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Following Post program, we will propose a linguistic and empirical
interpretation of Gödel’s incompleteness theorem and related ones
on unsolvability by Church and Turing. All these theorems use
the diagonal argument by Cantor in order to find limitations in
finitary systems, as human language, which can make “infinite use of
finite means”. The linguistic version of the incompleteness theorem
says that every Turing complete language is Gödel incomplete. We
conclude that the incompleteness and unsolvability theorems find
limitations in our finitary tool, which is our complete language.
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§1 Introduction
¶1 · Following Post (1936) program, we will argue in favor of a linguistic and empirical
interpretation of Gödel’s (1930) incompleteness theorem and related ones on unsolvability
by Church (1935) and Turing (1936). All these theorems use the diagonal argument by
Cantor (1891) in order to find limitations in finitary systems, as human language, which
can make “infinite use of finite means”.
¶2 · In section §2, we explain Cantor’s diagonal argument. Next, in §3, we sketch Gödel’s
incompleteness theorem, which uses the diagonal argument on an ad hoc language. Then,
in §4 and §5, we present Turing computing: Turing completeness and complete languages.
In §6, we show that the halting problem generalizes Gödel’s theorem and, using the
diagonal argument on a Turing complete language, that it is unsolvable by computing.
The linguistic version of the incompleteness theorem says that every Turing complete
language is Gödel incomplete. Then, following Post program, in §7 and §8, we posit as
a refutable law of nature that human language is just Turing complete, by which the
incompleteness and unsolvability theorems become human limitations. Next, in §9, we
defend, in Kant’s terminology, that language is a condition of all possible theory, and, in
§10, that language can “make infinite use of finite means”, in Humboldt’s words. Finally,
in §11, after noticing that the diagonal argument finds limitations in finitary systems,
we conclude that the incompleteness and unsolvability theorems find limitations in our
finitary tool, which is our Turing complete language.
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§2 Cantor: Diagonal
¶1 · Let us start from the beginning. In a four pages paper, Cantor (1891) presented a
new and simpler proof showing that the cardinality of the real numbers |R| is greater than
the cardinality of the natural numbers |N|, that is, |R| > |N|. The theorem says that the
powerset (the set of all the subsets) of the natural numbers cannot be enumerated.
¶2 · proof · First, we should see that every subset R is defined by a predicate on the
natural numbers R(n) that is true if the natural number n belongs to the subset, and
false if it does not. Fully expressed,

∀n ∈ N
{
R(n) = true if n ∈ R ,
R(n) = false if n /∈ R .

Or, in fewer words,
n ∈ R ≡ R(n) .

¶3 · For the sake of the argument, let us assume that all the predicates defining the subsets
of the natural numbers can be enumerated. In that case, Rp would denote the predicate
number p, and we could compose the following matrix of true and false values.

R0(0) R0(1) R0(2) . . . R0(n) . . .
R1(0) R1(1) R1(2) . . . R1(n) . . .

...
...

...
. . .

...
. . .

Rp(0) Rp(1) Rp(2) . . . Rp(n) . . .
...

...
...

. . .
...

. . .

¶4 · Now, let us define a subset K this way, where the bar above denotes negation:

n ∈ K ≡ Rn(n) .

It is easy to see that K ̸= R0, because, if 0 ∈ R0 then R0(0) = true, so R0(0) = false,
and then 0 /∈ K, and conversely, if 0 /∈ R0 then 0 ∈ K. Similarly for 1, and then K ̸= R1,
and for 2, so K ̸= R2, and so on for every natural number. Therefore, ∀p ∈ N : K ̸= Rp,
showing that the assumption was wrong. qed
¶5 · The proof shows that the powerset of the natural numbers cannot be enumerated,
in Cantor’s notation ℵ0 < 2ℵ0 . This is enough for us here, but Cantor was interested in
showing that |N| < |R|, which follows immediately from |N| = ℵ0 and |R| = 2ℵ0 . The
proof is named Cantor’s diagonal argument because the elements chosen to be negated
are those in the matrix diagonal, Rn(n), which are the most easily denoted, though the
proof works just by choosing systematically a different column for each row. Below, in
§6¶1, we will learn from Gödel that choosing to negate the diagonal instantiates the liar
paradox; other selections will implement other epistemological antinomies.

God made the counting numbers;
all else is the work of man

Leopold Kronecker
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§3 Gödel: Incompleteness
¶1 · sketch of proof · In order to explain the incompleteness theorem by Gödel (1930),
where it is Theorem VI but sometimes referred to as the first one, we will start with the
following lemma: in every language that is expressive enough to mean ‘this sentence is
false’ there is a paradox. It is easy to see that the lemma is true because the sentence
‘this sentence is false’ is a paradox; in fact it is the canonical liar paradox. Therefore, the
hard part of the incompleteness theorem is to prove that the language required to express
arithmetic has to be expressive enough to mean ‘this sentence is false’. Let us try it!
¶2 · The language required to express arithmetic has to be able to express that ‘the
successor of zero is one’, which happens to be considered true, that ‘one plus one is
one’, considered false, that ‘thirteen is prime’ and also that ‘thirteen is not prime’, and
an infinity of other propositions. I have written ‘an infinity of other propositions’, perhaps
too lightly, but am I right? The answer is ‘yes’, because there is an infinite enumerable
number of true propositions as ‘the successor of zero is one’, each one referring to a
different natural number, as ‘the successor of one is two’, ‘the successor of two is three’,
and so on and on. This means that the language required to express arithmetic has to
be infinite enumerable, at least.
¶3 · Although the infinite enumerable sets are the infinite sets with the lowest cardinal
number, ℵ0, it is still true that all of them contain proper subsets that are equicardinal
with the whole set. This property is required for full naming, also known as full referring,
that is, to be able to assign a different name to every linguistic object. For example, Gödel
(1930) was able to assign a unique natural number, its Gödel number which worked as
its name, to every finite sequence of arithmetic symbols, including the natural numerals
themselves! Of course, self referring, included in full referring, is used in paradoxes as
‘this sentence is false’.
¶4 · Above, we were using English statements to express arithmetic propositions, but
Gödel, instead of using German, designed a more precise language. All the concepts used
in the proof are implemented in the formal system. We follow Gödel’s (1930) sketch of
the proof in page 175, as translated by Davis (1965) in pages 7 and 8. Gödel’s subset K
of natural numbers is defined

n ∈ K ≡ Bew[Rn(n)] , (1)

where Bew[x] means ‘x is a provable formula’, and where Rn(n) is Cantor’s diagonal
formalized (this last word is decisive!). Since K is a formalized subset of N, then its
predicate has to be some definite enumerated predicate Rq, so K can also be defined

n ∈ K ≡ Rq(n) . (2)

We now show that the proposition Rq(q) is undecidable in the formal system. If we assume
that Rq(q) is provable, then it would be true, and then, following the second definition,
q ∈ K, which, following the first definition, means that Bew[Rq(q)], contradicting the
assumption. On the other hand, if the negation of Rq(q) were provable, then q /∈ K
would hold following the second definition, and then Bew[Rq(q)] would be true following
the first one, but now both Rq(q) together with its negation would be provable, which is
again impossible.

Rq(q) ≡ q∈K ≡ Bew[Rq(q)]
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¶5 · So Gödel is setting out of sight the following Cantor’s matrix of provabilities for every
formalized predicate, which is true if Rp(n) is provable, so Rp(n) is true, and false if
Rp(n) is not provable.

Bew[R0(0)] Bew[R0(1)] Bew[R0(2)] . . . Bew[R0(n)] . . .
Bew[R1(0)] Bew[R1(1)] Bew[R1(2)] . . . Bew[R1(n)] . . .

...
...

...
. . .

...
. . .

Bew[Rp(0)] Bew[Rp(1)] Bew[Rp(2)] . . . Bew[Rp(n)] . . .
...

...
...

. . .
...

. . .

The negated diagonal of this matrix is Bew[Rn(n)], on which he defines subset K with
its corresponding predicate Rq and undecidable proposition Rq(q), which Gödel writes
[R(q); q], which expresses the liar paradox in the formal system, see §6¶1. qed
¶6 · As you can see, Gödel (1930) is not as simple as Cantor (1891) and, given Cantor’s
proof, some doubts regarding whether Rq is effectively in the enumeration or not could
remain that the full proof conceals behind its many details. Gödel’s proof is not as
simple because it implements a comprehensive and logical language specifically designed
to express arithmetic. However, we will not go further into its technicalities here, because
Turing (1936) turned things much easier, and then much easier to understand, I hope.

§4 Turing: Completeness
¶1 · Instead of using symbols specifically designed to refer to arithmetic concepts, as done
by Gödel (1930), Turing (1936) uses a non-empty and finite set of arbitrary symbols.
Thus, Turing’s way is more general than Gödel’s one and, even more important, less
prone to induce us to go from the symbol to its intended meaning. All Turing requires is
one or more symbols that can be strung, that is, that can be composed into unidimensional
and finite structures, or sequences, which are known as strings.
¶2 · And again, where Gödel implements the rules of inference specific of arithmetic and
logic to transform arithmetic formulas, Turing uses generic finite-state machines, also
known as finite automata, to transform the generic strings of symbols. Note that finite-
state machines were not formally studied until much later than Turing’s 1936 paper, in
the nineteen-fifties by Mealy (1955), Moore (1956), and others.
¶3 · How Turing machines work is not hard to understand, and you can find many other
places where it is explained, for example in Casares (T). For us here, it is enough to know
that a Turing machine takes a finite string of symbols written on its tape as input and,
commanded by the finite-state machine, it halts after a finite number of computing steps
with another finite string written on its tape, which is its output, or it keeps computing
without halting. We will use P⟨d⟩ to denote the output string of Turing machine P when
string d was used as input; if the machine does not halt, we will write P⟨d⟩ =∞.
¶4 · Now, the deepest and more difficult to understand concept is Turing completeness,
that is, that some Turing machines can compute whatever any Turing machine can com-
pute. Those Turing machines that can emulate any Turing machine are called universal
Turing machines. Turing (1936) himself constructs a universal machine, but I would very
much recommend an instructive text book, as Abelson & Sussman (1985), to get the full
details of this counterintuitive concept.
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¶5 · In order to imitate any possible Turing machine P , a universal Turing machine U
needs a complete description of the Turing machine to imitate as input, that is, as part
of what is written on the tape when it starts. We will call this complete description the
program, and p will denote the program for P . So the equation of Turing completeness,
where the | represents an end of program symbol, is:

∃U , ∀P , ∀d :
←−−−−
U⟨ p|⃗d ⟩ = P⟨d⟩ .

We say that U is a full-programmable computer because it can compute whatever any
computer P can compute. Let us now examine the equation closely.
¶6 · Today, the existence of universal computers, ∃U , is a common experience, since all
general-purpose computers, including our phones, are Turing complete, or universal, or
full-programmable; these last three phrases are synonymous. For the equation to be true,
the next task is to show that for any Turing machine, ∀P , we can find a string of symbols
p (symbols of U) that describes the Turing machine P completely. This is not too difficult;
just linearize the table defining P ’s finite-state machine, and code the states and symbols
of P by using strings composed of symbols of U ; p = P⃗ will denote this. For example,
Turing (1936) in his universal machine uses a semicolon (;) as end of row symbol to
linearize the table, and codes P state number i as one symbol D followed by i symbols A,
and P symbol number j as one symbol D followed by j symbols C. Other encodings are
possible, where an encoding sets a reversible mapping from the states and symbols of P
to some strings of symbols of U . This determines the syntax of the language L used by
each specific U to code any possible Turing machine P as its corresponding program, the
string p = P⃗ , and also to code any string d of symbols of P , denoted d⃗; a left pointing
arrow on top denotes the corresponding decoding,

←−⃗
d = d. The remaining task is the

difficult one: to implement the semantics of Turing machines in the hardware of U , that
is, in its finite-state machine, in such a way that the equation of Turing completeness will
be satisfied, ever (including ∞). Note that, to satisfy the equation, the syntax of L has
to be decidable. Once achieved, the resulting language L is a Turing complete language,
or a complete language for short. Therefore,

in a complete language, every Turing machine can be meaningfully expressed .

§5 Turing: Translation
¶1 · As the syntax can be defined in different ways, the program p′ for Turing machine P
in one universal Turing machine U ′ will differ from the program p′′ for the same Turing
machine P in another universal Turing machine U ′′ that uses a different syntax, that is,

p′ ̸= p′′ though
←−−−−−
U ′⟨p′ |⃗d′⟩

′
= P⟨d⟩ =

←−−−−−−
U ′′⟨p′′ |⃗d′′⟩

′′
.

We will call this last double equation the translation equation because it explains how
to translate complete languages, in this case from (or to) the complete language L′
implemented by U ′ to (or from) the complete language L′′ implemented by U ′′, since
though their syntaxes differ, p′ ̸= p′′, their meanings are the same, P . The equations of
Turing completeness and translation imply that all universal Turing machines are equal
in calculating capability, since they differ only on the encodings used.
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¶2 · At this point, we can abstract encodings, that is, codings and decodings, away, since
coding (or decoding) is a trivial transformation that uses a finite mapping, and it is easy to
determine from context whether coding (or decoding) is needed or not. Then, we define
the algorithmic equivalence relation thus: two programs p′ and p′′ are algorithmically
equivalent, denoted p′ ∼ p′′, iff their meanings are the same; for instance when they are
translations of the same Turing machine P to two complete languages, L′ and L′′:

p′ ∼ p′′ ≡
(
∃P , ∀d :

←−−−−−
U ′⟨p′ |⃗d′⟩

′
= P⟨d⟩ =

←−−−−−−
U ′′⟨p′′ |⃗d′′⟩

′′)
.

¶3 · The corresponding equivalence classes are called algorithms, so algorithm π is the
equivalence class of program p, that is, π = [p] : x ∈ [p] ≡ x ∼ p. We are using uppercase
calligraphic letters to denote Turing machines, as P and U , German lowercase letters
for strings on the tapes of Turing machines, as p and d, or d⃗ if coded, but typewriter
characters for individual symbols, as A and w, and we will use Greek lowercase letters for
algorithms and information, as π and δ, where information is data after abstracting away
its encoding. And, after abstracting encodings away, the equation of Turing completeness
is cleaner; the capital upsilon Υ represents the abstract universal Turing machine:

Υ⟨π|δ⟩ ∼= P⟨d⟩ .

¶4 ·While Gödel (1930) mimics semantics into syntax from the beginning, making the
distinction between both more difficult to grasp, in Turing’s (1936) approach meanings
appear only when completeness appears. That is, everything is syntax, except when
implementing a language to fully express computing, because by then implementing the
semantics of computing is required. However, after abstracting encodings away, it is also
possible to confuse concepts in computing. That is, given the coding-decoding bijection
between Turing machines and programs in a complete language, P ↔ p, it is nearly
natural to use p for P , or P for p, and after abstracting encodings away, π = [p], it is
only a minor inconvenience to use π for p, or p for π. And the same ambiguity can be
applied to data d, coded data d⃗, and information δ. But it is much better not to confuse
these three levels:
◦ Semantics or hardware: machine P and data d.
◦ Syntax or software: program p and coded data d⃗.
◦ Pragmatics or knowledge: algorithm π and information δ.

¶5 · By abstracting encodings away we are ignoring syntax. We could do it, but it would
be dangerous because, in computing, syntax is prior to both semantics and pragmatics.
In the beginning everything is syntax, because a Turing machine is a finite-state machine
applying its syntactic rules to generic strings of symbols. It is later, when implementing
a universal Turing machine, that a complete language that gives meaning to the whole
of computing is required; so semantics is required to implement complete languages.
And finally, if we abstract encodings away, we get language independent knowledge; now
we can resolve problems algorithmically, meaning that their solutions can be coded in
different complete languages and implemented in different hardware devices. However,
to pragmatically resolve a problem, the algorithm has to be instantiated, that is, coded
on a specific universal Turing machine, or implemented directly on a specific piece of
hardware. All things considered, language independent knowledge could be misleading,
since it promises more than it provides; use it with caution!
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§6 Turing: Proof
¶1 · So we are seeing that Gödel (1930) is generalized by Turing (1936). Then we need
to ascertain what generalizes Gödel’s incompleteness theorem in Turing computing. As
Gödel (1930) writes in page 175, translated by Davis (1965) in page 9, “there is also a
close relationship14 with the Liar paradox, for the undecidable proposition [R(q); q] says
that q belongs to K, i.e. according to (1), that [R(q); q] is not provable.” Note 14 says:
“Every epistemological antinomy can be used for a similar proof of undecidability.” In
any case, he uses the liar paradox, ‘this sentence is false’, that has not a definite meaning
because it can neither be decided true nor false; if it is true what it says, then it is false,
but if it is false what it says, then it is true, thus closing an infinite loop. In Turing
computing, the only computations that result undecided are those that do not halt.
¶2 · Therefore, the generalization of Gödel’s incompleteness theorem is the theorem show-
ing that the halting problem is unsolvable by a Turing machine. Though, in fact, the
halting problem was defined later by Davis (1958), Turing (1936) had already shown that
it is unsolvable, by resolving the circularity problem, see Petzold (2008) page 179.
¶3 · proof ·Without loss of generality, we will use the complete language L implemented
by the universal Turing machine U for the proof. L has a finite set of symbols, and
therefore the set of its finite strings is enumerable, using for example a shortlex order.
That the syntax of L is decidable means that we can always determine whether a string
of L is a coded string d⃗ or not, implying that the set of coded strings is enumerable.
Then we will refer to coded string number d as d⃗d. And that the syntax of L is decidable
also means that we can always determine whether a string of L is a program p or not.
The conclusion, which was perhaps doubtful in Gödel’s proof, see §3¶6, it is easy to see
in computing: the set of programs is enumerable. Then we will refer to program number
p as pp.
¶4 ·We will set a Cantor’s diagonal argument to show that there is not any Turing machine
H that takes any arbitrary pair of program p and coded data d⃗ as input, and every time
it outputs, in a finite number of computing steps, a string expressing whether U⟨ p|⃗d ⟩
will halt or run indefinitely, say the one symbol string Y if it will halt, and N otherwise.

̸ ∃H, ∀p, ∀d⃗
{
H⟨ p|⃗d ⟩ = Y if U⟨ p|⃗d ⟩ halts
H⟨ p|⃗d ⟩ = N if U⟨ p|⃗d ⟩ does not halt

¶5 · Now, for the sake of the argument, let us assume that H exists. Then the following
matrix of Y and N string values could be computed (without got stuck in a non-halting
computation).

H⟨p0|d⃗0⟩ H⟨p0|d⃗1⟩ H⟨p0|d⃗2⟩ . . . H⟨p0|d⃗d⟩ . . .

H⟨p1|d⃗0⟩ H⟨p1|d⃗1⟩ H⟨p1|d⃗2⟩ . . . H⟨p1|d⃗d⟩ . . .
...

...
...

. . .
...

. . .

H⟨pp|d⃗0⟩ H⟨pp|d⃗1⟩ H⟨pp|d⃗2⟩ . . . H⟨pp|d⃗d⟩ . . .
...

...
...

. . .
...

. . .

However, the row for program q, which negates the diagonal, would not be in the matrix.

q : ∀n ∈ N
{
U⟨q|d⃗n⟩ = Y if H⟨pn|d⃗n⟩ = N

U⟨q|d⃗n⟩ =∞ if H⟨pn|d⃗n⟩ = Y
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Program q would exist if the program for H, denoted h, existed, which would be the case
if H existed as assumed. Therefore, the assumption was false.
¶6 · Then, in the complete language L of the universal Turing machine U , a program h
that solves the halting problem is inexpressible. And, taking advantage of the translation
equation, this theorem holds for every complete language, which then can be formulated
this way: in every complete language, there is an inexpressible program. qed
¶7 · In computing, to say that there are undecidable computations is too trivial to be
of any interest, since it just means that some computations do not halt, as for example
while true { relax } or liar() = return( not liar() ). However, it is not only that in any
complete language there are computations that do not halt, but also that there is not
any computable way of avoiding them definitively. This parallels Gödel’s conclusion that
undecidable propositions cannot be avoided by adding them as axioms; you just need to
use Cantor’s diagonal on the new formal system to find a new undecidable proposition.
¶8 · From Turing’s conclusion that there are problems that cannot be solved by computing,
it follows that, in every complete language, there are expressible problems the solutions of
which are not expressible, so we can say that in every complete language there are concepts
that can be defined, and named, but not expressed, see §10.2. Then another way to state
Turing’s conclusion, which is closer to popular formulations of Gödel’s incompleteness
theorem, is:

every complete language is not complete .

This statement uses two different meanings of the word ‘complete’: the complete language
is Turing complete because every Turing machine can be meaningfully expressed in it,
but it is not Gödel complete because there are definable tasks that no Turing machine
can perform and, consequently, they cannot be expressed in it. Therefore,

every Turing complete language is Gödel incomplete .

§7 Church: Thesis
¶1 · Some of my readers could suspect that I am pretending to pass as new that Turing
generalizes Gödel. It is not my intention. In fact, this is known from the very beginning,
since Turing (1936) himself, in page 259, shows that Gödel’s incompleteness theorem is a
consequence of his unsolvability theorem. This is his argument, where −A is the negation
of proposition A, and Entscheidungsproblem is the German word for ‘decision problem’:

If the negation of what Gödel [(1930)] has shown had been proved, i.e. if, for
each A, either A or −A is provable [in the functional calculus K], then we should
have an immediate solution of the Entscheidungsproblem. For we can invent a
[Turing] machine K which will prove consecutively all provable formulae. Sooner
or later K will reach either A or −A. If it reaches A, then we know that A is
provable. If it reaches −A, then, since K is consistent [. . . ], we know that A is
not provable.

In other words, if Gödel’s incompleteness theorem were not the case, G, then Turing’s
unsolvability of the decision problem would not be the case, T, denoted G → T, which
is equivalent by contraposition to T→ G, which means that Turing’s implies Gödel’s, or
in reverse, that Gödel’s is a logical consequence of Turing’s.
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¶2 · As these results on decidability and on solvability are all negative, a question arises:
Could it be that they can be decided and solved by devices that are more capable than
universal Turing machines? The accepted answer is Church’s thesis, which asserts that

there are not more capable calculating devices than universal Turing machines .

Before going on, please note that, in linguistic terms, the question becomes a revealing
one, since it is asking for a language more expressive than a complete language but in
which the sentence ‘this sentence is false’ is not expressible, a sentence that is expressible
in every complete language. Linguistically, the impossibility is apparent.
¶3 · The interesting story, or history, around Church’s thesis is detailed by Davis (1982),
who explains why Gödel preferred Turing machines over his own recursive functions and
over Church’s λ-calculus in order to fix Church’s thesis. As we have written above,
the advantage of Turing computable functions, which are those from strings to strings
implemented by Turing machines, is that they are much more generic and simpler than
Gödel’s recursive functions, and the same applies to Church’s λ-definable functions. For
example, in the case of the recursive functions, in order to achieve a capability equivalent
to Turing completeness, it was necessary to add a conditional incremental loop to the
decremental loop of primitive recursion, see Kleene (1952) Chapter XI, an addition which
we could describe as a hack, and even then Gödel “was [. . . ] not at all convinced that [his]
concept of recursion comprises all possible recursions”, as cited by Davis (1982) in page 8.
This explains why we have used universal Turing machines when we presented Church’s
thesis, while Church (1935) himself used recursive functions and λ-calculus instead, and
it also explains why, though he resolved the Entscheidungsproblem as unsolvable before
Turing (1936), we prefer the cleaner proof by Turing.
¶4 · According to Kleene (1952), from page 319 on, the arguments supporting Church’s
thesis as the accepted answer are of four types: heuristic evidence, equivalence of diverse
formulations, Turing’s concept of a computing machine, and symbolic logics and symbolic
algorithms. As an example of the second type, it is really convincing that, even being
so different, computing, recursion, and λ-calculus are all capable of universality. The
computing version of universality is Turing completeness, that is, that computing can
express computing completely, as we saw above. In the case of recursion, it is Kleene’s
(1935a) normal form, see Kleene (1952) Theorem IX in page 288, where a recursive
function can express any recursive function. And, for Church’s λ-calculus, it is that
an evaluator of λ-expressions can be defined as a λ-defined function, resulting that the
evaluator is a λ-defined function able to express any λ-defined function; this is done (in
Lisp) by Abelson & Sussman (1985). Universality, or full-self-expressibility, manifests
itself in all three formulations because they are equivalent, as shown by Kleene (1935b)
and Turing (1937).
¶5 · To me, that all formulations of the concept of computing point to the same calculating
maximum limit, which is universality, suggests that the limit has an empirical meaning.
For suppose these two possibilities:
◦ Tomorrow someone devises a procedure to perform calculations that are beyond the
capability of a universal Turing machine.
◦ Tomorrow some machine is found that performs calculations that are beyond the
capability of a universal Turing machine.

In either case, Church’s thesis would be wrong. Then, Church’s thesis is uncertain because
it depends on what it might occur tomorrow, showing that it is empirically refutable.
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§8 Post: Law
¶1 · In other words, I am with Post (1936) when he concludes, in page 105:

Only so, [that is, only if Church’s thesis is a natural law stating the limitations
of the mathematicizing power of our species Homo sapiens], can Gödel’s theorem
concerning the incompleteness of symbolic logics of a certain general type and
Church’s results on the recursive unsolvability of certain problems be transformed
into conclusions concerning all symbolic logics and all methods of solvability.

That natural law, which is a law of nature deservedly named the law of Post, can be
stated as follows:

in calculating capability, we are just Turing complete .

The corresponding linguistic version of the law of Post is:

in expressive capability, human language is just Turing complete .

¶2 · Church’s thesis is a consequence of the law of Post because, as shown in Casares (C),
where the law of Post is introduced, if we are just Turing complete, then Church’s thesis
is true. As any law of nature, the law of Post is empirically refutable and then it is in
need of continual verification. It can be refuted by empirical evidence negating it, or by
empirical evidence negating any of its consequences, for example by evidence negating
Church’s thesis. Therefore, what is supporting both the law of Post and Church’s thesis is
the lack of empirical evidence on the contrary, for the time being. Nothing more, nothing
less.
¶3 · For example, hypercomputers would refute Church’s thesis. According to Shagrir &
Pitowsky (2003): “A hypercomputer is a physical or an abstract system that computes
functions that cannot be computed by a universal Turing machine.” However, only the
physical ones will refute it. Unbounded idealizations, including analog computers with
unbounded precision and accuracy, or those performing unbounded in time computations,
do not count as empirical evidence, see Casares (E), and therefore they cannot refute
Church’s thesis.
¶4 · Under Church’s thesis, the complete languages are the most capable ones, that is, the
most expressive languages, see Casares (H). Therefore, under Church’s thesis, undecidable
propositions cannot be avoided. Although this is very general, it still depends on Church’s
thesis being true. In order to determine the scope of validity of Church’s thesis, we need to
ascertain its nature. And here we follow Post (1936) program. We defend that Church’s
thesis is a consequence of the law of Post. The law of Post is a law of nature, and as
such it could be refuted empirically, but, as long as it is not refuted, it provides general
formulations of the incompleteness and unsolvability theorems that state some absolute
human limitations:

we humans cannot avoid undecidable propositions ,

we humans cannot solve every problem ,

human knowledge cannot be complete .
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§9 Kant: Subjectivism
¶1 · In my opinion, see Casares (K), the main point made by Kant is that all each subject
knows is calculated by their brain. Except the raw data acquired by my senses, for
example a red photon being detected at some point of my left retina, everything else is
the result of some calculations done by my brain. Since we do not experience photons
hitting our retinas, what we do experience, for example seeing a red stone, is the result
of some calculations done by our brains. Therefore, what we take for real, as the red
stone, is the result of some complex calculations done by our brains, implying that even
the evidence that ‘I am seeing a red stone now’ is calculated by my brain.
¶2 · However, Kant seemed to like both to use a cryptic language and to make transcenden-
tal deductions, so I am possibly misunderstanding him. Nevertheless, this is immaterial
as long as you accept that what is written in the previous paragraph is sensible save,
perhaps, its attribution to Kant. In fact, we can ignore his deductions, because the law
of Post is what Kant was looking for, since it states precisely the limits of the calculating
capability of the human brain, but again I could well be wrong on Kant’s intentions. And
again this does not matter, provided you agree to name Post-Kantian subjectivism the
position stating both Kant’s thesis, which I interpret to say that

everything each subject knows is calculated by their brain ,

and the law of Post, now formulated to say that

our human brain calculating capability is limited to universal computing .

¶3 ·Without Kant’s thesis, the law of Post is the fundamental law of cognition. With
Kant’s thesis, in addition, the law of Post culminates an epistemological endeavor. Under
Kant’s thesis, the law of Post sets the limits of knowledge, and even the limits of all
possible knowledge. The law of Post fits nicely with Kant!
¶4 · For us humans, reality and language are given a priori, in Kantian parlance. Although
neither is operative when born, because both need some development, both are available
some time later. After that point in time, every human investigation starts with a firmly-
established physical reality, which we can observe and measure at will, and a full-self-
expressible complete language, which is a finite calculating tool able to be used infinitely.
It is in this way that both are given a priori. In other words, when we investigate
anything, these are the two tools we have at our disposal.
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¶5 ·We cannot experience physical reality without perception, a name we use to refer to
some of our brain modules. Therefore, perception is a condition of all possible experience.
As my evidence is what I am certain about, then, following Descartes, my evidence is only
what I experience in first person. Now, perception is a condition of all possible evidence.
¶6 · And language is a condition of all possible theory, since we cannot set any theory,
including physics, without language. So our Kantian priority of the complete language
is an epistemological priority. We are not saying, for example, that language is chrono-
logically prior to life, or to the universe. However, without language the mere idea that
life and language are somehow situated in time would be impossible; inconceivable is a
better word, since there would not be any conceptual world without language.

§10 Discussion

§10.1 Physics
¶1 · Gödel’s incompleteness theorem is limited to formal systems. In addition, if the
number of propositions is finite, then (in principle) it is possible to list the truth value of
all of them. Consequently, Gödel’s incompleteness theorem is limited to formal systems
that are not finite. In particular, given that the proof by Gödel (1930) is finitary, his
theorem is limited to formal systems that are infinite enumerable.
¶2 · From this conclusion is easy to dismiss the impact of Gödel’s incompleteness theorem.
In one direction, we could argue that infinities do not really exist, and finite systems
can be complete. And, in the other direction, we could say that physical reality is not
enumerable, but continuous, as the real numbers, see §2, and then reality would be out
of Gödel’s incompleteness theorem scope. So physics should not be affected, although
it is a formal system that includes arithmetic and that it has to be either consistent or
useless, but not both.
¶3 · Computing by Turing (1936) introduces a new point of view on these matters. Instead
of focusing on reality, now we center on language, and human language is certainly infinite
enumerable, since it can “make infinite use of finite means”. This is Humboldt’s famous
definition quoted by Chomsky (1965, in page 8) to present the generative grammars,
which are Turing machines, see Casares (H). The definition remarks that both the number
of rules of syntax and of words are finite, but the number of words in a sentence is
unbounded, potentially infinite. And the same can be said of those formal systems where
both the number of rules of inference and of axioms are finite, but the number of steps
in a proof is unbounded, potentially infinite.
¶4 · So, from the wider Turing computing point of view, physics is affected simply because
physics is a theory that has to be expressed in a complete language, which happens
because arithmetic has to be expressed in a complete language, which is a consequence
of Gödel’s incompleteness theorem. Then, physics cannot be complete. This contrasts
with physical reality, since all we can observe or measure is finite, that is, all we perceive
are finite means used finitely. As an aside, noticing that physical measurements are
never irrational real numbers (R \Q), but always rational numbers (Q), must imply that
physical reality is not continuous, but discrete.
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§10.2 Paradoxes

¶1 · From the wider Turing computing point of view, it is easier to see the nature of
paradoxes. For example, let us name the set of the halting computations of a complete
language H, where a computation is defined by a pair of program and input coded data,
that is, by a pair ⟨ p|⃗d ⟩ in the complete language L implemented by the universal Turing
machine U . In a sense, set H is well defined, because the condition for a computation
to belong to it is definite. In other words, the problem defining the set is perfectly
determined. However, as shown by the diagonal argument in §6, we know that this
particular problem is unsolvable. That is, we know of some computations that belong
to the set, and of some other computations that do not belong to the set, but the exact
extent of set H is essentially indeterminate.

¶2 · It happens the same, as a consequence of Gödel’s (1930) incompleteness theorem, to
the set of all true arithmetic propositions T : the exact extent of set T is essentially
indeterminate. So set T is complete by fiat, but we would need to invoke an oracle
in order to instantiate it. Note that oracles, see Turing (1938), are definable but not
implementable, meaning that, whenever an oracle is needed, we are beyond what we can
calculate and express.

¶3 · Let us characterize these sets, as H and T , that can be defined but not expressed. A
set can be expressed either
◦ by extension, that is, by listing all of its elements, or
◦ by intension, that is, by a predicate that is true for the elements that belong to it
and false for the elements that do not belong to it.

Then the infinite sets can only be expressed by intension, explaining why we had to
use predicates for defining the sets of the theorems by Cantor (§2) and Gödel (§3).
Now, using Post (1944) terminology, a set is recursive if and only if it is possible to
recursively enumerate both the set and its complement, where recursion is synonymous
with computing, see §7. Therefore, the extent of every recursive set is exactly determined,
because we can always decide what is in and what is out of the set, or, in other words,
because there is a predicate that expresses it.

¶4 · However, abstracting Gödel’s incompleteness theorem, Post (1944) showed that there
are sets that can be recursively enumerated, but not their complements; let us call these
sets undecidable. Then, an undecidable set can be defined, by the program that enumer-
ates it, but it cannot be expressed, because there is not any computable predicate that
can express it. And, consequently, the problems the solutions of which are undecidable
sets are recursively unsolvable, because there is not any way of expressing their solutions
in a complete language. Therefore, the extent of every undecidable set, as H or T , is
essentially indeterminate, because there is not any predicate that can express the set,
implying that we cannot always decide what is in and what is out of it.

¶5 · They are essentially indeterminate because, as this happens in complete languages,
the indeterminacy cannot be cured by using more expressive languages, since the com-
plete languages are, under Church’s thesis, the most expressive ones, see Casares (H).
Then we must conclude that the indeterminacy is caused by limitations of the complete
languages. So it is by implementing the liar paradox in diagonal arguments, see §2¶5,
that the incompleteness and unsolvability theorems show some limitations of the complete
languages, including human language if the law of Post is right. And given that, as Gödel
(1930) writes in note 14 (see §6¶1), every epistemological antinomy can be used to prove
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a case of undecidability, then for each paradox we obtain its corresponding essentially
indeterminate undecidable set.
¶6 · Although we can refer to the undecidable sets the same way we refer to the well-
behaved recursive ones, this is an illusion: under the law of Post, the undecidable sets
are beyond our expressive capability. This is both marginal and fundamental:
◦ It is marginal because our expressive capability is more than enough for our everyday
tasks. In fact, the corresponding complete language has made our species the most
powerful and dangerous one, see Casares (T), showing that our expressive capability
is much more than enough to survive; perhaps much too much!
◦ It is fundamental because sets are not only the basis of mathematics, but sets are
also the very foundation of the whole theoretical world, since every concept should
be defined by a predicate expressing what is in and what is out of it. Being funda-
mental, undecidable concepts can cause basic misunderstandings. For example, the
real numbers R are considered real, but N and Q are undecidable sets in R, see §2;
consequently, that ‘reality is continuous’ is a linguistic illusion. Other undecidable
concepts are H, in words ‘(total) function’, and T , worded ‘(arithmetic) truth’.

Paradoxes are to language as illusions are to perception

Paradoxes are linguistic illusions

§11 Conclusion
¶1 · Using Cantor’s (1891) diagonal argument, see §2, Gödel (1930) showed that there are
more formalized arithmetic propositions than enumerable proofs, see §3; therefore some
propositions are undecidable since they can neither be proved true nor false using
finitary formal systems. Using Cantor’s diagonal argument, Turing (1936) showed that
there are more definable problems than enumerable computations, see §6; therefore some
problems are unsolvable by finitary machinery.
¶2 · The word ‘finitary’ is a bit weird, since it is neither ‘finite’ nor ‘infinite’, but midway
between the two. Finitary refers to the infinite use of finite means. This point us twice
to human language. Firstly because that is precisely Humboldt’s definition, see §10.1,
and secondly because, out of the two Kantian tools, see §9¶4, physical reality is already
much more limited since, as seen above, all we perceive are finite means used finitely. In
any case, as the means are finite, the finitary system products are always enumerable.
¶3 · The finitary concept is best grasped by the Turing machine, see §4 and §5: the finite-
state machine represents the finite means, and the unbounded tape allows the infinite
use. And in Turing computing the most expressive languages are the complete languages
implemented by universal Turing machines: a complete language implements the whole
semantics of computing, which is thus full-self-expressible. This means that the most
expressive languages that finitary systems can implement are the complete languages.
¶4 · Therefore, the diagonal argument is used to show some limitations of human language,
and of other finitary systems, which derive from it. In these systems, the means are finite,
but we do not limit their use. This is, of course, an idealization, but nevertheless it would
also be wrong to limit, for example, the number of words in a sentence, or the number of
steps in a proof. Summarizing, the incompleteness and unsolvability theorems by Gödel,
Church, and Turing find limitations in our finitary tool, which is our complete language.
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¶5 · And, in any complete language, there are definable concepts that cannot be expressed,
see §10.2. This generalizes Gödel’s incompleteness theorem, see §6¶8, which represents,
under the law of Post, an absolute human limitation, see §7 and §8, which Kant promotes
to transcendental, see §9. So, epistemologically, Gödel’s incompleteness theorem elevates
from Turing’s generalization,

every Turing complete language is Gödel incomplete ,

to its Post-Kantian formulation,

knowledge cannot be complete .
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