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Abstract

Possibility semantics offers an elegant framework for a semantic analysis of modal

logic that does not recruit fully determinate entities such as possible worlds. The

present papers considers the application of possibility semantics to the modeling of

the indeterminacy of the future. Interesting theoretical problems arise in connection

to the addition of object-language determinacy operator. We argue that adding a

two-dimensional layer to possibility semantics can help solve these problems. The

resulting system assigns to the two-dimensional determinacy operator a well-known

logic (coinciding with the logic of universal modalities under global consequence).

The paper concludes with some preliminary inroads into the question of how to dis-

tinguish two-dimensional possibility semantics from the more established branching

framework.

1 Introduction

Possibility semantics offers an elegant framework for a semantic analysis of modal logic

that does not recruit fully determinate entities such as possible worlds.1 This paper

0Thanks to David Boylan, Rohan French, Jeff Horty, Arc Kocurek, Stephen Kuhn, John MacFarlane, Matt
Mandelkern, Eric Pacuit, Masayuki Tashiro, and Alessandro Torza, as well as two anonymous referees for
conversations, exchanges on early drafts of this paper. Also thanks to the audience at the Maryland Work in
Progress Workshop, the Logic, Language, and Cognition (LLC) group at the University of Turin, Virlawp
working group, and especially to Ginger Schultheis and Malte Willer whose remarks prompted large revisions.
Special thanks to Ilaria Canavotto and Lloyd Humberstone for detailed feedback at different stages of the
composition of the paper; to Paolo Santorio for many years of discussions and exchanges of ideas on this
topic; and finally to Wes Holliday who came through with multiple suggestions that unlocked significant
improvements in the paper.

1The phrase “possibility semantics” was coined by Humberstone (1981). The tools undergirding the
framework have longer histories, including (Fine, 1975, especially §2), Humberstone (1979), as well as deep
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develops the application of possibility semantics to the modeling of the indeterminacy,

or openness, of the future, and some other related forms of metaphysical indeterminacy.

Possibility semantics is plausibly viewed as an alternative to more established branching-

time models (Thomason 1970, 1984, 2007, Belnap et al. 2001, MacFarlane 2003, 2014) in

which indeterminacy is grounded in the overlap of complete possibilities—sometimes

referred to as “histories”. The key finding is that interesting technical and conceptual

problems arise in connection to the explicit modeling of indeterminacy within the object

language.

As understood here, the open-future hypothesis is the claim that some future events

and states are objectively, and not merely epistemically, unsettled.2 It is not assumed here

that the unsettledness of the future and quantum indeterminacy are one and the same.

The recurring illustrative example will be the proposition that some specific random coin

will land heads on its next toss, under the stipulation that the outcome of the coin’s toss

is not settled by the facts about the past and the present of the tossing apparatus. If in

actuality there are no such setups, the case may be entertained as a thought-experiment.

The indeterminacy associated with the future seems unlike other kinds of indeter-

minacy that have attracted the attention of philosophers. For example, it seems unlike

the indeterminacy that some theories associate with vagueness. For one thing, it does not

appear to give rise to higher-order indeterminacy. It is generally agreed by those who

think that vagueness is grounded in some kind of indeterminacy that it may itself be

indeterminate whether Joe is borderline tall. By contrast, it is common to assume that,

as far as the unsettledness of the future is concerned, there are no states or events whose

determinacy status is itself indeterminate. It might be unsettled whether there will be a

sea battle tomorrow, but it cannot be unsettled whether it’s unsettled. A second marker

of the indeterminacy of the future is that it is not plausibly associated with unusual

effects on credence. Many different philosophers have been attracted to the view that

there is something non-classical about credence in the contents of vague statements. One

roots in the algebraic logic tradition. For a contemporary and comprehensive introduction, see Holliday
(2022). Possibility semantics is one of a variety of styles of theories that do not rely on worlds, but on coarser
objects. In addition to possibility semantics, the general family of “pointless” theories includes various kinds
of states-based semantic analyses (Aloni 2018, Willer 2018), truthmaker semantics (Fine, 2017b), as well as
several varieties of situation semantics (Barwise and Perry, 1981; Kratzer, 2021). It would be desirable to
have a comparative study of these frameworks highlighting the commonalities, as well as the differences,
between them.

2There is much literature on what constitutes the (alleged) openness of the future. The present discussion
leans in various ways on Thomason (1970); Belnap and Green (1994); Belnap et al. (2001); MacFarlane (2003,
2014); Barnes and Cameron (2009, 2011); Torre (2011); Cariani and Santorio (2018); Cariani (2021b); Todd
(2022).
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form of this is Field’s (2000) claim that vague contents require low credence in certain

instances of the law of excluded middle; another is Williams’s claim that vague contents

seem to require imprecise probability (2014).3 By contrast, statements about the future

appear to be paradigmatic examples for the application of theories of classical credence.

In prototypical cases, it seems perfectly warranted to have a sharp credence that the coin

will land heads. The fact that the indeterminacy of the future has these characteristics

licenses us to theorize about this specific type of indeterminacy on its own (cf. §2.3 of

Torza, forthcoming, on pluralism about indeterminacy).4

As a last disclaimer, exploring the indeterminacy hypothesis involves no commitment

to the claim that the future is open. What we are in fact committed to is the weaker claim

that the hypothesis is worth taking seriously. As Stalnaker (2019, p.197) puts it, “You

don’t have to sign on to this metaphysical theory (as I do not) in order to find it intelligible

(as I do) and to use it as a kind of precedent for a case where the thesis of metaphysical

indeterminacy may be less controversial.”

We lead with a general introduction to possibility semantics for a sentential modal lan-

guage (§2). The next section focuses on the representation of indeterminacy in possibility

semantics (§3). The framework itself already incorporates a representation of indetermi-

nacy in the model theory. However, contrary to the inclination of Humberstone (1981),

it seems important to have ways of capturing the notion of indeterminacy in the object

language. Unfortunately, it is not possible to add a determinacy operator with the right

profile to the system—not at least without other interventions. The main contribution

of §3 is an impossibility result to this effect. After considering some theoretical options

that would repair the inconsistency by means of local interventions (§4), we consider an

attractive solution to the problem, which lies in the integration of possibility semantics

with a two-dimensional framework (§5). The last two sections respectively highlight some

logical properties of the resulting system (§6) and explore an extension of the approach

that incorporates temporal operators (§7).

The insight behind the approach proposed in §5 is owed to remarks in Fine (1975).

The Cliffs notes on Fine’s paper focus on the fact that it is the first application of super-

3The matter is highly complicated, in ways that go beyond the relatively simple demarcation point that is
made in this paragraph. For a sophisticated discussion, see Bacon (2018).

4It is worth highlighting that that some of the formal discussion to follow is not be restricted in scope to
the alleged indeterminacy of the future. It will pertain to any application of possibility semantics to concepts
of indeterminacy that do not give rise to higher-order indeterminacy and are not associated with funky effects
on credences. As an example, Stalnaker (1984) famously suggests that counterfactual selection results in a
kind of indeterminacy, and has more recently suggested that this kind of indeterminacy might be viewed as a
‘milder’ version of the indeterminacy that is associated with the future (Stalnaker, 2019, p.197-ff).
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valuationist techniques to vague language. However, it is also a central juncture for the

logical development of semantics based on partial objects, since Fine builds up to the

supervaluationist machinery by first analyzing a system in which precisifications of a

vague language are viewed as partial. (NB: this account is only considered in passing in

Fine 1975, and moreover Fine’s theory of vagueness has significantly changed, e.g. in

Fine 2017a.) The present ambition is to recast some of those insights about determinacy

operators in a different theoretical context, allowing some distinct issues and theoretical

choice points to come to light.5

2 Background on possibility semantics

The basic ideological tenet of possibility semantics is that formulas are not evaluated

against worlds, but against “coarser” objects called possibilities. This ideology marks a

deviation from the standard account of the indeterminacy of the future—which is broadly

within the framework of branching time (Thomason, 1970, 1984, 2007; Belnap et al.,

2001). According to the branching time picture, indeterminacy is adequately captured

by the overlap of multiple complete possibilities with equal claim to fit the settled facts.

The exact details of the analysis here depend on deeper metaphysical commitments. For

instance, someone with broadly ersatzist leanings might say that the indeterminate reality

is represented by multiple, incompatible perfectly determinate representations (Barnes

and Cameron, 2009, 2011; Barnes and Williams, 2011).

Possibility semantics proceeds in a different way. Instead of taking a maximally

precise representation as its basic modeling object, it deploys primitive objects that are

themselves incomplete. That incompleteness is naturally associated with a concept of

indeterminacy: possibilities settle the truth values of some sentences of a language, while

leaving others unsettled.

The present formulation of possibility semantics originates from Humberstone (1981).

The language is a sentential modal language, whose signature features a non-empty

countable set of modal operators. (In later sections, we will add a determinacy operator D,

in addition to these.) Models for this language are quadruples of the form, ⟨P ,≫,R,V ⟩.

Here P represents a non-empty set of possibilities; ≫ is a refinement relation over the

possibilities. Structurally, ≫ is a weak partial order (thus, it is reflexive, transitive and

5The idea of using possibility semantics to model the unsettledness of the future is also explored in a
preliminary way in Boylan (forthcoming). However, because Boylan is focused on a different set of problems,
he ends up in a theoretical space that is not compatible with the present outlook, especially with regards to
the analysis of negation.
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antisymmetric). From an intuitive standpoint, Y ≫ X holds when everything that is

settled as either true or false by X is settled in the same way by Y . In short, Y agrees on all

the determinate facts that X settles. (Explicit structural assumptions are needed in order

to guarantee that models satisfy this intuition, and they will be provided in short order.)

R is a non-empty set of accessibility relations, and finally V is a partial valuation function:

in this setting a valuation function inputs an atomic formula and a possibility, and, if

defined, outputs either 0 or 1. When V (A,X) is undefined, we write V (A,X) ↑, otherwise

V (A,X) ↓. Occasionally, when it is important to disambiguate, and a modelM is salient

in context, a subscripted “M” will be used to indicate its coordinates. For example, “PM”

refers to the set of possibilities inM.

Models for this language are ordinarily assumed to satisfy two constraints.

Refinability. For every atomic formula A and possibility X, if V (A,X) ↑, then

there are Y ,Z such that Y ≫ X and Z ≫ X, s.t. V (A,Y ) = 1 and V (A,Z) = 0.

Persistence. For all atomic A, if V (A,X) ↓ then for every Y ≫ X, V (A,X) =

V (A,Y ).

Persistence says that whenever atomic A is settled at X, it stays settled in the same way

through X’s refinements. Refinability says that whenever an atomic formula A is unsettled

at a possibility X, there are Y and Z—both refinements of X—that settle A as true and

false respectively. Refinability is related to, but logically distinct from, the assumption

that any partial possibility might be refined all the way to a complete one (which Fine 1975

calls “Completability”). In a language with infinitely many atomic sentences, refinability

might be satisfied, without completability being satisfied.

Persistence is required to give formal representation to the intuitive conception of

refinement. Indeed, under persistence, it is tempting to think of refinement structures as

mirroring the structure of the branching models for future contingency,6 as illustrated by

the diagram in Figure 1.

6See Thomason (1970); Belnap et al. (2001); MacFarlane (2014), Cariani (2021b, ch.2) for discussion of
branching models.
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A = 1, B,C :↑

A = B = 1, C :↑ A = 1, B = 0, C :↑

A = B = 1, C = 0A = B = C = 1 A = C = 1, B = 0 A = 1, B = C = 0,

X1

X2

X3

Figure 1: The branching structure of refinements (X3≫ X2≫ X1)

However, an important lingering difference — which the formal theory ought to help

disentangle — is that standard branching models are built on the idea of maximal histories,

which at any moment assign a definite truth-value to all the formulas of the language.

Indeed, the linear paths through the tree can naturally be viewed as temporally structured

possible worlds. No such assumption of completeness is imposed on possibility models.

Another important observation is that our assumptions on possibility models do not,

by themselves, rule out backwards branching. For example, the following model satisfies

our stipulations.

A = 1, B = 1

A = 1, B ↑ A ↑,B = 1

B = 0, B = 1,B = 1, B = 0,

X1

X3

X2

Figure 2: Backwards branching possibility model

The model in Figure 2 shows that Refinability and Persistence are not sufficient to rule out

backwards branching. In this model, Refinability and Persistence are both satisfied, and

yet, X3 has two arrows going into it. If we wanted to rule out this possibility, we would

need to impose a "no backwards branching" condition, similar to those that are used in

defining branching models. Specifically, we would have to stipulate that whenever X≫ Y

and X≫ Z, then either Y ≫ Z or Z ≫ Y . We will implicitly be restricting our attention to

models that satisfy this condition, but none of our results will require imposing it.

Humberstone’s semantic entries rely on the idea of using a valuation function defined

on the atomic formulas of L to ground a notion of support between possibilities and

formulas of the whole language. They are as follows:
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• M,X ||− p iff VM(p,X) = 1

• M,X ||− A∧B iffM,X ||− A andM,X ||− B

• M,X ||− ¬A iff for all Y ≫ X,M,Y ̸||− A

• M,X ||− □iA iff for all Y ∈ P , s.t. RiXY ,M,Y ||− A

As for other operators, such as ∨,→, ^, a common approach recovers entries by fixing

some standard equivalences. In the case of disjunction, one might assume it characterized

by conjunction, negation and DeMorgan’s laws.7 This results in the following entry:

• M,X ||− A∨B iff for all Y ≫ X, there is Z ≫ Y , s.t. M,Z ||− A orM,Z ||− B

Another route to the same goal would be to stipulate some general principles about what

it takes for various kinds of possibilities to settle a disjunction as true/false (Holliday,

2022).

• A possibility X settles a disjunction A∨B as false iff it settles A as false and settles B

as false.

Assume that a possibility settles A as false iff it settles ¬A as true. Next, note that the

entries for negation and conjunction tell us that:

• A possibility X settles a conjunction A∧B as true iff it settles both A and B as true.

• A possibility X settles A as false iff every refinement of X fails to settle A as true.

These assumptions are sufficient to pin down the same entry for disjunction as above. A

similar analysis could be carried out for the other operators.8

Lastly we follow Humberstone in defining consequence as preservation of support.

7As an alternative, disjunction could be defined instead by the conditionM,X ||− A∨B iffM,X ||− A or
M,X ||− B. This would have the effect of making the logic of the sentential sub-language non-classical.

8While the analysis of necessity simply lifts Kripke semantics to the level of possibilities, an account
of modality also involves the specification of interplay conditions connecting accessibility and refinement.
Humberstone proposed:

(uR) for all X,Y ,Z, if Z ≫ X and RZY , then RXY

(Rd) for all X,Y ,Z, if Z ≫ Y and RXY , then RXZ

(R) for all X,Y , if RXY then ∃X′ ≫ X, for all X′′ ≫ X′ , RX′′Y

Holliday (2014, forthcoming) noted that condition (R) is overly strong. One suitable weakening is a condition
that Holliday calls R-refinability (see Lemma 5.3.7 of Holliday (2022)).

(RR) for all X,Y , if RXY , then ∃X′ ≫ X,∀X′′ ≫ X′ ,∃Y ′ ≫ Y ,RX′′Y ′

In addition to ‘RR’, the names given here to these conditions are abbreviations of Holliday’s names: ’(uR)’ is
for Holliday’s ‘up-R’ for (uR) and ‘(Rd) is for Holliday’s ‘R-down’. These conditions will be of relevance in §7.
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Definition 1 A1, ...,An ||− B iff for all modelsM and any X in PM, if for all i,M,X ||− Ai , then

M,X ||− B.

It is a well established fact about this formalism that the logic of the sentential sub-

language is classical, both in the sense that the set of logical truths coincides with the

set of classical tautologies, and in the sense that the class of valid arguments in this

sub-language coincides with the class of tautologically valid arguments (Humberstone,

1981, pp.320-321).

3 Adding object language determinacy operators

It is reasonable to claim that possibility semantics incorporates a model of indeterminacy:

an atomic formula A is indeterminate at a possibility X when X leaves A undefined.

Imagine a possibility X and an atomic formula, heads, which we may take as symbolizing

the English sentence The coin will land heads (on a specific toss that will take place tomorrow at

noon). In a clear sense, the metatheoretic fact that VM(heads,X) ↑ represents the relevant

indeterminacy from the perspective of the model theory. This warrants the view that

indeterminacy is captured in standard possibility semantics at the metatheoretic level.

However, as the system is set up, there is no object language device to express the

concept of indeterminacy. We do not have, or have not identified, an operator that can

properly express things like it is determinate that the coin landed heads on today’s toss,

but it is not determinate that it will land heads tomorrow. This is unfortunate because, for

various modeling purposes, it’s important to have determinacy operators in the object

language. For example, determinacy operators may help formulate constraints that involve

the interaction of indeterminacy with other concepts. To take just one example drawn

from the recent literature, Cariani (2021a) explores interactions between (in)determinacy

operators and epistemic operators. In this kind of discussion, certain principles become

important that can only be formulated with determinacy operators. An example is:

¬DA → ¬KA—the principle that if A is not determinately true, then it is not known.

Such principles, and the constraints they impose on models, are best analyzed from the

perspective of a formalized language.9

Let us then introduce a determinacy operator D to the formal language—with the

interpretation that its argument is determinately true. Thus ¬DA is interpreted as claiming

9For some additional considerations in favor of introducing object language determinacy operators, see
also Barnes and Williams (2011, §5)
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that the proposition expressed by A is not determinately true, while leaving it open that

it might be determinately false. To express the claim that A is indeterminate, we add an

indeterminacy operator I governed by the condition in Definition 2, which is standardly

taken to be definitional of indeterminacy (e.g. in Fine, 1975):

Definition 2 IA =df ¬DA∧¬D¬A

In many respects that are going to be relevant, non-determinacy (which is expressed by

‘¬D’) behaves similarly to indeterminacy. It is important however to keep in mind that in

the present terminology ‘indeterminacy’ denotes a two-sided status, in the sense that it

requires that both A and its negation fail to be determinate. By contrast, non-determinacy

(the obtaining of ¬D) is a one-sided status: a proposition may fail to be determinate, while

its negation is determinate.

The addition of determinacy operators to the language of possibility semantics should

be guided by some key constraints. To start, object language indeterminacy should, in

a precise sense, align with metatheoretic indeterminacy. The simplest statement of this

constraint is at the level of atomic formulas:

Constraint 1 (Alignment) For atomic A,M,X ||− IA iff VM(A,X) ↑.

Alignment entails a second constraint: formulas expressing non-determinacy (and inde-

terminacy) claims must violate (a generalization of) persistence. As initially formulated,

persistence applies to the atomic formulas of the language, but there is an entirely natural

generalization of it involving the concept of support. A possibility X might support that

it’s indeterminate whether the coin will land heads, while at the same time it could be

refinable into a possibility Y that settles that the coin will land heads. The exact principle

that follows from this is:

Constraint 2 (Non-persistence of non-determinacy) There is a formula A, and modelM

with possibilities X,Y ∈ PM and Y ≫ X such thatM,X ||− ¬DA butM,Y ̸||− ¬DA

Constraint 3 (Non-persistence of indeterminacy) There is a formula A, and model M

with possibilities X,Y ∈ PM and Y ≫ X such thatM,X ||− IA butM,Y ̸||− IA

With enough of the possibility framework on board, the route from the alignment con-

straint to non-persistence is relatively straightforward.
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Fact 1 Given Definition 2 and Refinability, Alignment entails (i) Non-persistence of indetermi-

nacy and (ii) of non-determinacy.

Proof. Consider a model M with two possibilities X and Y drawn from its

possibility set, such that Y ≫ X. Suppose in particular that Y settles some

atomic formula A that X leaves unsettled. The existence of such a Y is guar-

anteed by Refinability. Then VM(A,X) ↑ but VM(A,Y ) = 1 or VM(A,Y ) = 0 and

soM,X ||− IA butM,Y ̸||− IA. For (ii), exploit Refinability to suppose that Y

refines X so that VM(A,Y ) = 1. Definition 2 yieldsM,X ||− ¬DA, but from the

way Y refines X it follows thatM,Y ||−DA. □

Alignment provides powerful motivation for Non-persistence. It is nonetheless valuable

to keep the claims separate, because Non-persistence is weaker and might be motivated in

other ways. Another reason to keep these separate is that there are versions of possibility

semantics that drop Refinability (see e.g. the development in Holliday and Mandelkern

ms.).

While these constraints seem plausible, important difficulties are lurking under the

surface. The just-added ingredients are inconsistent with the framework. In particular,

there is tension between the analysis of indeterminacy in Definition 2, the Non-persistence

of indeterminacy and the analysis of negation.

Fact 2 The following are inconsistent (given the framework):

IN . IA ≡df ¬DA∧¬D¬A.

NP . There areM, A, X, Y ≫ X withM,X ||− IA butM,Y ̸||− IA.

NE. M,X ||− ¬A iff for all Y such that Y ≫ X,M,Y ̸||− A

Proof. Consider witnesses,M,X,Y ,A for NP . By IN ,M,X ||− ¬DA∧¬D¬A. By

the clause for conjunction,M,X ||− ¬DA andM,X ||− ¬D¬A. By the clause for

negation (NE), DA and D¬A cannot be supported throughout any refinements

of X. That is, for all Z ≫ X, M,Z ̸||− DA and M,Z ̸||− D¬A. However, since

any refinement of Y is a refinement of X, we must also haveM,Y ||− ¬DA and

M,Y ||− ¬D¬A, and hence, by IN ,M,Y ||− IA. This contradicts the fact that

M,A,X,Y were chosen as witnesses for the existential in NP . □

10



A plausible initial diagnosis is that the problem arises because the negation operator

forces persistence. That is to say, the system guarantees that ¬A must always be persistent,

whether A is persistent or not. A consequence of this fact is that the indeterminacy

operator I cannot be both defined in terms of negation and also such that formulas like IA

are non-persistent.

This inconsistency is related to a less specific unease with object language indetermi-

nacy operators that is already expressed by Humberstone (1981). Humberstone claims

that an indeterminacy operator like the one just introduced would go “against the spirit

of the present enterprise, since it would give rise to formulas which were not persistent

into refinement [...], and thus undermines the idea of refinements as mere resolvers of

indeterminacy”. Humberstone’s exact concern is hard to pin down, and certainly broader

than the inconsistency articulated in Fact 2. (He uses this kind of argument to press

against other non-persistent operators, including ones that do not give rise to inconsisten-

cies like the one just identified.) But whatever we may think of the broad concern, the

inconsistency does show that adding (in)determinacy operators is not entirely innocent.

4 A preliminary journey around the options

Is there a path for integrating possibility semantics with object language determinacy

operators? Evidently, any such path requires giving up one of IN , NP , or NE. In

other words, it requires either altering the definition of indeterminacy, or giving up

non-persistence or modifying the analysis of negation. The option of giving up IN is

a non-starter and may be set aside immediately. The problem is not merely that the

definition of indeterminacy captured by Definition 2 is relatively well entrenched, which

it is. The real issue is that a version of the inconsistency in Fact 2 arises directly for ¬DA,

independently of how IA is defined.

By contrast, it seems more promising to pursue some version of the second option,

and so to deny the non-persistence constraint. One might support a plea for persistence

by thinking in terms of temporally indexed indeterminacy operators. 10 To illustrate

the essence of the approach, start by noting that, in the relevant applications, there is a

connection between refinement and temporality. Specifically, advancing through time

along a history should result in encountering more and more refined possibilities. Under

this temporal interpretation, it might seem attractive to entertain determinacy operators

10I owe this suggestion to Masayuki Tashiro.
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that are relativized to a specific point in time. Under this approach, the object language

would feature a collection of operators {Dt | t ∈ T }, where T is a designated set of times in

the model.11 Simplifying somewhat, imagine that the set of times that are distinguished

in a given possibility model is finite. Then consider operators D0,D1,D2, ...,Dn, each

marking what is determinate at a certain time in the development of history, with each Di

anchored to some specific time ti . To complete the proposal say that the language does not

contain any unrelativized determinacy operators, and thus that all determinacy discourse

is captured by means of relativized ones.

This model’s way out of the inconsistency is to undermine some of the motivation

for non-persistence. Suppose again that XMon represents Monday’s possibility, in which

the coin has not yet landed heads, and XWed represents the state of affairs on Wednesday,

after the coin has been tossed and has landed heads. In the original approach, with

unrelativized determinacy operators, one should approach this by saying that ¬D(heads) is

supported at XMon but unsupported at XWed . By contrast, the relativized framework opens

up a different option: XMon supports ¬DMon(heads), while XWed supports DWed(heads).

Crucially, the formulas ¬DMon and ¬DWed can be assumed to be persistent (even when

the operator is embedded under negation). The intuitive meaning of DMonA would be

something like “A is/was settled true on Monday”. From Wednesday’s point of view—

i.e., as far as XWed is concerned—¬DMonA remains supported. Relatedly, the claim

¬DMonday(heads)∧DWednesday(heads) is perfectly consistent (from any point in time).12

This approach is valuable, and the solution offered in this paper incorporates some

of the insight that motivates it. However, it also seems unsatisfactory in some respects:

it is not especially controversial to claim that people possess an unrelativized concept

of indeterminacy — plausibly one that can be captured at the level of the theory by an

operator that satisfies the alignment constraint. There is no special reason to think that

there are barriers to expressing that concept in the object language. It is at the very least

worth asking whether such a concept is definable.

Before moving to the positive proposal, let us entertain one last option. The initial

hunch concerning the incompatibility in Fact 2 was that it is due to the persistence-forcing

11It requires a bit of manipulation to endow standard model of branching time with times. In particular,
what is required is a simultaneity relation that connects points on different branches. See chapter 2 of Cariani
(2021b) for discussion.

12A notational variant of this approach maintains that we can have a single concept of indeterminacy that
is relational, so that the canonical logical form for determinacy claims is D(Monday,A). From our perspective,
this approach is not substantially different from the indexed operator approach, and the critique to be made
below applies to both.

12



effect of negation. The obvious alternative would be to introduce a type of negation that

does not force persistence.13 To this end, introduce ‘∼’ as the connective characterized by

the clause: M,X ||− ∼A iffM,X ̸||− A. This alternate negation operator does not have the

effect of transforming a non-persistent claim into a persistent one. Indeed, it would make

correct predictions for non-determinacy claims in the proof of Fact 2.

An evident problem with this approach is that ‘∼’ cannot be the correct negation

operator for the entire language. Outside of determinacy claims, ‘∼’ conflates non-support

with rejection. It is undesirable for it’s not the case that the coin will land heads to be

supported by a possibility that merely fails to settle heads. More generally, ‘∼’ is not the

correct negation operator for the sentential sub-language of the language. In response,

one might consider a language in which the two negation operators, ‘¬’ and ‘∼’, coexist.

Footnote 15 of Humberstone (1981) identifies a minor expressive advantage to having

both operators (though Humberstone does not endorse the suggestion currently under

consideration): their combination, ‘¬ ∼’, is a plausible candidate for a determinacy

operator, as it expresses universal quantification over all refinements. (SoM,X ||− ¬ ∼

A iff all refinements of X support A). However, for the present application, having

both operators around is not well-motivated. There is no principled reason for why

one negation operator (¬) should apply in the D-free sub-language, while the other

operator should apply to formulas involving D. Additionally, any attempt at formulating

a generalization concerning which operator is appropriate for a given formula would have

to deal with the thorny problem of choosing the correct negation for mixed formulas (like

the negation of A∧DA), Ultimately, it is unprincipled to have two negation operators

floating around without a systematic account of their distinct roles.

5 Introducing two-dimensional possibility semantics.

This section presents a two-dimensional version of possibility semantics that is capable

of addressing the inconsistency.14 Before presenting it, it will be valuable to collect the

desiderata we identified along the way. What is needed is a version of possibility semantics

13Humberstone (1979) considers this alternative negation for a similar application. This is also the
negation that Boylan (forthcoming) uses in his application of possibility semantics to the future.

14For some general surveys on canonical applications of two-dimensional semantics see Humberstone
(2004); Kuhn (2013); Schroeter (2021). The suggestion of a two-dimensional treatment of the determinacy
operator is first explored in Fine (1975). Fine rightfully questions the ability of such an operator to handle
higher-order indeterminacy, but of course this concern is not salient in the present application. The present
claim is not that a two-dimensional semantics is anything new, but that it provides an elegant solution to
an otherwise extremely thorny puzzle. A slight variation of a two-dimensional determinacy operator is also
introduced in Burgess and Humberstone (1987, §6.2).
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that incorporates a non-persistent, non-relativized determinacy operator that is “aligned”

with the metatheoretic concept of indeterminacy that is ordinarily built into the possibility

semantics framework. The logic is to be classical within the sentential sub-language, and

the D operator must not trivialize. As a specific litmus test, A∨¬A is to be valid (because

the logic is classical) while DA∨D¬A is not. Finally, the system must avoid conflating

failure to support with rejection.

The opening move in crafting such a framework is to distinguish two dimensions

of evaluation. In addition to evaluating at a pair consisting of a model and a possibility,

consider evaluating at a triple M,X,Y consisting of the model and two possibilities.

Doubling the evaluation possibility allows it to play two separate roles: one coordinate

of evaluation is operated on by connectives (call this the ‘primary possibility’), while the

other is read by the determinacy operator D and left untouched by the connectives (call

this the ‘secondary possibility’). On the basis of the two-dimensional semantics, we can

produce a unidimensional entry according to a standard diagonal principle:

Diagonal principle: M,X ||− A iffM,X,X ||− A

The conceptual motivation for continuing to value unidimensional evaluation is that we

continue to focus on a concept of truth, or support, at a possibility as the ultimate target

of the theory. Moreover, thanks to the diagonal principle, the two-dimensional system

can inherit the definition of consequence as preservation of support at a model.

Recursive clauses for the connectives and for the determinacy operator are specified

at the level of two-dimensional evaluation. Note that the new secondary possibility is

largely idle, except for contributing to the interpretation of the determinacy operator.

(i) M,X,Z ||− p iff VM(p,X) = 1

(ii) M,X,Z ||− A∧B iffM,X,Z ||− A andM,X,Z ||− B

(iii) M,X,Z ||− ¬A iff for all Y ≫ X,M,Y ,Z ̸||− A

(iv) M,X,Z ||− □iA iff for all Y ∈ P , s.t. RiXY ,M,Y ,Z ||− A

(v) for ∨,→, ^, use standard equivalences to infer clauses.

(vi) M,X,Z ||−DA iffM,Z,Z ||− A

14



It is notable that, under this analysis, the determinacy operator resembles an actuality

operator in more standard applications of two-dimensional semantics. It evaluates the ar-

gument of DA after setting the primary evaluation possibility so as to match the secondary

one.

Logical consequence remains defined as preservation of unidimensional support, as

per Definition 1. Furthermore, Refinability and Persistence, understood as constraints

on atomic formulas, continue to be in place. While they have generalizations for the full

language, the status of those generalizations is not settled by the status of their atomic

variants. Thus, saying that the complex formula IA is non-Persistent is fully compatible

with saying that atomic formulas persist through refinements.

6 Victory lap

This section has two objectives: the broad objective is to illustrate that the system fulfills

the main desiderata for adding an object language determinacy operator. More narrowly,

once those general desiderata are established, it aims to illustrate that the system incorpo-

rates a way out of the central incompatibility identified in Fact 2. A key intermediate step

in establishing these objective is the characterization of the logic of the system, identified

below as Theorem 1.

As noted, the persistence constraint has a natural generalization concerning arbitrary

formulas and involving the notion of support.

Definition 3 (i) An arbitrary formula A is g-persistent inM iff for all X,Y ∈ PM with Y ≫ X,

M,X ||− A impliesM,Y ||− A; (ii) A is g-persistent iff for allM, A is g-persistent inM.

Our previous Constraints 2 and 3 become the claim that ¬DA and IA are not persistent in

this generalized sense.

Fact 3 (Non-persistence of non-determinacy and indeterminacy) Let A be an atomic for-

mula. Then ¬DA and IA are not g-persistent.

Proof. Let A be an atomic formula. We want to identify a modelM in which

¬DA and IA are not g-persistent. Consider a “minimal fork” model with

three possibilities X1, X2 and X3 with X2,X3 ≫ X1 and such that V (A,X1) ↑,

V (A,X2) = 1, V (A,X3) = 0. (See Figure 3.) In the model, M,X1 ||− ¬DA, but

M,X2 ̸||− ¬DA (sinceM,X2 ||−DA).15

15The support conditions for ¬DA, when A is atomic are as follows.
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A ↑

A = 1 A = 0

X1

X3X2

Figure 3: The Minimal Fork Model

The same model also illustrates the non-persistence of IA. □

Violations of g-persistence are limited to the fragment of the language that includes

determinacy operators. It is easy to establish by induction that formulas in the D-free

fragment are g-persistent.

We can also make quick work of establishing that the present system satisfies the

alignment constraint (i.e., Constraint 1).

Fact 4 (Alignment) M,X ||− IA iffM,X ̸||− A andM,X ̸||− ¬A

• M,X ||− IA⇔M,X ||− ¬DA∧¬D¬A⇔M,X,X ||− ¬DA∧¬D¬A⇔

• M,X,X ||− ¬DA andM,X,X ||− ¬D¬A⇔

• M,X,X ̸||− A andM,X,X ̸||− ¬A⇔

• M,X ̸||− A andM,X ̸||− ¬A □

There is no way of setting the accessibility relation R to define a modal operator on the

primary evaluation coordinate that is equivalent to the determinacy operator. To see this,

note that any modal that operates on the primary evaluation coordinate would collapse

the two-dimensional framework into the one-dimensional one. We know from Fact 3 that

the two systems do not collapse.

There is, however, an important relationship between the two-dimensional deter-

minacy operator in a language with no other modals, and certain ordinary modals as

evaluated in some designated submodels. Given a modelM and possibility X, letMX be

the submodel ofM that is generated by X. This is the model ⟨PX ,≫′ ,R′ ,V ′⟩ where PX is

the closure of {X} under≫ and any accessibility relation inM, and all the other elements

of the model are restrictions of the remaining relations and functions inM to this set. Let

• M,X ||− ¬DA⇔M,X,X ||− ¬DA⇔ ∀W ≫ X : M,W ,X ̸||− DA⇔ ∀W ≫ X :M,X,X ̸||− A⇔M,X,X ̸||−
A⇔ V (A,X) , 1.

It is easy to check thatM,X1¬DA holds butM,X2 ||− ¬DA does not.
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||−U be the support relation generated by interpreting formulas of our formal language

according to the unidimensional rules, while interpreting D as the universal modality in

MX (i.e. by assuming YRZ for any Y and Z in PMX
.).

Fact 5 For any refinement Y of X,M,Y ,X ||− B iffMX ,Y ||−U B.

Proof: Reason by induction on the complexity of B. If B is atomic, the claim

holds because the models have agreeing valuation functions. If B is a negated

formula ¬A, and Y is an arbitrary element of PX , for all Z ≥ Y ,M,Z,X ̸||− A

iffMX ,Z ̸||−U A, but since Z is a refinement of Y , it is also a refinement of

X, so this follows from the induction hypothesis. If B is a modal formula

□iA, and Y is a refinement of X, M,Y ,X ||− □iA iff for all Y ′ with YRiY
′,

M,Y ′ ,X ||− A iff (by induction hypothesis and definition of MX) for all Y ’

with YR′iY
′,MX ,Y

′ ||−U A iffMX ,Y ||−U □iA. Setting aside the trivial case in

which B is a conjunction, the remaining case of interest is where B = DA for A

satisfying the induction hypothesis. Consider Y refining X: thenM,Y ,X ||−DA

iffM,X,X ||− A iffMX ,X ||−U A iffMY ,X ||−U DA.

Fact 5 is the key to characterizing the logic of our determinacy operator, at least in

the special case in which the language does not contain other modal operators. Let

|=S5 denote the S5 consequence relation, and |=g
S5 the global consequence relation as

characterized on Kripke models (Blackburn et al., 2001, §1.3). The consequence relation

on two-dimensional possibility models coincides with the global consequence relation on

universal Kripke models.16

Theorem 1 If the original language does not contain modals other than D, A1, ...,An ||− C iff
DA1, ...,DAn |=S5 DC iff A1, ...,An |=

g
S5 C

Proof. We exploit the fact that universal modalities in Kripke frameworks have

the same logic (i.e. S5) as universal modalities in the possibility framework.

So, let ||−U be the logic of a possibility framework for a language with a single

modal D with RD as the universal relation. So:

DA1, ...,DAn ||−U DC iff DA1, ...,DAn |=S5 DC

16See the appendix of Schulz (2010) for a similar result involving the logic of Yalcin’s (2007) semantics for
epistemic necessity—albeit one that is presented wholly at the level of worlds-based semantics.
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What is left to prove is:

A1, ...,An ||− C iff DA1, ...,DAn ||−U DC

This is proven by identifying a chain of equivalences between the claim that

an arbirary argument has a countermodel in the two-dimensional framework,

and the claim that it has a countermodel in the unidimensional framework

with D as universal modality. Let Γ = {A1, ...,An}, and DΓ = {DA1, ...,DAn}.

(i) ∃M and X ∈ PM, s.t. M,X ||− Γ , butM,X ̸||− C.

(ii) ∃M and X ∈ PM, s.t. M,X,X ||− Γ , butM,X,X ̸||− C.

(iii) ∃M and X ∈ PM, s.t. ∀Z ≫ X,M,Z,X ||− Γ , butM,X,X ̸||− C.

(iv) ∃M and X ∈ PMX
, s.t. ∀Z ≫ X,MX ,Z ||−U Γ , butMX ,X ̸||−U C.

(v) ∃M and X ∈ PMX
, s.t. MX ,X ||−U DΓ , butMY ,X ̸||−U DC

The equivalence between (ii) and (iii) is due to the fact that evaluation along

the primary coordinate is persistent even in the two-dimensional system.

The equivalence between (iii) and (iv) relies on Fact 5 and persistence in the

unidimensional framework. For the equivalence between (iv) and (v), note

that if DC fails at X, C must fail at some possibility in the model—i.e. at some

refinement of X. But if so, C must also fail at X (or else persistence would

force it to hold throughout the entire model). □

Theorem 1 enables us to ascertain the satisfaction of many of our design principles. The

remaining facts in this section are all presented without explicit proof, on the understand-

ing that they are elementary corollaries of Theorem 1. First, notice that it entails that the

logic in the sentential sub-language remains classical. It is also a simple corollary that the

theorems of the two-dimensional theory with D as the sole modal operators are exactly

the theorems of S5.

Fact 6 ||− C iff |=S5 DC iff |=S5 C

Next, we notice that there are consistent statements of indeterminacy, i.e.:

Fact 7 (Non-triviality of indeterminacy)

(i) IA is consistent (i.e. ̸||−DA∨D¬A).
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(ii) D(A∨B) ̸||−DA∨DB

The failure of the entailment in part (ii) of Fact 7 is relevant for comparison with an

alternate system involving determinacy operators and two-dimensional semantics (i.e.,

the one on pp. 220-221 of Burgess and Humberstone, 1987).

Per our design specifications, there is no higher-order indeterminacy in this system.

Fact 8 (No higher-order indeterminacy)

(i) A ||−DA, and in particular, DA ||−DDA and ¬DA ||−D¬DA.

(ii) ̸||− A ≡DA

(iii) ||−DA ≡DDA

(iv) ||− ¬DA ≡D¬DA

Note that establishing the entailments in part (i) is not the same as claiming that truth

and settled truth coincide, as the observation in part (ii) highlights. And indeed there is

an important difference between higher-order and first-order determinacy claims when it

comes to object language collapse facts observed in parts (iii) and (iv)—as contrasted with

the non-collapse in part (ii).

At the same time, Theorem 1 illustrates that the system has a familiar non-classical

profile when it comes to its meta-rules. Though the extension of the consequence relation

in the D-free fragment matches that of classical sentential logic, adding expressive capacity

to the language in the form of the D-operator results in some non-classical behavior. One

example of this behavior is that the consequence relation does not contrapose over the full

language: A ||−DA holds, as we noted in Fact 8, but ¬DA ||− ¬A does not. This phenomenon

mirrors the standard behavior of similar systems based on S5 global consequence relations.

For example, it is observed in supervaluationist analyses based on the idea of “global”

validity (Fine, 1975; Williamson, 1994; Varzi, 2007; Asher et al., 2009; Bacon, 2018) and

also in informational analyses of consequence for languages with epistemic modals, as

in Yalcin (2007); Bledin (2014); Schulz (2010); Incurvati and Schlöder (2022). More

specifically, Theorem 1 entails the following failures:

Fact 9

• No Conditional proof : A ||−DA, but ̸||− A→DA
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• No Reductio: A∧¬DA ||−DA and A∧¬DA ||− ¬DA but ̸||− ¬(A∧¬DA)

• No Contraposition: A ||−DA but ¬DA ̸||− ¬A

Disjunctive syllogism may fail too, depending on its exact characterization.17

To conclude this section, it is valuable to reflect on exactly how the system manages

to avoid the inconsistency in Fact 2. Recall, that the inconsistency pits the definition of

indeterminacy (IN ), the claim that indeterminacy is non-persistent (NP ) and the analysis

of negation (NE) against each other. The technical fact of the matter is that the two-

dimensional system avoids the inconsistency by rejecting the negation condition, NE. In

particular, in the two-dimensional system, there is no guarantee that if X supports ¬A,

then X’s refinements will fail to support A. This is because unidimensional evaluation is

governed by the diagonal principle, and so what’s supported at X depends on evaluation

triples of the form ⟨M,X,X⟩, whereas what’s supported at Y depends on evaluation

triples of the form ⟨M,Y ,Y ⟩. These may come apart in ways that undermine the negation

clause. Of course, the effect of the negation operator is preserved because there is an

analogous operator at the level of two-dimensional evaluation. However, that operator

only quantifies over refinements along the primary dimension.

This technical gloss is important but it does not illuminate the central mechanics

behind the two-dimensional proposal. Instead, the two-dimensional system is better

thought of as a more flexible generalization of the idea of indexing determinacy operators.

The job of the secondary coordinate of evaluation is to anchor the facts that ground

determinacy claims, shielding them from the shifting effects of other operators. The failure

of the unidimensional negation clause is a downstream consequence of this intervention.

7 Remarks on adding tense operators.

The framework within which we developed the model of indeterminacy is founded on a

distinctive structural assumption concerning the relationship between refinement and

the open future. This is the idea that there is a correspondence between the refinement

relation and the temporal precedence ordering. More specifically, we have supposed that

17We know immediately that the following form of disjunctive syllogism must fail:

If A ||− C, B ||− C, then A∨B ||− C
If it didn’t, then we would have A∨¬A ||− DA∨D¬A (contradicting Fact 7). Alternatively, it is possible to
formulate disjunctive syllogism as follows:

If ||− A→ C, ||− B→ C, then ||− (A∨B)→ C

It’s another consequence of Theorem 1 that this reformulated schema is correct.
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a possibility in which the coin toss is indeterminate splits, after a step of refinement,

into two possibilities that immediately follow the initial one. This assumption has both

simplifying and heuristic value, but it may, with reason, be viewed with some suspicion.

For example, it obfuscates how one might sensibly add temporal operators to the language.

Relatedly, the assumption seems to force an eternalist understanding of propositions—the

idea that propositions do not vary in their truth-value from time to time. Eternalism is not

obviously mistaken, but it also is not obviously mandated by any arguments established

until now. This concluding section explores the prospects for lifting this assumption,

and advances formal observations about the shape of a theory of tenses that integrates

with two-dimensional possibility semantics. This will serve as proof of concept that the

integration is possible but we will stop short of developing the theory in full.

To start, let us follow (Holliday, 2022, §5.3, and specifically example 5.3.9) in severing

the connection between refinement and temporality. We are going to add temporal

operators ⟨F⟩, for sometime in the future, and ⟨P ⟩ for sometime in the past, respectively

governed by accessibility relations RF and RP . (So, for example RFXY means that Y is

in the future of X, and RPXY means that Y is in the past of X) We assume RF and RP

to be at least irreflexive, transitive, and asymmetric. For reasons that will become clear

momentarily, we do not make the standard assumption that RP is always the converse of

RF . Suppose ‘p’ is an atomic formula of our object language, to be interpreted as meaning

that it’s raining. Then the model in Figure 4 diagrams a situation in which X1 precedes

p = 1p = 0 X2X1
RF

RP

Figure 4: Simple temporal model

X2, and such that from X2’s perspective it will be raining in the future and from X2’s

perspective it was not raining in the past.

A bit of notational convention will help improve readability: introduce the notation

RF(X) to denote {Y |RFXY }— the set of possibilities in the future of X (with regards to an

accessibility relation, and within a given model). This will give a more natural informal

gloss to some formal statements, as we can read Y ∈ RF(X) as “Y is in the future of X”. It

is worth keeping in mind that in certain open future contexts multiple possibilities might

be in the future of a given base possibility: see Figure 5 below.
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A simple off-the shelf idea is to apply the standard analysis of modal operators to the

semantics of ⟨F⟩ and ⟨P ⟩. We begin by adopting the three interplay conditions entertained

in §5.3 of Holliday (2022) for each of RF and RP . Letting R be some arbitrary accessibility

relation, these are:

(uR) for all X,Y ,Z, if Y ≫ X and Z ∈ R(Y ), then Z ∈ R(X)

(Rd) for all X,Y ,Z, if Y ≫ X and X ∈ R(Z), then Y ∈ R(Z)

(RR) for all X,Y , if Y ∈ R(X), then ∃X ′ ≫ X,∀X ′′ ≫ X ′ ,∃Y ′ ≫ Y ,Y ′ ∈ R(X ′′)

Applied to RF , (uR) says that any possibility Z that is in the future of a refinement of X is

also in the future of X; (Rd) says that any possibility Y that refines a possibility that is in

the future of Z is also in the future of Z; (RR) states that for any Y in the future of X, there

is a refinement X ′ of X every refinement of which has some refinement of Y in its future.

We treat ⟨F⟩ and ⟨P ⟩ as duals of modals [F] and [P ] with the standard semantics from

§5. Thus adapting clauses (iv) and (v), we get

• M,X,Z ||− [F]A iff for all Y ∈ RF(X),M,Y ,Z ||− A

• M,X,Z ||− [P ]A iff for all Y ∈ RP (X),M,Y ,Z ||− A

• ⟨F⟩A =def ¬[F]¬A

• ⟨P ⟩A =def ¬[P ]¬A

Under condition (Rd), the induced support conditions for ⟨F⟩, and ⟨P ⟩ simplify to (F1)

and (P1) below.18

(F1) M,X,Z ||− ⟨F⟩A iff for all Y ≫ X, ∃K ∈ RF(Y ),M,K,Z ||− A

(P1) M,X,Z ||− ⟨P ⟩A iff for all Y ≫ X, ∃K ∈ RP (Y ),M,K,Z ||− A

Let’s call (F1) and (P1) the “unidimensional tenses”. A notable — and ultimately, as we

will see, problematic — feature of the unidimensional tenses is that, although we did

represent their secondary evaluation coordinate, their support conditions are insensitive

to it.

18See Lemma 5.3.8 in Holliday 2022. In the current setup: M,X,Z ||− ¬□i¬A iff ∀Y ≫ X,M,Y ,Z ̸||− □i¬A
iff ∀Y ≫ X,∃K ∈ Ri (Y ),M,K,Z ̸||− ¬A iff ∀Y ≫ X,∃K ∈ Ri (Y ),∃K ′ ≫ K,M,K ′ ,Z ||− A. Now, fix Y ≫ X and
K ∈ Ri (Y ). Suppose K ′ ≫ K . Then, by (Rd), K ′ ∈ Ri (Y ). Thus K ′ would be available as witness to the
existential in (F1) and (P1).
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p = 0

p = 0 p = 0 p = 1p = 0 RFRF

RPRP

Xm

ZmYm ZtYt

Figure 5: Holliday’s model of the Sea Battle puzzle

With these tools in hand, temporality and refinement can be cleanly separated. Re-

finement relations track the resolution of metaphysical indeterminacy, without shifting

the locus of temporal evaluation. This idea may be best illustrated with Holliday’s own

example of the sea battle puzzle. Suppose that there are two salient times, Monday and

Tuesday and that p represents the proposition that there is a sea battle on Tuesday. Let us

define a model SB (for “sea battle”) as follows, and as diagrammed in Figure 5. Let Xm

be Monday’s state of affairs both with regards to categorical facts and also with regards

to which facts are determinate. Now, Xm can be refined into two possibilities Ym, and

Zm without changing the temporal perspective from which we evaluate: both Ym and

Zm represent the world as it is on Monday. Where they differ is that Zm has a future in

which the sea battle occurs (Zt), while Ym has a future (Yt) in which it does not. In light of

condition (uR), both Yt and Zt must also be futures of Xm: after all, Zm (viz. Ym) refines

Xm and Zt (viz. Yt) are in the future of Zm (viz. Zm).

It is a remarkable fact about this model that RP is not simply the converse of RF .

Plausibly, Holliday’s intuition is that, “looking backwards” from Zt’s perspective, the past

has a new veneer of determinacy. Here is Holliday’s gloss on this model, with adaptations

to our notation in square bracket:

Thus, the future is presently [i.e. at Xm] open. Yet if there is a sea battle, so

[Zt] is realized, then the past will turn out to be [Zm], in which there would

be a future sea battle, whereas if there is no sea battle, so [Yt] is realized, then

the past will turn out to be [Ym], in which there would be no future sea battle.

Come tomorrow, we might say, “the past is not what it used to be.” (Holliday,

2022, §5.3)

This is an interesting assumption, which we will carry along here for the sake of exposition.
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It also warrants attention in future work, so as to determine what kinds of theoretical

tradeoffs it involves.

Holliday’s notes that the model verifies SB,Xm ||− ⟨F⟩p∨¬⟨F⟩p while SB,Xm ̸||− ⟨F⟩p

and SB,Xm ̸||− ¬⟨F⟩p. Once we add our two dimensional determinacy operator, we can

further verify SB,Xm ||− ¬D⟨F⟩p and SB,Xm ||− ¬D¬⟨F⟩p.19

This is indeed a minimal standard for capturing a concept of openness of the future.

However, once we combine the two-dimensional picture of determinacy operators with

our temporalist-friendly ideas we run into some initial difficulties. Here is one: the

combined theory makes the counterintuitive prediction that determinacy statuses are

permanent. Intuitively, if it’s determinate today that there is a sea battle it should not

follow that in the past it was determinate that there was a sea battle then.

The two-dimensional system augmented with unidimensional tenses incorrectly

predicts that DA entails ⟨P ⟩DA — in fact, it predicts that DA entails [P ]DA! This is

because the secondary coordinate of evaluation is not affected in the evaluation of ⟨F⟩ and

⟨P ⟩(or [F]/[P ]). More generally:

Fact 10 (Determinacy is forever) For any modelM, possibility X,Z ∈ PM and formula A,

(i) M,X,Z ||−DA iffM,X,Z ||− [P ]DA

(ii) M,X,Z ||−DA iffM,X,Z ||− [F]DA

Proof: For (i), the left side reduces immediately to M,Z,Z ||− A in light of the

support conditions for D. Unpacking on the right side of the biconditional:

M,X,Z ||− [P ]DA iff for all Y ∈ RP (Y ), M,Y ,Z ||− DA, which also reduces to

M,Z,Z ||− A. For (ii), replace ‘[P]’ with ‘[F]’ in this argument.

Informally, because the D operator overwrites the primary coordinate of evaluation with

the value of the secondary coordinate, the effect of a temporal operator with higher scope

is rendered irrelevant.

There is an obvious idea to work around this problem: modify the semantic entries

for the tenses by treating them as genuinely two-dimensional operators.

19 While Holliday (2022) discusses this model within a unidimensional possibility semantics (with
operators ⟨F⟩ and ⟨P ⟩ also being given standard unidimensional entries), his discussion can easily be exported
to the two-dimensional setting with no essential alteration. The observation concerning the determinacy
operators is not in Holliday (2022), but it is also noted in slides for Holliday’s NASSLLI course on possibility
semantics. To verify the first of these claims: SB,Xm,Xm ||− ¬D⟨F⟩p iff ∀X′ ≫ Xm, SB,X′ ,Xm ̸||− D⟨F⟩p iff
SB,Xm,Xm ̸||− ⟨F⟩p, which is indeed the case since it’s not the case that every refinement of Xm has a future
in which p holds (e.g. Ym does not).
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(F2) M,X,Z ||− ⟨F⟩A iff for all Y ≫ X, ∃K ∈ RF(Y ),M,K,K ||− A

(P2) M,X,Z ||− ⟨P ⟩A iff for all Y ≫ X, ∃K ∈ RP (Y ),M,K,K ||− A

Effectively, the analysis makes ⟨F⟩ and ⟨P ⟩ into complex determinacy operators in their

own right. We should expect some new instances of the metarule failures we noted

in Fact 9. But, in exchange, we should get a much better behaved picture of the in-

teraction between determinacy and tense operators. Crucially for our purposes, the

two-dimensional analysis of tense operators fixes the bug that plagues the unidimen-

sional analysis: the analogue of Fact 10 fails. The model in Figure 5 already illustrates

this. Specifically: SB,Zt ,Zt ||− Dp, but SB,Zm,Zm ||− ¬Dp, and yet {Zm} = RP (Zt), and so

SB,Zt ,Zt , ||− ⟨P ⟩¬Dp. Happily, determinacy is not forever.

Note that after this modification, the semantics can still meet the minimal benchmarks

for the analysis of Holliday’s model of the Sea Battle puzzle. In particular, in the Sea Battle

model of Figure 5, we continue to have SB,Xm ||− ⟨F⟩p∨ ⟨F⟩¬p, SB,Xm ̸||− ⟨F⟩p, SB,Xm ̸||−

⟨F⟩¬p. Furthermore, by the same reasoning as in Footnote 19, the two-dimensional tense

operators also deliver SB,Xm ||− ¬D⟨F⟩p and SB,Xm ||− ¬D⟨F⟩¬p.

The goal of the present section was to highlight a path for relaxing the collapse

of refinement and temporal precedence. We have made progress in this direction, but

whether the integration pursued here is successful requires substantial additional work.

This work should concern how much of open future lore can be retrieved within the

theory under development. For example, an open future theorist might want to validate

D⟨P ⟩A ≡ ⟨P ⟩DA without validating D⟨F⟩A ≡ ⟨F⟩DA. The rationale might be as follows.

For the first equivalence, because the past is settled, some might intuit an equivalence

between it being determinately the case that a proposition was settled in the past, and

it being the case in the past that a proposition was determinately settled. Open future

theorists, however, maintain that the future behaves differently. Indeed, the following line

of thought seems consistent:

Given how things are right now, on Monday, it is objectively possible that, in

the future, it will be determinate that there will be a sea battle but also that

it’s not determinate that in the future there will be a sea battle.

Suppose that the relevant sense of objective possibility is modeled by an operator ♦ that is

analyzed as the dual of D (♦A = ¬D¬A). The theoretical end-point of this line of thought
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is that, in one sense of ‘consistent’, the formula ♦(⟨F⟩Dp∧¬D⟨F⟩p) should be consistent.

Indeed, it is consistent in branching time semantics.

The question I would like to end on is whether the formula is consistent in our

setting. As is typical of two-dimensional systems, we can track two senses of consistency

(illustrated here for the specific case of a single formula):

Diagonal consistency. The formula A is diagonally consistent iff there is a

modelM and a possibility X within it such thatM,X ||− A (i.e. M,X,X ||− A).

Weak consistency. The formula A is weakly consistent iff there is a modelM

and a pair of possibilities X and Y within it such thatM,X,Y ||− A.

Any diagonally consistent formula is evidently weakly consistent, but the converse is not

true (a counterexample is discussed in Footnote 20).

When it comes to the consistency of ♦(⟨F⟩Dp ∧ ¬D⟨F⟩p) one initial worry is that

unlike in branching-time the dual of D is not a diamond-like operator (because D is not a

box-like operator). Nonetheless, as it happens, if ♦ is the dual of the two-dimensional D,

the desired consistency claim goes through. Indeed, the formula holds at Xm in the Sea

Battle model of Figure 5:20

SB,Xm,Xm ||− ♦[⟨F⟩Dp∧¬D⟨F⟩p]

To verify this claim, we need to acknowledge a quick fact about the support conditions of

¬D¬A.

Fact 11 M,X,Z ||− ¬D¬A iff ∃K ≫ Z,M,K,Z ||− A.

Proof M,X,Z ||− ¬D¬A iff ∀Y ≫ X,M,Y ,Z ̸||− D¬A iff ∀Y ≫ X,M,Z,Z ̸||− ¬A

iffM,Z,Z ̸||− ¬A iff ∃K ≫ Z,M,K,Z ||− A. The first and fourth biconditionals

are justified by the support conditions for negation; the second by the support

conditions for D, the third by vacuous quantification.

20Incidentally, we can also observe that ⟨F⟩Dp∧¬D⟨F⟩p is weakly consistent. In particular:

• SB,Zm,Xm ||− ⟨F⟩Dp iff for all Y ≫ Zm, ∃K ∈ RF (Y ), SB,K,K ||−Dp

Since Zm is its only refinement, the right side is made true by SB,Zt ,Zt ||−Dp. By contrast,

• SB,Zm,Xm ||−D⟨F⟩p iff SB,Xm,Xm ||− ⟨F⟩p
But we already know this is not the case, since Xm has a refinement, namely Ym that does not have p supported
in any of its futures.
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Intuitively, ♦A is the claim that the secondary possibility of evaluation does not settle ¬A

as true.

Let us go back to check SB,Xm ||− ¬D¬(⟨F⟩Dp∧¬D⟨F⟩p). In light of Fact 11,

(1) SB,Xm,Xm ||− ¬D¬(⟨F⟩Dp∧¬D⟨F⟩p) iff ∃Z ≫ Xm,SB,Z,Xm ||− ⟨F⟩Dp∧¬D⟨F⟩p

To establish the left side of (1), note that Zm works as a witness for Z. That is:

(2) SB,Zm,Xm ||− ⟨F⟩Dp and SB,Zm,Xm ||− ¬D⟨F⟩p

Focus first on the first conjunct. By (F2),

(3) SB,Zm,Xm ||− ⟨F⟩Dp iff ∀Y ≫ Zm ∃K ∈ RF(Y ),SB,K,K ||−Dp

Since Zm is its only refinement, the question is whether there is a K in the future of

Zm that supports Dp. Indeed, such a K exists — namely Zt — since Zt ∈ RF(Zm) and

SB,Zt ,Zt ||−Dp.

Let us move to the second conjunct of (2): SB,Zm,Xm ||− ¬D⟨F⟩p. This is established

by reasoning along the same lines as in Footnote 19: SB,Zm,Xm ||− ¬D⟨F⟩p iff for all

K ≫ Zm, SB,K,Xm ̸||− D⟨F⟩p iff SB,Xm,Xm ̸||− ⟨F⟩p iff ∃Y ≫ Xm,∀K ∈ RF(Y ),SB,K,K ̸||− p.

The last claim in the chain clearly holds by selecting Ym as witness for the existential. Ym

refines Xm, but every possibility in its future fails to support p.

Let us take stock of the dialectical situation. We have proven that the full two-

dimensional system — the system that includes two-dimensional tense operators — is

better behaved than its variant without the two-dimensional tenses. Moreover, it can

yield some core principles of open future lore in that it can distinguish between ⟨F⟩DA

and d⟨F⟩A. Much more would need to be said to provide a full vindication of the two-

dimensional possibility semantics as a model of the open future. For example, we have not

commented on the equivalence D⟨P ⟩A ≡ ⟨P ⟩DA. In my view, supporting this equivalence

requires important conceptual decisions, and it is not just a matter of nailing down a

convenient technical fact. In particular, we can easily compute:

• M,X,Y ||−D⟨P ⟩A iff for all Z ≫ Y , ∃K ∈ RP (Z),M,K,K ||− A.

• M,X,Y ||− ⟨P ⟩DA iff for all Z ≫ X, ∃K ∈ RP (Z),M,K,K ||− A
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However, capturing the right sort of link between these claims requires having the correct

model of the fixity of the past. This might include exploring generalizations of Holliday’s

idea concerning the past accessibility relation RP . A fuller exploration of the prospects

for this temporalist-friendly variant of two-dimensional possibility semantics lies ahead

for future work.

8 Conclusion

The main conclusions are as follows: there is a clear path for the application of possibility

semantics to the metaphysical hypothesis of the open future. That path must include the

characterization of object language determinacy operators. Introducing such operators

under something like the alignment constraint requires, on pain of inconsistency, some

modifications to the original framework. A two-dimensional variant of possibility seman-

tics is one path to relieve this theoretical pressure. In its natural interpretation, the logic

of determinacy under the two-dimensional analysis is the global version of S5.

The most immediate development of this idea is feasible under a broadly eternalist

conception of propositions, and under the hypothesis that the refinement relation and

the (reflexive closure of the) temporal precedence relation collapse. It appears important

to explore the prospects for the two-dimensional analysis in a context that does not

involve these structural assumptions. Holliday (2022) has already provided key insights

for how to think about facets of the open future without collapsing refinement and

temporal precedence. We added to this insight that integrating these insights within the

two-dimensional framework requires also thinking of tenses as diagonal operators. We

also noted the dual of the two-dimensional determinacy operator manages to express an

interesting concept of possibility within a possibility model.
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