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Abstract

Possibility semantics offers an elegant framework for a semantic analysis of modal
logic that does not recruit fully determinate entities such as possible worlds. The
present papers considers the application of possibility semantics to the modeling of
the indeterminacy of the future. Interesting theoretical problems arise in connection
to the addition of object-language determinacy operator. We argue that adding a
two-dimensional layer to possibility semantics can help solve these problems. The
resulting system assigns to the two-dimensional determinacy operator a well-known
logic (coinciding with the logic of universal modalities under global consequence).
The paper concludes with some preliminary inroads into the question of how to dis-
tinguish two-dimensional possibility semantics from the more established branching

framework.

1 Introduction

Possibility semantics offers an elegant framework for a semantic analysis of modal logic

that does not recruit fully determinate entities such as possible worlds.! This paper
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IThe phrase “possibility semantics” was coined by Humberstone (1981). The tools undergirding the
framework have longer histories, including (Fine, 1975, especially §2), Humberstone (1979), as well as deep



develops the application of possibility semantics to the modeling of the indeterminacy,
or openness, of the future, and some other related forms of metaphysical indeterminacy.
Possibility semantics is plausibly viewed as an alternative to more established branching-
time models (Thomason 1970, 1984, 2007, Belnap et al. 2001, MacFarlane 2003, 2014) in
which indeterminacy is grounded in the overlap of complete possibilities—sometimes
referred to as “histories”. The key finding is that interesting technical and conceptual
problems arise in connection to the explicit modeling of indeterminacy within the object
language.

As understood here, the open-future hypothesis is the claim that some future events
and states are objectively, and not merely epistemically, unsettled.? It is not assumed here
that the unsettledness of the future and quantum indeterminacy are one and the same.
The recurring illustrative example will be the proposition that some specific random coin
will land heads on its next toss, under the stipulation that the outcome of the coin’s toss
is not settled by the facts about the past and the present of the tossing apparatus. If in

actuality there are no such setups, the case may be entertained as a thought-experiment.

The indeterminacy associated with the future seems unlike other kinds of indeter-
minacy that have attracted the attention of philosophers. For example, it seems unlike
the indeterminacy that some theories associate with vagueness. For one thing, it does not
appear to give rise to higher-order indeterminacy. It is generally agreed by those who
think that vagueness is grounded in some kind of indeterminacy that it may itself be
indeterminate whether Joe is borderline tall. By contrast, it is common to assume that,
as far as the unsettledness of the future is concerned, there are no states or events whose
determinacy status is itself indeterminate. It might be unsettled whether there will be a
sea battle tomorrow, but it cannot be unsettled whether it’s unsettled. A second marker
of the indeterminacy of the future is that it is not plausibly associated with unusual
effects on credence. Many different philosophers have been attracted to the view that

there is something non-classical about credence in the contents of vague statements. One

roots in the algebraic logic tradition. For a contemporary and comprehensive introduction, see Holliday
(2022). Possibility semantics is one of a variety of styles of theories that do not rely on worlds, but on coarser
objects. In addition to possibility semantics, the general family of “pointless” theories includes various kinds
of states-based semantic analyses (Aloni 2018, Willer 2018), truthmaker semantics (Fine, 2017b), as well as
several varieties of situation semantics (Barwise and Perry, 1981; Kratzer, 2021). It would be desirable to
have a comparative study of these frameworks highlighting the commonalities, as well as the differences,
between them.

2There is much literature on what constitutes the (alleged) openness of the future. The present discussion
leans in various ways on Thomason (1970); Belnap and Green (1994); Belnap et al. (2001); MacFarlane (2003,
2014); Barnes and Cameron (2009, 2011); Torre (2011); Cariani and Santorio (2018); Cariani (2021b); Todd
(2022).



form of this is Field’s (2000) claim that vague contents require low credence in certain
instances of the law of excluded middle; another is Williams’s claim that vague contents
seem to require imprecise probability (2014).3 By contrast, statements about the future
appear to be paradigmatic examples for the application of theories of classical credence.
In prototypical cases, it seems perfectly warranted to have a sharp credence that the coin
will land heads. The fact that the indeterminacy of the future has these characteristics
licenses us to theorize about this specific type of indeterminacy on its own (cf. §2.3 of
Torza, forthcoming, on pluralism about indeterminacy).*

As alast disclaimer, exploring the indeterminacy hypothesis involves no commitment
to the claim that the future is open. What we are in fact committed to is the weaker claim
that the hypothesis is worth taking seriously. As Stalnaker (2019, p.197) puts it, “You
don’t have to sign on to this metaphysical theory (as I do not) in order to find it intelligible
(as I do) and to use it as a kind of precedent for a case where the thesis of metaphysical

indeterminacy may be less controversial.”

We lead with a general introduction to possibility semantics for a sentential modal lan-
guage (§2). The next section focuses on the representation of indeterminacy in possibility
semantics (§3). The framework itself already incorporates a representation of indetermi-
nacy in the model theory. However, contrary to the inclination of Humberstone (1981),
it seems important to have ways of capturing the notion of indeterminacy in the object
language. Unfortunately, it is not possible to add a determinacy operator with the right
profile to the system—not at least without other interventions. The main contribution
of §3 is an impossibility result to this effect. After considering some theoretical options
that would repair the inconsistency by means of local interventions (§4), we consider an
attractive solution to the problem, which lies in the integration of possibility semantics
with a two-dimensional framework (§5). The last two sections respectively highlight some
logical properties of the resulting system (§6) and explore an extension of the approach

that incorporates temporal operators (§7).

The insight behind the approach proposed in §5 is owed to remarks in Fine (1975).

The Cliffs notes on Fine’s paper focus on the fact that it is the first application of super-

3The matter is highly complicated, in ways that go beyond the relatively simple demarcation point that is
made in this paragraph. For a sophisticated discussion, see Bacon (2018).

41t is worth highlighting that that some of the formal discussion to follow is not be restricted in scope to
the alleged indeterminacy of the future. It will pertain to any application of possibility semantics to concepts
of indeterminacy that do not give rise to higher-order indeterminacy and are not associated with funky effects
on credences. As an example, Stalnaker (1984) famously suggests that counterfactual selection results in a
kind of indeterminacy, and has more recently suggested that this kind of indeterminacy might be viewed as a
‘milder’ version of the indeterminacy that is associated with the future (Stalnaker, 2019, p.197-ff).



valuationist techniques to vague language. However, it is also a central juncture for the
logical development of semantics based on partial objects, since Fine builds up to the
supervaluationist machinery by first analyzing a system in which precisifications of a
vague language are viewed as partial. (NB: this account is only considered in passing in
Fine 1975, and moreover Fine’s theory of vagueness has significantly changed, e.g. in
Fine 2017a.) The present ambition is to recast some of those insights about determinacy
operators in a different theoretical context, allowing some distinct issues and theoretical

choice points to come to light.”

2 Background on possibility semantics

The basic ideological tenet of possibility semantics is that formulas are not evaluated
against worlds, but against “coarser” objects called possibilities. This ideology marks a
deviation from the standard account of the indeterminacy of the future—which is broadly
within the framework of branching time (Thomason, 1970, 1984, 2007; Belnap et al.,
2001). According to the branching time picture, indeterminacy is adequately captured
by the overlap of multiple complete possibilities with equal claim to fit the settled facts.
The exact details of the analysis here depend on deeper metaphysical commitments. For
instance, someone with broadly ersatzist leanings might say that the indeterminate reality
is represented by multiple, incompatible perfectly determinate representations (Barnes
and Cameron, 2009, 2011; Barnes and Williams, 2011).

Possibility semantics proceeds in a different way. Instead of taking a maximally
precise representation as its basic modeling object, it deploys primitive objects that are
themselves incomplete. That incompleteness is naturally associated with a concept of
indeterminacy: possibilities settle the truth values of some sentences of a language, while
leaving others unsettled.

The present formulation of possibility semantics originates from Humberstone (1981).
The language is a sentential modal language, whose signature features a non-empty
countable set of modal operators. (In later sections, we will add a determinacy operator D,
in addition to these.) Models for this language are quadruples of the form, (P,>,R, V).
Here P represents a non-empty set of possibilities; > is a refinement relation over the

possibilities. Structurally, > is a weak partial order (thus, it is reflexive, transitive and

>The idea of using possibility semantics to model the unsettledness of the future is also explored in a
preliminary way in Boylan (forthcoming). However, because Boylan is focused on a different set of problems,
he ends up in a theoretical space that is not compatible with the present outlook, especially with regards to
the analysis of negation.



antisymmetric). From an intuitive standpoint, Y > X holds when everything that is
settled as either true or false by X is settled in the same way by Y. In short, Y agrees on all
the determinate facts that X settles. (Explicit structural assumptions are needed in order
to guarantee that models satisfy this intuition, and they will be provided in short order.)
R is a non-empty set of accessibility relations, and finally V is a partial valuation function:
in this setting a valuation function inputs an atomic formula and a possibility, and, if
defined, outputs either 0 or 1. When V(A, X) is undefined, we write V(A, X) T, otherwise
V(A,X) l. Occasionally, when it is important to disambiguate, and a model M is salient
in context, a subscripted “M” will be used to indicate its coordinates. For example, “Py,”

refers to the set of possibilities in M.

Models for this language are ordinarily assumed to satisfy two constraints.

Refinability. For every atomic formula A and possibility X, if V(A, X) T, then
there are Y,Z suchthat Y > X and Z > X, s.t. V(A,Y)=1and V(A,Z) = 0.

Persistence. For all atomic A, if V(A,X) | then for every Y > X, V(A X) =
V(A Y).

Persistence says that whenever atomic A is settled at X, it stays settled in the same way
through X’s refinements. Refinability says that whenever an atomic formula A is unsettled
at a possibility X, there are Y and Z—both refinements of X—that settle A as true and
false respectively. Refinability is related to, but logically distinct from, the assumption
that any partial possibility might be refined all the way to a complete one (which Fine 1975
calls “Completability”). In a language with infinitely many atomic sentences, refinability

might be satisfied, without completability being satisfied.

Persistence is required to give formal representation to the intuitive conception of
refinement. Indeed, under persistence, it is tempting to think of refinement structures as
mirroring the structure of the branching models for future contingency,® as illustrated by

the diagram in Figure 1.

6See Thomason (1970); Belnap et al. (2001); MacFarlane (2014), Cariani (2021b, ch.2) for discussion of
branching models.



Figure 1: The branching structure of refinements (X3 > X, > X;)

However, an important lingering difference — which the formal theory ought to help
disentangle — is that standard branching models are built on the idea of maximal histories,
which at any moment assign a definite truth-value to all the formulas of the language.
Indeed, the linear paths through the tree can naturally be viewed as temporally structured

possible worlds. No such assumption of completeness is imposed on possibility models.

Another important observation is that our assumptions on possibility models do not,
by themselves, rule out backwards branching. For example, the following model satisfies

our stipulations.

Figure 2: Backwards branching possibility model

The model in Figure 2 shows that Refinability and Persistence are not sufficient to rule out
backwards branching. In this model, Refinability and Persistence are both satisfied, and
yet, X5 has two arrows going into it. If we wanted to rule out this possibility, we would
need to impose a "no backwards branching" condition, similar to those that are used in
defining branching models. Specifically, we would have to stipulate that whenever X > Y
and X > Z, then either Y > Z or Z > Y. We will implicitly be restricting our attention to

models that satisfy this condition, but none of our results will require imposing it.

Humberstone’s semantic entries rely on the idea of using a valuation function defined
on the atomic formulas of £ to ground a notion of support between possibilities and

formulas of the whole language. They are as follows:

6



M X |Fpiff Viy(p, X) =1

M X |FAABIff M, X |-Aand M, X |- B

M, X |F =Aiff forall Y > X, M, Y |- A

M X |Fo;Aiffforall Y € P,s.t. R, XY, M,Y | A

As for other operators, such as vV, —, ¢, a common approach recovers entries by fixing
some standard equivalences. In the case of disjunction, one might assume it characterized

by conjunction, negation and DeMorgan’s laws.” This results in the following entry:
s M,X|FAVBIiffforall Y > X, thereisZ>Y,st. M,Z|FAor M,Z|B

Another route to the same goal would be to stipulate some general principles about what
it takes for various kinds of possibilities to settle a disjunction as true/false (Holliday,

2022).

* A possibility X settles a disjunction AV B as false iff it settles A as false and settles B

as false.

Assume that a possibility settles A as false iff it settles —A as true. Next, note that the

entries for negation and conjunction tell us that:
* A possibility X settles a conjunction A A B as true iff it settles both A and B as true.
* A possibility X settles A as false iff every refinement of X fails to settle A as true.

These assumptions are sufficient to pin down the same entry for disjunction as above. A

similar analysis could be carried out for the other operators.?

Lastly we follow Humberstone in defining consequence as preservation of support.

7 As an alternative, disjunction could be defined instead by the condition M, X | AV B iff M, X | A or
M, X |- B. This would have the effect of making the logic of the sentential sub-language non-classical.

8While the analysis of necessity simply lifts Kripke semantics to the level of possibilities, an account
of modality also involves the specification of interplay conditions connecting accessibility and refinement.
Humberstone proposed:

(uR) forall X,Y,Z,if Z> X and RZY, then RXY
(Rd) forall X,Y,Z,if Z> Y and RXY, then RXZ
(R) forall X,Y,if RXY then AX’ > X, for all X" > X’, RX"'Y

Holliday (2014, forthcoming) noted that condition (R) is overly strong. One suitable weakening is a condition
that Holliday calls R-refinability (see Lemma 5.3.7 of Holliday (2022)).

(RR) forall X,Y,if RXY, then AX’ > X, VX" > X', Y’ > Y,RX"Y’

In addition to ‘RR’, the names given here to these conditions are abbreviations of Holliday’s names: "(uR)’ is
for Holliday’s ‘up-R’ for (uR) and ‘(Rd) is for Holliday’s ‘R-down’. These conditions will be of relevance in §7.
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Definition 1 Ay, ..., A, | Biff for all models M and any X in Py, if for all i, M, X |- A;, then
M, X |l B.

It is a well established fact about this formalism that the logic of the sentential sub-
language is classical, both in the sense that the set of logical truths coincides with the
set of classical tautologies, and in the sense that the class of valid arguments in this
sub-language coincides with the class of tautologically valid arguments (Humberstone,

1981, pp.320-321).

3 Adding object language determinacy operators

It is reasonable to claim that possibility semantics incorporates a model of indeterminacy:
an atomic formula A is indeterminate at a possibility X when X leaves A undefined.
Imagine a possibility X and an atomic formula, heads, which we may take as symbolizing
the English sentence The coin will land heads (on a specific toss that will take place tomorrow at
noon). In a clear sense, the metatheoretic fact that Vy,(heads, X) T represents the relevant
indeterminacy from the perspective of the model theory. This warrants the view that

indeterminacy is captured in standard possibility semantics at the metatheoretic level.

However, as the system is set up, there is no object language device to express the
concept of indeterminacy. We do not have, or have not identified, an operator that can
properly express things like it is determinate that the coin landed heads on today’s toss,
but it is not determinate that it will land heads tomorrow. This is unfortunate because, for
various modeling purposes, it’s important to have determinacy operators in the object
language. For example, determinacy operators may help formulate constraints that involve
the interaction of indeterminacy with other concepts. To take just one example drawn
from the recent literature, Cariani (2021a) explores interactions between (in)determinacy
operators and epistemic operators. In this kind of discussion, certain principles become
important that can only be formulated with determinacy operators. An example is:
-DA — —KA—the principle that if A is not determinately true, then it is not known.
Such principles, and the constraints they impose on models, are best analyzed from the

perspective of a formalized language.’

Let us then introduce a determinacy operator D to the formal language—with the

interpretation that its argument is determinately true. Thus =DA is interpreted as claiming

For some additional considerations in favor of introducing object language determinacy operators, see
also Barnes and Williams (2011, §5)



that the proposition expressed by A is not determinately true, while leaving it open that
it might be determinately false. To express the claim that A is indeterminate, we add an
indeterminacy operator I governed by the condition in Definition 2, which is standardly

taken to be definitional of indeterminacy (e.g. in Fine, 1975):
Definition 2 [A=;; ~DAA-~D-A

In many respects that are going to be relevant, non-determinacy (which is expressed by
‘=D’) behaves similarly to indeterminacy. It is important however to keep in mind that in
the present terminology ‘indeterminacy’ denotes a two-sided status, in the sense that it
requires that both A and its negation fail to be determinate. By contrast, non-determinacy
(the obtaining of —D) is a one-sided status: a proposition may fail to be determinate, while

its negation is determinate.

The addition of determinacy operators to the language of possibility semantics should
be guided by some key constraints. To start, object language indeterminacy should, in
a precise sense, align with metatheoretic indeterminacy. The simplest statement of this

constraint is at the level of atomic formulas:
Constraint 1 (Alignment) For atomic A, M, X | TAiff Vi (A X) 1.

Alignment entails a second constraint: formulas expressing non-determinacy (and inde-
terminacy) claims must violate (a generalization of) persistence. As initially formulated,
persistence applies to the atomic formulas of the language, but there is an entirely natural
generalization of it involving the concept of support. A possibility X might support that
it’s indeterminate whether the coin will land heads, while at the same time it could be
refinable into a possibility Y that settles that the coin will land heads. The exact principle

that follows from this is:

Constraint 2 (Non-persistence of non-determinacy) There is a formula A, and model M

with possibilities X,Y € Pygand Y > X such that M, X | -DA but M, Y |- =DA

Constraint 3 (Non-persistence of indeterminacy) There is a formula A, and model M

with possibilities X,Y € Pygand Y > X such that M, X | IAbut M,Y |F 1A

With enough of the possibility framework on board, the route from the alignment con-

straint to non-persistence is relatively straightforward.
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Fact 1 Given Definition 2 and Refinability, Alignment entails (i) Non-persistence of indetermi-

nacy and (ii) of non-determinacy.

Proof. Consider a model M with two possibilities X and Y drawn from its
possibility set, such that Y > X. Suppose in particular that Y settles some
atomic formula A that X leaves unsettled. The existence of such a Y is guar-
anteed by Refinability. Then V(A X) T but V(A Y)=1or V(A Y) =0 and
so M, X |F IA but M,Y |- IA. For (ii), exploit Refinability to suppose that Y
refines X so that V(A Y) = 1. Definition 2 yields M, X | =DA, but from the
way Y refines X it follows that M, Y |- DA. O

Alignment provides powerful motivation for Non-persistence. It is nonetheless valuable
to keep the claims separate, because Non-persistence is weaker and might be motivated in
other ways. Another reason to keep these separate is that there are versions of possibility
semantics that drop Refinability (see e.g. the development in Holliday and Mandelkern

ms.).

While these constraints seem plausible, important difficulties are lurking under the
surface. The just-added ingredients are inconsistent with the framework. In particular,
there is tension between the analysis of indeterminacy in Definition 2, the Non-persistence

of indeterminacy and the analysis of negation.
Fact 2 The following are inconsistent (given the framework):

IN. IA=4; ~DAA—~D-A.
NP. Thereare M, A, X, Y > X with M, X | IA but M, Y |- TA.

NE. M, X | =Aiff for all Y such that Y > X, M,Y [F A

Proof. Consider witnesses, M, X,Y,A for NP. By IN, M, X | =DAA-D-A. By
the clause for conjunction, M, X | =DA and M, X | =D—A. By the clause for
negation (NE), DA and D—A cannot be supported throughout any refinements
of X. That is, for all Z > X, M,Z |- DA and M, Z |- D-A. However, since
any refinement of Y is a refinement of X, we must also have M, Y |- =DA and
M,Y | -D-A, and hence, by IN, M, Y |- IA. This contradicts the fact that

M, A, X,Y were chosen as witnesses for the existential in NP. O

10



A plausible initial diagnosis is that the problem arises because the negation operator
forces persistence. That is to say, the system guarantees that —A must always be persistent,
whether A is persistent or not. A consequence of this fact is that the indeterminacy
operator I cannot be both defined in terms of negation and also such that formulas like IA

are non-persistent.

This inconsistency is related to a less specific unease with object language indetermi-
nacy operators that is already expressed by Humberstone (1981). Humberstone claims
that an indeterminacy operator like the one just introduced would go “against the spirit
of the present enterprise, since it would give rise to formulas which were not persistent
into refinement [...], and thus undermines the idea of refinements as mere resolvers of
indeterminacy”. Humberstone’s exact concern is hard to pin down, and certainly broader
than the inconsistency articulated in Fact 2. (He uses this kind of argument to press
against other non-persistent operators, including ones that do not give rise to inconsisten-
cies like the one just identified.) But whatever we may think of the broad concern, the

inconsistency does show that adding (in)determinacy operators is not entirely innocent.

4 A preliminary journey around the options

Is there a path for integrating possibility semantics with object language determinacy
operators? Evidently, any such path requires giving up one of IN, NP, or NE. In
other words, it requires either altering the definition of indeterminacy, or giving up
non-persistence or modifying the analysis of negation. The option of giving up IN is
a non-starter and may be set aside immediately. The problem is not merely that the
definition of indeterminacy captured by Definition 2 is relatively well entrenched, which
it is. The real issue is that a version of the inconsistency in Fact 2 arises directly for =DA,

independently of how IA is defined.

By contrast, it seems more promising to pursue some version of the second option,
and so to deny the non-persistence constraint. One might support a plea for persistence
by thinking in terms of temporally indexed indeterminacy operators. '° To illustrate
the essence of the approach, start by noting that, in the relevant applications, there is a
connection between refinement and temporality. Specifically, advancing through time
along a history should result in encountering more and more refined possibilities. Under

this temporal interpretation, it might seem attractive to entertain determinacy operators

107 owe this suggestion to Masayuki Tashiro.
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that are relativized to a specific point in time. Under this approach, the object language
would feature a collection of operators {D; | t € T}, where T is a designated set of times in
the model.!! Simplifying somewhat, imagine that the set of times that are distinguished
in a given possibility model is finite. Then consider operators Dy, Dy, D,,...,D,, each
marking what is determinate at a certain time in the development of history, with each D;
anchored to some specific time t;. To complete the proposal say that the language does not
contain any unrelativized determinacy operators, and thus that all determinacy discourse

is captured by means of relativized ones.

This model’s way out of the inconsistency is to undermine some of the motivation
for non-persistence. Suppose again that X,,,, represents Monday’s possibility, in which
the coin has not yet landed heads, and Xy, represents the state of affairs on Wednesday,
after the coin has been tossed and has landed heads. In the original approach, with
unrelativized determinacy operators, one should approach this by saying that —~D(heads) is
supported at Xj;,, but unsupported at Xyy.4. By contrast, the relativized framework opens
up a different option: Xy;,, supports =Dy, (heads), while Xyy.; supports Dy,4(heads).
Crucially, the formulas =Dy, and =Dy, can be assumed to be persistent (even when
the operator is embedded under negation). The intuitive meaning of Dy;,,A would be
something like “A is/was settled true on Monday”. From Wednesday’s point of view—
i.e., as far as Xy,.4 is concerned—-D);,,A remains supported. Relatedly, the claim

~Ditonday(heads) A Dy egnesday(heads) is perfectly consistent (from any point in time).!2

This approach is valuable, and the solution offered in this paper incorporates some
of the insight that motivates it. However, it also seems unsatisfactory in some respects:
it is not especially controversial to claim that people possess an unrelativized concept
of indeterminacy — plausibly one that can be captured at the level of the theory by an
operator that satisfies the alignment constraint. There is no special reason to think that
there are barriers to expressing that concept in the object language. It is at the very least

worth asking whether such a concept is definable.

Before moving to the positive proposal, let us entertain one last option. The initial

hunch concerning the incompatibility in Fact 2 was that it is due to the persistence-forcing

1t requires a bit of manipulation to endow standard model of branching time with times. In particular,
what is required is a simultaneity relation that connects points on different branches. See chapter 2 of Cariani
(2021b) for discussion.

12 A notational variant of this approach maintains that we can have a single concept of indeterminacy that
is relational, so that the canonical logical form for determinacy claims is D(Monday, A). From our perspective,
this approach is not substantially different from the indexed operator approach, and the critique to be made
below applies to both.
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effect of negation. The obvious alternative would be to introduce a type of negation that
does not force persistence.'® To this end, introduce ‘~’ as the connective characterized by
the clause: M, X | ~A iff M, X ||~ A. This alternate negation operator does not have the
effect of transforming a non-persistent claim into a persistent one. Indeed, it would make

correct predictions for non-determinacy claims in the proof of Fact 2.

An evident problem with this approach is that ‘~" cannot be the correct negation
operator for the entire language. Outside of determinacy claims, ‘~" conflates non-support
with rejection. It is undesirable for it’s not the case that the coin will land heads to be
supported by a possibility that merely fails to settle heads. More generally, ‘~’ is not the
correct negation operator for the sentential sub-language of the language. In response,
one might consider a language in which the two negation operators, ‘=" and ‘~’, coexist.
Footnote 15 of Humberstone (1981) identifies a minor expressive advantage to having
both operators (though Humberstone does not endorse the suggestion currently under
consideration): their combination, ‘- ~’, is a plausible candidate for a determinacy
operator, as it expresses universal quantification over all refinements. (So M, X |- = ~
A iff all refinements of X support A). However, for the present application, having
both operators around is not well-motivated. There is no principled reason for why
one negation operator (—) should apply in the D-free sub-language, while the other
operator should apply to formulas involving D. Additionally, any attempt at formulating
a generalization concerning which operator is appropriate for a given formula would have
to deal with the thorny problem of choosing the correct negation for mixed formulas (like
the negation of A A DA), Ultimately, it is unprincipled to have two negation operators

floating around without a systematic account of their distinct roles.

5 Introducing two-dimensional possibility semantics.

This section presents a two-dimensional version of possibility semantics that is capable
of addressing the inconsistency.!* Before presenting it, it will be valuable to collect the

desiderata we identified along the way. What is needed is a version of possibility semantics

I3Humberstone (1979) considers this alternative negation for a similar application. This is also the
negation that Boylan (forthcoming) uses in his application of possibility semantics to the future.

14For some general surveys on canonical applications of two-dimensional semantics see Humberstone
(2004); Kuhn (2013); Schroeter (2021). The suggestion of a two-dimensional treatment of the determinacy
operator is first explored in Fine (1975). Fine rightfully questions the ability of such an operator to handle
higher-order indeterminacy, but of course this concern is not salient in the present application. The present
claim is not that a two-dimensional semantics is anything new, but that it provides an elegant solution to
an otherwise extremely thorny puzzle. A slight variation of a two-dimensional determinacy operator is also
introduced in Burgess and Humberstone (1987, §6.2).
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that incorporates a non-persistent, non-relativized determinacy operator that is “aligned”
with the metatheoretic concept of indeterminacy that is ordinarily built into the possibility
semantics framework. The logic is to be classical within the sentential sub-language, and
the D operator must not trivialize. As a specific litmus test, AV —A is to be valid (because
the logic is classical) while DAV D—A is not. Finally, the system must avoid conflating

failure to support with rejection.

The opening move in crafting such a framework is to distinguish two dimensions
of evaluation. In addition to evaluating at a pair consisting of a model and a possibility,
consider evaluating at a triple M, X,Y consisting of the model and two possibilities.
Doubling the evaluation possibility allows it to play two separate roles: one coordinate
of evaluation is operated on by connectives (call this the ‘primary possibility’), while the
other is read by the determinacy operator D and left untouched by the connectives (call
this the ‘secondary possibility’). On the basis of the two-dimensional semantics, we can

produce a unidimensional entry according to a standard diagonal principle:

Diagonal principle: M, X | Aiff M, X, X | A

The conceptual motivation for continuing to value unidimensional evaluation is that we
continue to focus on a concept of truth, or support, at a possibility as the ultimate target
of the theory. Moreover, thanks to the diagonal principle, the two-dimensional system

can inherit the definition of consequence as preservation of support at a model.

Recursive clauses for the connectives and for the determinacy operator are specified
at the level of two-dimensional evaluation. Note that the new secondary possibility is

largely idle, except for contributing to the interpretation of the determinacy operator.

(i) M, X,Z |- p iff Vp(p, X) =1

(ii) M,X,Z|FAABiIff M,X,Z|FAand M, X,Z |- B

(ili) M, X, Z | -Aiffforall Y > X, M,Y,Z |F A

(iv) M, X,Z | o;Aiffforall Y € P, s.t. R, XY, M,Y,Z |FA
(v) for Vv, —, ¢, use standard equivalences to infer clauses.

(vi) M,X,Z |- DAiff M, Z,Z |- A
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It is notable that, under this analysis, the determinacy operator resembles an actuality
operator in more standard applications of two-dimensional semantics. It evaluates the ar-
gument of DA after setting the primary evaluation possibility so as to match the secondary
one.

Logical consequence remains defined as preservation of unidimensional support, as
per Definition 1. Furthermore, Refinability and Persistence, understood as constraints
on atomic formulas, continue to be in place. While they have generalizations for the full
language, the status of those generalizations is not settled by the status of their atomic
variants. Thus, saying that the complex formula IA is non-Persistent is fully compatible

with saying that atomic formulas persist through refinements.

6 Victory lap

This section has two objectives: the broad objective is to illustrate that the system fulfills
the main desiderata for adding an object language determinacy operator. More narrowly,
once those general desiderata are established, it aims to illustrate that the system incorpo-
rates a way out of the central incompatibility identified in Fact 2. A key intermediate step
in establishing these objective is the characterization of the logic of the system, identified
below as Theorem 1.

As noted, the persistence constraint has a natural generalization concerning arbitrary

formulas and involving the notion of support.

Definition 3 (i) An arbitrary formula A is g-persistent in M iff for all X, Y € Py with Y > X,
M, X | Aimplies M, Y |- A; (ii) A is g-persistent iff for all M, A is g-persistent in M.

Our previous Constraints 2 and 3 become the claim that ~DA and IA are not persistent in

this generalized sense.

Fact 3 (Non-persistence of non-determinacy and indeterminacy) Let Abe an atomic for-

mula. Then —~DA and 1A are not g-persistent.

Proof. Let A be an atomic formula. We want to identify a model M in which
-DA and IA are not g-persistent. Consider a “minimal fork” model with
three possibilities X;, X, and X3 with X,, X3 > X; and such that V(A X;) T,
V(A X;) =1, V(A X3) = 0. (See Figure 3.) In the model, M, X; | =DA, but
M, X, |- =DA (since M, X, |F DA).'3

15The support conditions for ~DA, when A is atomic are as follows.
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Figure 3: The Minimal Fork Model

The same model also illustrates the non-persistence of IA. O

Violations of g-persistence are limited to the fragment of the language that includes
determinacy operators. It is easy to establish by induction that formulas in the D-free
fragment are g-persistent.

We can also make quick work of establishing that the present system satisfies the

alignment constraint (i.e., Constraint 1).

Fact 4 (Alignment) M, X | IAiff M, X |F Aand M, X || -A

M,X ”— IA & M,X ”— -DAA —|D—|A@M,X,X ”— -DAAN-D-A&

M, X, X |F -DAand M, X, X |F -D-A <

MX,XFAand M, X, X [F -A &

M, X |FAand M, X |- -A m|

There is no way of setting the accessibility relation R to define a modal operator on the
primary evaluation coordinate that is equivalent to the determinacy operator. To see this,
note that any modal that operates on the primary evaluation coordinate would collapse
the two-dimensional framework into the one-dimensional one. We know from Fact 3 that
the two systems do not collapse.

There is, however, an important relationship between the two-dimensional deter-
minacy operator in a language with no other modals, and certain ordinary modals as
evaluated in some designated submodels. Given a model M and possibility X, let My be
the submodel of M that is generated by X. This is the model (Pyx,>’,R’, V') where Py is
the closure of {X} under > and any accessibility relation in M, and all the other elements

of the model are restrictions of the remaining relations and functions in M to this set. Let

e M\X|F-DAo MX,X|F-DAS YW >X:M,W,X|F DA VYW > X: MX,X Ao MXX |-
Ao VA X)=1.

It is easy to check that M, X;=DA holds but M, X; | =DA does not.

16



|Fu be the support relation generated by interpreting formulas of our formal language
according to the unidimensional rules, while interpreting D as the universal modality in

My (i.e. by assuming YRZ for any Y and Z in Py, .).

Fact 5 For any refinement Y of X, M,Y,X | Biff Mx,Y |y B.

Proof: Reason by induction on the complexity of B. If B is atomic, the claim
holds because the models have agreeing valuation functions. If B is a negated
formula —A, and Y is an arbitrary element of P, forall Z > Y, M,Z, X |F A
iff Mx,Z |-y A, but since Z is a refinement of Y, it is also a refinement of
X, so this follows from the induction hypothesis. If B is a modal formula
0;A, and Y is a refinement of X, M,Y,X | O;A iff for all Y’ with YR;Y’,
M,Y’, X |l A iff (by induction hypothesis and definition of My) for all Y’
with YRIY’, My, Y’ |y Aiff My, Y |y O;A. Setting aside the trivial case in
which B is a conjunction, the remaining case of interest is where B = DA for A
satisfying the induction hypothesis. Consider Y refining X: then M, Y, X |- DA
ifft M, X, X | Aiff My, X |y Aiff My, X |y DA.

Fact 5 is the key to characterizing the logic of our determinacy operator, at least in
the special case in which the language does not contain other modal operators. Let
g5 denote the S5 consequence relation, and l:‘§5 the global consequence relation as
characterized on Kripke models (Blackburn et al., 2001, §1.3). The consequence relation
on two-dimensional possibility models coincides with the global consequence relation on

universal Kripke models.!®

Theorem 1 If the original language does not contain modals other than D, Ay, ..., A, |F Ciff
DAy,..., DA, Ess DCiff A,..., A, Fes C

Proof. We exploit the fact that universal modalities in Kripke frameworks have
the same logic (i.e. S5) as universal modalities in the possibility framework.
So, let |-y be the logic of a possibility framework for a language with a single

modal D with Rp as the universal relation. So:

DA,,..,DA, |Fy DCiff DA,,..., DA, Egs DC

165ee the appendix of Schulz (2010) for a similar result involving the logic of Yalcin’s (2007) semantics for
epistemic necessity—albeit one that is presented wholly at the level of worlds-based semantics.
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What is left to prove is:
Ay,... A, |- Ciff DA,,.., DA, |y DC

This is proven by identifying a chain of equivalences between the claim that
an arbirary argument has a countermodel in the two-dimensional framework,
and the claim that it has a countermodel in the unidimensional framework

with D as universal modality. Let I = {A,...,A,}, and DI' = {DAy, ..., DA,}.

(i) IMand X € Py, s.t. M, X |- T, but M, X |- C.

(ii) M and X € Py, s.t. M, X, X |- T, but M, X, X |- C.
(iii) AM and X € Py, s.t. VZ > X, M, Z, X |F T, but M, X, X |I- C.
(iv) M and X € Py, s.t. VZ > X, Mx, Z |y T, but My, X |f-y C.

(v) M and X € Py, s.t. Mx, X |y DT, but My, X |f-; DC
The equivalence between (ii) and (iii) is due to the fact that evaluation along
the primary coordinate is persistent even in the two-dimensional system.
The equivalence between (iii) and (iv) relies on Fact 5 and persistence in the
unidimensional framework. For the equivalence between (iv) and (v), note
that if DC fails at X, C must fail at some possibility in the model—i.e. at some

refinement of X. But if so, C must also fail at X (or else persistence would

force it to hold throughout the entire model). m]

Theorem 1 enables us to ascertain the satisfaction of many of our design principles. The

remaining facts in this section are all presented without explicit proof, on the understand-

ing that they are elementary corollaries of Theorem 1. First, notice that it entails that the

logic in the sentential sub-language remains classical. It is also a simple corollary that the

theorems of the two-dimensional theory with D as the sole modal operators are exactly

the theorems of S5.

Fact 6 |- Ciff Ess DCiff g5 C

Next, we notice that there are consistent statements of indeterminacy, i.e.:

Fact 7 (Non-triviality of indeterminacy)

(i) 1A is consistent (i.e. |- DAV D-A).
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(i1) D(AV B) |F DAV DB

The failure of the entailment in part (ii) of Fact 7 is relevant for comparison with an
alternate system involving determinacy operators and two-dimensional semantics (i.e.,

the one on pp. 220-221 of Burgess and Humberstone, 1987).

Per our design specifications, there is no higher-order indeterminacy in this system.
Fact 8 (No higher-order indeterminacy)

(i) All DA, and in particular, DA| DDA and -DA |- D-DA.
(ii) |- A= DA
(iii) |F DA= DDA
(iv) |- =DA=D-DA

Note that establishing the entailments in part (i) is not the same as claiming that truth
and settled truth coincide, as the observation in part (ii) highlights. And indeed there is
an important difference between higher-order and first-order determinacy claims when it
comes to object language collapse facts observed in parts (iii) and (iv)—as contrasted with
the non-collapse in part (ii).

At the same time, Theorem 1 illustrates that the system has a familiar non-classical
profile when it comes to its meta-rules. Though the extension of the consequence relation
in the D-free fragment matches that of classical sentential logic, adding expressive capacity
to the language in the form of the D-operator results in some non-classical behavior. One
example of this behavior is that the consequence relation does not contrapose over the full
language: A |- DA holds, as we noted in Fact 8, but —=DA || —=A does not. This phenomenon
mirrors the standard behavior of similar systems based on S5 global consequence relations.
For example, it is observed in supervaluationist analyses based on the idea of “global”
validity (Fine, 1975; Williamson, 1994; Varzi, 2007; Asher et al., 2009; Bacon, 2018) and
also in informational analyses of consequence for languages with epistemic modals, as
in Yalcin (2007); Bledin (2014); Schulz (2010); Incurvati and Schloder (2022). More

specifically, Theorem 1 entails the following failures:
Fact 9

* No Conditional proof : A|l- DA, but |- A— DA
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* No Reductio: AN-DA|+ DA and AAN-DA | -DA but |[F -(AA-DA)

* No Contraposition: Al DA but =DA |- =A

Disjunctive syllogism may fail too, depending on its exact characterization.!”

To conclude this section, it is valuable to reflect on exactly how the system manages
to avoid the inconsistency in Fact 2. Recall, that the inconsistency pits the definition of
indeterminacy (IN), the claim that indeterminacy is non-persistent (N P) and the analysis
of negation (NE) against each other. The technical fact of the matter is that the two-
dimensional system avoids the inconsistency by rejecting the negation condition, NE. In
particular, in the two-dimensional system, there is no guarantee that if X supports —A,
then X’s refinements will fail to support A. This is because unidimensional evaluation is
governed by the diagonal principle, and so what’s supported at X depends on evaluation
triples of the form (M, X, X), whereas what’s supported at Y depends on evaluation
triples of the form (M, Y, Y). These may come apart in ways that undermine the negation
clause. Of course, the effect of the negation operator is preserved because there is an
analogous operator at the level of two-dimensional evaluation. However, that operator

only quantifies over refinements along the primary dimension.

This technical gloss is important but it does not illuminate the central mechanics
behind the two-dimensional proposal. Instead, the two-dimensional system is better
thought of as a more flexible generalization of the idea of indexing determinacy operators.
The job of the secondary coordinate of evaluation is to anchor the facts that ground
determinacy claims, shielding them from the shifting effects of other operators. The failure

of the unidimensional negation clause is a downstream consequence of this intervention.

7 Remarks on adding tense operators.

The framework within which we developed the model of indeterminacy is founded on a
distinctive structural assumption concerning the relationship between refinement and
the open future. This is the idea that there is a correspondence between the refinement

relation and the temporal precedence ordering. More specifically, we have supposed that

17We know immediately that the following form of disjunctive syllogism must fail:
IfA|IFC B|FC,then AVB|-C

If it didn’t, then we would have AV —A | DAV D—-A (contradicting Fact 7). Alternatively, it is possible to
formulate disjunctive syllogism as follows:

IfFA—>C |FB—C, then| (AVB)—C

It’s another consequence of Theorem 1 that this reformulated schema is correct.
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a possibility in which the coin toss is indeterminate splits, after a step of refinement,
into two possibilities that immediately follow the initial one. This assumption has both
simplifying and heuristic value, but it may, with reason, be viewed with some suspicion.
For example, it obfuscates how one might sensibly add temporal operators to the language.
Relatedly, the assumption seems to force an eternalist understanding of propositions—the
idea that propositions do not vary in their truth-value from time to time. Eternalism is not
obviously mistaken, but it also is not obviously mandated by any arguments established
until now. This concluding section explores the prospects for lifting this assumption,
and advances formal observations about the shape of a theory of tenses that integrates
with two-dimensional possibility semantics. This will serve as proof of concept that the

integration is possible but we will stop short of developing the theory in full.

To start, let us follow (Holliday, 2022, §5.3, and specifically example 5.3.9) in severing
the connection between refinement and temporality. We are going to add temporal
operators (F), for sometime in the future, and (P) for sometime in the past, respectively
governed by accessibility relations RF and R”. (So, for example Rf XY means that Y is
in the future of X, and R’XY means that Y is in the past of X) We assume R' and R”
to be at least irreflexive, transitive, and asymmetric. For reasons that will become clear
momentarily, we do not make the standard assumption that R” is always the converse of
RF. Suppose ‘p’ is an atomic formula of our object language, to be interpreted as meaning

that it’s raining. Then the model in Figure 4 diagrams a situation in which X; precedes

Figure 4: Simple temporal model

X5, and such that from X,’s perspective it will be raining in the future and from X,’s

perspective it was not raining in the past.

A bit of notational convention will help improve readability: introduce the notation
RF(X) to denote {Y | RF XY} — the set of possibilities in the future of X (with regards to an
accessibility relation, and within a given model). This will give a more natural informal
gloss to some formal statements, as we can read Y € RF(X) as “Y is in the future of X”. Tt
is worth keeping in mind that in certain open future contexts multiple possibilities might

be in the future of a given base possibility: see Figure 5 below.
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A simple off-the shelf idea is to apply the standard analysis of modal operators to the
semantics of (F) and (P). We begin by adopting the three interplay conditions entertained
in §5.3 of Holliday (2022) for each of Rf and R”. Letting R be some arbitrary accessibility

relation, these are:

(uR) forall X,Y,Z,if Y > X and Z € R(Y), then Z € R(X)
(Rd) forall X,Y,Z,if Y > X and X € R(Z), then Y € R(Z)

(RR) for all X,Y,if Y € R(X), then AX’ > X,¥X” > X/, AY’'>Y,Y’ e R(X")

Applied to RF, (uR) says that any possibility Z that is in the future of a refinement of X is
also in the future of X; (Rd) says that any possibility Y that refines a possibility that is in
the future of Z is also in the future of Z; (RR) states that for any Y in the future of X, there
is a refinement X’ of X every refinement of which has some refinement of Y in its future.

We treat (F) and (P) as duals of modals [F] and [P] with the standard semantics from

§5. Thus adapting clauses (iv) and (v), we get

M, X, Z | [F]Aiff for all Y e RE(X), M, Y, Z |- A

M, X, Z | [P]Aiff for all Y e RP(X), M, Y, Z |F A

(FYA =def -[F]-A

(PYA =4 —[P]-A

Under condition (Rd), the induced support conditions for (F), and (P) simplify to (F1)
and (P1) below.!8

(F1) M, X,Z | (F)Aiff for all Y > X, 3K € RF(Y), M,K, Z |F A
(P1) M, X, Z |F (P)Aiff for all Y > X, IK e RP(Y), M,K, Z |F A

Let’s call (F1) and (P1) the “unidimensional tenses”. A notable — and ultimately, as we
will see, problematic — feature of the unidimensional tenses is that, although we did
represent their secondary evaluation coordinate, their support conditions are insensitive

to it.

18Gee Lemma 5.3.8 in Holliday 2022. In the current setup: M, X, Z |- -0;-Aiff VY > X, M, Y, Z || O; -A
iff VY > X, 3K € R;(Y), M,K, Z |- -Aiff VY > X,3K € R;(Y),3AK’ > K, M,K’,Z | A. Now, fix Y > X and
K € R;j(Y). Suppose K’ > K. Then, by (Rd), K’ € R;(Y). Thus K’ would be available as witness to the
existential in (F1) and (P1).
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Figure 5: Holliday’s model of the Sea Battle puzzle

With these tools in hand, temporality and refinement can be cleanly separated. Re-
finement relations track the resolution of metaphysical indeterminacy, without shifting
the locus of temporal evaluation. This idea may be best illustrated with Holliday’s own
example of the sea battle puzzle. Suppose that there are two salient times, Monday and
Tuesday and that p represents the proposition that there is a sea battle on Tuesday. Let us
define a model SB (for “sea battle”) as follows, and as diagrammed in Figure 5. Let X,
be Monday’s state of affairs both with regards to categorical facts and also with regards
to which facts are determinate. Now, X, can be refined into two possibilities Y,,, and
Z,, without changing the temporal perspective from which we evaluate: both Y, and
Z,, represent the world as it is on Monday. Where they differ is that Z,, has a future in
which the sea battle occurs (Z;), while Y,, has a future (Y;) in which it does not. In light of
condition (uR), both Y; and Z; must also be futures of X,,: after all, Z,, (viz. Y,,) refines

X,, and Z; (viz. Y;) are in the future of Z,, (viz. Z,,).

It is a remarkable fact about this model that R” is not simply the converse of RF.
Plausibly, Holliday’s intuition is that, “looking backwards” from Z,’s perspective, the past
has a new veneer of determinacy. Here is Holliday’s gloss on this model, with adaptations

to our notation in square bracket:

Thus, the future is presently [i.e. at X,,] open. Yet if there is a sea battle, so
[Z;] is realized, then the past will turn out to be [Z,,], in which there would
be a future sea battle, whereas if there is no sea battle, so [Y;] is realized, then
the past will turn out to be [Y,,], in which there would be no future sea battle.
Come tomorrow, we might say, “the past is not what it used to be.” (Holliday,

2022, §5.3)

This is an interesting assumption, which we will carry along here for the sake of exposition.
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It also warrants attention in future work, so as to determine what kinds of theoretical
tradeoffs it involves.

Holliday’s notes that the model verifies S5, X,, |- (F)p V —(F)p while S5, X,, |- (F)p
and SB, X,, [F =(F)p. Once we add our two dimensional determinacy operator, we can
further verify SB, X,,, |- =D{F)p and SB, X,, |F =D—(F)p.'°

This is indeed a minimal standard for capturing a concept of openness of the future.
However, once we combine the two-dimensional picture of determinacy operators with
our temporalist-friendly ideas we run into some initial difficulties. Here is one: the
combined theory makes the counterintuitive prediction that determinacy statuses are
permanent. Intuitively, if it’s determinate today that there is a sea battle it should not
follow that in the past it was determinate that there was a sea battle then.

The two-dimensional system augmented with unidimensional tenses incorrectly
predicts that DA entails (P)DA — in fact, it predicts that DA entails [P]DA! This is
because the secondary coordinate of evaluation is not affected in the evaluation of (F) and

(P)(or [F]/[P]). More generally:
Fact 10 (Determinacy is forever) For any model M, possibility X,Z € Pyy and formula A,
(i) M,X,Z | DAiff M,X,Z |- [P]DA

(i) M,X,Z |- DAiff M,X,Z |- [F]DA

Proof: For (i), the left side reduces immediately to M, Z, Z |- A in light of the
support conditions for D. Unpacking on the right side of the biconditional:
M, X,Z | [P]DA iff for all Y € RP(Y), M,Y,Z | DA, which also reduces to
M,Z,Z |l A. For (ii), replace ‘[P] with ‘[F]’ in this argument.

Informally, because the D operator overwrites the primary coordinate of evaluation with
the value of the secondary coordinate, the effect of a temporal operator with higher scope
is rendered irrelevant.

There is an obvious idea to work around this problem: modify the semantic entries

for the tenses by treating them as genuinely two-dimensional operators.

19 While Holliday (2022) discusses this model within a unidimensional possibility semantics (with
operators (F) and (P) also being given standard unidimensional entries), his discussion can easily be exported
to the two-dimensional setting with no essential alteration. The observation concerning the determinacy
operators is not in Holliday (2022), but it is also noted in slides for Holliday’s NASSLLI course on possibility
semantics. To verify the first of these claims: SB, X, X, |F -D(F)p iff VX’ > X,,,, SB,X’, X,,, |- D(F)p iff
SB, Xy, X - (F)p, which is indeed the case since it’s not the case that every refinement of X,,, has a future
in which p holds (e.g. Y,;; does not).
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(F2) M, X,Z | (F)Aiff for all Y > X, IK € RE(Y), M,K,K |- A

(P2) M,X,Z |F (P)Aiff for all Y > X, K e RP(Y), M,K,K | A

Effectively, the analysis makes (F) and (P) into complex determinacy operators in their
own right. We should expect some new instances of the metarule failures we noted
in Fact 9. But, in exchange, we should get a much better behaved picture of the in-
teraction between determinacy and tense operators. Crucially for our purposes, the
two-dimensional analysis of tense operators fixes the bug that plagues the unidimen-
sional analysis: the analogue of Fact 10 fails. The model in Figure 5 already illustrates
this. Specifically: SB,Z;,Z; | Dp, but SB,Z,,,Z,, | —=Dp, and yet {Z,,} = R"(Z,), and so
SB,Z;,Zy, |- (P)-Dp. Happily, determinacy is not forever.

Note that after this modification, the semantics can still meet the minimal benchmarks
for the analysis of Holliday’s model of the Sea Battle puzzle. In particular, in the Sea Battle
model of Figure 5, we continue to have S5, X,, | (F)p V(F)=p, SB, X, - (F)p, SB,X,,, [l
(F)-p. Furthermore, by the same reasoning as in Footnote 19, the two-dimensional tense

operators also deliver S5, X,,, |F =D(F)p and SB, X,,, |F =D{(F)—p.

The goal of the present section was to highlight a path for relaxing the collapse
of refinement and temporal precedence. We have made progress in this direction, but
whether the integration pursued here is successful requires substantial additional work.
This work should concern how much of open future lore can be retrieved within the
theory under development. For example, an open future theorist might want to validate
D(P)A = (P)DA without validating D(F)A = (F)DA. The rationale might be as follows.
For the first equivalence, because the past is settled, some might intuit an equivalence
between it being determinately the case that a proposition was settled in the past, and
it being the case in the past that a proposition was determinately settled. Open future
theorists, however, maintain that the future behaves differently. Indeed, the following line

of thought seems consistent:

Given how things are right now, on Monday, it is objectively possible that, in
the future, it will be determinate that there will be a sea battle but also that

it’s not determinate that in the future there will be a sea battle.

Suppose that the relevant sense of objective possibility is modeled by an operator ¢ that is

analyzed as the dual of D (¢A = =D—A). The theoretical end-point of this line of thought
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is that, in one sense of ‘consistent’, the formula ¢((F)Dp A =D(F)p) should be consistent.

Indeed, it is consistent in branching time semantics.

The question I would like to end on is whether the formula is consistent in our
setting. As is typical of two-dimensional systems, we can track two senses of consistency

(illustrated here for the specific case of a single formula):

Diagonal consistency. The formula A is diagonally consistent iff there is a

model M and a possibility X within it such that M, X |F A (i.e. M, X, X |- A).

Weak consistency. The formula A is weakly consistent iff there is a model M

and a pair of possibilities X and Y within it such that M, X, Y |- A.

Any diagonally consistent formula is evidently weakly consistent, but the converse is not

true (a counterexample is discussed in Footnote 20).

When it comes to the consistency of ¢((F)Dp A —=D(F)p) one initial worry is that
unlike in branching-time the dual of D is not a diamond-like operator (because D is not a
box-like operator). Nonetheless, as it happens, if ¢ is the dual of the two-dimensional D,
the desired consistency claim goes through. Indeed, the formula holds at X,,, in the Sea

Battle model of Figure 5:2°

SB;Xlem ”_ (}[(F)Dp A _‘D<F>p]

To verify this claim, we need to acknowledge a quick fact about the support conditions of

-D-A.

Fact 11 M,X,Z |F -D-Aiff3K > Z, M,K, Z | A.

Proof M,X,Z | -D-Aiff VY > X, M,Y,Z |F D-Aiff VY > X, M, Z,Z |- -A
iff M,Z,Z |F-Aiff AK > Z, M,K,Z || A. The first and fourth biconditionals
are justified by the support conditions for negation; the second by the support

conditions for D, the third by vacuous quantification.

20Incidentally, we can also observe that (F)Dp A =D(F)p is weakly consistent. In particular:
© SB,Zy, X | (F)Dp iff for all Y > Z,,,, AK € RF(Y), SB,K,K | Dp
Since Z,, is its only refinement, the right side is made true by SB,Z;, Z; |- Dp. By contrast,
o SB,Zy, Xy |F D(F)p ift SB, Xy, Xy | (F)p

But we already know this is not the case, since X, has a refinement, namely Y, that does not have p supported
in any of its futures.
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Intuitively, 0A is the claim that the secondary possibility of evaluation does not settle =A

as true.

Let us go back to check SB, X, | =D—({F)Dp A =D(F)p). In light of Fact 11,
(1) SB, XXy [ =D=(EF)YDp A =D(F)p) iff 1Z > X,, SB,Z, X, - (E)Dp A ~D(EF)p
To establish the left side of (1), note that Z,, works as a witness for Z. That is:
(2) SB,Z,, X | (F)Dp and SB,Z,,, X,,, | =D(F)p
Focus first on the first conjunct. By (F2),
(3)  SB,Z,, X, |- (F)Dpiff VY > Z,, AK € R¥(Y),SB,K,K | Dp

Since Z,, is its only refinement, the question is whether there is a K in the future of
Z,, that supports Dp. Indeed, such a K exists — namely Z; — since Z; € R¥(Z,,) and
SB,Z,Z; |F- Dp.

Let us move to the second conjunct of (2): §B, Z,,, X,,, [F =D(F)p. This is established
by reasoning along the same lines as in Footnote 19: $B,Z,,,X,, | —=D(F)p iff for all
K> Z,,SB,K,X,, - D(F)p iff SB, X,,, X,, |- (F)p iff 3Y > X,,,YK € RF(Y),SB,K,K |[- p.
The last claim in the chain clearly holds by selecting Y,, as witness for the existential. Y},

refines X, but every possibility in its future fails to support p.

Let us take stock of the dialectical situation. We have proven that the full two-
dimensional system — the system that includes two-dimensional tense operators — is
better behaved than its variant without the two-dimensional tenses. Moreover, it can
yield some core principles of open future lore in that it can distinguish between (F)DA
and d(F)A. Much more would need to be said to provide a full vindication of the two-
dimensional possibility semantics as a model of the open future. For example, we have not
commented on the equivalence D(P)A = (P)DA. In my view, supporting this equivalence
requires important conceptual decisions, and it is not just a matter of nailing down a

convenient technical fact. In particular, we can easily compute:

« M,X,Y |F D(P)Aiff for all Z>Y,3K € R"(Z), M,K,K |- A.

* M,X,Y |- (P)DA iff for all Z > X, K € R"(Z), M,K,K |- A
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However, capturing the right sort of link between these claims requires having the correct
model of the fixity of the past. This might include exploring generalizations of Holliday’s
idea concerning the past accessibility relation R”. A fuller exploration of the prospects
for this temporalist-friendly variant of two-dimensional possibility semantics lies ahead

for future work.

8 Conclusion

The main conclusions are as follows: there is a clear path for the application of possibility
semantics to the metaphysical hypothesis of the open future. That path must include the
characterization of object language determinacy operators. Introducing such operators
under something like the alignment constraint requires, on pain of inconsistency, some
modifications to the original framework. A two-dimensional variant of possibility seman-
tics is one path to relieve this theoretical pressure. In its natural interpretation, the logic

of determinacy under the two-dimensional analysis is the global version of S5.

The most immediate development of this idea is feasible under a broadly eternalist
conception of propositions, and under the hypothesis that the refinement relation and
the (reflexive closure of the) temporal precedence relation collapse. It appears important
to explore the prospects for the two-dimensional analysis in a context that does not
involve these structural assumptions. Holliday (2022) has already provided key insights
for how to think about facets of the open future without collapsing refinement and
temporal precedence. We added to this insight that integrating these insights within the
two-dimensional framework requires also thinking of tenses as diagonal operators. We
also noted the dual of the two-dimensional determinacy operator manages to express an

interesting concept of possibility within a possibility model.
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