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ABSTRACT Recently, there has been much discussion of ‘fair machine learning’: fairness in data-
driven decision-making systems (which are often, though not always, made with assistance from
machine learning systems). Notorious impossibility results show that we cannot have everything
we want here. Such problems call for careful thinking about the foundations of fair machine learn-
ing. Sune Holm has identified one promising way forward, which involves applying John
Broome’s theory of fairness to the puzzles of fair machine learning. Unfortunately, his application
of Broome’s theory appears to be fatally flawed. This article attempts to rescue Holm’s central
insight – namely, that Broome’s theory can be useful to the study of fair machine learning – by
giving an alternative application of Broome’s theory, which involves thinking about fair machine
learning in counterfactual (as opposed to merely statistical) terms.

1. Introduction

Recently, there has been much discussion of ‘fair machine learning’: fairness in data-
driven decision-making systems (which are often, though not always, made with assis-
tance from machine learning systems).1 The type of decision making under discussion
and the reasons for the controversy surrounding it are exemplified by COMPAS,2 soft-
ware that predicts the likelihood that a defendant will commit a crime in the future on
the basis of 137 data points about them.3 These predictions factor into high-stakes deci-
sions, such as those relating to setting bond amounts and determining criminal
sentences.4

A bombshell report by ProPublica in 2016 found that COMPAS, despite not collecting
data directly about defendants’ race, ‘was particularly likely to falsely flag black defendants
as future criminals, wrongly labeling them this way at almost twice the rate as white defen-
dants’.5 ProPublica concluded from this that COMPAS is biased against Black
defendants. Northpointe (now equivant), the company that developed COMPAS, saw
things differently. They responded that it is wrong to infer that the system is biased against
Black defendants from the fact that it has a higher false positive rate for Black defendants.
This, they claim, is because unequal false positive rates6 between groups is not proper evi-
dence of bias.7 According to them, we should instead look at predictive values – such as
positive predictive value, that is, the rate at which those who are predicted to reoffend actu-
ally go on to reoffend8 – which COMPAS does equalize across racial lines.9

Ever since, one major theme of the discussion over fair machine learning has been
whether fairness demands that data-driven decision systems satisfy ideals of error parity
(ProPublica’s preferred standard) – that is, having similar false positive and/or negative
rates across groups of interest (e.g. racial and ethnic groups)10 – or predictive parity
(Northpointe’s preferred standard) – that is, having similar positive and/or negative
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predictive values across groups of interest.11 As various impossibility results have shown,
it is typically impossible for a system to simultaneously satisfy both types of these ideals, so
we seem to have to choose between them.12

Sune Holm suggests that we can deploy a well-established theory of fairness – namely,
John Broome’s theory of fairness13 – to see our way through this thicket.14 Holm is right
that Broome’s theory has much to offer. However, Holm’s application of Broome’s theory
has significant shortcomings.15 That is where this article comes in: it provides an applica-
tion of Broome’s theory that avoids the pitfalls that Holm’s falls into. Among the upshots
of this new application is the idea that proper thinking about fair machine learning will
involve resisting the tendency to think about fair machine learning in merely statistical
terms, which is typically how parity criteria – that is, both error parity and predictive
parity – are employed. Instead, we must, as some have proposed,16 think about these
issues in different – for instance, counterfactual – terms.

The article begins with an introduction to Broome’s theory of fairness and Holm’s
application of it. It then presents two criticisms of Holm’s application of Broome’s theory.
It next formulates an application of Broome’s theory that evades these problems. The arti-
cle concludes by taking stock of what this new application of Broome’s theory has to offer
to our understanding of fair machine learning.

2. Ground Clearing

2.1. Broome on Fairness

The heart of Broome’s theory17 is the:

Fairness Principle: ‘fairness requires that claims should be satisfied in proportion
to their strength’.18

While the bit of his theory that applies to our discussion has to do with circumstances
where the Fairness Principle cannot be satisfied, it will be helpful to first clarify what it
demands.

Begin with the idea of a claim. It is helpful to think of ‘claims’, as it appears in the Fair-
ness Principle, as a placeholder for any reasons to give a candidate a good which are
grounded in ‘duties owed to the candidate herself’.19 Broome does not offer a general theory
of claims but does give some examples: needs, general rights, and debts of gratitude.20 At
the level of abstraction we are working at, the general theory of claims – whatever it might
turn out to be – is largely irrelevant to applying Broome’s theory to the matters at hand, so
it does not need to be discussed any further for present purposes.

Turning now to the idea of satisfying claims in proportion to their strength, it is helpful
for what comes later to understand this as involving the following four intuitive ideas.
First, claims can be stronger or weaker. For instance, if some people are hungry and sim-
ilar in all relevant respects except that one has more need than the others, then it makes
intuitive sense to say that this particularly needy person has a stronger claim to food that
is being given out. Second, when it comes to claims of similar strength, similarly strong
claims should – from the perspective of fairness – enjoy similar levels of claim satisfaction.
Third, those with stronger claims should get higher levels of claim satisfaction than those
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with weaker claims. Fourth, higher levels of satisfaction should be proportionate to the
strength of claims (though we should perhaps not take ‘proportion’ too precisely).21

Importantly for our discussion, there are cases where hewing to the fairness principle is
not, all things considered, the right thing to do. Some goods, such as kidneys, are non-
divisible. And if we have a kidney and two individuals with equally strong claims to it, it
is clear that we should distribute the kidney, thereby violating the fairness principle.

Broome is happy to admit this, as it is not the case that the only normatively loaded thing
to say about claims is that they should be satisfied in proportion to their strength. He thinks
that fairness demands this. But he also thinks that claims should be satisfied; this is what good-
ness demands.22 In the case at hand, it is clear that goodness and fairness do not coincide.
Indeed, Broome readily admits that there can be tension between goodness and fairness:
sometimes we must sacrifice some goodness to be fair, and sometimes we must sacrifice
some fairness to be good.

In situations such as the kidney case – where fairness must yield to goodness – we can
still ‘meet… the requirement of fairness to some extent’.23 Indeed, we can achieve a ‘sur-
rogate’24 satisfaction of fairness by, for example, holding a lottery where the objective
chances of receiving the good is proportional to the strengths of claims.25 If we distribute
the good, we will, by the lights of the fairness principle, act unfairly. But to act in accor-
dance with the fairness principle would be wrong anyhow. In situations like these, the sur-
rogate satisfaction of fairness is to be our guiding light in the compromise between fairness
and goodness.

2.2. Holm on Broome’s Theory

Holm sees the idea of the surrogate satisfaction of fairness as ripe for application to debates
in fair machine learning. His sense is that the parity criteria are on to something, as both
can be seen as drawing on the intuition embodied in the fairness principle.

Ideals of error parity can be seen as demanding that those with similar claims to a good
(say, the innocent with respect to being found not guilty) should not have different
chances of receiving the good due to, for example, belonging to different racial groups.
To illustrate further, one’s chance of a false positive – say, being found guilty when one
is innocent – should not be different for a Black defendant and a White defendant just
because one is Black and the other White.

Something similar can be said of ideals of predictive parity: actuarial predictions of, say,
being 10% likely to be in a car crash in the next year should not more closely track the fre-
quency with which one gets into car accidents simply because one belongs to one group
(say, Black drivers) and not another (say, White drivers).

Holm goes on to argue that Broome’s theory favors ideals of error parity over those of
predictive parity. His reasons will not concern us here; the debate over which parity crite-
rion is favored by Broome’s theory is beyond the scope of this article. Instead, what will
concern us is how Holm interprets the criteria while adopting a Broomean point of view.

Holm’s account relies on the crucial assumption that, as Castro and Loi put it, the ‘par-
ity criteria (applied to the proper subset of candidates and goods) ensure that candidates
have equal chances of getting the goods’.26 That is to say, Holm takes it that, for example,
if Black defendants and White defendants get falsely convicted at similar rates, then each
Black and White defendant has the same chance of a false conviction. Now, were this
true – were it the case that, for example, the false positive rate for one’s group just was their
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chance of getting a false positive – then we could seamlessly use Broome’s theory to
underwrite the use of certain criteria (e.g. as showing that having unequal false positives
across racial groups is (surrogate) unfair) once we can sort out who, in any given case, is
the true subset of claimants.

2.3. Two Problems for Holm

Unfortunately for Holm, we cannot seamlessly apply Broome’s theory in this way. Here, I
will present two problems for Holm’s application of Broome’s theory: the equal probabil-
ities talk problem,27 and the claim-strength sensitivity problem.28

The equal probabilities talk problem is the observation that group-level summary statistics
such as the false positive rate do not generally represent each group member’s chance of,
say, receiving a false positive. To paint an illustrative example, suppose that determinism
is true. And suppose we use COMPAS – which, let us assume, is highly accurate but
imperfectly so (namely, it will falsely flag some people as future offenders) – to generate
some predictions about who will go on to commit a crime. In this case, each individual’s
objective chance of receiving the prediction ‘will go on to commit a crime’ is either zero or
one. But the false positive rate will be neither zero nor one, as it is calculated by taking the
number of members of the group who received a false positive (which will be greater than
zero) and dividing by the number ofmembers of that group who did not go on to commit a
crime (which will be much, much greater than zero). So, the false positive rate will not
align with any individual’s objective chance of receiving a false positive: it will be between
zero and one, but their chance of getting a false positive will be either zero or one.

While this stylized example is extreme, it is representative of many systems under con-
sideration in the discussion about fair machine learning, as the systems are deterministic
in the following sense: once a subject’s inputs to the system are assigned, the output
is – for all intents and purposes – already decided (as the system just performs a function
that maps inputs onto outputs). Given that Holm relies on an inference from, for example,
group-level false positive rates to individual-level chances of receiving false positives, the
equal probabilities talk problem seems to identify a fatal flaw in his application of
Broome’s theory. It means that we can no longer use Broome’s theory in the elegant
way that Holm suggests we can (i.e. affirming – with Broome – that (surrogate) fairness
can be satisfied by equalizing certain objective chances and using group-level summary
statistics (e.g. false positive rate) as describing the relevant chances).

The claim-strength sensitivity problem is based on another simple observation. Often, the
subjects of decision-making systems will have claims of different strengths to the good
being distributed. For example, suppose that we use COMPAS for more ameliorative
purposes than have been discussed above. Suppose that we are allocating vouchers for
therapy services and that the number of crimes one will go on to commit is relevant to
one’s need-based claim to those services (with greater numbers constituting greater
need). The parity criteria advocated by Holm won’t apply here, as they purport to tell
us how to properly equalize chances among those with similar claims. This observation
needn’t be disastrous for fans of the parity criteria: we could always supplement these with
criteria that are sensitive to the fact that we also need an account of what to do with dissim-
ilar claims. However, extending Holm’s account in the most natural way will not work.
That would involve saying, for instance, that we want lower false negative rates among
those who would go on to commit more crimes, as this would be constitutive of giving
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those individuals a greater objective chance of the good. However, in light of the equal
probabilities talk problem, this extension of Holm’s account will not work. To have a sat-
isfactorily complete Broomean account, then, we need to address the claim-strength sen-
sitivity problem, and we must do this in a way that does not run afoul of the core issues at
play in the equal probabilities talk problem.

3. An Alternative Application of Broome’s Theory

3.1. Evading the Equal Probabilities Talk Problem

I will begin my development of an alternative application of Broome’s theory by focusing
on a method for coping with the equal probabilities talk problem.

For the time being, I will bracket the question of satisfying claims in proportion to their
strength (we will return to this later). Let us, then, focus on themodest question of howwe
can guarantee the surrogate satisfaction of claims among those with claims of similar strength,
without availing ourselves of the idea that group-level statistics are a direct guide to
individual-level chances.

Taking inspiration fromKusner et al.,29 we can find what we are looking for by thinking
in counterfactual terms.30 The basic idea here is that we can say that similar claims have
been treated similarly if predictions (e.g. of innocence or guilt) do not ‘listen to’ (i.e. are
not influenced by) the wrong sorts of variables (e.g. one’s race).31 And we can test for this
by considering certain counterfactuals.

The following case might help in understanding the general idea being proposed.
Return to the kidney example and suppose that we implement some mechanism to ran-
domly32 choose a recipient. But suppose also that determinism is true. Does this mean
that the lottery (and every other lottery) is ipso facto (surrogate) unfair? I don’t think so,
though it could have been: for example, someone could have rigged it to guarantee a cer-
tain outcome (e.g. that their friend would win). How, then, could determined outcomes
and (surrogate) fairness be compatible? The key detail is that in the fair but determined
lottery, anyone who lost did not lose because of, for example, who they know. Relating this
to the above idea of thinking counterfactually, suppose that a patient who has friends in the
hospital wins that hospital’s lottery for a kidney, and suppose that because of this there are
concerns about bias. We could demonstrate that the system wasn’t biased in the patient’s
favor in virtue of who he knew by showing that, for all who lost, it is not the case that they
would have won were they, instead, to have been friends with the people at the hospital.
More generally, it seems that we can have a fair lottery even if the chances are extreme
(all zeros and ones), so long as the distribution of chances is not sensitive to the wrong
sorts of attributes. Further, one way to see that a distribution of extreme chances is not
sensitive to the wrong sorts of attributes is to consider certain counterfactuals.

Before delving further into this thought, let me pause to make a few notes about what it
means for an attribute to be of the wrong sort. Assume that in the kidney lottery example,
the potential kidney recipients all have an equal claim to the kidney. Assume further that in
this particular context the only relevant type of claim is need. Thus, who someone is
friends with is irrelevant from the perspective of fairness. This is whatmakes who someone
is friends with the wrong kind of attribute to be sensitive to. In some cases, it might, in fact,
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be fair to consider special relationships. But, by stipulation, it does not ground a claim to
the kidney in this case.

Now, there are many attributes – call them ‘protected attributes’ (e.g. race and gender)
– that are typically assumed as being the wrong sorts of attributes to be sensitive to in the
context of data-driven decision making. Before moving on, let me say a few words about
how I think the Broomean framework that we are working with interacts with this assump-
tion. On the Broomean framework, these attributes will, indeed, often be the wrong sorts
of attributes to be sensitive to. When these are the wrong sorts of attributes to be sensitive
to, it will – per Broome’s theory – be that they are, for example, not relevant to claims in
the given context, much in the way that friendship is irrelevant in the kidney case. So,
in those cases, to be sensitive to race is to be sensitive to the wrong sort of attribute.

Being sensitive to the wrong sorts of attributes isn’t, of course, the only way for a system
to be unfair. It can also be unfair in how it relates to those attributes. I mention this because
there could very well be cases in which protected attributes are relevant to claims. The ulti-
mate deciding factor for whether an attribute is the wrong sort to be sensitive to is whether
it is grounds for a claim, and I see no reason protected attributes couldn’t be, from the per-
spective of fairness, the right ones to be sensitive to in a range of cases. Exactly when and
how race and gender might relate to claims in such cases is, of course, an extremely com-
plicated topic, one that would take us beyond the scope of the present article (and, further,
one that Broome’s theory does not give us the resources to settle fully, as Broome does not
provide us with a complete theory of claims). This is worth mentioning because I will,
mostly for reasons of simplicity, make the typical assumption that protected attributes will
be the wrong sorts of attributes to be sensitive to. But, to be clear, this is not because it is
categorically wrong to be sensitive to them from a Broomean point of view. The key thing,
for us, is that it is unfair for a system to be sensitive to the wrong sorts of attributes, and in
many cases (though not always) this will align with the common assumption that we do
not want data-driven decision-making systems to be sensitive to protected attributes.

Relating this now to the technical side of the literature on fair machine learning, one
example of how we might implement these ideas can be found in the methods proposed
by Kusner et al., which they describe as counterfactual fairness. The main idea at play in
counterfactual fairness is that systems’ predictions about an individual shouldn’t change
if that individual’s protected attributes were otherwise.33

The specific procedure they propose as a test for counterfactual fairness can be illus-
trated by considering a stylized case.34

Law School Success: You are building a system to decide who to admit to your law
school. First-year law grades are predictive of professional success, and via the
magic of big data, you are able to predict first-year law grades. You therefore
decide to admit students on the basis of their projected first-year grades. Your
system is able to predict first-year grades on the basis of an applicant’s under-
graduate GPA and their LSAT score.

How might we test the system for counterfactual fairness?
One way is to appreciate the causal effects that race, gender, and any other variables of

concern have on the variables we are considering when making our predictions
(e.g. undergraduate GPA and LSAT score).35 Let us imagine that the causal nexus as it
relates to the variables can be modeled as shown in Figure 1.36
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This Figure 1 encodes the fact that the system in Law School Success is counterfactually
unfair.

Consider two applicants counterparts of each other iff they have the same values for var-
iables not influenced by protected attributes (while keeping in mind that this is a highly
simplified case and account, which is being used to illustrate key features of taking a
counterfactual – as opposed to purely statistical – approach to fair machine learning). In
this case, to be one’s counterpart is to be equally conscientious and capable as them.

Given this definition of counterparthood, there will (at least hypothetically) be cases
where two counterparts get different results. For instance, we can imagine two applicants,
one White and the other Black, who are counterparts but have different projections of
first-year grades because the Black applicant has a lower GPA (as a result of, say, stereo-
type threat).

To give a clearer sense of howwemight use a causal model to show this, let us assume that
the edges and nodes (i.e. the boxes and arrows) depicted in Figure 1 represent precise equa-
tions that would allow us to solve for certain unknown variables when others are known.
With these equations, we could show that the Law School Success system is unfair in the fol-
lowing way. Suppose in the first instance that we consider the file of some applicant. Call
them Applicant One. The Law School Success algorithm takes as inputs LSAT score and
undergraduate GPA. So we feed it that information. Suppose the LSAT score is 150 and
the GPA 3.5, and that, on the basis of these inputs, the system predicts a first-year law grade
average of 3.8, which is above the desired cutoff of 3.7. Thus, Applicant One is admitted.

But now suppose that the following is true. Suppose that Applicant One is aWhite man,
and suppose he is of average capability and conscientiousness, say 7.5 on a scale of one to
ten for each. Suppose further that, given the equations that the edges and nodes represent,
the following is true. If we enter ‘Black’ for race, ‘woman’ for gender, ‘7.5’ for capability,
and ‘7.5’ for conscientiousness, we could solve the equations for GPA and LSAT, yield-
ing 3.0 (as opposed to 3.5) and 145 (as opposed to 150), respectively. Suppose further that
if we then put these figures (i.e. 3.0 and 145) into the algorithm, we get a projection of 3.5,
yielding a rejection. This is what the system’s being counterfactually unfair consists in: it
treats counterparts differently.

As this simplified example hopefully makes clear, we can use counterfactual reasoning
to meaningfully ask and answer questions such as, ‘Would this algorithm admit this appli-
cant’s counterparts?’ In the case of Law School Success, we saw what it looks like in some
detail when the answer is ‘no’. As the example is intended to demonstrate, one way to do
this is to have a rich understanding of how certain variables relate to each other causally
and a sense of what you want to use as a definition of counterparthood (in this case, being
equally capable and conscientious).

In this case, we can go from a judgment of counterfactual fairness to a judgment of
Broomean fairness if we add the assumption that someone’s claim to a slot in law school

Figure 1. Causal Model
for Law School Success
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depends only on how capable and conscientious they are. To be clear, this is a simplifying
assumption meant to illustrate how one might use the tools of counterfactual fairness to
operationalize Broomean fairness. It is not intended as a serious proposal of what the rel-
evant claims actually are or anything like substantive guidance for the real world.37

A realistic application of Broome’s theory, then, would have to determine which claims
are relevant to the determination beingmade (which, in turn, would help determine which
features – e.g. race, sex, etc. – to control for). We will not explore those details here, as
they are beyond the scope of this article. As mentioned earlier in this article, ‘claims’,
as it appears in the Fairness Principle, is a placeholder. And Broome, recall, does not offer
a general theory of claims. Further, it is not the business of this article to determine, for
example, what fairness in law admissions amounts to (which is a very difficult question
in its own right). Instead, it is the task of this article to understand how to assess a data-
driven decision-making system for fairness, whatever the relevant claims turn out to be.

Hopefully none of this obscures the important contours of this aspect of the proposal,
which is that even in situations with extreme (i.e. 0, 1) objective chances, there might still
be a surrogate for fairness (which has to do with whether outcomes are caused in the right
way) and there are technical approaches to fair machine learning that at least in principle
can track this.

3.2. Evading the Claim-Strength Sensitivity Problem

Let us now turn to the claim-strength sensitivity problem, the problem of coping with the
fact that claims come in varying degrees of strength. To make matters concrete, let us
return to Law School Success. The preceding discussed some of the initial moves that
would be involved in treating similar cases similarly. How would we, even in principle,
see to it that different cases get treated differently and in (rough) proportion to their differ-
ence in a way that would satisfy Broome’s theory?

Here we can turn to a modalized account of risk. To fix ideas, we could understand
modal risk as follows:

Modal Risk: Risky events are potential unwanted events where the degree of risk
involved relates to how modally close, on average, the unwanted event is with
respect to nearby possibilities.38

While Broomeans needn’t accept this account of risk – certainly, there are different
ways to build a modalized account of risk, sorting out the fine details of which is a task
for another article – the proposal makes clear the advantages that a modalized account
of risk has to the Broomean: it directs us towards a hospitable surrogate for
(or interpretation of)39 ‘objective chance’ in surrogate fairness.

This idea can be adapted to the claim-strength sensitivity problem in the following
fashion.

First, we can understand systems as being geared towards judgments that are more or
less risky with respect to certain outcomes, such as false positives. To see this, we can com-
pare two systems for finding defendants culpable. One instructs jurors to base their deci-
sion on the preponderance of the evidence, that is, to rule against the defendant iff they
deem that, on the basis of the available evidence, it is more likely than not that the accused
is culpable. Another instructs jurors to base the decision on the ‘beyond a reasonable
doubt’ standard, that is, to rule against the defendant iff, on the basis of the available
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evidence, no reasonable person would think the defendant isn’t culpable. With respect to
the risk of falsely being found culpable, the ‘beyond a reasonable doubt’ standard is the
less risky of the two: adopting it means adopting a system that errs on the side of mistak-
enly finding defendants innocent.40

Second, we can understand the strength of claims as involving claims to judgments that
are more or less risky. To see this, consider a large difference between criminal and civil
cases. In losing a civil suit, one might be ordered to pay a sum of money. In losing a crim-
inal suit, one might be ordered to go to prison. In virtue of this difference, it is natural to
think of innocent defendants in criminal cases as generally having a stronger claim to not
being falsely found culpable than innocent defendants in civil cases. Relating this now to
the burdens of proof example in the previous paragraph, these observations make it fitting
for criminal cases to be held to the higher burden of proof (i.e. ‘beyond a reasonable
doubt’).

How these ideas relate to Broome’s theory and fair machine learning can be clarified by
considering a simple lottery case.

Lottery: We are distributing an indivisible good among people with claims of dif-
ferent strengths. Some people have claims of strength 1x, others of strength 2x.
We give the 1x-ers each one ticket and the 2x-ers two. We then randomly select
tickets to determine winners of the lottery.

In Lottery, we should be on track to being (surrogate) fair by Broomean standards. We
might even be on track if determinism is true. Even though the chances would in that case
be extreme, 2x-ers get more goods in most nearby worlds than 1x-ers. This, it seems to
me, goes at least some way towards being fair in the same (or nearly the same) way that
getting a chance to a good as opposed to a good itself does.41

How might we account for this in machine learning systems? One way is to take care to
ensure that, for example, among those who got false negatives, they receive a true positive
in more nearby worlds (conditional on the system working the way that it does in the
actual world), than those who shouldn’t have received a positive (also conditional on
the system working the way that it does in the actual world). For instance, let us suppose
that we are building the Law School Success algorithm in amuch fairer world. Namely, let
us suppose that no protected attribute influences LSAT scores. Suppose further that we
can consider LSAT scores in one of two different ways: we could consider applicants’
one best LSAT score (with students being required to take the exam exactly three times)
or we could consider applicants’ two best scores (while still requiring students to take the
exam exactly three times). Assuming that errors (misleading test scores) are randomly dis-
tributed and that qualified applicants will more reliably achieve higher LSAT scores and
have stronger claims to admission, wemight, in the name of fairness, choose the ‘two best’
testing regime: this would put our false negatives closer tomore worlds where they are true
positives.

Now, one might think that this is no different from focusing on error rates in the way
that Holm would. But there is an important difference. The modalized risk account will
be sensitive to factors that go beyond error rates. This is because wewill need to have some
assurance that mistakes are not modally robust in the wrong ways. Imagine, for instance,
that it turns out that ‘two best’ and a system that only consults parental levels of education
are equally accurate at the group level when it comes to predicting capacity and conscien-
tiousness.42 One reason (among many others) to adopt the ‘two best’ regime is that under

© 2024 The Author(s). Journal of Applied Philosophy published by John Wiley & Sons Ltd on behalf of Society for Applied
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it, students who are misclassified could have more easily been properly classified: in more
nearby worlds their performance matches their level of qualification, as errors were
assumed to be randomly distributed. But under the parental education regime, this is
not the case: we can assume that for most applicants, their capacities, their level of consci-
entiousness, and their parents’ level of education are more tightly coupled across nearby
worlds. In other words, errors are more modally robust.

4. Conclusion

This has been the opening salvo in developing a framework for thinking about a fair
machine from a Broomean point of view. Much space has been dedicated to the funda-
mentals of applying Broome’s theory to questions of fair machine learning. Less has been
given to relating this approach to the parity criteria. Let us briefly turn to that now.

On the Holmian interpretation, we can see the rate at which a system assigns false pos-
itives to, say, innocent Black defendants as defining the chance that any given innocent
Black defendant has of being falsely viewed as guilty. On this interpretation, were it to
work, the thing that we want (fair chances) and something we can observe (group-level
ratios) are one and the same thing, making the detection of fairness a straightforward task
(at least in principle). Unfortunately, group-level ratios and individual-level chances don’t
relate to each other in the way needed for this to work.43

On my alternative interpretation, we want each individual-level outcome to be caused
in the right way (i.e. by systems that manage risk in the right way and are not inappropri-
ately influenced by, for example, race). Unfortunately, this is something that – unlike
group-level ratios – we cannot see. This means that the detection of fairness will have to
be indirect. For instance, we most certainly can use group-level ratios, such as false posi-
tive rates, to make inferences about whether a system seems to be ‘listening to’, for exam-
ple, individuals’ race. This will be an inexact science, but the hope of this article is that if
we better understand what we are after – that is, if we realize that we are not after certain
ratios themselves but are instead interested in understanding what they are evidence for
(i.e. causal structures that violate Broomean standards of (surrogate) fairness) – we will
be better positioned to effectively use the evidence that we can gather (e.g. group-level
statistics).

Clinton Castro, The Information School and Department of Philosophy, University of
Wisconsin–Madison, Madison, WI, USA. clinton.g.m.castro@gmail.com
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NOTES

1 See e.g. Castro et al., “Egalitarian Machine Learning”; Castro and Loi, “Fair Chances”; Eva, “Algorithmic
Fairness”; Fleisher, “What’s Fair”; Grant, “Equalized Odds”; Hedden, “On Statistical Criteria”; Hellman,
“Measuring”; Holm, “Fairness”; Johnson, “Algorithmic Bias”; Kusner et al., “Counterfactual Fairness”; Long,
“Fairness”; Wong, “Democratizing.” See Fazelpour and Danks, “Algorithmic Bias.”

2 COMPAS stands for Correctional Offender Management Profiling for Alternative Sanctions.
3 Angwin et al., “Machine Bias.”
4 Ibid.
5 Ibid.
6 The false positive rate (FPR) for a group is the number of individuals in that group who are falsely predicted as

having the trait that is being predicted (e.g. future criminal behavior), divided by the total number of individ-
uals in that group who actually do not have the trait.

7 Northpointe Inc., “COMPAS Risk Scales.”
8 The positive predictive value (PPV) for a group is the number of individuals in that group who are correctly

predicted as having the trait that is being predicted (e.g. future criminal behavior), divided by the total number
of individuals in that group who are predicted to have the trait.

9 Northpointe Inc., “COMPAS Risk Scales.”
10 The false negative rate (FNR) for a group is the number of individuals in that group who are falsely predicted as

not having the trait that is being predicted (e.g. future criminal behavior), divided by the total number of indi-
viduals in that group who actually do have the trait.

11 The negative predictive value (NPV) for a group is the number of individuals in that group who are correctly
predicted as not having the trait that is being predicted (e.g. future criminal behavior), divided by the total
number of individuals in that group who are predicted to not have the trait.

12 See Chouldechova, “Fair Prediction,” and Kleinberg et al., “Inherent Trade-Offs,” for proofs of this claim.
13 See Broome, “Selecting”; Broome, “V*—Fairness.”
14 Holm, “Fairness.”
15 Castro and Loi, “Fair Chances.”
16 For example, Kusner et al., “Counterfactual Fairness.”
17 Letme here flag thatmy interpretation of Broome’s theory has benefited greatly fromPiller, “Treating Broome

Fairly.”
18 Broome, “V*—Fairness,” 95.
19 Ibid., 115.
20 Broome, “Selecting,” 44.
21 Here is the full quotation on which this is based: ‘I do notmean “proportion” to be taken too precisely. But I do

mean that equal claims require equal satisfaction, that stronger claims require more satisfaction than weaker
ones, and also – very importantly – that weaker claims require some satisfaction. Weaker claims must not sim-
ply be overridden by stronger ones’ (Broome, “V*—Fairness,” 98).

22 Ibid.
23 Ibid., 98.
24 Ibid., 98.
25 Note, in keeping with the above, that the surrogate satisfaction of fairness does not demand that the chances be

50/50. Indeed, surrogate fairness is satisfied so long as their chances are the same. On Broome’s view we should
opt for 50/50 – as opposed to 49/49 and a 2% chance that we simply destroy the kidney – not for reasons of
fairness, but for reasons of goodness.

26 Castro and Loi, “Fair Chances,” 334. This reading of Holm is supported by passages such as the following, in
which Holm is discussing his running example of a hypothetical algorithm (‘DR-A’) that general practitioners
might use to decide whether their patients should see a specialist for diabetic retinopathy (DR): ‘As I have
interpreted the statistical fairness criteria, they claim that an algorithm is fair in virtue of ensuring that all claim
holders have the same chance of a decision to grant them a good. E.g., Equal FNR [i.e. Equal False Negative
Rate] states that DR-A is fair if and only if all DR-patients have the same chance of a positive decision’ (Holm,
“Fairness,” 274). Elsewhere in the paper – when he is speaking about the four ideals discussed above
(i.e. equal false positive rate, equal false negative rate, equal positive predictive value, and equal negative pre-
dictive value) – he says, ‘The four criteria agree that fairness requires that all members of a certain subgroup of
the population … should have an equal chance of a decision based on a true prediction across socially salient
groups. However, the criteria disagree about which sense of equal chances is morally relevant’ (ibid., 268). He

© 2024 The Author(s). Journal of Applied Philosophy published by John Wiley & Sons Ltd on behalf of Society for Applied
Philosophy.

Broomean Algorithmic Fairness 11

 14685930, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/japp.12778 by C

linton C
astro , W

iley O
nline L

ibrary on [14/12/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



makes similar claims (i.e. claims that conflate group-level ratios and individual-level chances) elsewhere in the
paper (e.g. on pages 273, 275, 277).

27 Castro and Loi, “Fair Chances.” For a response to the equal probabilities talk problem that is fundamentally
different than the one pursued here – instead of trying to shore up the application of Broome, the authors
approach the problems Holm is concerned with but from a Rawlsian vantage point – see Castro and Loi,
“Representative Individuals.”

28 Original to this article.
29 Kusner et al., “Counterfactual Fairness.”
30 Though, to be clear, I don’t think that this is the only way to go. For instance, there might be a purely

information-theoretic way to go as well.
31 Important caveat: these examples aren’t meant to imply that race and claim satisfaction always should or can

be independent. For an incisive discussion of this point as it relates to fair machine learning, see Hu, “What
is ‘Race’?”

32 Or ‘randomly’ if, strictly speaking, being random and determined is incompatible.
33 Cf. Kusner et al., “Counterfactual Fairness.”
34 What follows is based on their ‘Law School Success’ example, though some inessential details have been

slightly modified for presentational purposes. Please note that the case is incredibly simplified and not at all
intended to model the complexities of the real world.

35 Kusner et al., “Counterfactual Fairness.”
36 The nodes (i.e. boxes) in this graph denote variables. The edges (i.e. arrows) denote causal influences, flowing

in the direction of the arrow. So, for example, race causally influences GPA (via racism) but GPA does not
causally influence race.

37 For helpful discussion of these issues more fit for contemplation of real-world cases, see Zimmermann and
Lee-Stronach, “Proceed with Caution.”

38 This formulation closely resembles that of Pritchard, “Risk,” but it inserts some key differences (namely it adds
the idea of an average over nearby possibilities). This is in no way meant as a challenge to Pritchard’s account.
The insertion is there simply to facilitate the application of Broome’s theory to this particular setting. Whether
this formulation or Pritchard’s (or some other) is correct is beside the point for present purposes. The key idea
here is to illustrate a family of options for Broomeans: modality (as opposed to – or as an interpretation of (see
the following footnote) – probability).

39 Whether this is better understood as a surrogate or interpretation is immaterial for the purposes of this article; I
mention both simply to be non-committal: I am indifferent as to whether we understand this as an interpreta-
tion or surrogate.

40 Lillquist, “False Positives.”
41 Though, admittedly, I think there is more room for discussion of this matter to be had.
42 Importantly, assume that these two systems do not pick out the same individuals as qualified. They are simply

predictively equivalent in terms of overall accuracy at the group level.
43 Cf. Castro and Loi, “Fair Chances.”
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