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Abstract. We propose in this paper a family of algebraic models of ZFC

based on the three-valued paraconsistent logic LPT0, a linguistic variant of
da Costa and D’Ottaviano’s logic J3. The semantics is given by twist struc-
tures defined over complete Boolean agebras. The Boolean-valued models of
ZFC are adapted to twist-valued models of an expansion of ZFC by adding a
paraconsistent negation. This allows for inconsistent sets w satisfying ‘not
(w = w)’, where ‘not’ stands for the paraconsistent negation. Finally, our
framework is adapted to provide a class of twist-valued models generalizing
Löwe and Tarafder’s model based on logic (PS3,∗), showing that they are
paraconsistent models of ZFC. The present approach offers more options for
investigating independence results in paraconsistent set theory.
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1. On models of set theory: Gödel shrinks, Cohen expands

The interest for  and the overall knowledge about  models for set the-
ory changed dramatically after the famous invention (or discovery) of
Paul Cohen’s methods of forcing. Cohen was able to show that the notion
of cardinal number is elastic and relative, in contrast with the methods
of “inner models” that Gödel used. Gödel has shown that, by shrinking
the totality of sets in a model, they would turn to be ‘well-behaved’.
As a consequence, the constructible sets could not be used to prove the
relative consistency of the negation of the Axiom of Choice (AC) or of
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the Continuum Hypothesis (CH). Paul J. Cohen, on the contrary, had
the idea of reverting the paradigm, and instead of cutting down the
sets within models, found a way to expand a countable standard model
into a standard model in which CH or AC can be false, doing this in
a minimalist but controlled fashion. Cohen elements are ‘bad-behaved’,
but finely guided so as to make ‘logical space’ for the independence of
AC and CH.

As Dana Scott puts in the forward of Bell’s book [1], “Cohen’s
achievement lies in being able to expand models (countable, standard
models) by adding new sets in a very economical fashion: they more
or less have only the properties they are forced to have by the axioms
(or by the truths of the given model).” Cohen’s methods, however, are
not easy, being regarded by some researchers as somewhat lengthy and
tedious  but were the only tool available until the Boolean-valued mod-
els of set theory put forward by Scott and Solovay (and independently
by Vopěnka) in 1965 offered a more natural and rich alternative for
describing forcing. This does not discredit the brilliant idea of Cohen,
who did not have the machinery of Boolean-valued models available at
his time.

What is a Boolean-valued model? The intuitive idea is to pick a
suitable Boolean algebra A, and define, by transfinite recursion, the set
M of all A-valued sets, generalizing the familiar {0, 1} valued models.
Then add to the language one constant symbol for each element of the
model. After this, define a map ϕ 7→ [[ϕ]]A from the sentences in the
language of ZF to A which obey certain equations, so that it should
assign 1 to all the axioms of ZFC.

The resulting structure MA will not be a standard model of ZFC,
because it will consist of “relaxed sets” somehow similar to fuzzy sets,
and not sets properly. If we take an arbitrary sentence about sets (for
instance, “Is Y is a member of X” ?) and ask whether it holds in MA,
then the answer may be neither plain “yes” nor “no”, but some element
of the Boolean algebra A meaning the “degree” to which Y is a member
of X . However, MA will satisfy ZFC, and to turn MA into an actual
model of ZFC with certain desired properties it is sufficient to take a
suitable quotient of MB that eliminates the elements of fuzziness.

Boolean-valued models not only avoid tedious details of Cohen’s orig-
inal construction, but permit a great generalization by varying on any
Boolean algebra.
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2. Losing unnecessary weight: the role of alternative set theories

It is a well-known historical fact that the discovery of the paradoxes in
set theory and in the foundations of mathematics was the fuse that fired
the revolution in contemporary set theory around its efforts to attempt
to rescue Cantor’s naive theory from triviality. The usual culprit was
the Principle of (unrestricted) Abstraction, also known as the Principle
of Comprehension. Unrestricted abstraction allows sets to be defined
by arbitrary conditions, and this freedom combined with the axiom of
extensionality, leads to a contradiction, which by its turn leads to trivial-
ity in the sense that “everything goes”, when the laws of the underlying
logic obey the standard principles that comprise the so-called “classical”
logic.

But there is a way out from this maze. Paraconsistent set theory
is the theoretical move to maintain the freedom of defining sets, while
stripping the theory of unnecessary principles so as to avoid triviality, a
disastrous consequences of contradictions involving sets in ZF.

This philosophical maneuver is in frank opposition to traditional
strategies, which deprive the freedom of set theory so appreciated by
Cantor, by maintaining the underlying logic and weakening the Principle
of Abstraction.

An analogy may be instructive. The basic goal of reverse mathemat-
ics is to study the relative logical strengths of theorems from ordinary
non-set theoretic mathematics. To this end, one tries to find the minimal
natural axiom system A that is capable of proving a theorem T .

In a perhaps vague, but illuminating analogy, paraconsistent logic
tries to find the minimal natural principles that are capable of per-
mitting us to reason in generic circumstances, even in the undesired
circumstances of contradictions.

This does not mean that contradictions are necessarily real: [9] gives
a formal system and a corresponding intended interpretation, according
to which true contradictions are not tolerated. Contradictions are, in-
stead, epistemically understood as conflicting evidence. There are indeed
many cases of contradictions in reasoning, but the classical principle Ex

Contradictione Quodlibet, or Principle of Explosion, is not even used
in mathematics in general; it is not, therefore, a characteristic of good
reasoning, and has to be abandoned.

Some people may be mislead by thinking that Reductio ad Absurdum,
which is a useful and robust rule of inference, would be lost by abandon-
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ing the Principle of Explosion. This is not so: even if discarding such a
principle, proofs by Reductio ad Absurdum get unaffected, as long as one
can define a strong negation. This is achieved in many paraconsistent
logics, in particular in all the logics of the family of the Logics of Formal
Inconsistency (LFIs) [see 5, 6, 7]. Reasoning does not necessarily require
the full power of Ex Contradictione Quodlibet, because contradictions
reached in a Reductio proof are not really used to cause any deductive
explosion; what is used is the manipulation of negation.

3. Expanding Cohen’s expansion: twist-valued models

Boolean-valued models were adapted by Takeuti, Titani, Kozawa and
Ozawa to lattice-valued models of set theory, with applications to quan-
tum set theory and fuzzy set theory [see 19, 20, 21, 23, 24]. The guidelines
of these constructions were taken by Löwe and Tarafder in [18] in order
to obtain a three-valued model (in the form of a lattice-valued model)
for a paraconsistent set theory based on ZF. They propose a class of
algebras based on a certain kind of implication, called reasonable impli-

cation algebras (see Section 9) which satisfy several axioms of ZF. From
this class, they found an especific three-valued model which satisfies all
the axioms of ZF, and it can be expanded to an algebra (PS3, ∗) with
a paraconsistent negation ∗, obtaining so a paraconsistent model of ZF.
As we discuss in Section 9, the matrix logic associated to (PS3, ∗) with
0 as the only non-designated value, which will be also denoted in this
paper by (PS3, ∗) or (PS3,¬), is the same as the logic MPT introduced
in [10], and coincides up to language with the logic LPT0 adopted in
the present paper, as well as with da Costa and D’Ottaviano’s logic J3.
Here, we will introduce the notion of twist-valued models for a paracon-
sistent set theory ZFLPT0 based on QLPT0, a first-order version of LPT0.
Our models, defined for any complete Boolean algebra A, constitute a
generalization of the Boolean-valued models for set theory, at the same
time generalizing Löwe and Tarafder’s three-valued model. Indeed, in
Section 9 the model of ZF based on (PS3, ∗) will be generalized to twist-
valued models over an arbitrary complete Boolean algebra, obtaining
so a class of models of ZFC. The structure over (PS3, ∗) will constitute
a particular case, by considering the two-element complete Boolean al-
gebra. As a consequence of this, it follows that Löwe and Tarafder’s
three-valued structure is, indeed, a model of ZFC.
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Twist-structure semantics have been independently proposed by
M. Fidel [14] and D. Vakarelov [25], in order to semantically character-
ize the well-known Nelson logic. A twist structure consists of operations
defined on the cartesian product of the universe of a lattice, L × L so
that the negative and positive algebraic characteristics can be treated
separately. In terms of logic, a pair (a, b) in L× L is such that a repre-
sents a truth-value for a formula ϕ while b corresponds to a truth-value
for the negation of ϕ. That is, a is a positive value for ϕ while b is a
negative value for it, thus justifying the name ‘twist structures’ given
for this kind of algebras. This strategy is especially useful for obtaining
semantical characterizations for non-standard logics. As a limiting case,
a Boolean algebra turns out to be a particular case of twist structures
when there is no need to give separate attention to negative and positive
algebraic characteristics, since the latter are uniquely obtained from the
former by the dualizing Boolean complement ∼. In this case, every pair
(a, b) is of the form (a,∼a), hence the second coordinate is redundant.
Our proposal is based on models for ZF based on twist structures, thus
the sentences of the language of ZF will be interpreted as pairs (a, b)
in a suitable twist structure, such that the supremum a ∨ b is always 1,
but the infimum a ∧ b is not necessarily equal to 0. This corresponds to
the validity of the third-excluded middle for the non-classical negation
of the underlying logic, while the explosion law ϕ∧ ¬ϕ → ψ is not valid
in general in the underlying paraconsistent logic LPT0. A somewhat
related approach was proposed by Libert in [17]: he proposes models
for a naive set theory in which the truth-values are pairs of sets (A,B)
of a universe U such that A ∪ B = U where A and B represent, re-
spectively, the extension and the anti-extension of a set a. However,
besides this similarity, our approach is quite different: we are interested
in giving paraconsistent models for ZFC and not in new models for naive
set theory.

It is important to notice that there exists in the literature several
approaches to paraconsistent set theory, under different perspectives.
In particular, we propose in [4] a paraconsistent set theory based on
several LFIs, but that approach differs from the one in the present paper.
First, in the previous paper the systems were presented axiomatically,
by means of suitable modifications of ZF. Moreover, in that logics a
consistency predicate C(x) was considered, with the intuitive meaning
that ‘x is a consistent set’. On the other hand, in the present paper a
model for standard ZFC will be presented instead of a Hilbert calculus
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for a modified version of ZF. We will return to this point in Section 10,
in which the possibility of defining a consistency predicate C(x) within
ZFLPT0 will be discussed.

As mentioned above, twist structures over a Boolean algebra gen-
eralize Boolean algebras, and are by their turn generalized by the swap

structures introduced in [5, Chapter 6] (a previous notion of swap struc-
tures was given in [3]). Swap structures are non-deterministic algebras
defined over the three-fold Cartesian product A × A × A of a given
Boolean algebra so that in a triple (a, b, c) the first component a rep-
resents the truth-value of a given formula ϕ while b and c represent,
respectively, possible values for the paraconsistent negation ¬ϕ of ϕ,
and for the consistency ◦ϕ of ϕ.

Swap structures are committed to semantics with a non determin-
istic character, while twist structures are used when the semantics are
deterministic (or truth-functional). Definition 4.6 below shows how the
definition of twist structures for the three-valued logic LFI1◦ introduced
in [11, Definition 9.2] can be adapted to LPT0.

As discussed in Section 9, the three-valued logic (PS3, ∗) used in [22]
already appears in [10] under the name MPT, and it is equivalent to
LPT0 and also to LFI1◦. Variants of this logic have been independently
proposed by different authors with different motivations in several occa-
sions (for instance, as the well-known da Costa and D’Ottaviano’s logic
J3). The naturalness of this logic is reflected by the fact that the three-
valued algebra of LPT0 (see Definition 4.2 below) is equivalent, up to
language, to the algebra underlying Łukasiewicz three-valued logic Ł3.
The only difference is that in the former the set of distinguished (or
designated) truth values is {1, 1

2
} instead of {1}, and this is why LPT0

is paraconsistent while Ł3 is paracomplete (taking into account that the
negation is the same in both logics).

Twist-valued models work beautifully as enjoying many properties
similar to Boolean-valued models(when restricted to pure ZF-languages).
Such similarities lead to a natural proof that ZFC is valid w.r.t. twist-
valued models, as our central Theorem 8.22 shows. This paper deals with
the paraconsistent set theory ZFLPT0, defined by using as the underlying
logic a first-order version of LPT0, called QLPT0, proposed in [12] under
the form of QLFI1◦ (that is, by replacing the strong negation ∼ by the
consistency operator ◦).

The paraconsistent character of twist-valued models as regarding
ZFLPT0 as rival of ZFC is emphasized. Despite having some limitative
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results, as much as Löwe and Tarafder’s model, ZFLPT0 has a great po-
tential as generator of models for paraconsistent set theory. A subtle,
but critical advantage of our models is that the implication operator of
LPT0 is much more suitable for a paraconsistent set theory than the
one of PS3. Indeed, our models allow for inconsistent sets, and this is
of paramount importance, as we argue below. Moreover, as pointed out
above, our models generalize the three-valued model based on PS3, since
they can be defined for any complete Boolean algebra. In this way, we
have several models at our disposal, and in principle this can be used to
investigate independence results in paraconsistent set theory.

Albeit Boolean-valued models and their generalization in the form of
twist-valued models are naturally devoted to study independence results,
this paper does not tackle this big questions yet. The paper, instead, is
dedicated to clarifying such models while establishing their basic prop-
erties.

4. The logic LPT0

In this section the logic LPT0 will be briefly discussed, including its twist
structures semantics. From now on, if Σ′ is a propositional signature
then, given a denumerable set V = {p1, p2, . . .} of propositional variables,
the propositional language generated by Σ′ from V will be denoted by
LΣ′ . The paraconsistent logics considered in this paper belong to the
class of logics known as logics of formal inconsistency, introduced in [7]
[see also 5, 6].

Definition 4.1. Let L = 〈Σ′,⊢〉 be a Tarskian, finitary and structural
logic defined over a propositional signature Σ′, which contains a negation
¬, and let ◦ be a (primitive or defined) unary connective. The logic L

is said to be a logic of formal inconsistency (LFI) with respect to ¬ and
◦ if the following holds:

(i) ϕ,¬ϕ 0 ψ for some ϕ and ψ;
(ii) there are two formulas ϕ and ψ such that

(a) ◦ϕ, ϕ 0 ψ;
(b) ◦ϕ,¬ϕ 0 ψ;

(iii) ◦ϕ, ϕ,¬ϕ ⊢ ψ for all ϕ and ψ.

Recall the logic APT0 presented in[5] as a linguistic variant of the
logic MPT introduced in [10].
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Definition 4.2 (Modified propositional logic of pragmatic truth MPT0;
5, Definition 4.4.51). Let MPT0 = 〈M,D〉 be the three-valued logical
matrix over Σ = {∧,∨,→,∼,¬} with domain M = {1, 1

2
, 0} and set

of designated values D = {1, 1
2
} such that the operators are defined as

follows:

∧ 1 1
2

0

1 1 1
2

0

1
2

1
2

1
2

0

0 0 0 0

∨ 1 1
2

0

1 1 1 1

1
2

1 1
2

1
2

0 1 1
2

0

→ 1 1
2

0

1 1 1
2

0

1
2

1 1
2

0

0 1 1 1

∼

1 0
1
2

0

0 1

¬

1 0
1
2

1
2

0 1

The logic associated to the logical matrix MPT0 is called MPT0. The
three-valued algebra underlying MPT0 will be called APT0.

Observe that x → y = ∼x ∨ y for every x, y. Recall that, by defi-
nition, the consequence relation �MPT0 of APT0 is given as follows: for
every Γ∪{ϕ} ⊆ LΣ, Γ �MPT0 ϕ iff, for every homomorphism v : LΣ → M
of algebras over Σ, if v[Γ ] ⊆ D then v(ϕ) ∈ D.

From [5] a sound and complete Hilbert calculus for MPT0, called
LPT0, can be defined. This calculus is an axiomatic extension of a
Hilbert calculus for classical propositional logic CPL over the signature
Σc = {∧,∨,→,∼}. From now on, ϕ ↔ ψ will be an abbreviation for the
formula (ϕ → ψ) ∧ (ψ → ϕ).

Definition 4.3 (The calculus LPT0; 5, Definition 4.4.52). The Hilbert
calculus LPT0 over Σ is defined as follows:1

Axiom schemas:

(Ax1) ϕ → (ψ → ϕ)
(Ax2) (ϕ → (ψ → γ)) → ((ϕ → ψ) → (ϕ → γ))
(Ax3) ϕ → (ψ → (ϕ ∧ ψ))
(Ax4) (ϕ ∧ ψ) → ϕ

1 To be rigorous, in [5, Theorem 4.4.56] an additional axiom schema is required:
¬ ∼ ϕ → ϕ. However, it is easy to prove that this axiom is derivable from the others,
by using MP.
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(Ax5) (ϕ ∧ ψ) → ψ
(Ax6) ϕ → (ϕ ∨ ψ)
(Ax7) ψ → (ϕ ∨ ψ)
(Ax8) (ϕ → γ) → ((ψ → γ) → ((ϕ ∨ ψ) → γ))
(Ax9) ϕ ∨ (ϕ → ψ)
(TND) ϕ ∨ ∼ϕ
(exp) ϕ →

(
∼ϕ → ψ

)

(TND¬) ϕ ∨ ¬ϕ
(dneg) ¬ ¬ϕ ↔ ϕ
(neg∨) ¬(ϕ ∨ ψ) ↔ (¬ϕ ∧ ¬ψ)
(neg∧) ¬(ϕ ∧ ψ) ↔ (¬ϕ ∨ ¬ψ)
(neg→) ¬(ϕ → ψ) ↔ (ϕ ∧ ¬ψ)

Inference rule:

(MP)
ϕ ϕ → ψ

ψ

It is worth noting that axioms (Ax1)–(Ax9), (TND) and (exp), to-
gether with (MP), constitute an adequate Hilbert calculus for classical
propositional logic CPL in the signature Σc = {∧,∨,→,∼}. Moreover,
(Ax1)–(Ax9) plus (MP) is an adequate Hilbert calculus for classical pos-
itive propositional logic CPL+ in the signature Σcp = {∧,∨,→}.

Theorem 4.4 (5, Theorem 4.4.56). The logic LPT0 is sound and com-
plete w.r.t. the matrix logic of APT0: Γ ⊢LPT0 ϕ iff Γ �MPT0 ϕ, for every
Γ ∪ {ϕ} ⊆ LΣ.

The latter result can be extended to twist-structures semantics, as
shown in [11]. Indeed, LPT0 coincides (up to signature) with LFI1◦,
an LFI defined over the signature Σ◦ = {∧,∨,→,¬, ◦} such that the
consistency operator ◦ is defined as

◦

1 1

1
2

0

0 1

In LFI1◦ the strong negation ∼ is defined as ∼ϕ := ϕ → ⊥ϕ such that
⊥ϕ := (ϕ ∧ ¬ϕ) ∧ ◦ϕ. On the other hand, the consistency operator ◦
is defined in LPT0 as ◦ϕ := ∼(ϕ∧ ¬ϕ). The twist-structures semantics
for LFI1◦ introduced in [11, Definition 9.2] can be adapted to LPT0 as
follows:
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Definition 4.5. Let A = 〈A,∧,∨,→,∼, 0, 1〉 be a Boolean algebra.2

The twist domain generated by A is the set TA = {(z1, z2) ∈ A × A :
z1 ∨ z2 = 1}.

Definition 4.6. Let A be a Boolean algebra. The twist structure for

LPT0 over A is the algebra TA = 〈TA, ∧̃, ∨̃, →̃, ∼̃, ¬̃〉 over Σ such that
the operations are defined as follows, for every (z1, z2), (w1, w2) ∈ TA:

(i) (z1, z2) ∧̃ (w1, w2) = (z1 ∧ w1, z2 ∨ w2);
(ii) (z1, z2) ∨̃ (w1, w2) = (z1 ∨ w1, z2 ∧ w2);

(iii) (z1, z2) →̃ (w1, w2) = (z1 → w1, z1 ∧w2);
(iv) ¬̃(z1, z2) = (z2, z1)
(v) ∼̃(z1, z2) = (∼z1, z1).

By recalling that the consistency operator ◦ is defined in LPT0 as
◦ϕ := ∼(ϕ ∧ ¬ϕ), it follows that ◦̃(z1, z2) = (∼(z1 ∧ z2), z1 ∧ z2).3

Definition 4.7. The logical matrix associated to the twist structure TA

is MTA = 〈TA, DA〉 where DA = {(z1, z2) ∈ TA : z1 = 1} = {(1, a) :
a ∈ A}. The consequence relation associated to MTA will be denoted
by �TA

. Let MLPT0 = {MT A : A is a Boolean algebra} be the class of
twist models for LPT0. The twist-consequence relation for LPT0 is the
consequence relation �MLPT0

associated to MLPT0, namely: Γ �MLPT0
ϕ

iff Γ �TA
ϕ for every Boolean algebra A.

Remark 4.8. In [11, Theorem 9.6] it was shown that LPT0 is sound
and complete w.r.t. twist structures semantics, namely: Γ ⊢LPT0 ϕ iff
Γ �MLPT0

ϕ, for every set of formulas Γ ∪ {ϕ}. On the other hand,
if A2 is the two-element Boolean algebra with domain {0, 1} then TA2

consists of three elements: (1, 0), (1, 1) and (0, 1). By identifying these
elements with 1, 1

2
and 0, respectively, then TA2

coincides with the three-
valued algebra APT0 underlying the matrix MPT0 (recall Definition 4.2).
Moreover, MT A2

coincides with MPT0. Taking into consideration The-
orem 4.4, this situation is analogous to the semantical characterization
of CPL w.r.t. Boolean algebras: it is enough to consider the two-element
Boolean algebra A2.

2 In this paper the symbol ∼ will be used for denoting the strong negation of
LPT0 as well as for denoting the classical negation and its semantical interpretation
(the Boolean complement in a Boolean algebra). The context will avoid possible
confusions.

3 This is why, in [11, Definition 9.2], clause (v) of Definition 4.6 was replaced by
the clause defining ◦̃.
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5. The logic QLPT0

A first-order version of LPT0, called QLPT0, was proposed in [12] under
the equivalent (up to language) form of QLFI1◦.4 For convenience, we
reproduce here the main features of QLPT0.

Definition 5.1. Let Var = {v1, v2, . . .} be a denumerable set of individ-
ual variables. A first-order signature Θ for QLPT0 is given as follows:

• a set C of individual constants;
• for each n ­ 1, a set Fn of function symbols of arity n,
• for each n ­ 1, a set Pn of predicate symbols of arity n such that Pn

is nonempty for some n ­ 1.

The sets of terms and formulas generated by a signature Θ will be
denoted by Ter(Θ) and For(Θ), respectively. The set of closed formulas
(or sentences) and the set of closed terms (terms without variables) over
Θ will be denoted by Sen(Θ) and CTer(Θ), respectively. The formula
obtained from a given formula ϕ by substituting every free occurrence
of a variable x by a term t will be denoted by ϕ[x/t].

Definition 5.2. Let Θ be a first-order signature. The logic QLPT0 is
obtained from LPT0 by adding the following axioms and rules:

Axiom Schemas:

(Ax∃) ϕ[x/t] → ∃xϕ, if t is a term free for x in ϕ
(Ax∀) ∀xϕ → ϕ[x/t], if t is a term free for x in ϕ
(Ax¬∃) ¬ ∃xϕ ↔ ∀x¬ϕ
(Ax¬∀) ¬ ∀xϕ ↔ ∃x¬ϕ

Inference rules:

(∃-In)
ϕ → ψ

∃xϕ → ψ
, where x does not occur free in ψ

(∀-In)
ϕ → ψ

ϕ → ∀xψ
, where x does not occur free in ϕ

The consequence relation of QLPT0 will be denoted by ⊢QLPT0.

4 That is, by taking ◦ instead of ∼ as a primitive connective.
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6. Twist structures semantics for QLPT0

In [12] a semantics of first-order structures based on twist structures
for LFI1◦ was proposed for QLFI1◦. That semantics will be briefly re-
called here, adapted to QLPT0. From now on, only complete, non-trivial
Bolean algebras will be considered (that is, such that 0 6= 1).

Definition 6.1. Let A be a complete Boolean algebra. Let MTA be
the logical matrix associated to a twist structure TA for LPT0, and let Θ
be a first-order signature (see Definition 5.1). A (first-order) structure

over MT A and Θ (or a QLPT0-structure over Θ) is pair A = 〈U, IA〉
such that U is a nonempty set (the domain or universe of the structure)
and IA is an interpretation function which assigns:

• an element IA(c) of U to each individual constant c ∈ C;
• a function IA(f) : Un → U to each function symbol f of arity n;
• a function IA(P ) : Un → TA to each predicate symbol P of arity n.

Notation 6.2. From now on, we will write cA, fA and PA instead of IA(c),
IA(f) and IA(P ) to denote the interpretation of an individual constant
symbol c, a function symbol f and a predicate symbol P , respectively.

Definition 6.3. Given a structure A over MT A and Θ, an assignment

over A is any function µ : Var → U .

Definition 6.4. Given a structure A over MTA and Θ, and given an
assignment µ : Var → U we define recursively, for each term t, an element
[[t]]Aµ in U as follows:

• [[c]]Aµ = cA if c is an individual constant;
• [[x]]Aµ = µ(x) if x is a variable;
• [[f(t1, . . . , tn)]]Aµ = fA([[t1]]Aµ , . . . , [[tn]]Aµ ) if f is a function symbol of

arity n and t1, . . . , tn are terms.

Definition 6.5. Let A be a structure over MTA and Θ. The diagram

language of A is the set of formulas For(ΘU ), where ΘU is the signature
obtained from Θ by adding, for each element a ∈ U , a new individual
constant ā .

Definition 6.6. The structure Â = 〈U, I
Â

〉 over ΘU is the structure A

over Θ extended by I
Â

(ā) = a for every a ∈ A.

It is worth noting that sÂ = sA whenever s is a symbol (individual
constant, function symbol or predicate symbol) of Θ.
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Notation 6.7. The set of sentences or closed formulas (that is, formulas
without free variables) of the diagram language For(ΘU ) is denoted by
Sen(ΘU ), and the set of terms and of closed terms over ΘU will be
denoted by Ter(ΘU ) and CTer(ΘU ), respectively. If t is a closed term
we can write [[t]]A instead of [[t]]Aµ , for any assignment µ, since it does not
depend on µ.

Notation 6.8. From now on, if z ∈ TA then (z)1 and (z)2 (or simply z1

and z2) will denote the first and second coordinate of z, respectively.

Definition 6.9 (QLPT0 interpretation maps). Let A be a complete
Boolean algebra, and let A be a structure over MTA and Θ. An interpre-

tation map for QLPT0 over A and MTA is a function [[·]]A : Sen(ΘU ) →
TA satisfying the following clauses (using Notation 6.8 in clauses (iv)
and (v)):

(i) [[P (t1, . . . , tn)]]A = PA([[t1]]Â, . . . , [[tn]]Â), if P (t1, . . . , tn) is atomic;
(ii) [[#ϕ]]A = #̃[[ϕ]]A, for every # ∈ {¬,∼};

(iii) [[ϕ# ψ]]A = [[ϕ]]A #̃ [[ψ]]A, for every # ∈ {∧,∨,→};
(iv) [[∀xϕ]]A =

(∧
a∈U ([[ϕ[x/ā]]]A)1,

∨
a∈U([[ϕ[x/ā]]]A)2

)
.

(v) [[∃xϕ]]A =
(∨

a∈U ([[ϕ[x/ā]]]A)1,
∧
a∈U([[ϕ[x/ā]]]A)2

)
.

Remark 6.10. A partial order can be naturally introduced in TA as fol-
lows: z ≤ w iff z1 ≤ w1 and z2 ≥ w2. It is easy to see that, with this
order, TA is a complete lattice (since A is a complete Boolean algebra),
in which∧

i∈I zi =
(∧

i∈I(zi)1,
∨
i∈I(zi)2

)
, and∨

i∈I zi =
(∨

i∈I(zi)1,
∧
i∈I(zi)2

)
.

Note that 1 := (1, 0) and 0 := (0, 1) are the top and bottom elements
of TA, respectively. These considerations justify the definition of the
interpretation of the quantifiers given in Definition 6.9(iv) and (v).

Recall the notation stated in Definition 6.5. The interpretation map
can be extended to arbitrary formulas as follows:

Definition 6.11. Let A be a complete Boolean algebra, and let A be
a structure over MTA and Θ. Given an assignment µ over A, the
extended interpretation map [[·]]Aµ : For(ΘU) → TA is given by [[ϕ]]Aµ =

[[ϕ[x1/µ(x1), . . . , xn/µ(xn)]]]A, provided that the free variables of ϕ occur
in {x1, . . . , xn}.

Definition 6.12. Let A be a complete Boolean algebra, and let A be a
structure over MTA and Θ. Given a set of formulas Γ ∪{ϕ} ⊆ For(ΘU ),
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ϕ is said to be a semantical consequence of Γ w.r.t. 〈A,MTA〉, denoted
by Γ |=〈A,MTA〉 ϕ, if the following holds: if [[γ]]Aµ ∈ D, for every formula
γ ∈ Γ and every assignment µ, then [[ϕ]]Aµ ∈ D, for every assignment µ.

Definition 6.13 (Semantical consequence relation in QLPT0 w.r.t. twist
structures). Let Γ ∪ {ϕ} ⊆ For(Θ) be a set of formulas. Then ϕ is said
to be a semantical consequence of Γ in QLPT0 w.r.t. first-order twist

structures, denoted by Γ |=QLPT0 ϕ, if Γ |=〈A,MTA〉 ϕ for every pair
〈A,MTA〉.

Theorem 6.14 (Soundness and completeness of QLPT0 w.r.t. first-order
twist structures; 12). For any Γ ∪{ϕ} ⊆ For(Θ): Γ ⊢QLPT0 ϕ if and only
if Γ |=QLPT0 ϕ.5

In Remark 4.8 was observed that TA2
, the twist structure for LPT0

defined over the two-element Boolean algebra A2, coincides (up to
names) with the three-valued algebra APT0 underlying the matrix MPT0

and, moreover, MT A2
coincides with the three-valued characteristic ma-

trix MPT0 of LPT0. In [12] it was proven that QLPT0 can be charac-
terized by first-order structures defined over MPT0.6

Theorem 6.15 (Soundness and completeness of QLPT0 w.r.t. first-order
structures over MPT0; 12). For any set Γ ∪ {ϕ} ⊆ For(Θ): Γ ⊢QLPT0 ϕ
iff Γ |=〈A,MPT0〉 ϕ, for every structure A over Θ and MPT0.

Remark 6.16. It is worth observing that Theorem 6.15 constitutes a vari-
ant of the soundness and completeness theorem of first-order J3 w.r.t.
first-order structures given in [13]. Indeed, both logics are the same (up
to language), and the semantic structures are the same, up to presenta-
tion.

7. Twist-valued models for set theory

As mentioned before, a three-valued model for a paraconsistent set the-
ory based on lattice-valued models for ZF, as a non-classical variant of

5 As observed above, in [12] the logic QLFI1◦ was analyzed instead of QLPT0.
However, both logics are equivalent, the only difference being the use of ◦ instead of
∼ as primitive connective. The adaptation of the soundness and completeness result
for QLFI1◦ given in [12] to the logic QLPT0 is straightforward.

6 Once again, it is worth observing that the result obtained in [12] concerns the
logic QLFI1◦ instead of QLPT0.
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the well-known Scott-Solovay-Vopěnka Boolean-valued models for ZF,
was proposed by Löwe and Tarafder in [18]. Specifically, they intro-
duce a three-valued algebra called PS3 which can be expanded with a
paraconsistent negation ¬ (which they denote by ∗) and then a model
for ZF is constructed over the three-valued algebra PS3, as well as over
its expansion (PS3,¬), along the same lines as the traditional Boolean-
valued models. It is known that the matrix logic of (PS3,¬), introduced
in [10] as MPT, coincides up to language with LPT0. We will return to
this point in Section 9.

In this section, a twist-valued model for a paraconsistent set theory
ZFLPT0 based on QLPT0 will be defined, for any complete Boolean alge-
bra A. It will be shown that these models constitute a generalization of
the Boolean-valued models for set theory, as well as of Löwe-Tarafder’s
three-valued model. Our constructions, as well as the proof of their for-
mal properties, are entirely based on the exposition of Boolean-valued
models given in the book [1], which constitutes a fundamental reference
to this subject.

Consider the first order signature ΘZF for set theory ZF which consists
of two binary predicates ǫ (for membership) and ≈ (for identity). The
logic ZFLPT0 will be defined over the first-order language L generated by
ΘZF based on the signature of QLPT0, that is: the set of connectives
is Σ = {∧,∨,→,∼,¬}, together with the quantifiers ∀ and ∃ and the
set Var = {v1, v2, . . .} of individual variables. As usual, Fun(f) means
that f is a relation (ie, a set of ordered pairs) such that f is a function,
while dom(f) and im(f) will denote the domain and image of a given
function f .

Definition 7.1. Let A be a complete Boolean algebra, and let α be an
ordinal number. Define, by transfinite recursion on α, the following:

VTA

α = {x : Fun(x), im(x) ⊆ TA and dom(x) ⊆ VTA

ξ for some ξ < α},

VTA = {x : x ∈ VTA

α for some α}.
The class VTA is called the twist-valued model over the complete Boolean
algebra A.

Definition 7.2. Expand the language L by adding a constant ū to
each element u of VTA , obtaining a language denoted by L(TA). The
fragments of L and L(TA) without the connective ¬ will be denoted by
Lp and Lp(TA), respectively. They will be called the pure ZF-languages.
Observe that L(TA) and Lp(TA) are proper classes. Finally, a formula ϕ
in Lp is called restricted if every occurrence of a quantifier in ϕ is of the
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form ∀x(x ǫ y → . . .) or ∃x(x ǫ y ∧ . . .), or if it is proved to be equivalent
in ZFC to a formula of this kind.

Notation 7.3. By simplicity, and as it is done with Boolean-valued mod-
els, we will identify the element u of VTA with its name ū in L(TA),
simply writting u. Moreover, if ϕ is a formula in which x is the unique
variable (possibly) occurring free, we will write ϕ(u) instead of ϕ[x/u]
or ϕ[x/ū].

At this point, it will be convenient to recall the specific presentation
of ZFC given in [1]. Since some axioms are indeed schemas which de-
pend on the formulas of the language, we must differentiate between the
formulations of ZF (or ZFC) expressed in L or in Lp. In the first case,
formulas with the paraconsistent negation ¬ are allowed in the axiom
schemas, while this symbol is not allowed in the second case, obtaining
so the standard theory of sets ZF (or ZFC). Let ∅ be the (definable) term
representing the (classical) empty set {x : ∼(x ≈ x)}. Then, the formula
(∅ ǫ u) is equivalent in ZF to ∃y(∀x∼(x ǫ y) ∧ y ǫ u) where x, y and u are
three different variables. On the other hand, (x ≈ ∅) and ∼(x ≈ ∅) are
equivalent to ∀y∼(y ǫ x) and ∃y(y ǫ x), respectively.

Definition 7.4 (ZF and ZFC; see 1). The Zermelo-Fraenkel set theory

(ZF) is the theory of L consisting of the following axiom schemas:

• ∀x∀y
(
∀z(z ǫ x ↔ z ǫ y) → (x ≈ y)

)
Extensionality

• ∀u∃v∀x
(
x ǫ v ↔ (x ǫ u ∧ ϕ(x))

)

where v is not free in the formula ϕ(x) Separation

• ∀u
(
∀x(x ǫ u → ∃yϕ(x, y)) → ∃v∀x(x ǫ u → ∃y(y ǫ v ∧ ϕ(x, y)))

)

where v is not free in the formula ϕ(x, y) Replacement

• ∀u∃v∀x
(
x ǫ v ↔ ∃y(y ǫ u ∧ x ǫ y)

)
Union

• ∀u∃v∀x
(
x ǫ v ↔ ∀y(y ǫ x → y ǫ u)

)
Power set

• ∃u
(
∅ ǫ u ∧ ∀x(x ǫ u → ∃y(y ǫ u ∧ x ǫ y))

)
Infinity

• ∀x
(
∀y(y ǫ x → ϕ(y)) → ϕ(x)

)
→ ∀xϕ(x)

where y is not free in the formula ϕ(x) Regularity

The set theory ZFC is the theory of L obtained from ZF by adding the
axiom of choice (AC), which is given by

• ∀u∃f
(
Fun(f) ∧ (dom(f) ≈ u) ∧ ∀x(x ǫ u ∧ ∼(x ≈ ∅) → f(x) ǫ x)

)
AC

Remark 7.5 (Induction principles). Recall that, from the regularity ax-
iom of ZF, the membership relation ǫ is well-founded, hence the sets
Vα = {x : x ⊆ Vξ for some ξ < α} are definable for every ordinal α.
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Moreover, in ZF every set x belongs to some Vα, that is: ∀x∃α(x ǫ Vα).
This induces a function rank(x) := least α such that x ǫ Vα+1. Since
rank(x) < rank(y) is well-founded, it induces a principle of induction on

rank:

Let Ψ be a property over sets. Assume, for every set x, the following:
if Ψ(y) holds for every y such that rank(y) < rank(x) then Ψ(x)
holds. Hence, Ψ(x) holds for every x.

From this, the following Induction Principle (IP) holds in VTA (similar
to the one for Boolean-valued models):

Let Ψ be a property over individuals in VTA . Assume, for every
x ∈ VTA , the following: if Ψ(y) holds for every y ∈ dom(x) then
Ψ(x) holds. Hence, Ψ(x) holds for every x ∈ VTA .

Both induction principles are fundamental tools in order to prove prop-
erties in VTA . Moreover, as it was done in [1], it will be convenient to
consider the following relations: for u, v ∈ VTA , u ≪ v iff u ∈ dom(v);
and, for (x, y), (u, v) ∈ VTA × VTA , (x, y) ≺ (u, v) iff either x ≪ u and
y = v, or x = u and y ≪ v. Both relations are well-founded, which allows
to define the denotation map [[·]]V

TA for atomic formulas by transfinite
recursion on ≺, see Definition 7.6 below.

Definition 7.6. A mapping [[·]]V
TA (or simply [[·]]), assigning to each

closed formula in L(TA) a value in TA, can be defined by induction on
the complexity in L(TA) as follows:

[[u ǫ v]] =
∨

x∈dom(v)

(v(x) ∧̃ [[x ≈ u]])

=
( ∨
x∈dom(v)

((v(x))1 ∧ [[x ≈ u]]1),
∧

x∈dom(v)

((v(x))2 ∨ [[x ≈ u]]2)
)

[[u ≈ v]] =
∧

x∈dom(u)

(u(x) →̃ [[x ǫ v]]) ∧̃
∧

x∈dom(v)

(v(x) →̃ [[x ǫ u]])

=
( ∧
x∈dom(u)

((u(x))1 → [[x ǫ v]]1),
∨

x∈dom(u)

((u(x))1 ∧ [[x ǫ v]]2)
)

∧̃
( ∧
x∈dom(v)

((v(x))1 → [[x ǫ u]]1),
∨

x∈dom(v)

((v(x))1 ∧ [[x ǫ u]]2)
)

[[φ# ψ]] = [[φ]] #̃ [[ψ]] for # ∈ {∧,∨,→}

[[#ψ]] = #̃[[ψ]] for # ∈ {∼,¬}
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[[∀xϕ(x)]] =
∧

u∈VTA

[[ϕ(u)]] =
( ∧
u∈VTA

[[ϕ(u)]]1,
∨

u∈VTA

[[ϕ(u)]]2
)

[[∃xϕ(x)]] =
∨

u∈VTA

[[ϕ(u)]] =
( ∨
u∈VTA

[[ϕ(u)]]1,
∧

u∈VTA

[[ϕ(u)]]2
)
.

[[ϕ]]V
TA is called the twist truth-value of the sentence ϕ ∈ L(TA) in the

twist-valued model VTA over the complete Boolean algebra A.

Remark 7.7. Observe that VTA can be seen as a structure for QLPT0 over
MTA and ΘZF in a wide sense, given that its domain is a proper class.
Under this identification, the twist truth-value [[ϕ]]V

TA of the sentence
ϕ in VTA is exactly the value assigned to ϕ by the interpretation map
for QLPT0 over VTA and MTA (recall Definition 6.9). In this case we

assume that the mappings (· ǫ ·)VTA and (· ≈ ·)VTA are as in Definition 7.6.

Recall the notion of semantical consequence relation in QLPT0 (see
Definitions 6.12 and 6.13). This motivates the following:

Definition 7.8. A sentence ϕ in L(TA) is said to be valid in VTA , which

is denoted by VTA |= ϕ, if [[ϕ]]V
TA ∈ DA.

It is worth noting that VTA |= ϕ iff [[ϕ]]V
TA

1 = 1. The semantical
notions introduced above can easily be generalized to formulas with free
variables. Recall from Notation 7.3 that u is identified with u in VTA .
Then:

Definition 7.9. Let ϕ be a formula in L whose free variables occur
in {x1, . . . , xn}. Given a twist-valued model VTA and an assignment
µ : V ar → VTA , the twist truth-value of ϕ in VTA and µ is defined as
follows: [[ϕ]]V

TA

µ := [[ϕ[x1/µ(x1), . . . , xn/µ(xn)]]]V
TA . The formula ϕ is

valid in VTA if [[ϕ]]V
TA

µ ∈ DA for every µ.

Definition 7.10. ZFLPT0 is the logic of the class of twist-valued models,
seen as QLPT0-structures over the signature ΘZF. That is, ZFLPT0 is the
set of formulas of L which are valid in every twist-valued model VTA .

8. Boolean-valued models versus twist-valued models

In this section, the relationship between twist-valued models and
Boolean-valued models will be briefly analized. It will be shown that
these models enjoy similar properties than the Boolean-valued models
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(when restricted to pure ZF-languages). These similarities will be fun-
damental in order to prove that ZFC is valid w.r.t. twist-valued models
(see Theorem 8.22 below).

The following basic results for twist-valued models are analogous to
the corresponding ones for Boolean-valued models obtained in [1, Theo-
rem 1.17]. All these results will be proven by using the Induction Prin-
ciple (IP) (recall Remark 7.5). From now on we assume that the reader
is familiar with the book [1].

First, it is interesting to notice that no element of VTA can be a
ǫ -member of itself:

Proposition 8.1. Let A be a complete Boolean algebra, and let u ∈
VTA . Then [[u ǫ u]]1 = 0. That is, [[u ǫ u]] = 0 = (0, 1) for every u in VTA .

Proof. Assume the inductive hypothesis [[y ǫ y]]1 = 0 for every y ∈
dom(u). Note that

[[u ǫ u]]1 =
∨

y∈dom(u)

((u(y))1 ∧ [[y ≈ u]]1).

Let y ∈ dom(u). Then

(u(y))1 ∧ [[y ≈ u]]1 ≤ (u(y))1 ∧
∧

x∈dom(u)

((u(x))1 → [[x ǫ y]]1)

≤ (u(y))1 ∧ ((u(y))1 → [[y ǫ y]]1)

≤ [[y ǫ y]]1 = 0.

Then u(y)1 ∧ [[y ≈ u]]1 = 0 for every y ∈ dom(u), hence [[u ǫ u]]1 = 0.

From the previous result, it follows that ZFLPT0 does not allow the ex-
istence of ‘paradoxical sets’ such as Russell’s set or the universal set,
despite being a paraconsistent set theory as it will be shown below (see
Corollaries 10.2 and 10.3).

Theorem 8.2. Let A be a complete Boolean algebra. Then for all
u, v, w ∈ VTA we have:

(i) [[u ≈ u]]1 = 1,
(ii) u(x)1 ≤ [[x ǫ u]]1, for every x ∈ dom(u),

(iii) [[u ≈ v]]1 = [[v ≈ u]]1,
(iv) [[u ≈ v]]1 ∧ [[v ≈ w]]1 ≤ [[u ≈ w]]1,
(v) [[u ≈ v]]1 ∧ [[u ǫw]]1 ≤ [[v ǫw]]1,

(vi) [[v ≈ w]]1 ∧ [[u ǫ v]]1 ≤ [[u ǫw]]1,
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(vii) [[u ≈ v]]1 ∧ [[ϕ(u)]]1 ≤ [[ϕ(v)]]1, for any formula ϕ(x) in Lp(TA)
(Leibniz’s Law).

Proof. The proof of items (i)-(vi) is analogous to the proof of the cor-
responding items found in [1, Theorem 1.17]. The proof of item (vii) is
easily done by induction on the complexity of ϕ(x) by observing that:
the proof when ϕ is atomic uses items (i)–(vi) for the other cases. For
complex formulas the result follows easily by induction hypothesis.

Lemma 8.3. Let A be a complete Boolean algebra. Then, for any formula
ϕ(x) in Lp(TA) and any u ∈ VTA : [[∃y((u ≈ y) ∧ ϕ(y))]]1 = [[ϕ(u)]]1.

Proof. It follows from Theorem 8.2 items (i), (iii) and (vii). Indeed,

[[∃y((u ≈ y) ∧ ϕ(y))]]1 =
∨

v∈VTA

([[u ≈ v]]1 ∧ [[ϕ(v)]]1)

≤ [[ϕ(u)]]1 = [[u ≈ u]]1 ∧ [[ϕ(u)]]1

≤ [[∃y((u ≈ y) ∧ ϕ(y))]]1.

Now, the so-called bounded quantification properties will be considered.

Notation 8.4. The following notation from [1] will be adopted from now
on:

∀x ǫ u ϕ(x) := ∀x(x ǫ u → ϕ(x)),

∃x ǫ u ϕ(x) := ∃x(x ǫ u ∧ ϕ(x)).

Definition 8.5. For any formula ϕ and every u ∈ VTA , the univer-

sal bounded quantification property UBQu
ϕ and the existential bounded

quantification property EBQu
ϕ are defined as follows:

(UBQu
ϕ) [[∀x ǫ u ϕ(x)]]1 =

∧
x∈dom(u)((u(x))1 → [[ϕ(x)]]1),

(EBQu
ϕ) [[∃x ǫ u ϕ(x)]]1 =

∨
x∈dom(u)((u(x))1 ∧ [[ϕ(x)]]1).

In Boolean-valued models, the Leibniz’s Law is a sufficient condition
to ensure the validity of the bounded quantification properties. Hence,
by adapting the proof of [1, Corollary 1.18], and taking into account
Theorem 8.2 and Lemma 8.3, it can be proven the following:

Theorem 8.6. For any negation-free formula ϕ (i.e., ϕ ∈ Lp(TA)) and
any u ∈ VTA , the bounded quantification properties UBQu

ϕ and EBQu
ϕ

hold in VTA .
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Recall that a complete Boolean algebra A′ is a complete subalgebra
of the complete Boolean algebra A provided that A′ is a subalgebra of
A and

∨
A′ X =

∨
A X and

∧
A′ X =

∧
A X for every X ⊆ A′. Analo-

gously, we say that a twist-structure TA′ is a complete subalgebra of the
twist-structure TA if TA′ is a subalgebra of TA and

∨
TA′

X =
∨

TA
X and∧

TA′
X =

∧
TA
X for every X ⊆ TA′ , recalling Remark 6.10.

Proposition 8.7. If A′ is a complete subalgebra of A, then TA′ is a
complete subalgebra of TA.

Proof. If follows from Definition 4.6 and Remark 6.10.

Theorem 8.8. Let A′ be a complete subalgebra of the complete Boolean
algebra A. Then:

(i) VTA′ ⊆ VTA .

(ii) For all u, v ∈ VTA′ : [[u ǫw]]V
T

A′

= [[u ǫw]]V
TA and [[u ≈ w]]V

T
A′

=

[[u ≈ w]]V
TA .

Corollary 8.9. Suppose that A′ is a complete subalgebra of A. Then,
for any restricted formula ϕ(x1, . . . , xn) in Lp (recall Definition 7.2) and

for all u1, . . . , un ∈ TA′ : [[ϕ(u1, . . . , un)]]V
T

A′

= [[ϕ(u1, . . . , un)]]V
TA .

Proof. The proof is analogous to that for [1, Corollary 1.21].

Remark 8.10. Recall from Remark 4.8 that TA2
, the twist structure for

LPT0 defined over the two-element Boolean algebra A2, coincides (up
to names) with the three-valued algebra APT0 underlying the matrix
MPT0, where 1, 1

2
and 0 are identified with (1, 0), (1, 1) and (0, 1),

respectively. Hence, the twist-valued structure VTA2 will be denoted
by VAPT0 . Since A2 is a complete subalgebra (up to isomorphisms) of
any complete Boolean algebra A then VAPT0 is a complete subalgebra
of VTA , for any TA. By Theorem 8.8, [[u ǫ v]]V

APT0 = [[u ǫ v]]V
TA and

[[u ≈ v]]V
APT0 = [[u ≈ v]]V

TA for every u, v ∈ VAPT0 and every TA. As
happens with the Boolean-valued model VA2 , the twist-valued model
VAPT0 is, in some sense, isomorphic to the standard universe V, as it
will be shown in Theorem 8.14 below.

Definition 8.11. For each x ∈ V define, by transfinite recursion on the
well-founded relation y ∈ x, the following: x̂ := {〈ŷ, 1〉 : y ∈ x}.

It is clear that x̂ ∈ VAPT0 and so x̂ ∈ VTA for any TA. Hence,
if ϕ(v1, . . . , vn) is a restricted formula in Lp and x1, . . . , xn ∈ V then

[[ϕ(x̂1, . . . , x̂n)]]V
APT0 = [[ϕ(x̂1, . . . , x̂n)]]V

TA for any TA, by Corollary 8.9.
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Lemma 8.12. Let ϕ(v1, . . . , vn) be a formula in Lp and x1, . . . , xn ∈ V.

Then, [[ϕ(x̂1, . . . , x̂n)]]V
APT0 ∈ {0, 1}.

Proof. The result is proven by induction on the complexity of ϕ. By
Definition 7.6, and taking into account that {0, 1} is a subalgebra of APT0

which is also closed under arbitrary infima and suprema, it is enough to
prove that the denotation in VAPT0 of any atomic formula of the form
x̂ ≈ ŷ or x̂ ∈ ŷ takes a value in {0, 1}. Observe that u ∈ dom(x̂) iff u = ŷ
for some y ∈ x. Thus, given x̂ and ŷ, assume the inductive hypothesis
[[ẑ ǫ ŷ]]V

APT0 ∈ {0, 1} for every ẑ ∈ dom(x̂), and [[ẑ ǫ x̂]]V
APT0 ∈ {0, 1} for

every ẑ ∈ dom(ŷ). Then:

[[x̂ ≈ ŷ]]V
A

PT0

=
∧

ẑ∈dom(x̂)

(1 →̃ [[ẑ ǫ ŷ]]V
APT0 ) ∧̃

∧
ẑ∈dom(ŷ)

(1 →̃ [[ẑ ǫ x̂]]V
APT0 ).

Using the inductive hypothesis and the fact that {0, 1} is a subalgebra

of APT0 closed under infima, it follows that [[x̂ ≈ ŷ]]V
APT0 ∈ {0, 1}.

Analogously it can be proven that [[x̂ ǫ ŷ]]V
APT0 ∈ {0, 1}.

Corollary 8.13. Let ϕ(v1, . . . , vn) be a restricted formula in Lp, and

let x1, . . . , xn ∈ V. Then, [[ϕ(x̂1, . . . , x̂n)]]V
TA ∈ {0, 1} for every A.

Proof. It follows by Lemma 8.12 and by Corollary 8.9.

Theorem 8.14. (i) For any x ∈ V and u ∈ VTA : [[u ǫ x̂]] =
∨
y∈x

[[u ≈ ŷ]].

(ii) For all x, y ∈ V:
(x ǫ y) holds in ZFC iff VTA |= (x̂ ǫ ŷ) for every A;
(x ≈ y) holds in ZFC iff VTA |= (x̂ ≈ ŷ) for every A.

(iii) The function x 7→ x̂ is one-to-one from V to VAPT0 .
(iv) For any u ∈ VAPT0 there is a (unique) x ∈ V such that VTA |=

(u ≈ x̂) for all A.
(v) For every formula ϕ(v1, . . . , vn) in Lp and all x1, . . . , xn ∈ V:

ϕ(x1, . . . , xn) holds in ZFC iff VAPT0 |= ϕ(x̂1, . . . , x̂n).
In addition, if ϕ is restricted (recall Definition 7.2), then for all x1, . . . ,
xn ∈ V we have:

ϕ(x1, . . . , xn) holds in ZFC iff VTA |= ϕ(x̂1, . . . , x̂n), for every A.

Proof. It follows by an easy adaptation of the proof of from [1]. The
only points to be considered are the following:

(i) Note that 1 ∧̃ a = a for every a ∈ TA. Then, the adaptation of
the proof of this item is immediate.



Twist-valued models for three-valued . . . 209

(ii) Both assertions are simultaneously proven by induction on
rank(y) (see Remark 7.5), where the induction hypothesis is: for any
z with rank(z) < rank(y).

(IH1) x ∈ z iff [[x̂ ǫ ẑ]]V
TA

1 = 1 for every x and A;

(IH2) x = z iff [[x̂ ≈ ẑ]]V
TA

1 = 1 for every x and A; and

(IH3) z ∈ x iff [[ẑ ǫ x̂]]V
TA

1 = 1 for every x and A.

Thus, fix x ∈ V and let A be a complete Boolean algebra. Then: x ∈ y
iff x = u for some u ∈ y iff [[x̂ ≈ û]]V

TA

1 = 1 for some u ∈ y, by (IH2)

iff
∨
u∈y[[x̂ ≈ û]]V

TA

1 = 1 iff [[x̂ ǫ ŷ]]V
TA

1 = 1 (by item (i)). This proves the
preservation of (IH1) for y. For (IH2), observe that 1 → a = a for every

a ∈ A. Hence, [[x̂ ≈ ŷ]]V
TA

1 =
∧
u∈x[[û ǫ ŷ]]V

TA

1 ∧
∧
v∈y[[v̂ ǫ x̂]]V

TA

1 = 1 iff
∧
u∈x[[û ǫ ŷ]]V

TA

1 =
∧
v∈y[[v̂ ǫ x̂]]V

TA

1 = 1 iff [[û ǫ ŷ]]V
TA

1 = 1 for every u ∈ x

and [[v̂ ǫ x̂]]V
TA

1 = 1 for every v ∈ y iff u ∈ y for every u ∈ x (by the
preservation of (IH1) for y just proved above) and v ∈ x for every v ∈ y
(by (IH3)) iff x ⊆ y and y ⊆ x iff x = y, by extensionality. This
proves the preservation of (IH2) for y. Finally: y ∈ x iff y = u for some

u ∈ x iff [[ŷ ≈ û]]V
TA

1 = 1 for some u ∈ x (by the preservation of (IH2) for

y) iff
∨
u∈x[[ŷ ≈ û]]V

TA

1 = 1 iff [[ŷ ǫ x̂]]V
TA

1 = 1 (by item (i)). This proves
the preservation of (IH3) for y.

(iii) It follows from (ii).
(iv) We first observe that, given u ∈ VAPT0 , the uniqueness of x ∈ V

satisfying the required property is an immediate consequence of item (ii)
and the properties of ≈. The existence of such x (given u) will be proved
by induction on the well-founded relation z ∈ dom(u), i.e., z ≪ u. Thus,
the induction hypothesis is as follows: for any z ∈ dom(u)

(IH) there exists y ∈ V such that [[z ≈ ŷ]]V
TA

1 = 1 for any A.

It will be shown that there exists v ∈ V such that [[u ≈ v̂]]V
TA

1 = 1, for
any A. Since 1 → a = a for every a ∈ A,

[[u ≈ v̂]]V
TA

1 =
∧

z∈dom(u)

((u(z))1 → [[z ǫ v̂]]V
TA

1 ) ∧
∧
y∈v

[[ŷ ǫ u]]V
TA

1 .

Thus, [[u ≈ v̂]]V
TA

1 = 1 iff the following two conditions hold:

(C1) (u(z))1 ≤ [[z ǫ v̂]]V
TA

1 , for any z ∈ dom(u);

(C2) 1 = [[ŷ ǫ u]]V
TA

1 =
∨
z∈dom(u)((u(z))1 ∧ [[z ≈ ŷ]]V

TA

1 ), for any y ∈ v.
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In order to fulfill (C2), consider the set v = {y ∈ V : for some z ∈

dom(u), ((u(z))1 = 1 and ([[z ≈ ŷ]]V
TA )1 = 1, for any A}. By item (ii)

and the replacement axiom, it can be shown that v ∈ V. Clearly,
[[ŷ ǫ u]]V

TA

1 = 1 for every y ∈ v and every A. Hence v satisfies condition
(C2). Finally, by (IH) it can be shown that v also satisfies (C1).

(v) It is proved by induction on the complexity ϕ. The atomic
cases follow from item (ii). The cases ϕ = ∼ψ and ϕ = (ψ # γ) for
# ∈ {∧,∨,→} are straightforward. Finally, suppose that ϕ = ∃xψ
(the case ϕ = ∀xψ follows from this and by ∼, taking into account
that ∀xψ is equivalent to ∼ ∃x∼ψ). If ϕ(x1, . . . , xn) holds in ZFC then
ψ(x, x1, . . . , xn) holds in ZFC, for some x ∈ V. By induction hypothesis,

[[ψ(x̂, x̂1, . . . , x̂n)]]V
APT0

1 = 1. This means that
∨
u∈VAPT0

[[ψ(u, x̂1, . . . ,

x̂n)]]V
APT0

1 = 1. That is, [[ϕ(x̂1, . . . , x̂n)]]V
APT0

1 = 1. Conversely, suppose

that [[ϕ(x̂1, . . . , x̂n)]]V
APT0

1 = 1. Hence,
∨
u∈VAPT0

[[ψ(u, x̂1, . . . , x̂n)]]V
APT0

1

= 1. Recalling that M = {1, 1
2
, 0} is the domain of APT0, observe that,

if ∅ 6= X ⊆ M is such that
∨

APT0
X = 1, then 1 ∈ X . From this,

[[ψ(u, x̂1, . . . , x̂n)]]V
APT0

1 = 1 for some u ∈ VAPT0 . By item (iv), there

exists x ∈ V such that [[u ≈ x̂]]V
APT0

1 = 1. Then,

1 = [[ψ(u, x̂1, . . . , x̂n]]V
APT0

1 ∧ [[u ≈ x̂]]V
APT0

1 ≤ [[ψ(x̂, x̂1, . . . , x̂n]]V
APT0

1 .

by Theorem 8.2(vii). Hence, [[ψ(x̂, x̂1, . . . , x̂n]]V
APT0

1 = 1 and so, by in-
duction hypothesis, ψ(x, x1, . . . , xn) holds in ZFC, for some x ∈ V. That
is, ϕ(x1, . . . , xn) holds in ZFC.

Now it will be shown that the Maximum Principle of Boolean-valued
models [see 1, Lemma 1.27] is also valid in twist-valued models. The
adaptation to our framework of the proof of this result found in [1] is
straightforward.

Definition 8.15. Let A be a complete Boolean algebra. Given sets
E = {ai : i ∈ I} ⊆ |A| and F = {ui : i ∈ I} ⊆ VTA , the twist mixture of
F with respect to E is the element u =

∑
i∈I ai ⊙ ui of VTA defined as

follows:7

• dom(u) =
⋃
i∈I dom(ui), and

• u(z) =
(∨

i∈I(ai∧[[z ǫ ui]]1),∼
∨
i∈I(ai∧[[z ǫ ui]]1)

)
, for any z ∈ dom(u).

7 It is worth observing that the definition of the second coordinate of u(z) will
be irrelevant.
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Lemma 8.16 (Mixing Lemma). Let {ai : i ∈ I} ⊆ |A| and {ui : i ∈
I} ⊆ VTA , and let u =

∑
i∈I ai ⊙ ui. Suppose that, for every i, j ∈ I,

ai ∧ aj ≤ [[ui ≈ uj ]]1. Then ai ≤ [[u ≈ ui]]1 for every i ∈ I.

Proof. It can be proved by a straightforward adaptation of the proof
of [1, Lemma 1.25], taking into account Theorem 8.2 items (ii), (iii)
and (vi).

The next fundamental result shows that the set of pure ZF-sentences
validated by each twist-valued structure VTA is a Henkin theory:

Lemma 8.17 (The Maximum Principle). Let A be a complete Boolean
algebra. Then, for every formula ϕ(x) in Lp(TA), there is u ∈ VTA such
that

[[∃xϕ(x)]]1 = [[ϕ(u)]]1.

In particular, if VTA |= ∃xϕ(x) then VTA |= ϕ(u) for some u ∈ VTA .

Proof. The proof is obtained by a straightforward adaptation of the
proof of [1, Lemma 1.27]. The collection X = {[[ϕ(u)]] : u ∈ VTA} is
a set, since TA is a set. By the axiom of choice, there is an ordinal α
and a set {uξ : ξ < α} ⊆ VTA such that X = {[[ϕ(uξ)]] : ξ < α},
hence [[∃xϕ(x)]]1 =

∨
ξ<α[[ϕ(uξ)]]1. For each ξ < α let aξ = [[ϕ(uξ)]]1 ∧

∼
∨
η<ξ[[ϕ(uη)]]1, and let u =

∑
ξ<α aξ ⊙ uξ. By the Mixing Lemma 8.16

and by Theorem 8.2 items (ii) and (vii) it follows that [[∃xϕ(x)]]1 =
[[ϕ(u)]]1.

Corollary 8.18. Let ϕ(x) be a formula in Lp(TA) such that VTA |=
∃xϕ(x). Then:

(i) For any v ∈ VTA there exists u ∈ VTA such that [[ϕ(u)]]1 = 1 and
[[ϕ(v)]]1 = [[u ≈ v]]1.

(ii) Let ψ(x) be a formula in Lp(TA) such that VTA |= ϕ(u) implies that
VTA |= ψ(u), for any u ∈ VTA . Then VTA |= ∀x(ϕ(x) → ψ(x)).

Proof. It is an easy adaptation of the proof of [1, Corollary 1.28], taking
into account Lemma 8.17 and Theorem 8.2 items (ii) and (vii).

The notion of core for a Boolean-valued set [see 1] can be easily
adapted to twist-valued sets:

Definition 8.19. Let u ∈ VTA . A core for u is a set v ⊆ VTA such that:
(i) [[x ǫ u]]1 = 1 for every x ∈ v; and (ii) for every y ∈ VTA such that
[[y ǫ u]]1 = 1, there is a unique x ∈ v such that [[x ≈ y]]1 = 1.
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Lemma 8.20. Any u ∈ VTA has a core.

Proof. It is an easy adaptation of the proof of [1, Lemma 1.31].

Let ∅ be the empty element of VTA . As happens with Boolean-valued
models, if u ∈ VTA is such that VTA |= ∼(u ≈ ∅) then, by the Maximum
Principle, any core of u is nonempty. From Corollary 8.18 we obtain:

Corollary 8.21. Let u ∈ VTA such that VTA |= ∼(u ≈ ∅), and let v
be a core for u. Then, for any x ∈ VTA there exists y ∈ v such that
[[x ≈ y]]1 = [[x ǫ u]]1.

From the results obtained above, one of the main results of the paper
can be established:

Theorem 8.22. All the axioms (hence all the theorems) of ZFC, when
restricted to pure ZF-languages Lp(TA) (recall Definition 7.2), are valid
in VTA , for every A.

Proof. It is a relatively easy (but arduous) adaptation of the proof
of [1, Theorem 1.33], taking into account the auxiliary results obtained
within this section, which are similar to the ones required in [1]. Indeed,
Theorem 8.2 is used in the proof of validity of several axioms of ZF,
while Theorem 8.14(v) is useful in order to establish the validity of the
infinity axiom. Finally, the notion of core, together with their properties
shown above, is used in order to state the validity of Zorn’s lemma.
Since the latter is set-theoretically equivalent to the axiom of choice, this
guarantees the validity of all the axioms of ZFC restricted to Lp(TA).

9. Twist-valued models for (PS3, ¬)

In this section the three-valued model for set theory introduced by Löwe
and Tarafder in [18] will be extended to a class of twist-valued models.

As observed in Section 7, the three-valued logic of (PS3,¬) (denoted
as (PS3, ∗) in [18]) was already considered in [10] under the name MPT.
Indeed, this logic has been independently proposed by different authors
at several times, and with different motivations.8 For instance, the same
logic was proposed in 1970 by da Costa and D’Ottaviano’s as J3. It was
reintroduced in 2000 by Carnielli, Marcos and de Amo as LFI1, and by

8 As mentioned in Section 3, LFI1◦ is another presentation of this logic.
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Batens and De Clerq as the propositional fragment of the first-order logic
CLuNs, in 2014. As observed by Batens, this logic was firstly proposed
by Karl Schütte in 1960 under the name Φv [see 5 for details and specific
references]. Each of the three-valued algebras above is equivalent, up to
language, to the three-valued algebra of Łukasiewicz three-valued logic
Ł3. Hence, these logics are equivalent to Ł3 with {1, 1

2
} as designated

values. Moreover, as it was shown by Blok and Pigozzi in [2], the class
of algebraic models of J3 (and so the class of twist structures for LPT0)
coincides with the algebraic models of Łukasiewicz’s three-valued logic
Ł3. More remarks about these three-valued equivalent logics can be
found in [5, Chapters 4 and 7].

As shown in [10, p. 407], the implication ⇒ given by

⇒ 1 1
2

0

1 1 1 0
1
2

1 1 0

0 1 1 1

(which is the same implication ⇒ of PS3 and the primitive implication of
MPT) can be defined in the language of LFI1 (hence in the language of
LPT0) as follows: ϕ ⇒ ψ := ¬ ∼(ϕ → ψ). From this, it is easy to adapt
Definition 4.6 of twist-structures for LPT0 to (PS3,¬) (see Definition 9.1
below). Hence, the logic of (PS3,¬) will be considered as defined over
the signature Σ⇒ = {∧,∨,⇒,¬}. As observed in [10, pp. 395 and 407],
the strong negation ∼ can be defined as ∼ϕ := ϕ ⇒ ¬(ϕ ⇒ ϕ), while
ϕ → ψ := ∼ϕ ∨ ψ.

Definition 9.1. Let A be a complete Boolean algebra, and let TA as
in Definition 4.5. The twist structure for (PS3,¬) over A is the algebra
TA∗ = 〈TA, ∧̃, ∨̃, ⇒̃, ¬̃〉 over Σ⇒ such that the operations ∧̃, ∨̃ and ¬̃
are defined as in Definition 4.6, and ⇒̃ is defined as follows, for every
(z1, z2), (w1, w2) ∈ TA:

(z1, z2) ⇒̃ (w1, w2) = (z1 → w1, z1 ∧ ∼w1).

By considering (as mentioned above) ∼ and → as derived connectives
in TA∗ , it is clear that ∼̃(z1, z2) = (∼z1, z1) and (z1, z2) →̃ (w1, w2) =
(z1 → w1, z1 ∧ w2). Hence, the original operations of Definition 4.6 can
be recovered in TA∗ .

As it will be discussed below, we will adopt a technique different
to the one used in [18] in order to show the satisfaction of ZFC in the
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twist-valued models based on TA∗ . However, it is interesting to observe
that a nice property of (PS3,¬) is preserved by any TA∗ . Indeed, in [18]
the following notion of reasonable implication algebras was proposed in
order to provide suitable lattice-valued model for ZF:

Definition 9.2. An algebra A = 〈A,∧,∨,⇒, 0, 1〉 is an reasonable im-

plication algebra if the reduct 〈A,∧,∨, 0, 1〉 is a complete lattice with
bottom 0 and top 1, and ⇒ is a binary operator satisfying the following,
for all z, w, u ∈ A:

(P1) z ∧ w ≤ u implies that z ≤ (w ⇒ u);
(P2) z ≤ w implies that (u ⇒ z) ≤ (u ⇒ w);
(P3) z ≤ w implies that (w ⇒ u) ≤ (z ⇒ u).

Proposition 9.3. For every complete Boolean algebra A, the twist
structure TA∗ for (PS3,¬) is a reasonable implication algebra such that
0 = (0, 1) and 1 = (1, 0).9

Proof. Let (z1, z2), (w1, w2), (u1, u2) ∈ TA.
(P1): Assume that (z1, z2) ∧̃ (w1, w2) ≤ (u1, u2). That is, (z1 ∧

w1, z2 ∨ w2) ≤ (u1, u2). Then z1 ∧ w1 ≤ u1 and z2 ∨ w2 ≥ u2. From
z1 ∧ w1 ≤ u1 it follows that z1 ≤ w1 → u1. Besides, since z1 ∨ z2 = 1
then ∼ z2 ≤ z1 ≤ w1 → u1. Hence z2 ≥ ∼(w1 → u1) = w1 ∧ ∼u1. From
this, (z1, z2) ≤ (w1 → u1, w1 ∧ ∼u1) = (w1, w2) ⇒̃ (u1, u2).

(P2): Assume that (z1, z2) ≤ (w1, w2). Then z1 ≤ w1, hence u1 →
z1 ≤ u1 → w1 and so u1∧∼ z1 = ∼(u1 → z1) ≥ ∼(u1 → w1) = u1∧∼w1.
This means that (u1, u2) ⇒̃ (z1, z2) ≤ (u1, u2) ⇒̃ (w1, w2).

(P3): It is proved analogously, but now taking into account that
z1 ≤ w1 implies that w1 → u1 ≤ z1 → u1.

Now, the three-valued model of set theory presented in [18] will be
generalized to twist-valued models over any complete Boolean algebra.
The structure VTA∗ is defined as the structure VTA given in Definition 7.1.
This does not come as a surprise, given that the domain of TA and TA∗ is
the same, the set TA. However, VTA and VTA∗ are different as first-order
structures, namely, the way in which the formulas are interpreted. The
only difference, besides using different implications in the underlying
logics, will be in the form in which the predicates ǫ and ≈ are inter-
preted. Thus, the twist truth-value [[ϕ]]V

T
A∗

of a sentence ϕ in VTA∗ will

9 To be rigorous, the ¬-less reduct of TA∗ expanded with 0 and 1 is a reasonable
implication algebra.
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be defined according to the recursive clauses in Definition 7.6, with the
following difference: any occurrence of the operator →̃ must be replaced
by the operator ⇒̃. Note that the clause interpreting ∼ϕ is now derived
from the others, taking into account the observation after Definition 9.1.

In Theorem 9.4 below it is stated that every twist-valued structure
VTA∗ is a model of ZFC. This constitutes a generalization of [18, Corol-
lary 11]. Indeed, instead of taking just a three-valued model (generated
by the two-element Boolean algebra), we obtain a class of models, one for
each complete Boolean algebra. Moreover, we also prove that these gen-
eralized models (including, of course, the original Löwe-Tarafder model)
satisfy, in addition, the axiom of choice.

The proof of validity of ZF given in [18, Corollary 11] is strongly
based on the particularities of the three-valued algebra (PS3,¬).10 This
forces us to adapt, to this setting, the proof for twist-valued models over
TA given in the previous sections (which, by its turn, is adapted from
the proof for Boolean-valued sets). Such adaptations from TA to TA∗ are
immediate, and all the results and definitions proposed in the previous
sections work fine for TA∗ . Hence, we obtain the second main result of
the paper:

Theorem 9.4. All the axioms (hence all the theorems) of ZFC, when
restricted to pure ZF-languages Lp(TA), are valid in VTA∗ , for any A.

Remark 9.5. Observe that, in [18, Corollary 11], it was proved that PS3 is
a model of ZF, not of ZFC. Thus, Theorem 9.4 improves the above men-
tioned result in two ways: it is generalized to arbitrary Boolean algebras
and, in addition, it proves that the axiom of choice AC is also satisfied
by all that models, including the original three-valued structure PS3.

10. ZFLPT0 as a paraconsistent set theory

After proving that the two classes of twist-valued models proposed here
are models of ZFC, in this section the paraconsistent character of both
classes of models will be investigated. It will be shown, at the end of
Subsection 10.1, that twist-valued models over TA (that is, over the logic

10 For instance, the fact that expressions like [[u ≈ v]] ⇒ [[u ǫ w]] can only take
either the value 0 or 1 is used several times in [18]. Observe that, in TA∗ , the value of

z ⇒̃ w is always of the form (a, ∼ a) for some a ∈ |A|. Hence [[u ≈ v]]V
T

A∗

is always of
the form (a, ∼ a) for some a ∈ |A|.
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LPT0) are “more paraconsistent” that the ones over TA∗ (that is, defined
over (PS3,¬)).

Recall from Theorem 8.2(i) that [[u ≈ u]] ∈ DA for every u in every
twist-valued model VTA . The interesting fact of ZFLPT0 is that it allows
“inconsistent” sets, that is, elements of VTA such that the value of (u 6≈ u)
is also designated. Observe that 1 = (1, 0), 1

2
= (1, 1) and 0 = (0, 1) are

defined in every TA. Since z ∈ DA iff z = (1, a) for some a ∈ A, it follows
that z ∈ DA iff 1

2
≤ z (recalling the partial order for TA considered in

Remark 6.10).

Proposition 10.1. There exists u ∈ VTA such that [[u ≈ u]] = 1
2
.

Proof. Let w be any element of VTA , and let u = {〈w, 1
2
〉}. Since

[[w ≈ w]] ∈ DA then [[w ǫu]] = u(w) ∧̃ [[w ≈ w]] = 1
2

∧̃ [[w ≈ w]] = 1
2
. From

this, [[u ≈ u]] = u(w) →̃ [[w ǫu]] = 1
2

→̃ 1
2

= 1
2
.

From the last result it can be proven that ZFLPT0 is strongly para-
consistent, in the sense that there is a contradiction which is valid in the
logic:

Corollary 10.2. Let σ = ∀x(x ≈ x). Then VTA |= σ ∧ ¬σ.

Proof. Let VTA be a twist-valued model for ZFLPT0. As observed above,
1
2

≤ z for every z ∈ DA. By Theorem 8.2(i), [[v ≈ v]] ∈ DA for every
v in VTA and so 1

2
≤ [[v ≈ v]] for every v, that is, 1

2
≤ [[∀x(x ≈ x)]], by

Definition 7.6. On the other hand, [[∀x(x ≈ x)]] ≤ [[u ≈ u]] = 1
2

for u
as in Proposition 10.1. This shows that [[σ]] = [[∀x(x ≈ x)]] = 1

2
and

so [[¬σ]] = ¬̃ [[σ]] = 1
2
. Hence [[σ ∧ ¬σ]] = [[σ]] ∧̃ [[¬σ]] = 1

2
, a designated

value.

Corollary 10.3. There are inconsistent sets in ZFLPT0 for any TA:
VTA |= ∃x((x ≈ x) ∧ ¬(x ≈ x)).

Proof. An easy consequence of Corollary 10.2 and the validity of axiom
(Ax¬∃).

Since the extensionality axiom of ZF is satisfied by every twist-valued
model VTA for ZFLPT0, and by virtue of Corollary 8.18(ii), [[u ≈ v]] ∈
DA iff u and v have the same elements, that is: for every w in VTA ,
[[w ǫu]] ∈ DA iff [[w ǫ v]] ∈ DA. However, nothing guarantees that u and
v will have the same ‘non-elements’, namely: it could be possible that
[[¬(w ǫu)]] ∈ DA but [[¬(w ǫ v)]] /∈ DA, for some w in VTA , even when
[[u ≈ v]] ∈ DA. Given such w, consider the property ϕ(x) := ¬(w ǫx),
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meaning that “w is a non-element of x”. Then, this situation shows that
VTA 6|= ((u ≈ v) ∧ ϕ(u)) → ϕ(v), which constitutes a violation of the
Leibniz’s Law for the equality predicate ≈ in ZFLPT0.

Theorem 10.4. The formula ϕ(x) := ¬(w ǫx) is such that the Leibniz’s
Law fails for it in every VTA , namely: VTA 6|= ∀x∀y((x ≈ y) ∧ ϕ(x) →
ϕ(y)).

Proof. Let VTA be a twist-valued model for ZFLPT0, and let ∅ be the
empty element of VTA . Observe that w = {〈∅, 1〉}, u = {〈w, 1

2
〉} and

v = {〈w, 1〉} belong to every model VTA . Now, [[∅ ǫw]] = w(∅) ∧̃ [[∅ ≈
∅]] = 1 ∧̃ 1 = 1. From this, [[w ≈ w]] = w(∅) →̃ [[∅ ǫw]] = 1 →̃ 1 = 1

and so [[w ǫu]] = u(w) ∧̃ [[w ≈ w]] = 1
2

∧̃ 1 = 1
2
. On the other hand,

[[w ǫ v]] = v(w) ∧̃ [[w ≈ w]] = 1 ∧̃ 1 = 1. This implies that [[u ≈ v]] =
(u(w) →̃ [[w ǫ v]]) ∧̃ (v(w) →̃ [[w ǫu]]) = ( 1

2
→̃ 1) ∧̃ (1 →̃ 1

2
) = 1

2
.

But [[ϕ(u)]] = [[¬(w ǫu)]] = ¬̃ [[w ǫu]] = ¬̃ 1
2

= 1
2

and [[ϕ(v)]] =
[[¬(w ǫ v)]] = ¬̃ [[w ǫ v]] = ¬̃ 1 = 0. Thus, [[((u ≈ v) ∧ ϕ(u)) → ϕ(v)]] =
( 1

2
∧̃ 1

2
) →̃ 0 = 0, which implies that VTA 6|= ∀x∀y((x ≈ y) ∧ ϕ(x) →

ϕ(y)).

It is important to observe that the failure of the Leibniz’s Law in VTA

shown in Theorem 10.4 does not contradict Theorem 8.2(vii): indeed,
what Theorem 8.2(vii) states is the validity of the Leibniz’s Law in VTA

for every formula ϕ(x) in the pure ZF-language Lp(TA). On the other
hand, the formula ϕ(x) found in Theorem 10.4 which violates the Leib-
niz’s Law in VTA contains an occurrence of the paraconsistent negation
¬, that is, it does not belong to Lp(TA). In that example, two sets
which are equal have different ‘non-elements’, where ‘non’ refers to the
paraconsistent negation ¬.

Besides the failure of the Leibniz’s Law for the full language, ZFLPT0

does not validate the bounded quantification properties (recall Defini-
tion 8.5). Indeed, as shown in Theorem 8.6, these important properties
hold in the pure ZF-language. However, for formulas containing the
paraconsistent negation, that result does not holds in general:

Proposition 10.5. There is u ∈ VTA and formulas ϕ(x) and ψ(x) such
that the bounded quantification properties UBQu

ψ and EBQu
ϕ fail in VTA .

Proof. It is enough to prove the failure of EBQuϕ given that the failure
of UBQuψ is obtained from it by using ψ(x) := ∼ϕ(x) and the duality
between infimum and supremum through the Boolean complement ∼.
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Thus, let VTA and let w = {〈∅, 1〉}, v = {〈w, 1
2
〉}, y = {〈w, 1〉}

and u = {〈y, 1〉}. Let ϕ(x) := ¬(w ǫx). As in the proof of Theo-
rem 10.4 it can be proven that [[v ≈ y]] = [[ϕ(v)]] = 1

2
and [[ϕ(y)]] =

0. Hence
∨
x∈dom(u)((u(x))1 ∧ [[ϕ(x)]]1) = (u(y))1 ∧ [[ϕ(y)]]1 = 0 while

[[∃x ǫ uϕ(x)]]1 = [[∃x(x ǫ u ∧ ϕ(x))]]1 =
∨
v′∈VTA

∨
x∈dom(u)((u(x))1∧[[v′ ≈

x]]1 ∧ [[ϕ(v′)]]1) =
∨
v′∈VTA ((u(y))1 ∧ [[v′ ≈ y]]1 ∧ [[ϕ(v′)]]1) ≥ (u(y))1 ∧

[[v ≈ y]]1 ∧ [[ϕ(v)]]1 = 1. This means that [[∃x ǫ uϕ(x)]]1 = 1 6= 0 =∨
x∈dom(u)((u(x))1 ∧ [[ϕ(x)]]1).

It is worth noting that the limitations of ZFLPT0 pointed out above
(namely, the Leibniz’s Law and the bounded quantification properties
for formulas containing the paraconsistent negation) are also present in
Löwe-Tarafder’s model [18].

10.1. Considering a consistency predicate for sets

In Corollary 10.3 it was shown that there are inconsistent sets in ZFLPT0.
The notion of ‘inconsistent’ set considered above was defined in seman-
tical terms, namely: a set u is inconsistent in a twist-valued model when
the value of (u 6≈ u) is designated or, equivalently, when the value of
(u ≈ u) is 1

2
. The notion of consistent and inconsistent sets can be for-

malized in the language, in the same way as consistent and inconsistent
sentences are expressed by means of the consistency and inconsistency
connectives in LFIs [see, e.g., 5]. As mentioned in Section 3, in [4]
was presented a family of paraconsistent set theories based on diverse
LFIs, such that the original ZF axioms were slightly modified in order
to deal with a unary predicate C(x) representing that ‘the set x is con-
sistent’. The consistency connective ◦ is primitive in mbC, but it is
definable as ◦ϕ := ∼(ϕ∧ ¬ϕ) in any axiomatic extension of mbC which
proves the schema (ciw): ◦ϕ ∨ (ϕ ∧ ¬ϕ) such as LPT0. In the same
way, the consistency predicate C(x) can be expressed, in extensions of
ZFmbC, in terms of a formula of ZFmbC without using the predicate
C, and the same happens with the inconsistency predicate ¬C(x). For
instance, ZFmCi is based on mCi, an extension of mbC in which ¬ ◦ϕ
is equivalent to ϕ ∧ ¬ϕ. Thus, ¬C(x) was defined to be equivalent
to (x ≈ x) ∧ ¬(x ≈ x) in ZFmCi. From this, ¬C(x) is equivalent to
¬ ◦(x ≈ x) in ZFmCi. Given that LPT0 is an extension of mCi, if
a consistency predicate for sets were added to the language of ZFLPT0

then it seems reasonable to require the equivalence between ¬C(x) and
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(x ≈ x) ∧ ¬(x ≈ x) in ZFLPT0.11 Hence, ¬C(x) would be equivalent to
¬ ◦(x ≈ x) in ZFLPT0. But ◦C(x) is derivable ZFmCi, so it would be
valid in ZFLPT0.12 From this C(x) ↔ ◦(x ≈ x) would be also derivable
in QLPT0 and so it would be valid in ZFLPT0 expanded with a suitable
predicate C denoting ‘consistency for sets’. This motivates the following:

Definition 10.6. Define in ZFLPT0 the consistency predicate for sets,
C(x), as follows: C(x) := ∼ ¬(x ≈ x).

According to the previous discussion, C(x) should be equivalent to
◦(x ≈ x) in ZFLPT0. But ◦ϕ is equivalent to ∼(ϕ ∧ ¬ϕ) in LPT0, and
(x ≈ x) is valid in ZFLPT0, hence C(x) should be equivalent to ∼ ¬(x ≈ x)
in ZFLPT0, which justifies Definition 10.6. If ¬C(x) denotes that x is
inconsistent then, clearly, C(u) is designated in a twist-valued models iff
the value of (u ≈ u) is different to 1

2
, while ¬C(u) is designated iff the

value of (u ≈ u) is 1
2
.

Proposition 10.7. The consistency predicate C(x) is non-trivial: there
exist v, w ∈ VTA such that [[C(v)]] = 1 and [[C(w)]] = 0. Moreover,
[[C(u)]] 6= 1

2
for every u in VTA . Hence, the sentences ‘x is consistent’

and ‘x is inconsistent’ are consistent, that is: VTA |= ∀x ◦C(x) and
VTA |= ∀x ◦ ¬C(x). Moreover, both formulas are provable in QLPT0.

Proof. Let VTA be a twist-valued model for ZFLPT0, and consider v =
{〈∅, 1〉} and w = {〈∅, 1

2
〉} in VTA . It is easy to see that [[C(v)]] = 1 and

[[C(w)]] = 0. On the other hand, for every u in VTA it is the case that
[[C(u)]] = ∼̃z for z = [[¬(u ≈ u)]]. Hence [[C(u)]] = (∼ z1, z1) 6= 1

2
, for

every u. By recalling that ◦ϕ := ∼(ϕ ∧ ¬ϕ), it follows that VTA |= ◦ϕ
iff [[ϕ]] 6= 1

2
, hence ◦C(x) and ◦ ¬C(x) are valid in ZFLPT0. Finally, it is

easy to see that the formulas ◦ ∼ϕ and ◦ ¬ ∼ϕ are valid in APT0, for any
formula ϕ (recall Definition 4.2), hence they are provable in LPT0, by
Theorem 4.4. From this, the formulas ◦C(x) and ◦ ¬C(x) are provable
in QLPT0.

Remarks 10.8. (1) Despite ¬C(x) := ¬ ∼ ¬(x ≈ x) being equivalent to
(x ≈ x) ∧ ¬(x ≈ x), the former formula is consistent in ZFLPT0 and
in QLPT0 (as stated in Proposition 10.7), while the latter is not: if
[[u ≈ u]] = 1

2
then [[(u ≈ u)∧¬(u ≈ u)]] = 1

2
. Analogously, by Theorem 4.4

11 In this sense, Corollary 10.3 states the existence of inconsistent sets in ZFLPT0.
12 Indeed, the proof in ZFmCi of ◦ C(x) given in [4, Proposition 3.10] can be done

in QLPT0, assuming the axioms for C taken from ZFmCi.
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it follows that ◦((x ≈ x) ∧¬(x ≈ x)) is not a theorem of QLPT0, despite
◦ ¬C(x) being a theorem.13

(2) It is worth noting that the failure of the Leibniz’s Law in ZFLPT0

for a formula containing the paraconsistent negation, pointed out in the
proof of Theorem 10.4, involves a set u = {〈w, 1

2
〉} (where w = {〈∅, 1〉}

and ∅ is the empty element of VTA ) which is inconsistent. Indeed, it is
easy to see that [[u ≈ u]] = 1

2
, hence [[C(u)]] = 0. This suggests a possible

way to deal with the Leibniz’s Law in the full language of ZFLPT0, that is,
allowing occurrences of the paraconsistent negation in the formula under
consideration. It would be enough assuming that the involved sets are
consistent, namely: (x ≈ y) ∧C(x) ∧C(y) ∧ϕ(x) → ϕ(y). Thus, it is an
interesting question how to define a consistency predicate satisfying the
latter property. We will return to this point in Subsection 10.2.

Finally, we can show now that twist-valued models over TA (that
is, over the logic LPT0) are “more paraconsistent” than the ones over
TA∗ (that is, defined over (PS3,¬)). Indeed, as we have seen, ZFLPT0

allow us to define in every twist-valued model VTA an “inconsistent set”,
namely u, such that (u ≈ u) ∧ ¬(u ≈ u) holds. In fact, any u = {〈w, 1

2
〉}

is such that [[u ≈ u]] = 1
2

→̃ 1
2

= 1
2
. The difference, of course, rests

on the nature of the implication operator considered in each case: in
(PS3,¬) the value of (u ≈ u) is always 1, since 1

2
⇒̃ 1

2
= 1. Hence,

¬(u ≈ u) always gets the value 0. The same holds in any model over
reasonable implicative algebras considered by Löwe and Tarafder [see
18, Proposition 1]. Because of this, within these models every set u is
consistent; that is, the value of the formula C(u) as in Definition 10.6 is
designated.

10.2. Discussion: ZFLPT0 and the failure of the Leibniz’s Law

At first sight, having a (paraconsistent) set theory as ZFLPT0 in which
the Leibniz’s Law is not satisfied for every formula ϕ(x) that represents
a property could seem to be a bit disappointing. After all, ZF is defined
as a first-order theory with equality, which pressuposes the validity of
the Leibniz’s Law.

The Leibniz’s Law states that the equality predicate preserves logical
equivalence, namely: (a ≈ b) → (ϕ(a) ↔ ϕ(b)) for every formula ϕ(x)

13 This is a consequence of the fact that QLPT0 and ZFLPT0 are not self-
extensional: in general, the paraconsistent negation does not preserve logical equiva-
lence.
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(clearly this can be generalized to formulas with n ­ 1 free variables,
assuming

∧n
i=1(ai ≈ bi)). In first-order theories based on classical logic,

such as ZF, it is enough to require that this property holds for every
atomic formula, and so the general case is proven by induction on the
complexity of ϕ. Of course this proof cannot be reproduced in QLPT0,
since, as mentioned above, ¬ is not congruential: ϕ(a) ↔ ϕ(b) does not
imply that ¬ϕ(a) ↔ ¬ϕ(b) in general (and this is the key step in the
proof by induction). The solution is to require the validity of the Leib-
niz’s Law for every ϕ from the beginning, adjusting accordingly the class
of interpretations for QLPT0 expanded with equality [see 12]. However,
the situation for ZFLPT0 is quite different: because of the extensional-
ity axiom, the definition of the interpretation of the equality predicate
depends strongly on the interpretation of the membership predicate. In
fact, the interpretation of both predicates is simultaneously defined by
transfinite recursion, according to Definition 7.6.

The validity of the Leibniz’s Law, in the case of Boolean-set mod-
els for ZFC, is proven as a theorem. The simultaneous definition of the
equality and membership predicates is designed to fit exactly the require-
ments of the extensionality axiom: two individuals (sets) are identical
provided that they have the same elements. From this, it is proven by
induction of the complexity of ϕ(x) that [[u ≈ v]] ∧ [[ϕ(u)]] ≤ [[ϕ(v)]] in
every Boolean-valued model. As we have seen in Theorem 8.2(vii), the
same holds in twist-valued models w.r.t. the first coordinate, namely:
[[u ≈ v]]1 ∧ [[ϕ(u)]]1 ≤ [[ϕ(v)]]1. But then, it is required that this property
just holds for ‘classical’ formulas, that is, formulas ϕ without occurrences
of the paraconsistent negation ¬. The explanation for this fact is sim-
ple, from the technical point of view: assuming that the property above
holds for ϕ then, when considering ¬ϕ, the value of [[¬ϕ(u)]]1 is [[ϕ(u)]]2,
and we don’t have enough information about the relationship between
[[ϕ(u)]]2, and [[ϕ(v)]]2. The example given in the proof of Theorem 10.4
shows that it is impossible to satisfy the Leibniz’s Law in ZFLPT0 for for-
mulas containing the paraconsistent negation, hence this is an unsolvable
problem with the current definitions.

As mentioned right before Theorem 8.6, the Leibniz’s Law is a suf-
ficient condition to ensure the validity of the bounded quantification
properties in Boolean-valued models. These properties are crucial in
order to prove the validity of the axioms of ZF w.r.t. Boolean-valued
semantics. Since the Leibniz’s Law is not valid  in general  in ZFLPT0

for formulas containing the paraconsistent negation ¬, it should be ex-
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pected that some instances of schema axioms of ZF (such as separation,
replacement or regularity) involving formulas containing occurrences of
¬ could fail to hold in ZFLPT0. The same argument applies mutatis

mutandis to the three-valued model of ZF based on (PS3,¬) presented
in [18].

The definition in ZFLPT0 of a suitable ‘consistency’ predicate C(x)
for sets, as discussed in Subsection 10.1, would open the possibility
to develop a paraconsistent set theory extending ZFC which, in addi-
tion could satisfy the Leibniz’s Law, bounded quantification and all the
schema axioms of ZFC allowing formulas with paraconsistent negation.
This would be possible by requiring that the sets involved in the axioms
be consistent (that is, by assuming C(u) for every set u occurring in the
instance of the axiom being applied), as hinted in Remark 10.8 for the
Leibniz’s Law. This way of ‘locally’ recovering ZFC in the full language
by suitable assumptions of C(x) is analogous to the ‘local’ recovering of
classical logic w.r.t. the paraconsistent negation inside LFIs by assum-
ing the consistency ◦ϕ of certain sentences ϕ inside a derivation. This
aproach to paraconsistent set theory, along the same lines as the one
presented in [4] (in which, for instance, the regularity axiom only applies
to consistent sets), deserves future research.

The failure of the Leibniz’s Law is not necessarily a predicament.
Although it is commonly accepted that any relation of identity must
comply with the Leibniz’s Law, some special cases of identity are exten-
sively discussed since the question was posed by John Locke in his Essay

Concerning Human Understanding of 1689 [see 15 for details)]. This
question has unfoldings in theoretical computer science and foundations
of Artificial Intelligence. Some computer ontology theorists adopt the
thesis that it is possible for two individuals to be identical in one circum-
stance but different in another. This theoretical possibility is relevant
for developing higher foundational computer ontologies [see, e.g., 16].

Within the present approach to axiomatic set theory, paraconsis-
tent situations such as the existence of ‘inconsistent’ sets u satisfying
¬(u ≈ u), or the existence of a set being simultaneously an element
and a non-element of another set seems to be irreconcilable with the
fullfillment of the Leibniz’s Law for formulas behind the ‘classical’ lan-
guage. Because of this, the predicate ≈ in ZFLPT0 should be considered as
representing ‘indiscernibility by pure ZF-properties’, exactly as happens
with Boolean-valued models for ZF. In this manner (u ≈ v) implies
that, besides having the same elements, u and v have, for instance, the
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same ‘nonc-elements’, where ‘nonc’ stands for the classical negation ∼.
That is, ∀w(∼(w ǫu) ↔ ∼(w ǫ v)) is a consequence of (u ≈ v). On the
other hand, as it was shown in Theorem 10.4, (u ≈ v) does not imply (in
general) that u and v have the same ‘non-elements’, where ‘non’ stands
for the paraconsistent negation ¬: ∀w(¬(w ǫu) ↔ ¬(w ǫ v)) is not a
consequence of (u ≈ v).

Instead of being regarded as discouraging, the fact that (u ≈ v) does
not necessarily imply that u and v have the same ‘non-elements’ can be
seen as an auspicious property, because it can be a way to circumvent
undesirable consequences of ‘non-elements’, as it happens with the well-
known Hempel’s Ravens Paradox: evidence, differently from proof, for
instance, has its own idiosyncratic properties. This point, however, will
be left for further discussion.

11. Concluding remarks

In this paper, we introduce a generalization of Boolean-valued models of
set theory to a class of algebras represented as twist-structures, defining
a class of models for ZFC that we called twist-valued models. This class
of models is based on a three-valued paraconsistent logic called LPT,
which was extensively studied in the literature of paraconsistent logics
under different names and signatures as, for example, the well-known
da Costa and D’Ottaviano’s logic J3 and the logic LFI1 [cf. 8]. As it
was shown by Blok and Pigozzi in [2], the class of algebraic models of
J3 (hence, the class of twist structures for LPT0) coincides with the
algebraic models of Łukasiewicz three-valued logic Ł3.

With small changes, in Section 9 the twist-valued models for LPT0

were adapted in order to obtain twist-valued models for (PS3,¬), the
three-valued paraconsistent logic studied by Löwe and Tarafder in [18]
as a basis for paraconsistent set theory. Thus, their three-valued alge-
braic model of ZF was extended to a class of twist-valued models of ZF,
each of them defined over a complete Boolean algebra. In addition, it
was proved that these models (including the three-valued model over
(PS3,¬)) satisfy, in addition, the axiom of choice. Moreover, it was
shown that the implication operator → of LPT0 is, in a sense, more
suitable for a paraconsistent set theory than the one ⇒ of PS3: it allows
inconsistent sets (i.e., [[(w ≈ w)]] = 1

2
for some w, see Proposition 10.1).

It is worth noting that → does not characterize a ‘reasonable implication
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algebra’ (recall Definition 9.2): indeed, 1 ∧ 1
2

≤ 1
2

but 1 6≤ 1
2

→ 1
2

= 1
2
.

This shows that reasonable implication algebras are just one way to
define a paraconsistent set theory.

Despite having the same limitative results than Löwe-Tarafder’s
model (that is, the debatable failure of Leibniz’s Law and the bounded
quantification property for formulas containing the paraconsistent nega-
tion, recall Section 10) we believe that ZFLPT0 has a great potential as
a paraconsistent set theory. In particular, the formal properties that a
consistency predicate C(x) could have and the axiomatization of ZFLPT0,
are topics that deserve to be further investigated, especially towards the
problem of the validity of independence results in paraconsistent set
theory.
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