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Abstract

According to the so-called strong variant of Composition as Identity (CAI), the Principle of
Indiscernibility of Identicals can be extended to composition, by resorting to broadly Fregean rel-
ativizations of cardinality ascriptions. In this paper we analyze various ways in which this relativi-
zation could be achieved. According to one broad variety of relativization, cardinality ascriptions
are about objects, while concepts occupy an additional argument place. It should be possible to
paraphrase the cardinality ascriptions in plural logic and, as a consequence, relative counting
requires the relativization either of quantifiers, or of identity, or of the is one of relation. However,
some of these relativizations do not deliver the expected results, and others rely on problematic as-
sumptions. In another broad variety of relativization, cardinality ascriptions are about concepts or
sets. The most promising development of this approach is prima facie connected with a violation
of the so-calledCoreferentiality Constraint, according to which an identity statement is true only if
its terms have the same referent. Moreover – even provided that the problem with coreferentiality
can be fixed – the resulting analysis of cardinality ascriptions meets several difficulties.

1. Introduction. Composition, indiscernibility, and cardinality ascriptions

Composition is an operation by which several things are unified into a single
thing: it goes from many things to one thing. Therefore, its inputs and its output
are different. This goes immediately against the intuition behind the so-called the-
sis of Composition as Identity (CAI), i.e. that composition is identity. A way of
resisting this simple line of reasoning is to claim that “to be many”, “to be one”,
as well as “to be three” and every other cardinality ascription, are relative.

Some backers of CAI think that this line of reasoning can be made to work, but
the exact way in which this result could be accomplished is often left implicit.
This paper aims to fill this gap, by analysing and evaluating several different ways
to relativize cardinality ascriptions. We will show that some ways do not deliver
the expected results, while others rest on controversial assumptions, that in some
cases backfire on CAI.

First of all, let us recap what CAI is, decide which versions of CAI are our crit-
ical target, and explain why cardinality ascriptions matter for these versions.
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Consider the following sentences:

(1) There is a cat, Mina, who is sleeping.
(2) There is a mouse, Gino, who is dancing.

Whoever asserts (1) is ontologically committed to Mina; whoever asserts (2) is
ontologically committed to Gino. Suppose now that someone, in a mereological
vein, asserts also:

(3) There is the sum of the mouse, Gino, and of the cat, Mina: Gina.

And then goes on to infer (4) from (1), (2) and (3):

(4) There are Gina, Gino, and Mina.

Is the ontological commitment to the sum Gina a further commitment, with
respect to Mina and Gino? Notoriously David Lewis’s answer is: no.1 The rela-
tion between Gino and Mina on one side, and Gina on the other would be
significantly analogous to identity. And indeed, nothing could be considered
more ontologically innocent than the request to accept something identical to
things already accepted. If you are already committed to Cicero, the admission
that there is Tully is no further ontological commitment. Analogously, Gina
would not be a further ontological commitment over and above the commitment
to Gino and Mina.

CAI is generally meant to also apply to the many-many relation (which would be
preposterous to call “composition”) between different slicings of the same whole.
Gina is not only composed ofMina and Gino, but also of the cells in them. According
to CAI, Mina and Gino on the one hand, and the cells on the other, are the same por-
tion of reality, and the relation is as analogous to one-one identity as their relation with
the whole (Gina) is. When – in what follows – we speak of composition, we aim to
include also these many-many relations between different slicings of a same whole.

According to Lewis himself, composition is not exactly like standard, one-one
identity. In particular, the so-called Principle of Indiscernibility of Identicals or
Leibniz’s Law would not hold for composition: the sum, Gina, is discernible from
the pets, Mina and Gino.

Why? There are many potential sources of discernibility, and in particular
various kinds of collective predications, but in this essay we will focus on only
one, mentioned by Lewis himself as the most evident case of discernibility
between a whole and its parts: cardinality ascriptions.

Lewis writes:

1 See, in particular, Lewis (1991), p. 81.
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What’s true of the many is not exactly what is true of the one. After all they are many
while it is one. (Lewis 1991, p. 87)

In the example above, Mina and Gino are two, and not one: while Gina, their sum,
is one, and not two. This seems to make Mina and Gino discernible from Gina.

As another example, consider Benelux: it is composed of the Netherlands,
Belgium, and Luxembourg; if we take it to be a physical entity, it is also composed
of a certain amount of molecules. Thus, the relation between Benelux and the
countries, the relation between Benelux and the molecules, and the relation
between the countries and the molecules are assimilated by CAI to identity. But
Benelux is one, while the Netherlands, Belgium, and Luxembourg are three, and
the molecules are a very large number. Thus, they seem to be discernible.

But, if these relations are not governed by the same principles that govern one-
one identity (such as Leibniz’s Law), then, perhaps, the ontological innocence of
mereology is not warranted. Thus, the case of Gina would not be on a par with the
case in which, if we are already committed to Cicero, then Tully is not a new
ontological commitment.

According to Sider, for example, any defender of CAI who denies Leibniz’s
Law “would arouse the suspicion that their use of ‘is identical to’ does not really
express identity” (Sider 2007, p. 59).

Thus, more recently, other philosophers – Einar Bøhn, Aaron Cotnoir, Paul
Hovda and Megan Wallace2 – attempted to show that the sum and its parts (and
different slicings of a same whole) are indiscernible. In the mind of these
philosophers, Leibniz’s Law holds for composition; indeed composition is an
instance of identity. This variety of CAI is usually dubbed strong CAI, in opposi-
tion to Lewis’s allegedly weak or moderate version,3 where the composition rela-
tion is just analogous to identity. In order to extend Leibniz’s Law to composition,
the backers of CAI need to analyze cardinality ascriptions in order to avoid the
apparent forms of discernibility that ensue from them.

CAI has received many objections in the literature. They concern the grammat-
icality of many-one identity statements or other forms of discernibility between
whole and parts.4 If you are persuaded by these objections, you will perhaps be
unsurprised by the fact that CAI, when conjoined with other doctrines, delivers
some counterintuitive and, in some cases, utterly undesirable results.

In fact, these objections have not stopped the debate about CAI, and the
defenders of CAI have elaborated ingenious answers to the objections. A quick
look at the growing literature on CAI reveals that it is common to resort to relative

2 Bøhn (2009, 2014), Cotnoir (2013), Hovda (2005) and Wallace (2009, 2011b).
3 Moderate CAI has been recently endorsed and developed in Bricker (2016).
4 Some important objections are set forth in van Inwagen (1994), Yi (1999, 2014), and

McKay (2006, ch. 2).
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counting, with frequent references to Frege’s treatment of cardinality ascriptions.
The debate on cardinality ascriptions is special in the debate on CAI, because the
defenders of CAI can in this case resort to an independently plausible idea, with a
solid historical pedigree (it dates back to Frege): the idea that cardinality ascrip-
tions are not primarily or exclusively about objects, but about concepts. Given
the independent appeal of this idea, it is important to show, through an in-depth
analysis of the various ways in which it has been and can be developed, that this
idea is of no significant help to CAI.

In this paper, the focus is exclusively on strong CAI’s attempts to relativize car-
dinality ascriptions to concepts in order to extend Leibniz’s Law to composition.5

Lewis’s version of CAI does not represent such an attempt. Yet another variety of
CAI – originally formulated in Baxter (1988a) and Baxter (1988b), and recently de-
veloped in Turner (2014), and sometimes dubbed stronger6 – rejects Leibniz’s Law
in general, also for one-one identity, and provides independent reasons, concerning,
for example, the theory of change, for this rejection. As a result, there is no need to
explain away the violation of Leibniz’s Law, by relativizing cardinality ascriptions.

By contrast, the defenders of strong CAI aim to be perfectly conservative about
identity, and to show that composition cases are simply new, often unjustly
disregarded, instances of identity. And this is exactly what, according to our anal-
ysis, leads to trouble. At many points, we will see that the most promising ways in
which cardinality ascriptions about parts and whole could be relativized are
connected to non-standard views of identity. Thus, in the attempt to show that
composition is on a par with standard identity from the viewpoint of
indiscernibility, the defenders of strong CAI end up endorsing an analysis of
cardinality ascriptions that works only if a revisionary view of identity is adopted.
Thus, Sider’s worry that “their use of ‘is identical to’ does not really express iden-
tity” could be retorted against them.

In this paper we do not aim to show that strong CAI – or even less CAI in general
– fails. We simply aim to show that the relativization of cardinality ascriptions – if it

5 Among the approaches that aim to extend Leibniz’s Law to composition, a very peculiar al-
ternative for the analysis of cardinality ascriptions can be traced in Wallace (2011b, pp. 820–822), and
will be not investigated in this paper. According to Wallace, cardinality ascriptions should be
interpreted as metalinguistic ascriptions about identity statements; what is actually counted are vari-
ables in statements about parts and the allegedly identical whole they compose. Wallace’s metalinguis-
tic counting has nothing to do with Frege-like relativizations to concepts, and raise different worries.
For this reason, it will not be discussed in this paper.

Wallace (2011b) discusses also relative counting, and introduces metalinguistic counting as a
tentative alternative to it. Wallace’s motivations for seeking an alternative are different from our objec-
tions to relative counting. She is in particular worried by “the controversy over what exactly counts as
sortals […] and what does not” (p. 820). These concerns echo a criticism of CAI set forth in Yi (1999),
see also Section 2.

6 Wallace (2011a, p. 807).
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is expected to make whole and parts, and different slicings of a same whole, indis-
cernible – is a narrow route for strong CAI. In its less disappointing varieties, the
relativization requires a non-conservative stance about identity. If these varieties
are adopted, strong CAI cannot be construed as a kind of Quinean conservatism
about identity, that simply unveils new cases of the same old relation. It is a rather
in-depth revisionism about identity, that insists on being conservative on Leibniz’s
Law, at the expense of other traits of identity. In particular, we will see that in some
cases plural identity (usually taken as an unproblematic plural cousin of standard
one-one identity) needs to be redefined in problematic ways; and that, in other
cases, the usual, intimate link between identity and reference ends up being severed.

In order to better appreciate the differences between the varieties of CAI and
identify our critical target, it is useful to focus on the following argument (Numer-
ical Discernibility Argument, NDA), concerning the case of a whole t and its three
parts uu.7

There are two premisses:

(P1) t is the sum of uu;
(P2) uu are three and not one; t is one and not three.

On the basis of the two premisses and taking into account Leibniz’s Law, the
following conclusion is inferred:

(C) It is not the case that t and uu are identical.

Lewis accepts the argument NDA and its conclusion (C), at least if by
“identity” we mean a relation governed by the principles that govern one-one
identity. In Lewis’s mind, composition has a lot in common with one-one
identity, which would be enough to vindicate the ontological innocence of
mereology; however, composition is not governed by the same principles.8 Also
all the philosophers (such as van Inwagen (1994) and many others) who reject
CAI would consider the argument as a compelling proof that CAI is a false
thesis.

Other versions of CAI reject the argument and its conclusion. Baxter rejects
Leibniz’s Law, and thus would argue that (C) does not follow from (P1) and
(P2). But others – the defenders of strong CAI, our only critical target – hope to
block the argument by rejecting (P2), and in particular by relativizing cardinality

7 Following the predominant convention in plural logic, we use double letters as plural con-
stants (uu, vv, …) and plural variables (xx, yy, …).

8 It is not completely clear whether Lewis (1991) classifies composition as a kind of identity
that does not respect Leibniz’s Law, or if he thinks that composition is merely analogous to identity.
While the latter interpretation is quite common in the literature, Bøhn (2011) argues convincingly in
favour of the former.
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ascriptions to concepts. They resort to relative counting in order to deny that the
whole and the parts differ in number and that they are, as a consequence,
discernible.

But in what sense are cardinality ascriptions – in a broadly Fregean way –
relative? Frege in his The Foundations of Arithmetic aimed to show that the real
subjects of cardinality ascriptions are concepts, and not ordinary objects.

Frege’s strategy was to prove this thesis by a reductio. Consider the following
two passages:

While looking at one and the same external phenomenon, I can say with equal truth
both “It is a copse” and “It is five trees”, or both “Here are four companies” and
“Here are 500 men”. (Frege, 1950, Section 84)

An object to which I can with equal justice ascribe various numbers is not the actual
bearer of a number. (Frege, 1950, Section 22)

For Frege this means that objects or phenomena are not the proper subjects of car-
dinality ascriptions. The proper subjects of cardinality ascriptions are instead cer-
tain kinds of concepts.

Thus, in the pars destruens of his argument, Frege claims that, apparently, one
and the same object is the subject of various, incompatible cardinality ascriptions.
But in the pars construens, he concludes that only some concepts are subjects of
cardinality ascriptions. As a result, strong CAI can resort to Frege’s relativization
of cardinality ascriptions in two broad ways:

(1) by insisting – contra Frege – that objects are the proper subjects of cardinal-
ity ascriptions;

(2) by agreeing with Frege that objects are not the proper subjects of cardinality
ascriptions: concepts or – as we will see – sets in some way connected to
concepts are the proper subjects of cardinality ascriptions.

Both alternatives have been developed in various ways, and could be developed
in others, to support strong CAI. We aim to analyse all the prima facie plausible
varieties of both alternatives, but, in order to also keep in touch with the current
literature, when possible for each of the two broad strategies we focus on its
currently most developed implementation. In the case of (1), we focus on the
approach of Bøhn (2009) and Bøhn (2014); for (2), we consider the so-called the-
ory of general identity of Cotnoir (2013).9 Incidentally, in the course of our

9 Among the other supporters of strong CAI, Hovda (2005) does not really illustrate his ap-
proach to cardinality ascriptions. Wallace (2011b) distinguishes two approaches that she finds attrac-
tive: a kind of relative counting of objects very similar to that of Bøhn (2009) and the very different
kind of metalinguistic approach we have mentioned and left aside in fn. 5. See fn. 13 about Spencer
(2016).
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analysis (and in particular in Sections 8 and 9) we will also discuss Frege’s role in
the debate on strong CAI.

The rest of the paper is organized as follows. In Sections 2–7 we review and crit-
icize the first broad strategy of relativizing numerical ascriptions (1), according to
which their proper subjects are objects. In Sections 8–12 we analyse the second broad
strategy (2), according to which the proper subjects of cardinality ascriptions are cer-
tain concepts or certain sets. Finally, in Section 13 we draw some conclusions.

2. Counting objects?

According to the first broad approach, cardinality ascriptions are – contra Frege –
about objects, even if they should be relativized nonetheless to concepts. One reason
for preferring this route over the second could be the desire to minimize the ensuing
semantic revisionism: the syntactic form of cardinality ascriptions in English and
other natural languages suggests that they are about objects. A second reason (explic-
itly mentioned in Bøhn 2014, p. 145) is that cardinality ascriptions are not the only
obstacle in the way of strong CAI’s attempt to extend indiscernibility to composition.
For example, it seems that Benelux is the only member of its singleton {Benelux},
while the Netherlands, Belgium, and Luxembourg are not members of {Benelux}.
The Netherlands, Belgium, and Luxembourg are members of the European Union,
while Benelux is not. Each of these cases can be and has been handled in the literature
in various ways that lie beyond the scope of this paper. But, in general, a unified treat-
ment is preferable: the proper subjects of cardinality ascriptions should also be the
proper subjects of the other ascriptions that are potential sources of discernibility
between a whole and its parts. And, in the case of the other potential sources, it seems
absolutely clear that concepts are not the proper subjects: the Netherlands, Belgium,
Luxembourg, and Benelux (and not some concept they fall under) are or are not
members of sets and of the European Union.

If the proper subjects of cardinality ascriptions are objects, then concepts have
to play a different role. Namely, they could occupy an additional argument place
of numerical predicates (Bøhn 2014, p. 146).

Thus, Benelux would actually be both one, and three, and a very large number,
but each of these ascriptions should be relativized to a concept, which occupies an
additional, hidden argument place. Benelux will be one from the viewpoint of the
concept multinational entity; from this viewpoint, it is neither three nor a very
large number. Benelux would be three from the viewpoint of the concept country;
when conceptualized in this way, it is neither one nor a very large number.
Benelux would also be a very large number (and neither one nor three) from the
viewpoint of the concept molecule.
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Molecules in Benelux would be three from the viewpoint of the concept
country, and when we formalize such a statement we need to add an argument
place for this concept (T is the unanalysed predicate “are exactly three”; mm is a
plural term denoting the molecules; cc is a singular term for the concept country):

T mm; ccð Þ Three Relativized; Unanalysedð Þ
Since concepts occupy argument places in the proper logical form of numerical
ascriptions, no exception to Leibniz’s Law is ever obtained. A formula of the form
F(xx, c1)∧ ¬F(xx, c2) is no contradiction.10

Yi (2014) expressed some serious concerns about Bøhn’s solution. How
specific should the concepts be? Consider a square that is composed of four
smaller squares. According to strong CAI, the smaller squares are identical to
the bigger square. Bøhn tells us that, in applying the numerical predicate “be
four” to it/them, we should always add an argument place for a concept. But
suppose that this concept is the concept square: is/are it/they four or one from
the viewpoint of the concept square? Or perhaps five? It could seem that
different, incompatible numerical predicates could be applied to the whole and
the parts, even once a concept is factored in. Some concepts (such as square
in this case) allow for different ways of counting a single portion of reality. They
deliver cases in which c1 and c2 are actually the same concept, and as a result a
formula of the form F(xx, c1)∧ ¬F(xx, c2) is a contradiction.

However, Bøhn could simply reply that we should be more selective in
choosing the concept that fills the additional argument place of the problematic
predicates.11 The concept should not admit multiple subdivisions of one and the
same portion of reality: at least in the specific case, the concept square is not
suitable for the task, and we should perhaps choose instead the concept of being
a square with a certain area. Suppose that the bigger square has an area of 4 in2,
while each of the smaller squares has an area of 1 in2. Then, the bigger square
would be one when thought of as a square with an area of 4 in2, and would be four
when thought of as a square with an area of 1 in2.

A clear criterion for identifying the right concepts should be provided, one that
admits the concept square with an area of 4 in2 and the concept square with an
area of 1 in2, but excludes the bare concept square.

The problems we will focus on are quite independent of the issue of choosing
the right concepts, and stem from the fact that numerical ascriptions are not
unanalysable primitives, but have standard paraphrases.

10 Cf. Bøhn (2014, p. 146).
11 For the general problems concerning the concepts suitable for relative counting, see

Koslicki (1997).
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3. Cardinality ascriptions: logical paraphrases, non-logical paraphrases

The paraphrases of cardinality ascriptions have the pivotal function of explaining
the pervasive inferential links between them. For example, that some things are
exactly three should imply that they are at least two, and that they are more than
two, and less than seven, and so on.

The standard logical paraphrases of cardinality ascriptions manage to ground
these kinds of inferences. These paraphrases can exploit set theory, or plural logic.
We focus on plural logic, as it is the logical tool of reference in all the debates
about strong CAI. However, nothing in our following analysis depends on the
peculiarities of plural logic with respect to set theory.

The standard paraphrases of cardinality ascriptions in plural logic resort to
identity, to the characteristic plural logic relation ≺ (is one of ),12 and to standard
quantifiers and propositional connectives.

Let us consider the paraphrase of an absolute cardinality ascription, and then
consider the impact of relativizations à la Bøhn. To say that some things, denoted
by the plural term tt, are exactly three, is tantamount to saying that there is an x,
there is a y, and there is a z such that x, y, and z are mutually non-identical and each
of them is one of tt, and nothing else is one of tt. Formally:

∃x∃y∃zðx ≠ y∧ y ≠ z∧ x ≠ z∧ x ≺ tt∧ y ≺ tt∧ z ≺ tt∧∀w
w≺ tt→w ¼ x∨w ¼ y∨w ¼ zð Þ

Three Logical Formð Þ

The following claim that the tt are at least two will follow from (Three Logical
Form) by sheer logic:

∃x ∃y x ≠ y∧ x ≺ tt∧ y ≺ ttð Þ

All similar implications will be analogously warranted by logic.
But, according to the variety of strong CAI we are discussing, numerical

ascriptions are not absolute, and have an additional argument position for a con-
cept. Consider, again, the above claim that the molecules in Benelux are exactly
three from the viewpoint of the concept country:

12 It is controversial that is one of is the fundamental relation in plural logic. For example, ac-
cording to Oliver and Smiley (2013), the fundamental relation of plural logic is the many-many relation
of is/are among. We will show in Section 4 that the relation of inclusion employed in cardinality ascrip-
tions is is one of.
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T mm; ccð Þ Three Relativized; Unanalysedð Þ

It should imply that the molecules are, when thought of as countries, at least two,
less than five, and so on. In order to ground these inferences, (Three Relativized,
Unanalysed) should be paraphrasable in the language of plural logic.

But how? Obviously, the paraphrase of the claim that mm, when thought of as
countries, are exactly three cannot also be the paraphrase of the claim that mm,
when thought of as molecules, are exactly three. These two claims are different:
in the specific case, the first claim is expected to be true, while the second false.

Also the implications should be restricted to the same concept: the claim that
mm are exactly three when thought of as countries should imply that mm are at
least two when thought of as countries, but should not imply that mm are at least
two when thought of as multinational entities.

We need to find a place for the concept in (Three Logical Form). But where?13

If we look at Bøhn (2014) or Bøhn (2009), there is no explicit indication. In the
following sections (Sections 4–6), we investigate different ways of “relativizing”
(Three Logical Form) to a concept.

13 Spencer (2016, Section 3) doubts that CAI is forced to provide relativized logical para-
phrases of cardinality ascriptions. By contrast, he argues that cardinality ascriptions should not be
analysed in logical terms at all, but should be considered as irreducibly primitive. As a consequence,
the logical paraphrases of cardinality ascriptions could not be used as an argument against CAI.
Spencer’s train of thought follows Salmon’s discussion of cardinality ascriptions that include fractional
or negative numbers – such as “the oranges are two and a half”, or “the dollars in my bank account are
� 2” (Salmon, 1997). According to Salmon (and more recently Liebesman, 2015, 2016), cardinality
ascriptions in the above cases cannot be translated in logical terms. The unavailability of the logical
paraphrase in these cases would empty the motivation for providing logical paraphrases of cardinality
ascriptions in general. Indeed, the usual motivation for providing such paraphrases is the need to ex-
plain in a unified way the inferences between different cardinality ascriptions, such as when “the or-
anges on the table are exactly three” entails “the oranges on the tables are at least two”. These
inferences seem to concern also the fractional cases: from “the oranges on the table are exactly one
and a half” it follows that “the oranges on the table are at least one”. Insofar as there is no logical para-
phrase in these cases, it would not be possible to explain all the inferences among cardinality ascriptions
through logical paraphrases. If we cannot explain all these inferences, logical paraphrases lose their ex-
planatory value, also for non-fractional, non-negative cardinality ascriptions. Thus, the defender of CAI
could say that there is no need to go beyond (Three Relativized, Unanalysed) in the relativization, and
no need to ask (as we are asking) what should be relativized in logical paraphrases such as (Three
Logical Form).

Our tentative reply is that – no matter if they are always available or explicative – logical para-
phrases are sometimes available, and that, in particular for all the non-fractional and non-negative cases,
they deliver the right truth conditions: this is enough to force the defender of CAI to decide what she
wants to relativize in the logical paraphrase. It does not matter whether the paraphrase is explicative
with respect to (Three Relativized, Unanalysed). Nonetheless, we acknowledge that the relation be-
tween fractional counting, negative counting and CAI is complex and underexplored. We plan to dis-
cuss Spencer’s interesting approach in another paper we are working on.
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However, before investigating how the relativization of cardinality ascrip-
tions could be mirrored in their plural logic paraphrases, we have to discuss
two alternatives that, according to us, do not really make a difference. The first
alternative (Contextual parameters) concerns the proper role of concepts in
the semantics of cardinality ascriptions. The second (Mereological para-
phrases) concerns the hypothesis of radical departures from the standard
paraphrases, in which ≺ (or its set-theoretical corresponding ∈) would not
appear at all.

Contextual parameters. A supporter of strong CAI could claim that concepts
play a role in the semantic evaluation of cardinality ascriptions, instead of occupy-
ing hidden, syntactic argument places of numerical predicates, as in Bøhn’s
proposal.

Concepts could be evaluation parameters supplied by the context. The claims
“Benelux is one” and “The Netherlands, Belgium, and Luxembourg are not
one” would be made compatible, but not by adding an argument place to the pred-
icates. Instead, the semantics would be such that numerical ascriptions should
always be evaluated according to a certain concept. “Benelux is one” would be
true when evaluated from the viewpoint of the concept multinational entity, and
false when evaluated from the viewpoint of the concept country; and the same
would hold for “The Netherlands, Belgium and Luxembourg are one”. The fact
that there are things and a number n such that it is true (given a certain contextual
parameter) that these things are n and it is true (given a different conceptual
parameter) that these same things are not n would not be a counterexample to
Leibniz’s Law. Analogously, the fact that “it rains” is true under certain temporal
and spatial parameters, and false under other spatial and temporal parameters is
not an exception to Leibniz’s Law.

The distinction between taking the concept as occupying an additional
argument place and taking it as a contextual parameter has no specific bearing
on the problems we are going to discuss. It could be very important when
assessing the linguistic credibility of relative counting in general,14 but does
not dispel, or substantially transform, the need to relativize the logical para-
phrase of cardinality ascriptions to concepts, upon which our analysis will
hinge.

Indeed, the need to relativize would simply be transferred: instead of looking
for a syntactic place for concepts in the logical paraphrase, we should look for
the subformulas of the logical paraphrase whose evaluation should be contextually
parametrized to concepts.

14 For a general discussion of the difference between argument places and contextual param-
eters (in the cases of space and time), see King (2003).
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In the next sections, we will consider the hypothesis that various elements of
the vocabulary of (Three Logical Form) (quantifiers, identity, ≺) should be rela-
tivized to concepts, and concepts will appear explicitly in the corresponding
subformulas of (Three Logical Form). By contrast, if concepts were instead
expected to act as contextual parameters, we should consider the hypothesis that
the evaluation of subformulas of (Three Logical Form), which include these
same elements of the vocabulary, should be contextually parametrized to a
concept.

One cannot simply declare that the evaluation of (Three Logical Form) should
be parametrized to a concept, without specifying what, in the vocabulary of (Three
Logical Form), determines this need. As a result, there is a correspondence
between additions of syntactic places in certain subformulas and parametrized
evaluations of these same subformulas, without any deep, specific reason to prefer
one route over the other.

In the next section, we focus on the first option (the syntactic relativization),
both because Bøhn explicitly endorses it,15 and because it makes more vivid
where in the logical paraphrase the relativization is at work.

Mereological paraphrases. A backer of strong CAI could look for a relativ-
ized paraphrase of numerical ascriptions that does not employ any specific predi-
cate of plural logic or set-theory.

The most attractive way could be to use the mereological lexicon. To claim that
tt are three from the viewpoint of a concept c would be to claim that the fusion of tt
(Σ(tt)) has three parts that fall under the concept c (in the following formula, P is
mereological parthood):

∃x∃y∃z x falls under c ∧ y falls under c ∧ z falls under c∧ð Þ
∧x ≠ y∧ y ≠ z∧ x ≠ z∧ x P ∑ ttð Þ∧y P ∑ ttð Þ∧z P ∑ ttð Þ∧

∧∀w w falls under c∧w P ∑ ttð Þ→w ¼ x∨w ¼ y∨w ¼ zð Þ
Three Mereologicalð Þ

What would be actually counted in this case would be the fusion, and, trivially,
given a whole and its parts, the fusion of the whole is the whole itself, which is
also the fusion of its parts. Given that we have decided to leave aside the problems
of choosing the right concepts, no decisive objection against the soundness of this
mereological paraphrase comes to our mind.

One could try to object that (Three Mereological) would not be a logical
paraphrase, because Σ and P would not belong to the logical vocabulary. But

15 Bøhn does not discuss the hypothesis of contextual parameters at all. The indexical variant
of Cotnoir’s (2013) treatment of cardinality ascriptions is a kind of contextual parametrization. We will
discuss it in Section 12.
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some backers of strong CAI (including Bøhn 2014) would probably insist that
CAI itself makes the mereological notions as logical as identity is. Thus, it would
be arguably unfair to presuppose that mereology is not logical, when discussing
the possible paraphrases of cardinality ascriptions which strong CAI could
adopt.16

The reason why this mereological paraphrase does not solve any problem is
different, and consists simply in the fact that, even if (Three Mereological) were
licensed as an acceptable paraphrase of (Three Relativized, Unanalysed), the
standard paraphrase (Three Logical Form) would be still there. The resort to
the mereological paraphrase would not explain why the standard paraphrase
would be unviable. If ≺ is a predicate in our vocabulary, then (Three Logical
Form) is a well-formed sentence of our language, which – outside of the debate
about CAI – is usually taken to be the right paraphrase. Now, why should the
availability of another allegedly right paraphrase discredit the standard one?
We are unable to imagine how the adoption of (Three Mereological) could
motivate the thesis that it is impossible to paraphrase soundly (Three Relativized,
Unanalysed) in terms of ≺.

If it is possible to paraphrase (Three Relativized, Unanalysed) in terms of ≺,
then this paraphrase should not make the parts discernible from the whole. Other-
wise, it does not matter that there is another paraphrase at disposal, such as (Three
Mereological), that does not make them discernible. One sound paraphrase that
makes (say) the Netherlands, Belgium, and Luxembourg discernible from
Benelux is enough to get strong CAI in trouble. The availability of other
paraphrases does not alleviate this trouble.

Thus, in general, the eventual availability of other paraphrases (in mereological,
or in other, eventually non-logical terms) does not solve the problem of relativiz-
ing the standard, logical paraphrases. And, now, we turn to appraise various ways
in which this relativization could be realized.

4. Restricting quantifiers, relativizing quantifiers, relativizing referential
expressions

The simplest strategy would be to make clear, within (Three Mereological), that
the things we are speaking about fall under a certain concept c. This could be done
either by restricting all the quantifiers, or by relativizing them, or by relativizing
all the referential expressions in (Three Mereological).

16 See Lando (2017, ch. 3 and ch. 10) for a discussion of the alleged logicality of mereology.
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Let us begin with the restriction of quantifiers. The restriction could resort to
the above relational predicate falls under, but it is convenient to introduce, for
each concept (say: the concept country, cc), a corresponding predicate C (“be a
country”).

∀x Cx ↔ x falls under ccð Þ

We obtain the following paraphrase of the sentence “the Netherlands, Belgium,
and Luxembourg are three” (tt is here a plural constant denoting the Netherlands,
Belgium, and Luxembourg):

∃x∃y∃z Cx∧Cy∧Cz∧x ≠ y∧y ≠ z∧ x ≠ z∧ x≺ tt∧ y ≺ tt∧ z ≺ tt∧ð
∧∀w Cw∧w ≺ tt→w ¼ x∨w ¼ y∨w ¼ zð ÞÞ

Three with Restricted Quantifiersð Þ

This paraphrase implies that tt are at least three absolutely, independently of
any concept:

∃x∃y∃z x≠ y∧y≠ z∧x≠ z∧x ≺ tt∧y ≺ tt∧z ≺ ttð Þ At Least Three Absolutelyð Þ

This would mean that, if tt (the Netherlands, Belgium, and Luxembourg) are
exactly one when thought of as a multinational entity, then they are at least one
tout court. And if they are a very large number when thought of as molecules, then
they are at least that very large number tout court. This outcome seems surprising:
it would seem that the Netherlands, Belgium, and Luxembourg are not a very
large number in any absolute sense.

The introduction of concepts in numerical ascriptions has the purpose, from the
viewpoint of CAI, to make acceptable some prima facie unacceptable numerical
ascriptions, such as “the Netherlands, Belgium, and Luxembourg are at least a
very large number”. But – the defender of CAI argues – “the Netherlands,
Belgium, and Luxembourg are at least a very large number” becomes acceptable
if we factor in a concept: from the viewpoint of the concept molecule, perhaps the
Netherlands, Belgium, and Luxembourg really are at least a very large number.
However, the logical paraphrases of cardinality ascriptions should not be such that
it is so easy to eliminate concepts in them, because, once the concepts are elimi-
nated, the resulting absolute, concept-free cardinality ascription risks being as
implausible as the original, prima facie unacceptable cardinality ascription was.
This would happen in the inference from the logical paraphrase of “the
Netherlands, Belgium, and Luxembourg are at least a very large number (when
thought of as molecules)” to the logical paraphrase of “the Netherlands,
Belgium, and Luxembourg are at least a very large number (absolutely)” (and this
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inference is as logically trivial as the inference from (Three with Restricted Quan-
tifiers) to (At Least Three Absolutely)).

Thus, a first problem for the strategy of restricting quantifiers is that on one
hand it aims to make sense of some implausible, non-relativized cardinality
ascriptions, by relativizing them to concepts; on the other, the resulting logical
paraphrases of cardinality ascriptions imply some of those same, implausible,
non-relativized cardinality ascriptions, such as the claim that the Netherlands,
Belgium, and Luxembourg are at least a very large number absolutely.17

This perplexing outcome could be avoided if, instead of restricting the quanti-
fication through a predicate such as C, we relativize the quantifiers themselves, i.e.
we introduce specific quantifiers for entities falling under a certain concept. ∀c and
∃c would be the quantifiers for countries. “The Netherlands, Belgium, and
Luxembourg are three” would be paraphrased as follows:

∃cx∃cy∃cz x ≠ y∧ y ≠ z∧ x ≠ z∧ x≺ tt∧ y≺ tt∧ z≺ tt∧ð
∧∀cw w ≺ tt→w ¼ x∨w ¼ y∨w ¼ zð ÞÞ

Three with Relativized Quantifiersð Þ

The relativized quantifiers should receive an appropriate inferential characteri-
zation, otherwise (Three with Relativized Quantifiers) would come up against the
same issue affecting the restricted quantifiers (namely, the cardinality ascriptions
with restricted quantifiers would imply cardinality ascriptions with unrestricted
quantifiers). For example, a restricted existential quantification should not imply
an absolute existential quantification. Perhaps, in such a scenario, absolute quan-
tification could be dispensed with altogether. In any case, the expected outcome is
that the above claim that tt are at least three tout court should not follow from
(Three with Relativized Quantifiers). This would require plenty of quantifiers:
one for each concept involved in counting (thus, perhaps, also for specific con-
cepts such as square with an area of 1 in2).

But there is a bigger problem, which concerns both the attempt to restrict quan-
tifiers and the attempt to relativize them. This affects specifically the purpose of
these attempts in the present context: Bøhn, together with the other backers of
strong CAI, wants to show that the parts and the whole are, despite appearances,
indiscernible. This means that – in non-opaque contexts – a name for the whole
and a name for the parts should be mutually substitutable salva veritate. In (Three
Relativized, Unanalysed), a singular term for Benelux, or a plural term for the
molecules in Benelux should be substitutable salva veritate for the term tt

17 One could try to make sense of absolute cardinality ascriptions such as by saying that to
count absolutely is to count atomic parts. We will discuss the potential role of atoms in counting with
reference to Cotnoir (2013) in Sections 10–12.
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denoting the Netherlands, Belgium, and Luxembourg. However it is divided up,
that portion of reality is three when thought of as countries.

But neither in (Three with Relativized Quantifiers) nor in (Three with
Restricted Quantifiers) can tt be replaced salva veritate by a term for Benelux or
by a term for molecules, such as mm. In the case of mm, there are not three differ-
ent countries each of which is one of mm. No country is one of the molecules in
Benelux. No non-molecule is one of the molecules.

Since we are employing only logical language, it would be arbitrary and unsup-
ported to attribute the failure of substitution to the opacity of the context. The
defender of CAI could remark that it is the definite description “the molecules”
(or “the molecules in Benelux”) that triggers a negative evaluation of the claim
that, for example, Benelux is one of the molecules; and that, by contrast, the
non-descriptive constant mm does not elicit a similarly clear evaluation. In the typ-
ical jargon of CAI, the countries are one of what mm designates, because what mm
designates is a portion of reality.

The problem is that mm is expected to be coreferential with a description such
as “the molecules in Benelux”. Thus, the former and the latter should be mutually
replaceable salva veritate in non-opaque contexts. Moreover, definite descriptions
could be added in a formal language. Let MB be the predicate “be a molecule in
Benelux”. Then mm should be coreferential with the plural definite description
ιxx(MB xx). Thus, as much as no country is one of ιxx(MB xx), no country is
one of mm. It does not matter that mm is a direct, non-descriptive referential
expression, insofar as it is coreferential with a definite description such as
ιxx(MB xx) or “the molecules in Benelux”.

Nonetheless, one could try to develop in another direction the impression that
the problem lies in the referential expressions such as mm. Perhaps, when you
relativize a claim about some things to a concept, also the way in which we refer
to these things should be relativized to that concept. One could envisage a lan-
guage in which all the referential expressions are relativized. The relativization
of the variables would replace the relativization of the quantifiers we attempted
in (Three with Relativized Quantifiers), and the significant novelty would be that
the constants for the counted entities would be relativized too.

“The Netherlands, Belgium, and Luxembourg are three” would be paraphrased
as follows:

∃xc∃yc∃zc xc ≠ yc ∧ yc ≠ zc ∧ xc ≠ zc ∧ xc ≺ ttc ∧ yc ≺ ttc ∧ zc ≺ ttc ∧ð
∧∀wc wc ≺ ttc →wc ¼ xc ∨wc ¼ yc ∨wc ¼ zcð ÞÞ

Three with Relativized Referential Expressionsð Þ
It is far from clear what happens if we now try to replace ttc (a plural term denoting

the Netherlands, Belgium, and Luxembourg qua countries) with a term for Benelux,
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or for the molecules. ttc cannot be replaced salva veritate by a term for Benelux or for
the molecules relativized to another concept – say the conceptmultinational entity, or
the concept molecules. Suppose that, instead, we replace ttc with a term for Benelux
relativized to the same concept, the concept country: bc.

In this case, our semantic intuitions vacillate. On one side, bc denotes Benelux,
and, insofar as Benelux is not a country, it would seem that no country can be one
of Benelux, no matter the concept from the viewpoint of which we look at
Benelux. However, the defenders of strong CAI could try to say that the relativiz-
ing concept enforces a certain way of dividing up the Benelux portion of reality, so
that, for example, Belgium-qua-country really is one of Benelux-qua-country.

The semantic and metaphysical problems of such a form of qua-reference are
beyond the purpose of this paper. However, it is clear that this line of thought leads
to a deeply non-standard theory of identity. In the context of the logical para-
phrases of cardinality ascriptions such as (Three with Relativized Referential
Expressions), terms such as bc and ttc could perhaps be substitutable salva
veritate. By contrast, the substitution of bc with terms such as bme (“Benelux-
qua-multinational entity”) or bm (“Benelux-qua-molecules”) would not be salva
veritate. Indeed one and the same thing (e.g., Belgium-qua-country) would be
one of bc, but not one of bme or of bm. However, at least within the limits of a stan-
dard theory of identity, bc is expected to be identical both to bme and to bm. Thus,
the problem with Leibniz’s Law would be simply moved from the identities be-
tween whole and parts conceptualized in the same way, to the identities between
things conceptualized in different ways.

In other words, after this move, we would still have cases of identity without
indiscernibility, in contrast with strong CAI’s claim to be perfectly conservative
about identity, i.e. to simply extend to composition the standard identity relation (es-
sentially characterized by Leibniz’s Law).What would happen is that, in the struggle
of extending Leibniz’s Law to composition, the defenders of CAI would violate
Leibniz’s Law for other cases of identity relations. In these cases, one and the same
object would be designated under the viewpoint of different concepts. Thus the
relativization of referential expressions does not serve the cause of strong CAI any
better than the restriction or the relativization of quantifiers we discussed above.

A last attempt to save the general kind of approach discussed in this section
could be to focus on the interpretation of ≺ in (Three with Restricted Quantifiers)
or (Three with Relativized Quantifiers).

In plural logic, there are two main relations of inclusion. One of them – the one
we have expressed above with ≺ and we will focus on also in the next sections – is
usually read as is one of, and is a one-many relation between one entity and a
plurality of entities the entity belongs to. It corresponds to set-theoretic member-
ship ∈, in the sense that x is one of (≺) yy iff x is a member of (∈) the set of the
yy. The other inclusion relation – usually read is/are among and expressed with
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a variety of symbols, for example ≾ – is a many-many relation, and it is definable
in terms of is one of: xx are among (≾) yy iff every z that is one of (≺) xx is also one
of (≺) yy. ≾ corresponds to the set-theoretic relation of being a subset ⊆: xx are
among (≾) yy iff the set of the xx is a subset (⊆) of the set of the yy.18

Now, the defender of CAI could try to argue that some of our evaluations of
cardinality ascriptions crucially depend on focusing on ≺ instead of ≾. For
example, we argued above that, if we replace in (Three with Restricted Quanti-
fiers) tt, a term for the Netherlands, Belgium, and Luxembourg, with mm, a term
for the molecules, we obtain the false claim that there are three countries such that
each of them is one of mm, and no other country is one of mm. The claim we
would obtain is:

∃x∃y∃z Cx∧ Cy∧ Cz∧ x ≠ y∧ y ≠ z∧ x ≠ z∧ x ≺mm∧y ≺ mm∧ z ≺mm∧ð
∧∀w Cw∧w ≺mm→w ¼ x∨w ¼ y∨w ¼ zð ÞÞ

However, suppose that (Three with Restricted Quantifiers) is formulated with ≾
instead of ≺. In that case, the claim we would obtain is:

∃x∃y∃z
�
Cx∧ Cy∧ Cz∧ x ≠ y∧ y ≠ z∧ x ≠ z∧ x ≺e mm∧ y ≺e mm∧ z≺e mm∧

∧∀w
�
Cw ∧w ≺e mm→w ¼ x∨w ¼ y∨w ¼ z

��

Three with is=are amongð Þ

In evaluating this sentence, the defender of CAI might venture in a semantic
hypothesis according to which a country such as Belgium, inasmuch as it is –
according to CAI – identical to some molecules, can be among the molecules
in Benelux. The sentence would be, as a consequence, true. We do not know
what to think about the kind of semantic revisionism that ensues, but there is
no need to worry about it, because it is wrong to paraphrase a cardinality ascrip-
tion in the form of (Three with is/are among).19

Let us see why. Suppose that (Three with is/are among) is a kind of sentence in
which, thanks to some deviant semantics, tt and mm can be substituted salva
veritate. However, (Three with is/are among) is not a cardinality ascription, insofar

18 On the distinction between is one of and is/are among see Rayo (2002), Yi (2005, p. 486),
McKay (2006, ch. 6). See Oliver and Smiley (2013, p. 109) for a table about the different ways of
interpreting and symbolizing inclusion relations in plural logic. The symbols we use are those of Rayo
(2002) and Linnebo (2014).

19 Given that ≾ and ≺ are interdefinable, there will be a much more complex way of paraphras-
ing (Three with Restricted Quantifiers) in terms of ≾, but this more complex paraphrase would be of no
help in resolving the failure of substitution in (Three with Restricted Quantifiers).
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as the variables are allowed to have as values many things, such as the molecules in
Belgium that would be among the molecules in Benelux in the interpretation of
(Three with is/are among) we sketched above. It is not a cardinality ascription be-
cause the things that are said to be a country in each of the three conjuncts Cx,
Cy, and Cz are allowed to be more than one, and the sentence does not say how
many they are. The fact that ≺ (and not ≾) is the relation of inclusion that should
be used in cardinality ascriptions is confirmed by their set-theoretic counterparts.
The typical paraphrase of a cardinality ascription in set-theoretic terms employs
the relation ∈ of being an element, and not the relation ⊆ of being a subset.

Thus, (Three with is/are among) is not a cardinality ascription, and, as a conse-
quence, is not a paraphrase of (Three Relativized, Unanalysed). On the other hand,
as we have seen, if either (Three with Relativized Quantifiers), or (Three with Re-
stricted Quantifiers) were the sound logical paraphrase of (Three Relativized,
Unanalysed), then they would offer a clear case of discernibility between parts
and whole, and between various partitions of the same whole. Finally, if the com-
plex route of (Three with Relativized Referential Expressions) were chosen, then
Leibniz’s Law would be violated as a side effect in other cases. The backer of
strong CAI should leave quantifiers and referential expressions alone and try to
relativize something else.

5. Relativizing identity

The hypothesis of relativizing identity may seem attractive at first glance for
strong CAI, once strong CAI has endorsed relative counting. When we conceptu-
alize Benelux as a multinational entity, we do not make distinctions in it. When we
apply the concept country to Benelux, we are ready to distinguish more than one
thing (namely, three) in it. When we apply the concept molecule to it, we distin-
guish a lot of things in it. What changes from one conceptualization to another
seems to be the way in which we distinguish things. One would suspect that we
are using different notions of identity. Then, perhaps, identity itself should be
relativized to the concept to which we relativize the unanalysed cardinality
ascription.20

20 In general, one could hope to argue for relativizing identity on the basis of the general links
between identity and cardinality, as they are expounded in Geach (1967) and Alston and Bennett
(1984). Consider, for example, the sentence: “If x is not y, then they are two”. It would be indeed
strange if the relativization concerned only the consequent, and not the antecedent: if relativization does
affect cardinality, then it should also affect identity. However, Blanchette (1999) and Carrara and Sacchi
(2007) have shown that the reasons why cardinality ascriptions can be deemed incomplete (and should
therefore be relativized) do not translate into reasons to deem identity statements incomplete (and thus
to relativize them).
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This would mean that in (Three with Restricted Quantifiers) the claims of diver-
sity between the three countries should negate a country-specific kind of identity.
(Three Logical Form) should be paraphrased as follows:

∃x∃y∃z ¬x¼c y∧ ¬y¼c z∧ ¬x¼c z∧ x≺ tt∧ y ≺ tt∧ z≺ tt∧ð
∧∀w w ≺ tt→w¼c x∨w¼c y∨w¼c zð ÞÞ

Three with Relativized Identityð Þ

It is worth noting that Bøhn rejects the relativization of identity to concepts:
“Identity itself is of course not thus relational. Relative identity is worse than
death” (Bøhn 2014, p. 146, n. 10).21 While Bøhn does not explain his distaste
for relative identity, it is not difficult to understand why relative identity does
not satisfy the needs of strong CAI.

The doctrine of relative identity is difficult and controversial in itself. More spe-
cifically, it would be incoherent to appeal to relative identity in order to extend the
(absolute and unrestricted) indiscernibility of identicals to composition, in the
context of the defence of strong CAI. As we have already observed, the purpose
of strong CAI is to show that the relations between whole and parts – and between
different slicings of the same whole – are instances of the single, perfectly stan-
dard relation of identity, exhaustively characterized by reflexivity and Leibniz’s
Law. In the struggle of showing that composition is identity, the defenders of
strong CAI should not surreptitiously embrace a doctrine of identity that runs
counter the principles of standard identity.

The doctrine of relative identity holds that there are different identity relations,
and no absolute one, and is therefore forced to relativize Leibniz’s Law. Two
things may be identical from the viewpoint of a certain identity relation (say:
=c1, relativized to a concept c1), but different from the viewpoint of another iden-
tity relation (say: =c2, relativized to c2). And, if de facto x=c1y and ¬x=c2y, x is
identical to y from the viewpoint of =c1, but at the same time discernible from y
(for, while x is not identical to y from the viewpoint of =c2, y is identical to y from
the viewpoint of =c2). Perhaps, in a different perspective, one could try to combine
a different variety of CAI with relative identity: no objection in this paper is aimed
at this future attempt. By contrast, our purpose is to show that it is not possible to
combine CAI with a canonical view of identity – as is done in strong CAI – and
the doctrine of relative identity obviously is not a canonical view of identity.

Relative identity, even if not worse than death, is in sharp contrast with the
motivations leading philosophers such as Bøhn, Wallace, or Cotnoir to endorse
strong CAI: according to strong CAI, composition is absolute identity and

21 Also Wallace (2011b, n. 11), in her discussion of relative cardinality in the context of strong
CAI, rejects any link with the doctrine of relative identity.
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respects Leibniz’s Law, but relative identity does not admit absolute identity and
absolute indiscernibility.

Moreover, the relativization of identity fails to show that the whole and the
parts are indiscernible. In fact, it shares a fatal defect with the restriction or
relativization of quantifiers discussed in Section 4: in (Three with Relativized
Identity), we cannot replace salva veritate tt with a singular term for Benelux,
or with a plural term for the molecules in that portion of reality. There are not three
country-like-different things each of which is one of the molecules.

Also in this case, nothing suggests that some kind of referential opacity is to
blame, inasmuch as only logical vocabulary is employed. But, in this case, the
failure of substitutivity is unsurprising: it can be explained by the
above-mentioned fact that the doctrine of relative identity should not expect
relative identicals to be absolutely indiscernible. A consistent adopter of relative
identity rejects absolute indiscernibility. Once absolute indiscernibility has been
dropped, there is no reason why the terms for relative identicals should be
expected to be replaceable salva veritate in every context. Again: if we are ready
to relativize identity, there is no reason to insist on strong CAI. Various kinds of
discernibility and failures of substitutivity are only to be expected. If you aim to
extend Leibniz’s Law to composition, you should avoid (Three with Relativized
Identity), and try another option.

6. Relativizing is one of

The last available option is to relativize is one of. We have seen in the two previ-
ous sections that it does not help to operate on quantifiers and identity. A defect
shared by all the kinds of relativizations and restrictions discussed so far is that
the resulting logical analyses of numerical ascriptions end up making the parts
and the whole, or different partitions of the same whole discernible, in contrast
with the most basic desideratum of strong CAI. The source of discernibility is
that, given a term such as tt, what is one of tt is not also one of s (the fusion of
tt) or rr (the parts obtained by subdividing s in another way).

Thus, it seems sensible to look at the plural logic relation is one of (≺). There
are also independent reasons for suspecting that ≺ should be relativized in order
to defend strong CAI: it is an immediate source of discernibility between the
whole and the parts. Bøhn, who does not discuss the connection between is one
of and numerical ascriptions, is nonetheless aware that is one of is intrinsically
problematic:

Assume a, b compose c. By CAI, a, b= c. […] a, b has the property of having b as
one of them, which c does not. (Bøhn 2014, p. 147)
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≺ would express a relation that is sensitive to the way in which a portion of re-
ality is conceptualized. The relativization would concern – so to speak – the appar-
ent second argument position of ≺. The idea is that it is not the same thing to be
one of the Netherlands, Belgium, and Luxembourg and one of the molecules, in
spite of the fact that Netherlands, Belgium, and Luxembourg are identical to the
molecules. This is explained by postulating that the expressions “the
Netherlands, Belgium, and Luxembourg” and “Benelux” also convey a concept,
which in the logical form occupies an additional argument position.

Thus, Belgium is one of the Netherlands, Belgium and Luxembourg from the
viewpoint of the concept country. Contra linguistic intuitions, Belgium is also
one of Benelux from the viewpoint of the concept country. By contrast, from
the viewpoint of the concept multinational entity (as well as from the viewpoint
of the concept molecule), Belgium is not one of Benelux, and (contra linguistic
intuitions) is not one of the Netherlands, Belgium, and Luxembourg. The impres-
sion that these kinds of predication make Benelux discernible from the
Netherlands, Belgium, and Luxembourg is thus explained away.

Concerning numerical ascriptions, the paraphrase of (Three Relativized,
Unanalysed) would include the relativization of ≺. Insofar as this relativization
consists in the addition of an argument place, we can turn ≺ in a ternary predicate
constant ≺rel, whose first two arguments are the standard ones, while the third
argument is the concept (a Polish notation is employed for ternary ≺rel).

∃x∃y∃z x ≠ y∧ y ≠ z∧ x ≠ z∧≺rel x tt c∧≺rel y tt c∧≺rel z tt c ∧ð
∧∀w ≺rel w tt c→w ¼ x∨w ¼ y∨w ¼ zð ÞÞ

Three with Relativized Is One ofð Þ

Here, tt can be replaced salva veritate by a singular term for Benelux, or by a plu-
ral term for the molecules. From the viewpoint of the concept country, there are
three things that are one of Benelux and of the molecules. So far so good.

But we are going to show that the solution comes at a risky price: a highly
revisionary stance on plural identity. Let us see why.

Standard plural identity is usually defined as follows:

xx ¼ yy≡def ∀z z ≺ xx↔ z≺ yyð Þ Plural Identity Definitionð Þ

But ≺rel now replaces ≺. How can the definition of plural identity be adapted
to ≺rel? The link between plural identity and the relation of being one of is
tight, and it would be insane to sever it. Plural identity is a genuine kind of
identity insofar as the above, standard definition connects it to standard singu-
lar, one-one identity. Moreover, the conditions of identity between some things
and some other things cannot but mirror the extensional identity conditions
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between the sets of those things; and two sets are identical iff they have the
same elements.

This is probably the reason why the above definition of plural identity is, as far
as we know, undisputed in the literature.22 If plural identity is to retain its logical
status as the plural cousin of standard identity and the expected parallelism with
extensional set theory, the relativization of is one of has to be mirrored in some
way in the definition of plural identity.

Nonetheless, the combination of (Plural Identity Definition) with strong CAI is
known to bear troublesome consequences, and in particular to lead to the so-called
Sider’s Collapse, given a seemingly innocent additional assumption, that is the
following (Plural Covering) (Sider, 2007, 2014; Yi, 1999).23

∀x∀y x P y→∃zz y ¼ ∑ zzð Þ∧x ≺ zzð Þð Þ Plural Coveringð Þ

It is possible to infer from strong CAI and (Plural Covering) that something is
one of some things iff it is part of their fusion.

∀xx∀y y ¼ ∑ xxð Þ→∀z z ≺ xx↔zPyð Þð Þ Collapseð Þ

Given any definition of mereological sum, the left-to-right direction of (Plural
Covering) is immediate. In the other direction, suppose zPy. Then, by (Plural
Covering), there are ww such that z≺ww and y=Σ(ww). But then y is both the
fusion of xx and of ww. By strong CAI, y= xx and y=ww and, by the transitivity
of identity, xx=ww. To exemplify, the Netherlands, Belgium, and Luxembourg
would be plurally identical to the molecules in Benelux. Now, given the left-to-
right direction of (Plural Identity Definition), this would mean that whatever is
one of the Netherlands, Belgium, and Luxembourg is also one of the molecules
in Benelux; this outcome seems unacceptable.

It is worth underlining that, if absolute ≺ is in our language, then the left-to-right
direction of (Plural Identity Definition) – that is used in the above derivation of
Collapse – is a mere instance of Leibniz’s Law: it is the claim that plural identicals
do not differ in what is one of them. But Leibniz’s Law is an essential tenet for the
variety of strong CAI we are discussing. Thus, strong CAI needs to get rid of
absolute ≺, by relativizing it, already in order to avoid Collapse, quite
independently of the problems about the paraphrases of cardinality ascriptions.

22 Bøhn himself refers to Yi (2005, 2006) “for the details of plural logic I employ” (Bøhn
2014, p. 144, n. 3), and in these works Yi defines plural identity through (Plural Identity–Definition)
(Yi, 2005, p. 487; 2006, p. 243), and writes that “is one of is essential to analysing the plural cousin
of the identity predicate” (Yi 2005, p. 488).

23 See, in particular, Calosi (2016) and Calosi (n.d.) for an accurate analysis of the disastrous
impact of the Collapse on CAI.
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7. Relativizing is one of and plural identity

There are two broad ways to mirror the relativization of is one of in (Plural
Identity Definition). The first is to adopt relative plural identity. The second is to
keep identity absolute, and adapt the definition of absolute plural identity to the
three-place ≺rel.

The first broad strategy consists in claiming that plural identity is always rela-
tive to a concept. For any concept c, =c will be defined in terms of ≺rel, with c as
the concept argument of ≺rel in the definiens.

xx¼c yy ≡def ∀z ≺rel z xx c ↔ ≺rel z yy cð Þ Relative Plural Identityð Þ

If plural identity is relative, it is difficult to keep singular identity absolute.
After all, xx and yy are usually allowed to take singular values, so that singular
identity can be seen as a special case of plural identity. In this special case, defini-
tions such as (Plural Identity Definition) and (Relative Plural Identity) are not very
informative (the only thing that would be one of xx and one of yy would be the
self-identical single thing at issue): but also in this case we would be forced to
involve a concept c.

We have already observed in Section 5 that relative identity is an incoherent
path for the backers of strong CAI: if you are ready to relativize identity, then
you are also ready to admit that indiscernibility does not hold unrestrictedly, and
it does not make sense to show that the whole and the parts are absolutely
indiscernible.

The second broad strategy consists in reconciling absolute identity and relative
is one of. The binary ≺ in (Plural Identity Definition) has to be replaced by the
ternary ≺rel. But what do we do with the additional argument position for
concepts? There are three prima facie plausible suboptions:

(i) the definition of plural identity could make explicit reference to a specific
concept;

(ii) the argument position for a concept could be quantified existentially;
(iii) the argument position for a concept could be quantified universally.

None of these suboptions is fully satisfactory.
(i) would lead to the following redefinition of plural identity:

xx ¼ yy ≡def ∀z ≺relz xx k ↔ ≺rel z yy kð Þ Plural Identity–Relativized to One Conceptð Þ

k is here a constant for a concept. The motivation for this amendment could be that
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some privileged concept is connected to identity. The privileged concept could be
a generic and all-encompassing concept – something like the concept existent, or
object, or entity. These concepts could correspond to what Lewis calls “blanket
terms”.24

This amendment presupposes that a generic and all-encompassing concept has
been identified. Many candidates for the role could be contested, but this is
probably not an insuperable obstacle. Meinongians could insist that plural iden-
tity can also be applied to non-existent objects, and that the concept existent is,
as a consequence, unfit for the role of k in (Plural Identity–Relativized to One
Concept); the concept object would be preferable. But other philosophers could
observe that “object” is often used in a more selective way (e.g., to designate
only so-called ordinary objects).25 Perhaps the concept entity could make every-
one happy. Otherwise, the generic, all-encompassing concept could be
designated by convention.

Suppose, in any case, that we settle on a certain concept in the role of k, say the
concept entity (ce). Such a concept would allow us to redefine the old two-place ≺,
under the guise of ≺abs. We could say that x is absolutely one of yy iff x is one of yy
from the viewpoint of ce:

x ≺abs yy ≡def ≺rel x yy ce

But the introduction in our language of an absolute kind of ≺ leads to Collapse,
by the simple application of Leibniz’s Law we mentioned at the end of Section 6:
if xx= yy, then whatever is absolutely one of xx is absolutely one of yy and vice
versa.

The following redefinition of plural identity would ensue from (ii), instead:

xx ¼ yy ≡def ∃c∀z ≺relz xx c ↔ ≺rel z yy cð Þ Plural Identity–Relativized Existentiallyð Þ

The requirement would be that there is some concept or other, from the viewpoint
of which something is one of xx iff it is one of yy.

But compare the Gina portion of reality (Gina is the sum of the two pets in our
first example) with the portion of reality that comprises all of Gina and some air in
the middle of Mina’s coat. Both portions of reality are composed of molecules. Let
uu be a term for the molecules in Gina, and vv a term for the molecules in Gina
plus the air in the middle of Mina’s coat. Now, from the viewpoint of the concept
pet, it seems that Mina, Gino, and nothing else are one of uu, and that Mina, Gino,

24 See, for example, Lewis (1986, p. 99). A theory of blanket terms – under the sobriquet of
transcendentals – is outlined in Lando and Spolaore (2014).

25 See, for example, Korman (2015, pp. 39–40).

Composition and Relative Counting 513

© 2018 The Author dialectica © 2018 Editorial Board of dialectica



and nothing else are one of vv. This means that there is a concept (namely, the con-
cept pet) that satisfies (Plural Identity–Relativized Existentially). As a result,
uu= vv: the molecules in Gina would be identical to the molecules in Gina +
the air in Mina’s coat. But this is clearly wrong. (Plural Identity–Relativized
Existentially). is a bad way to amend (Plural Identity Definition), and we can
drop it.26

The last possible option is (iii), which would redefine plural identity as follows:

xx ¼ yy ≡def ∀c∀z ≺relz xx c ↔≺rel z yy cð Þ Plural Identity–Relativized Universallyð Þ

In this case, the idea would be that plural identicals xx and yy are required to be
such that, irrespectively of the c from the viewpoint of which they are conceptu-
alized, any single thing z is one of xx under the viewpoint of c iff z is one of yy
under the viewpoint of c.

Thus, the definition of plural identity would involve every way of conceptualiz-
ing the plural identicals. The definiens in (Plural Identity–Relativized Universally)
is an uncontroversial necessary condition for identity. Indeed, the left-to-right
direction of (Plural Identity–Relativized Universally) is nothing other than an
instance of Leibniz’s Law: if xx and yy were such that something is one of xx but
not of yy (or vice versa) from a certain viewpoint (where the viewpoint is nothing
more than a relatum of ≺rel), then xx and yy would be discernible.

In (iii) the condition is not merely necessary: (Plural Identity–Relativized
Universally) is a definition of plural identity, and we would be forced to involve
in the definition of plural identity every concept, including highly specific
concepts such as square, square with an area of 4 in2, pet, and country. The price
of thus defining absolute identity in terms of relative is one of is that plural identity
loses its purely formal status, and becomes dependent on highly specific and far
from topic-neutral concepts.27

26 One could argue that ≺relx yy c should require that the concept c allows for an exhaustive
subdivision of the portion of reality corresponding to yy. However, this would mean defining ≺rel as fol-
lows, and thus in terms of: a) an absolute kind of is one of; b) mereological fusion.

≺rel x yy c ≡def ∃zz ∀w w ≺ zz → w falls under cð Þð Þ∧∑ zzð Þ ¼ ∑ yyð ÞÞ
a) would lead us to introduce absolute ≺ in our language, and thus to Collapse. Also b) could be

deemed undesirable, insofar as a logical notion should not be defined in terms of mereological ones
(but – as we already conceded in Section 3 – a backer of strong CAI could insist that mereology is
logic).

27 A similar issue also affects i) (and is quite independent of the other problems of i) discussed
above), but is more serious in the case of iii). Indeed, in the case of i), identity would be defined in terms
of a generic, all-encompassing concept, that could qualify as formal in itself, in a sense inspired by
Husserl’s or Wittgenstein’s formal concepts. By contrast, in the case of iii), identity would be defined
in terms of clearly non-formal concepts.
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One could note that something similar happens in Leibniz’s Law itself, and that
nobody thinks that Leibniz’s Law makes identity a non-formal notion. Indeed
Leibniz’s Law, in its second-order form, quantifies over every property:

∀x∀y x ¼ y → ∀F Fx ↔ Fyð Þð Þ Leibniz’s Lawð Þ

However, there are two relevant differences between the case of Leibniz’s Law
and (Plural Identity–Relativized Universally).

(a) Leibniz’s Law is not an explicit definition of identity. While it is a pivotal
part of the standard characterization of identity, it is not expected to provide
a full characterization of what identity is. Leibniz’s Law yields only a neces-
sary – and not sufficient – condition for identity. Of course, together with
reflexivity, Leibniz’s Law provides a so-called implicit definition of identity.
Nonetheless, Leibniz’s Law is not expected to explain what being identical
consists in, in terms of a totality of properties.

(b) The quantification over all properties in Leibniz’s Law is really an indiscrim-
inate quantification over every feature, no matter how gerrymandered,
extrinsic, relational, or trivial. This is the reason why there is also a sche-
matic version of Leibniz’s Law, in which you can put any formula of your
language and obtain an instance of the schema. The total lack of discrimina-
tion among the properties at stake in Leibniz’s Law preserves its
topic-neutrality. Indeed, you do not need to delimit any specific domain of
features for which the law holds. By contrast, in the case of (Plural Iden-
tity–Relativized Universally), in spite of the fact that you quantify over every
concept, the totality of concepts is still a controversially delimited domain of
viewpoints from which it makes sense to divide up a plurality. Should we
admit only sortals, and, if so, what is a sortal? Do relational concepts belong
to the totality of concepts that are here at stake? When we ask whether some
stars are identical to some others, should we care about how they are divided
up from the viewpoint of the concept car, or of the concept half car, or of the
concept being one mile from Berlin, Germany? Perhaps there are sensible
answers to these questions, but they are unlikely to be free from controver-
sial metaphysical and semantical assumptions, from which the definition of
plural identity should stay clear, if identity is to retain its status of formal,
topic-neutral notion.28

We are not going to argue in this paper in favour of the default thesis that
identity (including plural identity, which is tightly connected with standard

28 On the problem of delimiting the domain of concepts at stake in cardinality ascriptions, see,
again, Koslicki (1997).
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one-one identity) is a topic-neutral, formal, or logical notion. But there is
clearly a significant philosophical cost in deviating from this default thesis. If
a backer of CAI opts for this route, it is up to her to show that this cost is
worth paying.

This completes our analysis of the ways in which the backers of strong CAI can
relativize numerical ascriptions, while insisting – contra Frege – that objects are
their proper subjects. Given that numerical ascriptions can be paraphrased in plu-
ral logic, the relativization of numerical ascriptions requires the relativization of
something else in the paraphrase. But these relativizations either do not work, or
lead to Collapse, or imply high philosophical costs.

8. Counting concepts?

In the previous sections we have shown that there is no easy way to be partially
Fregean about numerical ascriptions. If we relativize numerical ascriptions while
insisting – contra Frege – that their subjects are objects, we come up against var-
ious problems and controversial philosophical commitments with the usual para-
phrases of numerical ascriptions in terms of quantifiers, identity, and is one of.
Consider, again, the NDA argument:

(P1) t is the sum of uu;
(P2) uu are three and not one; t is one and not three;
(C) It is not the case that t and uu are identicals.

Up to now in our analysis, it has been difficult to reject the premiss (P2) of
NDA and to thereby block it. The second broad option for strong CAI is to be
more faithful to Frege and hold that objects are not the proper subjects of
numerical ascriptions. The linguistic datum that Benelux can be said to be one
(multinational entity), to be three (countries), or to be a very large number (of
molecules) should not lead us to analyse these ascriptions about Benelux in order
to make them mutually compatible. Instead, we should take these incompatibili-
ties as a sign that numerical ascriptions are not about objects.

According to Frege, the subjects of these statements are certain kinds of
concepts, and the predicates “to be one”, “to be three”, and “to be a very large
number” are more appropriately expressed by locutions such as “to have one
instance”, “to have three instances”, and “to have a very large number of
instances” of a certain concept. For Frege, concepts do not occupy additional
argument places for numerical predicates (as Bøhn thinks), but are the only proper
subjects of cardinality ascriptions. In Frege’s words, “the content of a statement of
number is an assertion about a concept” (Frege, 1950, Section 46).
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In Sections 10–12 we will examine the elaborate way in which Aaron Cotnoir,
in his theory of general identity set forth in Cotnoir (2013), attempts to follow this
strategy for the defence of CAI. Cotnoir does this indirectly, namely by replacing
concepts with a certain kind of sets in the role of real subjects of numerical ascrip-
tions. We will show that Cotnoir’s strategy is partially successful in terms of
numerical ascriptions and indiscernibility, but is affected by other problems and
difficulties.

Is there a more direct way of following the second broad strategy for rejecting
(P2)? So could strong CAI go fully Fregean instead, and directly hold that
concepts are their real subjects? No. The problem is that this option would not
really help the cause of strong CAI. This is probably why, as far as we know,
no backer of CAI has chosen this simple route. Nonetheless, it is interesting to
dwell on why strict Fregean counting is not apt for this role, and this will also help
us to appreciate the peculiarities of Cotnoir’s alternative.

The problem is that the role of concepts is to distinguish between different ways
of partitioning a portion of reality. As a consequence, the concepts themselves (the
proper subjects of cardinality ascriptions, according to Frege) end up providing a
counterexample to the alleged indiscernibility of the objects falling under them.

Concepts have the primary function of specifying and isolating what falls under
them, and what falls under the two concepts in the example is/are not the same
thing(s). In Frege’s famous example of the Iliad, there is (are) not some thing(s) that
fall(s) both under the concept being a book of the Iliad and under the concept being
the Iliad poem, in spite of the fact that the poem consists of (twenty-four) books.

The unanalysed objects or phenomena that are discussed in the pars destruens
of Frege’s analysis of cardinality ascriptions (which may correspond to what the
contemporary backers of strong CAI call “portions of reality”) have simply no role
in his positive view. The books of the Iliad and the Iliad poem fall under different
concepts, which make them discernible and numerically different.

In their references to Frege’s The Foundations of Arithmetic, the backers of
CAI tend to quote excerpts from the pars destruens, in which the unanalysed
phenomenon or portion of reality is discussed (and finally rejected) as a candidate
subject for numerical ascriptions. This already quoted passage refers to an “exter-
nal phenomenon”:

While looking at one and the same external phenomenon, I can say with equal truth
both “It is a copse” and “It is five trees”, or both “Here are four companies” and
“Here are 500 men”. (Frege, 1950, Section 84)

But this “external phenomenon” is not something that is preserved as such in
Frege’s positive ontology: it is neither an object falling under some concepts,
nor a concept. In Frege’s positive account of the example involving a copse and
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the trees in it, there are two concepts with a different number of instances, and
then different objects in their extensions. The trees make up the copse, but they
are not in any sense identical to it. Frege was not a forerunner of strong CAI,
and not only because the theory of composition was not his primary concern.

9. Counting sets?

Given that concepts do not help, let us see how Fregean, second-order counting
can be developed set-theoretically. There is a well-known affinity between
concepts and sets. According to Frege, any concept has an extension. This exten-
sion includes all the objects that the concept (which, according to Frege, is a func-
tion) maps to the truth value true. In terms of cardinality, a concept c falls under
the second-order concept having exactly n instances iff its extension includes
exactly n instances of c.

In The Foundations of Arithmetic, Frege refrains from identifying extensions
with sets or collections (and denies that sets or collections are the proper subjects
of cardinality ascriptions), because he saw these latter notions as being worryingly
vague. However, this stance was about pre-Cantorian notions of sets and collec-
tions, and later in his career Frege conceded that extensions are actually classes.29

After the discovery of set-theoretic paradoxes, it is – to say the least –
contentious to claim that for every concept there is the set of the things
instantiating it. Nonetheless, also once the domain of sets has been appropriately
restricted by an axiomatic set theory, we have sets for a huge amount of concepts.
In particular, when we count parts of concrete objects (such as books that divide
up poems), there is no great difference between attributing to the concept being
a book of the Iliad a certain number of instances, and attributing a certain
cardinality to the set of objects falling under that concept.

In answering a letter from Husserl, according to whom extensions – and not
concepts – were the most fundamental bearers of cardinality, Frege claims that
there is no relevant priority or fundamentality at stake:

I will not quibble over whether a statement is directly about the concept and indi-
rectly about its extension, or indirectly about the concept and directly about its exten-
sion, for one goes with the other. (Frege 1984, p. 322)

As a consequence, the set-theoretic approaches to cardinality are generally and
rightly considered Fregean, although they do not involve concepts at all.

29 For example, in a letter to Russell on 28 July 1902 (Frege, 1980, pp. 139–142). See also
Blanchette (1999, n.7) for discussion.

518 Massimiliano Carrara and Giorgio Lando

© 2018 The Author dialectica © 2018 Editorial Board of dialectica



The difference is in fact so little that, by itself, the replacement of concepts with
sets is not enough to help the backers of strong CAI. As in the case of concepts,
numerical ascriptions are in a sense set aside as counterexamples to the
indiscernibility of the whole and the parts, simply because the whole and the parts
are not the real subjects of numerical ascriptions; the real subjects are sets. But, as
in the case of concepts, sets give us new counterexamples to the indiscernibility of
their elements.

Consider {Benelux}, i.e. the singleton of Benelux. Only the whole – Benelux –
is an element of {Benelux}, while the Netherlands, Belgium, and Luxembourg are
not individually elements of {Benelux}. One could try to propose that the
Netherlands, Belgium, and Luxembourg are collectively members of {Benelux},
but set-theoretic membership seems to be a canonical case of one-one relation
between a set or an individual on one side and a set on the other: it is not clear
how it could be construed as a many-one, collective relation.

In order to take a step forward we need to choose the right sets: the mere exten-
sions of concepts do not work. In the next three sections, we will interpret
Cotnoir’s (2013) theory of general identity as an attempt in this direction, which
is somewhat successful in extending indiscernibility to composition, but highly
problematic from other points of view.

10. Counting subsets of atoms in a portion of reality: Cotnoir’s general identity

In his theory of general identity (GI), Cotnoir introduces a sort of set-theoretic
bridge between the whole and the parts: the set of the atoms in a certain portion
of reality.

This bridge between the whole and the parts was missing in the second-order
approaches to numerical ascriptions discussed in the two previous sections. We
have seen that both in the case of concepts (Section 8) and in that of extensions/
sets (Section 9), the problem is that they end up introducing new counterexamples
to indiscernibility for composition. These counterexamples are generated by the
introduction of the real subjects of numerical ascriptions: concepts and sets are
introduced as real bearers of numerical ascriptions, and then parts and whole
diverge in their relations to these real bearers (the relation of falling under in
the case of concepts; set-theoretic membership in the case of sets).

We need to find some kind of role for the portion of reality in our theory of
numerical ascriptions, in order to prevent them from being endowed with totally
disconnected subjects, which end up being a source of discernibility.

In Cotnoir’s GI, the role of a portion of reality is played by the set of its
mereological atoms, that is – in the case of Benelux – the set of those parts of
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Benelux that have no proper part. For any portion of reality, there is the set of
mereological atoms in it. The atoms can be exhaustively grouped in different
ways, thereby obtaining various sets of sets of atoms. These sets of sets of atoms
are partitions (if the subsets of atoms are mutually disjoint) or covers (if the
subsets are allowed to overlap) of the set of atoms.30

The intuitive expectation is that a new notion of identity would connect
anything that is the same portion of reality. Since atoms play the role of the portion
of reality, GI will connect anything that is made, ultimately, of the same atoms.
Benelux will be generally identical to the Netherlands, Belgium, and
Luxembourg, and will also be generally identical to the molecules in that portion
of reality. The Netherlands, Belgium, and Luxembourg will also be generally
identical to these molecules.

The general binary identity predicate ≈ admits singular and plural terms in both
argument positions. Cotnoir provides truth conditions for GI statements of the four
resulting forms (many-many, many-one, one-many, one-one). In the following
equivalences, ∪ stands for set-theoretic union, and, for any expression x, x stands
for the denotation of x.

xx≈ yy is true iff ∪xx ¼ ∪yy (many-many)
xx≈ y is true iff ∪xx ¼ y (many-one)
x≈ yy is true iff x ¼ ∪yy (one-many)
x≈ y is true iff x ¼ y (one-one)

The denotation of a singular term is a set of atoms, while a plural term denotes a
set of these sets. “Benelux” denotes a set of atoms. The plural term “the
Netherlands, Belgium, and Luxembourg” denotes a set of sets of atoms. The one-
many GI statement connecting these two terms is true, because the atoms involved
are the same: making the set-theoretical union of the set of the three sets of atoms
(corresponding to the three countries) we obtain the same set of atoms which is de-
noted by “Benelux”. The many-many GI statement connecting “the Netherlands,
Belgium, and Luxembourg” and “the molecules in Benelux” is also true.

Cotnoir’s strategy is meant to show that indiscernibility unrestrictedly holds for
GI. He also discusses in depth the problems raised by various kinds of collective
predications, but here we are interested only in the case of numerical ascriptions.
Prima facie, the countries in Benelux are three, while the multinational entity is

30 The distinction between partitions and covers is pivotal in Cotnoir’s treatment of collective
and cumulative predications. It is not equally important in the case of numerical ascriptions, and in what
follows we skip over it in most cases for the sake of simplicity. Most of our references to a way of
subdividing or partitioning or divvying up the atoms can be taken indifferently for a partition or a cover.
The only exception is at the end of Section 12, where it matters how many subsets of the set of atoms
are countenanced.
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one (and not three), and the molecules are a very large number (and neither three
nor one). These apparent forms of discernibility of general identicals are dispelled
by Cotnoir by requiring that the evaluation of the involved sentences takes ac-
count of how the domain of atoms in the portion of reality is or can be subdivided.

This can happen in two ways. Either in an indexical form, so that “The mole-
cules are three” is false because there is a contextual parameter that makes the
evaluation relative to the division of Benelux in molecules, while “The
Netherlands, Belgium, and Luxembourg are three” is true because there is a con-
textual parameter that makes the evaluation relative to the division of Benelux in
countries. Or in a sub-valuational form, where it is enough for the truth that there
is a division of Benelux such that its pieces are three, so that both “The molecules
are three” and “The Netherlands, Belgium, and Luxembourg are three” come out
true. In both cases, Leibniz’s Law holds. In the indexical variant, the alleged
exception to indiscernibility proves to be a misleading appearance, and fades once
we consider the appropriate contextual parameter. In the sub-valuational variant,
the terms of true GI statements can actually be substituted salva veritate, so that
the alleged exception is instead a confirmation of Leibniz’s Law.

In Cotnoir’s proposal, what are counted are the elements of a set of sets of
atoms. The indexical and the sub-valuational variants differ in how they pinpoint
the source of the counting, i.e. that division (partition or cover) of the domain of
atoms in various subsets that really matters for numerical ascriptions: the set of
these subsets of atoms is what is actually counted. In the indexical version, a con-
textual parameter tells us to count a certain kind of subsets of atoms, those that are
the elements of the set of sets of atoms denoted by the subject term. The plural
expression “the Netherlands, Belgium, and Luxembourg” introduces a contextual
parameter that selects the country-like sets of atoms as being those that should be
actually counted. The referent of the plural expression is the set of these sets. In
the sub-valuational variant, the exact referent of the subject expression does not
really matter. It is enough that the domain of atoms in the portion of reality can
be divvied up in such a way that the set of sets of atoms has the cardinality indi-
cated by the numerical ascription.

It is worth noting that in Cotnoir’s framework there is no need to relativize
identity, quantification, or set-theoretical notions, in order to paraphrase numerical
ascriptions in logical terms. In other words, Cotnoir avoids the conundrum faced
by the first-order approaches discussed in Sections 2–6, in which something
should be relativized, but nothing is such that it is desirable for strong CAI to
relativize it.

What is relativized (and only in the indexical variant) is the set that matters for
the evaluation of the ascription. Once the set is chosen, counting is absolute and
can be expressed through standard, unrelativized quantifiers, negation, member-
ship and one-one identity, without any need to involve GI. To say that the set of
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the country-sets of atoms in Benelux (let C be this set of sets of atoms) has three
elements is tantamount to making the following formal claim:

∃x∃y∃z x∈C∧y∈C∧x≠y∧y≠z∧x≠z∧ð
∧∀w w∈C→w ¼ x∨w ¼ y∨w ¼ zð ÞÞ

11. The failure of coreferentiality

Cotnoir’s GI could be criticized from several points of view. For example, atoms
play a pivotal role in GI, and it could be contentious to assume that in any portion
of reality there is a domain of atoms. Does this mean that GI cannot be applied as
such to any case of so-called gunk, that is to entities such that all their proper parts
always have further proper parts?

In Carrara and Lando (2016) we raised a different objection against GI. We
argued that Cotnoir’s set-theoretical approach violates the following semantic
requirement on genuine identity statements:

Coreferentiality Constraint The terms of a true identity statement must be
coreferential.

How does Cotnoir’s GI end up violating the Coreferentiality Constraint? Let
us look at the identity conditions for GI statements laid down in Section 10.
In each of the three cases in which a plural term is involved, the sets denoted
by the terms of a true identity statement are allowed to be different sets. They
differ from the viewpoint of standard, uncontroversial identity conditions for
sets, according to which two sets are identical iff they have the same elements.
In the two cases (many-one, one-many), where one term is singular and the other
plural, one term denotes a set of atoms and the other denotes a set of sets of
atoms. In the many-many case, the two terms are allowed to denote two different
sets of sets of atoms. In the Benelux example, the set of the country-sets of
atoms is not the set of the molecule-sets of atoms, and neither of them is the
Benelux-set of atoms.

Once the Coreferentiality Constraint is disobeyed, indiscernibility does not
show that GI is a genuine identity relation.31 When standard identity is at stake,
the principle of indiscernibility is seen as non-negotiable insofar as it boils down

31 For a different criticism of CAI based on the coreferentiality constraint, see Calosi (n.d.) on
the Semantic Failure.
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to the hardly controversial claim that anything has just the properties it has.
However, the principle does not say exactly this: it says that anything has just
the properties that anything identical to it has. This can be turned into the
platitude that anything has the properties which it itself has only if identity is
meant, as usual, as that relation that anything has with itself and with nothing
else. However, Cotnoir’s GI is not such a relation. What are the relata of the
GI relation expressed by ≈? Well, as in any other statement with a relational
predicate, the relata of the relation are the denotations of the terms that are the
arguments of the relational predicate. Thus, in the many-many instance of the
Benelux example, we have the set of the country-sets of atoms on the one hand,
and the set of the molecule-sets of atoms on the other. They are different sets, with
different elements.

As we know, according to Sider, a defender of strong CAI who denies Leibniz’s
Law “would arouse the suspicion that their use of ‘is identical to’ does not really
express identity” (Sider 2007, 59). But this same suspicion is aroused by the claim
that a sentence obtained filling the gaps in “…is (generally) identical to …” with
referential expressions can be true even if the referents of these expressions are
distinct, and is aroused exactly in the struggle to impede that suspicion from being
aroused by Leibniz’s Law.

The problem here is that, once it has been conceded that the denotations of the
arguments of ≈ are different, no evidence can be provided in favour of the thesis
that the relation expressed by ≈ is an identity relation.

In Carrara and Lando (2016) we spelt out many details of Cotnoir’s violation of
the Coreferentiality Constraint, and showed that GI could be amended, and thus
made compliant with it, if the terms of GI statements were hyperplurals, instead
of denoting sets.32 The idea is that both “the Netherlands, Belgium, and Luxem-
bourg” and “Benelux” would denote plurally the mereological atoms in Benelux,
but at different levels of plurality; also “the molecules” would denote those same
atoms at the same level of “the Netherlands, Belgium, and Luxembourg”, but
would group (in a non-very clear sense) them differently.

The resort to hyperplurals is highly controversial in itself.33 But it should be
conceded that hyperplurals would solve Cotnoir’s problem with the
Coreferentiality Constraint. However, we are going to see in the next section that
Cotnoir’s treatment of cardinality ascriptions, in particular when it is detached
from its set-theoretical character, raises other concerns.

32 Cotnoir (2013) himself points briefly (p. 301) to the possibility of framing general identity
in term of hyperplurals, and to Rayo (2006) for a suitable implementation.

33 See McKay (2006, 46–53) and Uzquiano (2004) for various perplexities.
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12. General identity and numerical ascriptions

Consider an instance of our NDA argument which concerns Benelux. The oppo-
nents of CAI say that the Netherlands, Belgium, and Luxembourg are three, while
the molecules are a very large number, and are not three; thus, the Netherlands,
Belgium, and Luxembourg are discernible from the molecules (and, as a conse-
quence, not identical to them).

Cotnoir, in his indexical mood, replies as follows: yes, but this is no exception
to indiscernibility, because in evaluating “the Netherlands, Belgium, and
Luxembourg are three” and “the molecules are three”, we should take into account
a hidden indexical, which makes the first sentence true and the latter false. This
indexical element individuates the proper source of counting in a way of slicing
the domain of atoms, that is – in the official, set-theoretical variant of GI (the only
one that Cotnoir develops) – of grouping it in a set of sets of these atoms.

Cotnoir, in his sub-valuational mood, instead replies as follows: there is no
exception to indiscernibility; both the Netherlands, Belgium, and Luxembourg
on the one hand, and the molecules on the other, are three (and a very large
number as well). In fact, the union of the set of sets of atoms denoted by “the
Netherlands, Belgium, and Luxembourg” is also the union of the set of sets of
atoms denoted by “the molecules”. And this union can be subdivided in such a
way that we obtain a three-membered set of sets of atoms.

In this set-theoretical framework, the two subject terms of “the Netherlands,
Belgium, and Luxembourg are three” and “The molecules are three” (in spite of
also being the terms of a true GI statement) are not coreferential. By contrast, in
the hyperpluralist version of GI we sketched in Carrara and Lando (2016), the
two terms are coreferential.

But, in the indexical variant, the non-coreferentiality of terms in true GI state-
ments could be suspected to be key in treating numerical ascriptions and extend-
ing indiscernibility to composition. In fact, it is not clear in Cotnoir’s theory what
determines or suggests the indexical parameter selecting a certain set (and not
another) as the set to be actually counted in evaluating a cardinality ascription.
A plausible way to fill this gap is to say that the set to be counted is the one
denoted by the referential expression that flanks the numerical predicate. Thus,
the word “molecule” would suggest that the sentence “the molecules are three”
should be evaluated according to a certain indexical parameter; this indexical
parameter selects the set of sets of atoms that includes a set of atoms for each
molecule in Benelux.

One and the same feature of GI – namely, the fact that a true GI statement is
allowed to include non-coreferential terms – would violate a pivotal constraint
on genuine identity relations and grant the extension of indiscernibility. Compo-
sition would respect Leibniz’s Law, but only at the price of violating the
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Coreferentiality Constraint: no overall progress for the idea that a whole is genu-
inely identical to its parts.

Instead, what could happen if the referential expressions in cardinality
ascriptions are hyperplurals? Precisely because the Coreferentiality Constraint is
respected, the referents of “the molecules” and of “Benelux” cannot be of help
in selecting different sets. One could perhaps make appeal to a non-referential
component of the semantics of hyperplurals, but – at least in the present state of
the literature on hyperplurals – it is unclear what this component could consist in.

By contrast, in the sub-valuational variant, the evaluation of numerical ascrip-
tions is arguably disconnected from the referents of their subjects. If we opt for
covers over partitions, a numerical ascription is true on the necessary and suffi-
cient condition that the number attributed is not greater than the cardinality of
the power set of the set of atoms in the portion of reality. If we opt for partitions
over covers, the number attributed should not be greater than the cardinality of the
set of atoms itself.

This leads to the following surprising and apparently unacceptable
consequences.

(a) The expected numerical incompatibilities do not hold. For example, both the
molecules and the countries are both three and a very large number. In fact,
the set of atoms in that portion of reality can be partitioned or covered by a
three-membered or by a many-membered set of sets of atoms.34

(b) Lots of seemingly false numerical ascriptions are licensed as true; say that
there are n atoms in Benelux; for any m≤2n (in the case of covers), or for
any m≤n (in the case of partitions), “The Netherlands, Belgium, and
Luxembourg are m” is true. The ensuing semantic revisionism is hard to
overestimate.

(c) Plausibly enough (Cotnoir does not discuss this point), the semantics of
comparative operators such as “are as many as” is tied to that of numerical
ascriptions, in the following way: for any xx and any yy, “xx are as many
as yy” is true iff there is a number n such that both “xx are n” and “yy are
n” are true. If so, “The Netherlands, Belgium, and Luxembourg are as many
as the molecules composing them” would turn out to be surprisingly true.35

34 This anomaly could be attributed to the well-known logical peculiarities of sub-valuational
(and super-valuational) approaches, and, as usual in these cases, the expected incompatibilities are pre-
served within the perimeter of each single evaluation. Nonetheless, the anomaly seems to be strictly
related to the other side effects (b), (c), and (d).

35 An alternative way to characterize the tie would be to say that for any xx and any yy, “xx are
as many as yy” is true iff for every number n “xx are n” is true iff “yy are n” is true. However, the out-
come does not change: “Netherlands, Belgium, and Luxembourg are as many as the molecules compos-
ing them” would be true.
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(d) The interaction between is one of and cardinality ascriptions turns out to be
deviant. Belgium is one of the Netherlands, Belgium, and Luxembourg. But
it may happen that there is a number m and there is a number n such that
m< n, while “Belgium is n” is true and “The Netherlands, Belgium, and
Luxembourg are m” is true as well.

(e) The semantic evaluation of numerical ascriptions would seem to require,
epistemically, both an awareness of the number of atoms in a portion of
reality, and, in the case of covers, an ability to calculate the cardinality of
the power set of the set of these atoms.36

To sum up, the indexical variant seems to be tied with the non-coreferentiality
of terms in several true GI statements. By contrast, the sub-valuational variant
does not really exploit the violation of the Coreferentiality Constraint, but leads
to the hardly acceptable results (a)–(e). In both cases, numerical ascriptions are
a challenging constraint on how Cotnoir’s GI could be developed in a cogent
manner.

13. Conclusion

There are different ways of relativizing numerical ascriptions. Only a few of them
promise to be of help in countering the claim that, when x have some parts y and z,
x is one and not two, while y and z are two and not one; and in thereby blocking
the NDA argument.

If objects are thought to be the proper subjects of numerical ascriptions, the
only advisable strategy is to relativize the plural logical relation of is one of.
But either we end up embracing relative identity (contra strong CAI’s insistence
on conservativity about identity and Leibniz’s Law), or Sider’s Collapse ensues,
or identity is entangled with a difficult theory of concepts, and risks being
deprived of its expected formal status.

The only promising alternative involves sets of atoms and sets of sets of atoms
in portions of reality. These sets are what is properly counted, but are also what is
properly identical. The resulting notion of general identity violates, in Cotnoir’s
set-theoretical formulation, the Coreferentiality Constraint. As a consequence,
general identity would not deserve to be considered an identity relation at all.
And, also if general identity might be modified to respect the Coreferentiality
Constraint, its way of treating cardinality ascriptions relies on controversial and

36 The degree of unacceptability of (e) seems to depend on the extent to which Cotnoir’s pro-
posal is meant to provide a semantics for natural language, or merely for a specialized formal language.
This is not made clear in Cotnoir (2013).
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underexplored semantic theories, and leads in some cases to a disappointing
semantic analysis.

Lewis’s objection against the claim that composition works exactly like one-
one identity – as summarized in NDA – is still powerful: it is hard to deny that
the whole is one, and the parts are many.37

It is worth here repeating that nothing in our analysis runs counter to other
varieties of CAI. Neither Baxter nor Lewis were completely conservative about
identity. This is very clear in the case of Baxter, who rejects Leibniz’s Law. But also
Lewis legitimizes composition as an identity-like relation that does not really work
like one-one identity, and as a result seems to incline towards a kind of pluralism
about identity: composition is an identity relation, but is not one-one identity, thus
there is more than one identity relation.38 In our analysis of cardinality ascriptions,
CAI actually squares better with revisionist, non-Quinean views of identity: per-
haps a form of relative identity, perhaps a milder kind of pluralism about identity.

What leads to trouble or requires controversial assumptions is the pretension
to endorse CAI while being perfectly Quinean about identity: for example, Bøhn
(2014) claims in the very first page of his essay that “identity is the primitive
relation everything bears to itself and to nothing else, uniquely characterized”
by reflexivity and Leibniz’s Law (p. 143). CAI is then presented as a mere
broadening of the domain of identity: the token relations between wholes and
their parts and between different slicings of a same whole would be simply
new instances of the same old relation. By contrast, Baxter and Lewis admit that
the relation at stake is not standard, Quinean, logical identity. And both accept
the platitude that Mina and Gino are two, while Gina is one. As shown in this
paper, the path to reject this platitude is narrow and perilous.*
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