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ABSTRACT A formalism is introduced to represent the
connective organization of an evolving neuronal network
and the effects of environment on this organization by
stabilization or degeneration of labile synapses associated
with functioning. Learning, or the acquisition of an as-
sociative property, is related to a characteristic variability
of the connective organization: the interaction of the en-
vironment with the genetic program is printed as a par-
ticular pattern of such organization through neuronal
functioning. An application of the theory to the develop-
ment of the neuromuscular junction is proposed and the
basic selective aspect of learning emphasized.

We relate the epigenetic development of the nervous system
to learning and define learning as the process by which a
complex organism acquires a well-defined and stable associa-
tive property as a result of a specific interaction with environ-
ment. Such a process and the resulting property can be con-
sidered at two distinct levels: the functioning of the neuronal
network (electrical activity) and the behavior of the entire
system constituted by the neuronal network plus its relevant
environment in reciprocal interaction. In this paper, after
formulating postulates (1) we shall propose a class of mathe-
matical modelst that represent the joint structural evolution
and functioning of a neuronal network (Section 1), the be-
havior of the organized system associated with it (Section 2),
and, finally, the relation between the two levels of learning
through semantics of the genetic program (Section 3). In
Section 4 the theory is applied to development of the neuro-
muscular junction.

Biological Postulates. (P1) The physical basis of the infor-
mative operations performed by the nervous system resides
in the ability of the nerve cells (or neurons) and their axonic
or dendritic processes to produce, transmit, integrate, prop-
agate ... impulses through the complex neuronal network.
All main features of that functioning may be registered by
an absolute time scale. (P2) The interneuronal contacts, the
synapses, mediate all information transfers through the sys-
tem. Excitatory as well as inhibitory synapses may exist
under at least three connective states (synaptic "plasticity"):
labile (L), stable (S), and degenerate (D); only states L and

t A model is considered as an axiomatically defined mathematical
structure that is coupled with phenomenological premises and
postulates about mechanisms by means of interpretative state-
ments. The mathematical developments are carefully distin-
guished from their interpretations; the biological terminology used
in those developments should not induce any modification what-
soever of the axiomatic setting of the models.

S transmit nerve impulses and the acceptable transitions be-
tween states are L -- S, L -- D, and S -- L. (P3) Evolution
of the connective state of a given synapse is governed by the
total message afferent to the postsynaptic soma during a
prior time interval of determinate length (evolutive power
of the soma). (P4) The maximum wiring and the main stages
of development of the network of synaptic connections, as
well as the evolutive power (postulate P3) and the integrative
power (after the usual "firing" mechanism) of each soma is
a determinate expression of the genetic program (the "genetic
envelope" of the network). The emergence during growth
of a large number of labile synapses is provided by this pro-
gram. (P5) Neuronal learning appears as a capacity associated
with the variability of the connective organization of the
neuronal network. The associative property that results
from the learning process is structurally printed as a particular
pattern of such organization; this pattern results often from
the selection by functioning (postulates P2 and P3) of par-
ticular pathways among a large number of labile synapses
(especially during growth; postulate P4).

1. Statics and dynamics of neuronal networks

1.1 Neuronal Graphs and Neuronal Networks. If C is a finite set,
andif ,cCX C, weset2(C) = {xE C13 y C, (y,x) EM,
2-1 = {(y,x)lx E C, y e C& (x,y) E 2), A(C,2) = C-2(C).
E(C,2) = CoZ'1(C)andI(C,2) = 2(C) n 2-'(C); and,
for each a = (x,y) in C X C, we set or_ = x and a+ = y.
Now, such a couple (C, 2) will be called a neuronal graph
if the following axioms are satisfied: (NG1 )A (C, Z) # 0;
(NG2)A(C,2) n E(C,2) = 0; (NG3) V x e C, (xx) f 2.
We note that (NG2) is equivalent to C = 2(C) U Z1(C), and
imply that {A(C,2), E(C,2), I(CZ)I is a partition of C.
A neuronal graph (C',2') is called a neuronal subgraph
of (C,2) if C' c C & 2' c 2. Let us set then W = {NL,SD},
W = {L,S,D}, Wo = {N,D}, Wi = {L,S}, andN= {0,1,2,. . .
and let Q(C,2) be the set of all w e Mp(N X 2,W) such that:
(NE1) V a, E 2, w(O,a,) = N; (NE2) V t e N, V t' E N,
V o E 2, t' < t & c(tr) = N=) w(t',o) = N.

Neuronal graphs (defined above as mathematical structures)
will now receive several different, although connected, inter-
pretations (Int)t in terms of neuronal networks. First, a

neuronal graph (C,2) provides a model of the static connec-

tive organization of a definite neuronal network: (Int 1)
the synapses are labeled by the elements of 2; (Int 2) the

t Mp(X,Y) denotes the set of all mappings from the set X into
the set Y.
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neurons are in one-to-one correspondence with the elements of
I(C,2); (Int 3) the soma, the axon hillock§, and the axon
of the neuron u(x) associated with x£ I(C,2) are, respectively
(resp), represented by (2-1(x),x), x, and (x,2(x)); (Int 4) the
elements of A (C,2) (resp of E(C,2)) represent the entry (resp
exit)-hillocks; (Int 5) the elements of W* represent the three
possible connective states of the synapses (postulate P2),
in such a way that each e E Mp(2,W*) represents a connec-
tive organization of the network, with e(a) standing for the
connective state of the synapses oE2C in that organization.
More elaborate models of series of networks, somas with large
dendritic arborizations (the Purkinje cell for instance) or
special synapses (see section 4.3, Int 28), can be made in
particular by modifying Int 1 to Int 3 and representing cer-
tain somas and synapses by neuronal subgraphs.

1.2 Evolution of Neuronal Networks. Second, a neuronal
graph (C,2) can constitute a model of the geometry of the
genetic envelope of a neuronal network (postulate P4) through
the following interpretations: (Int 6) the genetically pro-
grammed maximum wiring is represented by (C,2) in such a
way that the definite networks that can be actualized are in
one-to-one correspondence with the elements of Mp (Z,W); (Int
7) each element of A (C,2) (resp E(C,2)) represents a possible
entry (resp exit)-hillock of the actualizable networks; (Int 8)
the time scale (end of postulate P1) is represented by the
ordered set N; (Int 9) each element w of 2(C,X) represents a
complete evolution of the network including growth from
time t = 0, with N for "Neant."

1.3 Neuronal Programs and the Basic Theorem of Neuronal
Dynamics. Let V = {O,1}, N* = N-IO, and, for each
1 C N*, let ]1] = {1,2,... .,l} and [1] = {0,1,.. .,l}. Consider a
mathematical structure R = (C,2,On,(PA) where (C,2) is
a neuronal graph, 0 C Mp(2,N), n E N*, 4b
is a family (4!t)(x C 2(C)) such that, for each
x C 2(C), T, is a mapping from Mp(]n] X 2-1(x), V)
into V, and A is a family (Ar)(o 2C) such that,
for each oa C. A, is a mapping from the product
set N X Mp(]n] X 2-1(+),W) X Mp(]n] X 2-1(-+),V) into W.
Such a structure will be called a neuronal program if the
following axioms are satisfied: (NP1) V x (E 2(C), 4)2(O°) = 0
(with V j E ]n], MVy C 2-1(x), O (j,y) = 0); (NP2) V a C 2,
V t C Mp(ln] X Z-1(o7+),W), V Mu C Mp(]n] X 2;-1(o+),V),
V t C N, a(t;t) = N =) t(1,) = N.
Then, for each t C N, x E 2(C), EC (C,2),
U E Mp(N X C,V) and U- E Mp(N X 2.,V), let us define
w.[t,x] E AMp(]n] X 2;-1(x),W)and U'[t,x] E- Mp(]n] X 2;-1(x),V)
by the following equalities (where j E ]n] and y C 2-1(x)):
c.[t,x](j,y) = c(t + 1 - j,(y,x)) if t + 1 - j > 0 and
c,[t,x] (jy) = N otherwise; and
U It,x](j,y) = UU(t + 1 - j,(y.x)) if t + 1 - j > 0
& c(t + 1 - j,(y,x)) C WI,
and U[t,x] (j,y) = 0 otherwise.

With these notations, we shall say that (w, U, U) is an ac-
tualization of the neuronal program R when the following
equations are satisfied:

(ND1) For all t C N and a CE, U_(ta) = U(t-
if t > 0(a), and U-(t,a) = 0 if t < 0(o) or t = 0.
(ND2) For all t C N and x C 2(C), U(t,x) = -2(_@[tx]);
(ND3) For all t C N and a C 2,

c(t + 1,o) = A(t;W[tff+]U [to,+D.

By Eq. (ND1), the actualization (w, U, U) is determined by
( U): c is called the evolution and U the functioning.
Now, the fundamental result of neuronal dynamics reads:

THEOREM: Let R = (C,2,0,n,4),A) be aneuronal
program and let A = A(C,2). For each a E Mp(N X A,V),
there exists an unique actualization (w, U,U) of R such that,
(1.2) V t C N, V x C A, U(t,x) = a(tx).
And, for each to E N, the restriction of U (resp coo) to [to] X C
(resp to [to] X I) depends only upon that of a to [to] X A.
The proof is by induction on t along the graph (C,2o).

Note that the hypotheses imply that V x C 2(C), U(O,x) = 0,

1.4 Actualizations of Neuronal Programs and Epigenesis
of Neuronal Networks. A neuronal program R and its actuali-
zation (c,U,U) can receive the following interpretations
in terms of the whole genetic envelope (postulate P4) of an
evolving neuronal network and of the resulting evolution
by functioning: Int 6-Int 9 in regard to (C,2) and w; (Int
10) functioning of the network (postulate P1) is represented
by the binary wave (U,U-) which stipulates the "informa-
tional value" (O or 1) of the impulse at any given time and
in any relevant place of the network (i.e., hillocks x C C
and the afferent side of the synaptic cleft a C 2); (Int 11)
in particular, the restriction of U to N X A (resp N X E)
represents the total flow of impulses afferent to (resp efferent
from) the network; (Int 12) for each t C N and x E 2(C),
w tt,x] (resp Uw[t,x]) represents the evolution of the connec-
tive state of the synapses (resp the actual multimessage)
afferent to the soma (2;-(x),x) during the time interval
{JjE Nit + 1 - n j < t } (thus n appears as a somatic de-
gree of memorization); (Int 13) for each synapse, a C 2,
0(a) represents (Eq. ND1) the delay of propagation of the
impulse on the axon between the preceding hillock ar and the
presynaptic terminal; (Int 14) for each x CE (C), the mapping
(. represents (Eq. ND2) the integrative power of the soma
(2;-(x),x) (postulate P4); (Int 15) for each a E I, A, rep-
resents (Eq. ND3) the evolutive power upon the synapse a-
of the soma (Z-'(o+),o+) (postulates P3 and P4) with em-
phasis on its purely local action. Suitable functions 4) could
represent the firing mechanism and the excitatory or inhibi-
tory character of the synapses; suitable functions A, could
represent special constraints on the synaptic state transitions
(see postulate P2 and section 4.2 d), whereas suitable time
dependance in A, could represent time unhomogeneous
features of genetically programmed growth (postulate P4)

2. Neuronal functioning and behavior of
biological organisms

2.9 Formal Organisms. Let R+ be the set of non-negative real
numbers. If 9C is a topological space and 1 E N*, let T(C)
(resp TI(X)) be the topological space of all continuous
mapping from R+ (resp[0,l1) into $ with the compact
convergence topology, and, for each X C T(a) and t C N,
let X [tj E T,(9t) be defined by V r C [0X1],X[t](T) = X(T + t).
Now, a formal organism is defined as a structure

G = (S,Z, 3C,so, r) where 8, Z, and X are topological
spaces, so C 8, and r is a continuous mapping from
8 X T,(Z) X T1(NC) into T1(8). It is then easy to prove
that, given Z C T(Z) and K E T(3), there exists a uni-
que S C T(S) such that,
(2.1) S(O) = so & V t C N, S[s] = r(S(t), Z[tJK[fj).
According to control theory, G might be interpreted in terms
of concrete biological systems (muscle fiber, limb, entire
body, etc): (Int 16) elements of 8 (resp of Z) are in one-to-one
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correspondence with the possible states of the formal or-

ganism (resp of its relevant environment); (Int 17) elements
of JC are in one-to-one correspondence with possible elemen-
tary commands given to the formal organism by its control
apparatus (here a neuronal one; see sections 2.2 and 2.3);
(Int 18) together with the dynamic equation (2.1), r rep-

resents the mechanism according to which the evolution S
of the system results from the initial state so and the evolu-
tions Z and K of the environment and of the command in the
physical time continuum R+, all scanned by the time scale
N (which will be that of the neuronal control apparatus;
see Int 8, sections 2.2 and 2.3). Usual specifications of 8,
Z. C are manifolds, in general of infinite dimension (i.e.,
their elements are fields), whereas Eq. 2.1 results from evolu-
tion differential equations (see section 4.2, Eqs. 4.1 and 4.2).

2.2 Dynamics of Neuronal Control Systems. Let R be a

neuronal program (see section 1.4) such that E = E(CZ) # 0,
and let G be a formal organism (see section 2.1). A
coupling of R with G is defined as a triplet (A ', i, ir),
where A' is a subset of A = A(C,24), ,6 a mapping
from T, (S) X T,(Z) into Mp(A', V)(with A' = A -A'), and
r a mapping from M.p(E, V) X JC into T,(3C) such that,
(2.2) V t C Mp(E,V), V k X, r(tk;O) = k.
The structure Q = (R,G;A',i,6,ir) will be called a

neuronal control system, and a closed one if A' = 0.
If U E Mp(N X CV), S T(S), Z E T(Z) and

K E T(JC), we shall say that (U,S,K) is a total
actualization of the neuronal control system Q with
outside evolution Z when the following conditions are

satisfied: (NB1) U is a functioning of R (see section 1.4);
(NB2)S(0) = so & v t N, Spt] = r(s(t), Z[t], K[p]);
(NB3)UA'(O) = 0 & V t N*, UA(t) = ,(S~g-i1, Z[it-1);
(NB4) V t C NKt] = 7r(UE(t),K(t)), where for each t C N
and X c C, Ux(t) Mp(X,V) denotes the restriction of
U(t,.) to X.
Then, the fundamental result of the dynamic of neuronal
control systems reads:
THEOREM: Let Q = (RG;A ',jt', I) be a neuronal control
system, and let a' E Mp(N X A',V) and Z E T(Z).
Then, there exists a unique total actualization (U,S,K)
of Q with outside evolution Z such that,
(2.3) V t N, v x C A',U(t,x) = a'(t,x). And, for each
to E N, the restriction of S to [Oto] (resp of K to
[Oto], of U to [to] X C). depends only upon those of
Z to [Oto] and of a' to [to] X A'.

Because of the fundamental theorem of neuronal dynamics
(see section 1.3), the proof is elementary by induction on t.

2.3 Neuronal Control of Biological Systems. A neuronal
control system Q = (RG;A',V,,ir), together with its total
actualization (USK) and its outside evolution Z, is intended
to constitute a model of the entire system formed by an evolv-
ing neuronal network coupled with a biological system to-
gether with their evolutions by effect of the environment:
Int 1-Int 15 (see section 1) in regard to R and U, and Int
16-Int 18 (see section 2.1) in regard to G, S, K, and Z; (Int 19)
the restriction a' = UA' of U to A' represents the flow afferent
to the neuronal network from "the rest" of the nervous sys-

tem; (Int 20) the mapping Vt represents the sense organs of the
system that codes interoceptive (i.e., about S) and extero-
ceptive (i.e., about Z) sensory signals giving the afferent
flow UAN (conditions NB4); (Int 21) the mapping ir represents

the decoding by the terminal nerves of the efferent flow UE
from the neuronal network that gives a command for the
coupled formal organism (condition NB4). Note that 8 can be
large enough to let S include some structural evolution under
the nonevolutive dynamic 1, that S could influence Z (see
section 3.3 e) and that the s, and T- mechanisms have no
memory by themselves (every relevant memory being neu-
ronal).

3. General features of neuronal learning

3.1 Three Fundamental Mappings. Let Q be a neuronal con-
trol system (see section 2.2) and 1 C N*. First, for each
X C Mp([l - 1) X A,V) we define two mappings R[x] and
D[x], with R[x] E Mp(Mp(N X A,V), Mp(N X E,V) and
D[XJ C Mp(Mp(N X A,V), Mp(N X 2,W)) by setting,
for a C Mp(N X A,V), t E N, x C E and a C 2,
RpAj(a;1,X) = U(tx) and D[x](a;to) = w(t,),
where (to,U, U-) is the unique actualization of R (see section 1.3)
such that, for all y E A, U(t,y) = X(tpy) if t E [1 - 1] and
U(ty) = a(t - l,y) if t C N\[l -1]. Second, for each
z C Z. let S[z] be the set of (a',Z) E Mp(N X A',V) X T(Z)
such that Z(O) = z; and let C [l ,] be the set of
A = (MM) E Mp(l - 1] X A',V) X TK(Z) such that M(l) = z.
Then, for each A = (MM) C C Z.zJ, we define the mappings
A C Mp([l - 1] X A,V), U[A] C Mp([z,], Mp(N X A,V)),
and Q[A EC Mp(&[,], T(8)) by setting, for each
(a' Z) E 8[i], t' E [1 - 1], t E N, x C A and r E R+,
A t',x) = U(t',x), U[A](a',Z;tX) = U(t + l,x), and
9[A](a',Z;T) = S(& + 1), where (U,S,K) denotes the unique
total actualization of Q (see section 2.2) such that, for all x C A',
U(tx) = s(t,x) if t C [1 - 1] and U(t,x) = a'(t - I,x) if
t C N\[l - 1], and with outside evolution Z[M] determined
by Z[MJ(T) = M(t) if T < l and Z[Mj(r) = Z(r - l) if t > 1.

These definitions are interpreted in terms of neuronal learn-
ing for the entire system represented by Q (see section 2.3):
(Int 22) the total input to the system during the learning
procedure of duration 1 (the "learning input") is represented
by an element A = (MuM) of £[lz], the direct neuronal input
(see Int 19) being represented by ,u and the behavioral one
(see Int 16) by M, with z for the state of environment at the
end of the learning period (i.e., at time r = 1); (Int 23) the
total flow to the neuronal network (see Int 11) which results
from the learning input A (see Int 22) is represented by A;
(Int 24) the ability of the connective organization to evolve
and the functioning ability acquired by the neuronal network
after the learning input A are represented, respectively,
by the mappings D[ IoU[A] and R[; (Int 25) the behavioral
ability acquired by the entire system after the learning input
A is represented by the mapping Q[A].

3.2 Effects of Environment. Thus, the effects of a learning
input on the connective organization, on the functioning,
and on the behavior, are, respectively, represented by the
mappings: A -- DIt]OU[A], A -- R[A], and A -- Q[AJ. Now,
it can be proved that, for suitablebut not exceptional systems
Q. none of these three quantities is a function of the two other
ones, in particular, different learning inputs may produce dif-
ferent connective organizations and neuronal functioning
abilities, but the same behavioral ability. Note that this varia-
bility at the functioning level with respect of the behavioral
one appears in spite of the totally deterministic character
of the model.

Proc. Nat. Acad. Sci. USA 70 (1978)
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3.3 Associative Property: Neuronal and Behavioral Com-
petences. Let us call neuronal competence of R [resp behavioral
competence of Q] any subset 9l of the set Mp(Mp(N X A,
V), Mp(N X E,V)) [resp z E Z being given, any subset
63 of Mp(8[z],T(8)); see section 3.1] of which elements have
the causality property satisfied by every R[X] [resp Q[AII by
virtue of the last statement of theorem 1.3 [resp Theorem
2.2].
Now, considering that an associative property can be rep-

resented in extended form by a set of associative abilities, we
set: (Int 26) any associative property to be achieved by a

learning process is represented by a neuronal competence
OT of R at the functioning level, and by a behavioral compe-

tence (3 of Q at the behavioral one, in such a way that (Int 23-
Int 25) the actual achievement of the associative property
(9Z,6B) after the learning input A is expressed by the relation
R[-] E 9T at the functioning level and by the relation Q[A]

(3 at the behavioral one.
Concerning the specification of competences, we make the

following remarks: (a) A special class of neuronal competences
(the "3-3'-competences") results when 9Z is defined as the set
of F E Mp(Mp(N X A,V), ip(N X E,V)) having the
causality property and such that F(5i) C 3's for i = 1, 2,...,
p, where, for each i, 3i (resp 3's) is a given recursive subset
(possibly defined in frequencies terms) of Mp(N X A,V)
[resp Mp(N X E,V)] which represents a type of afferent
(resp efferent) message. In connection with the basic varia-
bility (see section 3.2), this class is probably too narrow to
include all neuronal competences. (b) Behavioral competences
(in particular homeostatic ones) should usually be defined
in terms of a continuous causal mapping q from T(8) into
T(JC) where 3C is a given metric space. (c) Properties of period-
icity (i.e., of time stability) have to be further introduced for
competences, owing to their infinite extension in time (by
definition) and of finiteness of the neuronic programs. (d)
In opposition to the classical theory of control, the achieve-
ment of a competence has nothing to do here with any opti-
mization principle whatsoever; it is only the expression of an

epigenetic interaction. (e) Although the model in question
does not fit with the stimulus-response theory mentality,
it can nevertheless include reinforcement learning procedures
by introducing a suitable influence of S onto Z. Two of the
most critical features of the theory are not made explicit here:
the selective aspect of learning and the presence of a critical
learning period; both aspects can be formalized in the model
and shall appear below in the application of the theory to the
neuromuscular junction.

4. Application to the neuromuscular junction

4.1 Biological Premises. (a) At the stage of development
of the neuromuscular junction referred to as "exploratory
fibers," the contacts established between motor nerve endings
and striated (fast) muscle fibers in high vertebrates are

multiple and irregularly spread on the whole surface of the
muscle fiber. (b) In the adult, a single endplate, in general,
persists in the middle of the fiber. (c) Maturation, i.e., in par-

ticular the progressive degeneration of lateral contacts, is
concomitant with nerve and muscle functioning. (d) Since
significant fluctuations occur during embryonic nerve growth,
the precise position of the endplate is not expected to be
genetically programmed.

4.2 Specification ofa Neuronal Control System. (a) Let I

centripetal centrifugal be a finite set, A' =
channel {haA" = Eaili Il,

E ={IeIiCiE=II,
a) C = A' U A' U E, and

= Uie, {(a',ei),(ai,ei)I.
(b) Let CE Mp(2,N) be defin-

edby9(ai,e1) = and

I (a',ej) = As where Oi C N* is
given (iEI). (c)Letn= 1
and, if x = ei and

FC
E Mp(] 1] X {a',ai},V), let

FIG. 1. 'T'1 IL) = M(l,a') (i C I).

(d) If a = (ai,ei), let
S; if o = (a',ej), C Mp( ll] X {a',a4,W)

andu EC Mp(]1] X {a',ai},V), let At(0r,) = L for all ¢
and us and let AK(t,r,.u) be given by the following table
according to the values of to, , and ju:

1 < t <lo-1 t >lo
= S if ,udlai) = 1

¢(1.a') = L = D
= L if I.(l,ai) = 0 for all A

r(l.a') = S A,(trA) = S for all A&

t(1,a') = D Aat,¢,) = D for all ,u
where lo E N, lo > 2, is given. (e) Let Z = {o},
8 = Cw(R) x C-(R) x C-(R) X C-(R), so = (0,0,0,0),

= C- (R) and let r C Mp((S X T1(3), Ti(8))
(see section 2.1) be defined by the Cauchy problem for the coupled
wave equations
(4.1)v 20o2,p(T,() - 612o(r,{) = K(r,t)
(4.2) vI-26x(,rt') C-)2x(r,t') =

(,(r,t*)H(Q' - *) + so(T,{*)H(t'-
(r E- R+, t E R. ' C R; with So = 6/6aT and l = a/a) by setting
(4.3)S(r) = (<p(r,*),oso(r,.) x(T,.), box(r .)), where
v > 0 v' > 0, * C R. t* E Rand H E C-(R) are given such that
(4.4) * <C, H > 0, H(-t) = H(t), H vanishes outside
[-p,p] (with p > 0 given) and H(0) > 0.
(I) Let (Oi)iEj be a family of elements of ]t*,t*[ such
that (i i (i, if i 0 i', and let i/ EC Mp(T0(S),Mp(A',V)) be
determined, considering Eq. 4.3 and p' > 0, -y > 0 being given, by
(4.5) V i C I, V S C T1(8) .
(S;ai) = 1 (=) 3 r E [0,1], 3 t C [ti - ,ti + P'I, x(,0) > -Y

(g) Let 7r C Mp(Mp(E,V) X JC, T, (3C)) be determined by
(4.6) V 5 C Mp(E,V), V k C X, v T C [O,1], V t C R,
Vr(A,;rt) = k(t) + 2iEI 5(ei)J(r)H(tQ-),
where J E C-(Q[0,1]) is given such that (with 0 < e' < e < 1),
(4.7) J(T)dT = 0 and V EC [O,e'J U [e,1], J(T) = 0;

4.3 Interpretations. The neuronal control system Q described
in section 4.2 constitutes a model of the entire system (see
section 2.3) made up of a motoneuron coupled in an evolutive
manner with a muscle fiber (see section 4.1). Considering an
isometric fiber contraction, we postulate that signals are
transmitted through two distinct channels: action potentials
initiated at the endplates are propagated through a "cen-
trifugal" channel; whereas a "centripetal" channel transmits,
back to the endplates, the signals initiated at the ends of the
fiber upon arrival of the action potential (see section 4.2 and
Fig.); (Int 27) the axon (resp the axon hillock) of the moto-
neuron is represented by (a',E) (resp by a'); its soma is not
represented; (Int 28) the endplates (see sections 4.1 a and b)
are labeled by the elements of I; the ith endplate is represented
by the neuronal subgraph ({ ai,ei }, (aj,ej)) of (Ca) (see the
end of section 1.1) with {i for its abscissa along the axis of the
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fiber; (Int 29) the formal organism G = (S, Z, jC, so, r) rep-
resents the two channels considered to be unidimensional:
the propagation of the action potential sp in the centrifugal
channel is represented by the wave equation (4.1) (with
propagation speed vW), that of the (still unidentified) signal
x in the centripetal channel by Eq. 4.2 (with propagation
speed v'); the second member of Eq. 4.2 represents the initia-
tion mechanism of the centripetal signal x when the action
potential so arrives at the ends of the fiber (of abscissal t*
and t*) (note that no reflection occurs at the ends of both
channels); (Int 30) the mapping 7r together with the setting
of K in the second member of Eq. 4.1 represents the mech-
anism by which the impulse coming from the motoneuron gen-
erates an action potential on the muscle fiber by the endplates;
(Int 31) the mapping ,6 represents a threshold mechanism
(see Eq. 4.5) by which each endplate decodes the centripetal
signal: the threshold Sy (which is the same for all i E I) is
reached only when two centripetal signals cross near ti; and
the synaptic contact (a',ej) is stabilized when such an event
occurs during the critical period of synaptic plasticity rep-
resented by [lo -1 ] (see section 4.2 d).

4.4 Neuromuscular Junction Learning. For each p C ]lo- 11,
let 3(lo,p) be the set of A E Mp([lo - 1] X A'V) such that
(4.8) 3 t E [lo - 1 - p], A(t,a') = 1, and
(4.9) V t E [lo- 1 -p]; V j p],A(t,a') = 1=)A(t +j,a') = 0;
and let AoE Mp([lo - 1] X A',V) be the "null" learning
input (i.e., V t C [o- 1], Ao(t,a') = 0). Furthermore,
let us introduce the following properties: (H1) v' < v;
(H2) t* - Z > (2vE + 4p + p') + v'0)/(1 - (v'/v)), where
a = sup{t 1i,- |i ji' C I; i' E I}; (H3) lo > 4(t* -W ;
(H4) V i' p il, I|ti-air| . 2,p;
(H5) V iIti it .< -t-m (v'e+ 4p),
where {m = (t* + t*)/2; (H6) p > 3(t* - t*)/v'. Then:

THEOREM. Beside the general conditions stated in section 4.2,
let us suppose that Hi, H2, and HS are satisfied. Then, there
exist functions J and H satisfying Eqs. 4.4 and 4.7 and y > 0
such that, for every (ti)XI satisfying H4 and H5, and every
p E [lo- 1] satisfying H6,
(A) for all A C 3(lop), a' C Mp(N X A',V) and t E N,
(4.10) (A, a';t,a4) = S for all i E 1 such that
(4.11) ti - Zm < p'/(l + (v'/v)), and
(4.12) w(Aa';t,ai) = D for all i E I such that
(4.13) {t - tml 2 v'e + 4p + p' + v'@/2 + (vU/v)(t* - em)/2,
where ai(a',ej), and w(A,a ') E Mp(N X Z,W) is defined by
(4.14) co (A,a') = D[A'](U[[A](aI)) (see section S.1);
(B) for all a' E Mp(N X A',V) and t C N,
(4.15) co(Aoa';t,oi) = D for all i E I.

We have not attempted to describe the propagation of action

potential in terms of transport of ions.

From the explicit fundamental solution of the one-dimen-
sional wave equation, J and H can be chosen such that, for
each isolated incoming impulse (see Eqs. 4.8 and 4.9, and H6)
the solutions (p and x of Eqs. 4.1 and 4.2 are spike-shaped
signals and x is non-negative. Dealing with these signals, the
existence of the threshold y can be proven, and the D[Al-o U[A]
of the entire system Q (see section 2.1) can be
approximated by the mapping D[A] of the "fictitious" neuronal
program R defined, extending R (see Fig.), by e = C U {s*,sJ;

UUiE (eis*),(ei,s*),(s*,ai)(s*,ai)} (note that
A(6,2 = A' and E(C,± = 0); if x C {s*,s*} and
ju C Mp(]lJ X E,V), ¢X(yu) = sup{s(1, ei)Ii C i}; if x = ai
(i E I), and s EC Mp(]1] X {s*,s*,V), 'i'(A) = 1 if
uA(ls*) = IA(1,*); if a EC Z 2,yA(.,.,.) S.

The preceding theorem shows that the theory accounts
for the biological premises (see section 4.1) if V'E, p, p', and
v' are sufficiently smaller than the fiber length and if v'/v
is small for every input A E 3(lo, p), where p is large (see
H6), only the endplates that are sufficiently close to the middle
of the fiber are selectively stabilized (see Eqs. 4.10-4.15)
and this phenomenon occurs whatever the abscissal t1(iE I)
of the endplates, as long as they are not too close to one another
and to the ends (see section 4.1 d). On the contrary, in the
absence of functioning during the critical period [lo - 1],
all the synaptic contacts degenerate (see section 4.1 c). Coming
back to our initial distinction between the two levels at which
learning should be considered, we emphasize that the achieved
neuronal competence after a learning input A £E (lop)
is of the 3-3' type (see section 3.3 a), where as the behavioral
one can be expressed as the symmetrical character of the
muscle-fiber contraction 1(S) (suitably formalized according
to section 3.3 b) after degeneration of the lateral contacts.
Here, the learning process of the relevant system (motoneuron
+ muscle fiber) does not derive from an interaction with its
environment but results strictly from the neuronal input (see
section 2.3, Int 19).
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