > X s.t.
X’ e RP(Y).

However, in full generality, these may fail. Consider this instance of (FP):
-D(F)A — [F|(P)=D(F)A

Informally: if it’s not determinate that the future verifies A, it will always be the
case that in the past it’s not determinate that the future verifies A. This may fail
for reasons related to Holliday’s quote from earlier: it may now be indeterminate
that the future contains a sea battle, but as we advance forward into the future, we
may land into a possible future where the past ‘has changed’. The model SB gives
formal content to this counterexample.??

With regards to the open future lore, a theorist in that vein might aim to
validate D(P)A < (P)DA (because the past is settled) without validating D(F)A <
(F)DA. After all, if the future is open, one might agree that at some time it will be
determinate that there is a sea battle, while denying that it is presently determinate

that there will be one.

These are exactly the predictions of our system provided we adopt a frame
condition that represents the fact that the past is fixed.

22proof: Fix X > Y, M, X, Y | A then:

(i) M, X,Y |F[F(P)A & VK € RF(X),VK’ > K,3Z e RP(K"), M, Z,Z |- A
Fix K € RF(X) and K’ > K. By (Rd), K’ € RF(X). By step conversion, either X € R’ (K’) or 3X’ > X,
X’ € RP(K). Either way 3X’ € R’ (K’), M, X", Y |- A. Provided that A is from the Boolean sublanguage
3X’ e RP(K’), M, X’, X’ | A, which combined with (i) entails M, X, Y |- [F](P)A.

23Check that 8B, X, X, |- ~D(F)A, but 8B, X,,, X, [l [F](P)=D(F)A. Towards the latter note:

Zy e RE(X,,), and Z,’s only past is Z,,. At Z,,, it is determinate that in the future there will be a sea
battle.
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Fixity of the past. If X > Y, Z e RP(Y) - Z e RP(X).

Given (uR), this can be strengthened to a biconditional. But the part that is not
entailed by (uR) induces a key asymmetry between past and future. The principle
states that if X refines Y, and Z is in the past of Y, Z must also be in the past of X.

Fact 9 Given Fixity of the past:

(i) |- (YDA — D(F)A
(ii) |F D(F)A — (FYDA and |- D(P)A — (P)DA

(iii) | (PYDA — D(P)A

Part (i): the model SB is a counterexample with X, as base possibility
and p as instance. Among the refinements of X,, that support (F)Dp
pick Z,,. So, M, Z,,, X,,, | (F)Dp. However, M, Z,,, X,,, - D{F)p. To see
this recall that M, Z,,, X,,, |F D(F)p iff M, X,,,, X,,, |IF (F)p, and note that
M, X, X, I (F)p, since Y, refines X,,,, but Y,,, does not have a future at
which p is true.

Part (ii): It is easy to check the validity of (F)A — (F)DA, which together
with an instance of the T axiom, D(F)A — (F)A, yields (ii).

Part (iii): Suppose (a) M, X,Y |- (P)DA for X > Y. We want to check (b)
M, X,Y |- (P)DA for X > Y. Respectively these are equivalent to:

(@) YZ > X,AK e RP(Z), M,K,K | A.
(b') ¥Z’'>Y,AK’ e R?(Z'), M,K’, K’ |- A

Fix Z’' > Y. Because X > X, AK € R"(X), as in (a’). By X > Y and (uR),
K € RP(Y). By Fixity K € R(Z’). O

Let us take stock. Two-dimensional tense operators make for a better behaved
system. Although the analysis fell short of characterizing the logic of this full
system, it establishes that the two-dimensional tenses behave in important respects
like bona fide tense operators. Specifically, they satisfy the core of tense logic, albeit
within limits. Moreover, we noticed that under a frame condition capturing the
fixity of the past, we were able to capture core principles of open future lore. Much
more would need to be said to provide a full vindication of the two-dimensional
possibility semantics as a model of the open future, especially in comparison to
branching time approaches. But the subject is beyond the scope of the present work.
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9 Conclusion

The main conclusions are as follows: there is a clear path for the application of
possibility semantics to the metaphysical hypothesis of the open future. That
path must include the characterization of object language determinacy operators.
Introducing such operators under something like the alignment constraint requires,
on pain of inconsistency, some modifications to the original framework. A two-
dimensional variant of possibility semantics is one path to relieve this theoretical
pressure. In its natural interpretation, the logic of determinacy under the two-
dimensional analysis is the global version of S5.

The most immediate development of this idea is feasible under a broadly
eternalist conception of propositions, and under the hypothesis that the refinement
relation and the (reflexive closure of the) temporal precedence relation collapse.
It appears important to explore the prospects for the two-dimensional analysis
in a context that does not involve these structural assumptions. Holliday (2022)
has already provided key insights for how to think about facets of the open future
without collapsing refinement and temporal precedence. Integrating these insights
within the two-dimensional framework highlighted the promise of thinking of

tenses two-dimensional operators in their own right.
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