Does Thinking Require Sensory Grounding?
From the History of Philosophy to Artificial Intelligence

David J. Chalmers

[Presidential address delivered at the Eastern Division meeting of the American Philosophical Association on January 6, 2023. It will appear in the 2023 Proceedings and Addresses of the American Philosophical Association. This version is a rough draft and any comments are welcome.]

Does the capacity to think require the capacity to sense? A lively debate on this topic runs throughout the history of philosophy.

On the one hand, Aristotle says, “The soul never thinks without an image.” Aquinas says, “There is nothing in the intellect that was not previously in the senses.” Hume says, “All our simple ideas in their first appearance are derived from simple impressions.” With some minimal assumptions, all three of these statements suggest that thinking requires the capacity to sense, or at least requires having had the capacity to sense at some point.

Contrasting with these empiricist theses, rationalist philosophers have often denied that thinking requires sensing. Plato holds that we can think about the forms before we have senses and a body. Descartes holds that the pure intellect thinks independently of the senses.

In recent decades, this philosophical debate has become central to debates in artificial intelligence and cognitive science. The cognitive scientist Stevan Harnad (1990) put forward the Symbol Grounding problem: how do symbols in AI systems come to mean anything? He and others held that for symbols to have meaning, they must be causally grounded in sensory connections to the environment. The symbol “RED” must be grounded in seeing red. If we assume that thinking and meaning go together in AI systems, then this amounts to another version of the thesis that thinking requires sensing.

In the last few years, discussion of symbol grounding has become especially widespread in the debate over large language models (LLMs) such as the GPT systems. Can large language models think, mean, or understand? Many researchers argue that they cannot, precisely because
their symbols lack appropriate grounding.

In their well-known critique of meaning in language models, the computational linguists Emily Bender and Alexander Koller (2020) have argued that “a system that is trained only on form [such as an LLM] would fail a sufficiently sensitive test [for intelligence], because it lacks the ability to connect its utterances to the world.” Likewise, the psychologists Brenden Lake and Gregory Murphy (2021) have argued that “word meaning in both human and AI systems must be grounded in perception and action”. The AI researcher Yann LeCun and the philosopher Jake Browning (2022) have argued that “LLMs have no stable body or abiding world to be sentient of so their knowledge begins and ends with more words and their common-sense is skin deep”.

These researchers make various different claims, but all appear to share the core view that since language models lack a grounding in the world, their ability to think is deeply limited if not absent altogether. We could put one version of the argument as follows:

1. Language models lack sensory capacities.
2. Genuine thought requires sensory capacities.

So: 3. Language models lack genuine thought.

Here, the key premise is our original thesis that thinking requires sensing. Of course a proponent of language models might react in many ways. They might reject premise 1 by arguing that LLMs have textual input systems which count as a sort of sense. They might reject premise 2 by arguing that LLMs don’t need senses in order to think. They could accept the conclusion where pure language models are concerned, while arguing that multimodal language models, which process images and audio and control a body, have sensory capacities and thereby avoid the argument. Still, this is an important critique of language models that requires analysis.

In this presentation, I will argue against the thesis that thinking requires sensing. Drawing on the history of philosophy, I will argue that in principle, there can be highly sophisticated thinkers that lack the capacity to sense altogether. That said, there are significant limitations in just what sort of thought is possible in the absence of the capacity to sense. I will explore these limitations, too. Toward the end, I will address the upshot for large language models and other AI systems.

The Sense-Thought Thesis

The primary thesis at issue is what I’ll call the Sense-Thought Thesis:
Sense-Thought Thesis: Thinking requires having had the capacity to sense.

We could put the thesis a little more precisely by saying that necessarily, if S thinks a thought at time t, then S was able to sense at some time or before t. There are strong sense-thought thesis, such as the thesis that thinking requires concurrent sensing (like Aristotle’s imagery) or at least a concurrent capacity to sense. But the weaker “having had” thesis comes closer to capturing the formulations from Aquinas and Hume above. The weaker thesis also seems more plausible, in that it allows a being to lose the capacity to sense while continuing to think thoughts that were grounded in its prior sensory capacities.

The human sense-thought thesis applies only to humans. The unrestricted thesis applies to all possible thinkers. It seems that Aristotle and Aquinas endorse the human sense-thought thesis but not the unrestricted thesis, since they hold that angels (not to mention God) can thinking without the capacity to sense. It’s the unrestricted thesis that is most relevant to AI, however, so I will focus especially there.

The sense-thought thesis is put in terms of possibility and necessity: is it possible to think without the capacity to sense? Arguably, a more fundamental issue concerns grounding: is thinking always grounded in the capacity to sense? For philosophers these days, the relevant sort of grounding is usually constitutive (though historically, the quotes from Aquinas and Hume are not entirely clear on causal vs. constitutive grounding). For cognitive scientists, the relevant sort of grounding is often causal. For present purposes it is more straightforward and less technical to cast things in terms of possibility rather than grounding. If it is even possible to think without having had the capacity to sense, as I will argue, it follows straightforwardly that thinking need not be grounded in sensory capacities. Still, I have kept grounding in the title, since that is the standard label in cognitive science and is arguably the issue of ultimate interest in philosophy.

It remains to clarify sensing and thinking. I take thinking to include mental acts such as judging and wondering, as well as dispositional mental states such as believing and desiring. I take it that thinking requires concepts, and that at least in the core cases I’ll be concerned with, thinking is a propositional attitude: it involves an attitude (such as judging) to a proposition (e.g. that the sky is blue). In practice, I’ll take judging as the paradigm case of thinking.

Sensing is more complicated. What counts as sensing, exactly? There are many strands in the notion. One strand is tied to input: senses provide inputs from the outside world. One strand is tied to experience: senses involving a certain sort of rich sensory experience. One strand is tied to representation: senses involve a certain sort of rich and analog mental representation. Paradigm
examples of sensing involve all three. On the other hand, there are cases where all are missing. Imagery need not involve inputs. Unconscious perception need not involve sensory experience. Digital sensory systems need not involve analog representation.

What sort of sensing do we require for the sense-thought thesis? Requiring all three factors (input, sensory experience, analog representation) seems too demanding. Different sense-thought proponents might stress different factors. Externalist symbol grounding proponents require especially environmental inputs, while image theorists may stress analog representation and some phenomenal theorists may stress qualitative sensory experience. For a working definition, I will stipulate initially that any one of these three factors suffices for sensing. This yields a weaker version of the sense-thought thesis, which seems fairest for the purposes of arguing against the thesis. For certain purposes, I’ll be more specific.

There are some further questions about what counts as sensing for our purposes of assessing the sense-thought thesis. Does the use of bodily senses count as sensing? I’d say yes, absolutely, not least because this makes room for bodily grounding, which is widely regarded by grounding proponents as an important sort of grounding. Does introspection count as a sense? This is a difficult question that I’ll return to, but I’ll start by assuming that it does not.

Pure thinkers

The sense-thought thesis turns on whether *pure thinkers* are possible. Pure thinkers, I’ll stipulate, are beings that can think but that have never had the capacity to sense. The name is reminiscent of Descartes’ “pure intellects”. Both labels might seem to exalt the beings, but that rationalist implication is not intended. Indeed, we could alternatively call pure thinkers *mere thinkers*. They are limited beings that can think while lacking sensory capacities altogether.

The classic case of something like a pure thinker in the history of philosophy is the Floating Man (or Flying Man) described by Avicenna (or Ibn Sina) in his 11th century work *De Anima*, or “On the Soul”. Avicenna described the floating man as follows:

“...He was just created at a stroke, fully developed and perfectly formed but with his vision shrouded from perceiving all external objects created floating in the air or in the space, not buffeted by any perceptible current of the air that supports him, his limbs separated and kept out of contact with one another, so that they do not feel each other. Then let the subject consider whether he would affirm the existence of his self. There is no doubt that he would affirm his own existence, although not affirming the
reality of any of his limbs or any external thing.”

Avicenna puts forward the floating man as a being who is aware of the self without being aware of the body. He uses this to draw the metaphysical conclusion that the self is distinct from the body, in a manner not unlike Descartes’ arguments six centuries later.

Others following Avicenna used the floating man for broadly epistemological or psychological purposes. For example, Matthew of Aquasparta used the thought-experiment to argue that self-consciousness does not require sensory knowledge (see Juhana Toivanen, “The Fate of the Flying Man: Medieval Reception of Avicenna’s Thought Experiment”).

A related use of the floating man [by who if anyone?] is to argue that thinking does not require sensing. The floating man as described thinks (about himself) but is carefully manipulated so he does not sense at all. As such, the floating man is somewhat akin to a pure thinker. He is not a perfect example. His vision is just shrouded, so he still has the capacity to see, though he is not using it while floating. Likewise, his limbs could easily feel each other, so he still has the capacity for touch.

For this reason (as well as because the floating man is required to be a human and a man), I won’t use “floating man” as a generic term for a pure thinker. But Avicenna’s thought experiment is still a classic case of thinking without sensing, and it would not be hard to extend it into a case of thinking without the capacity to sense [does anyone do this?].

Now that we have pure thinkers on the table, we can ask two questions. First, is a pure thinker possible? Second, what if anything could a pure thinker think?

Is a pure thinker possible?

Is a pure thinker possible? We can start by considering whether there are actual human cases. Deafblind people such as Helen Keller are occasionally brought up in this context, but Keller had many sensory capacities (touch, smell, taste, bodily senses), and even her deafness and blindness were not congenital. I don’t know of any cases of a human with no functioning senses (including bodily senses) since birth [are there any such cases?], but it seems very likely that such a human would never develop the ability to think, at least given standard biology and today’s medical technology. If so, there have been no actual human pure thinkers.

What about future human pure thinkers, or possible human pure thinkers? Perhaps new technologies could make it possible to enable some human cognitive capacities without enabling sensory capacities, though it would probably be cruel to do so. If this is even possible, then the human
sense-thought thesis is strictly speaking false, though a version of it restricted to actual humans could be true.

What about broadening the scope to include nonhumans? Here the salient cases in the history of philosophy include angels and gods, while the most important cases for our purposes include AI systems.

It seems clear that a pure thinker is at least prima facie conceivable. Science fiction stories sometimes discuss AI systems that are at least much like pure thinkers. For example, Robert Sawyer’s novel *Wake* describes an AI system that gradually “wakes up” and starts thinking, without having any senses. Perhaps Sawyer’s system as described has at least auditory imagery via voices in its head, but we can easily tweak the situation so that it has no sensory capacities (including no imagery) at all.

To make things easier at the start, we can imagine that the system starts by thinking only about mathematics, perhaps judging that one plus one is two and going on to prove that there are an infinite number of primes. If this much is possible, the sense-thought is false at least for mathematical thoughts. That alone may not be a strong conclusion, but I’ll extend the argument to further sorts of thinking in the next section.

Given that pure thinkers are prima facie conceivable, we can argue that they are possible via a straightforward conceivability argument. One plausible principle is that when p is prima facie conceivable, then p is possible unless there is a defeater for p’s conceivability or for the inference from conceivability to possibility. So we now need to consider whether there are any such defeaters.

The most important sort of defeater involves a hidden essence of thinking. Perhaps we’ll discover empirically (or through complex a priori reasoning) that all actual cases of thinking involve a certain underlying state T, which itself requires the capacity for sensing. Or at least we might discover that all paradigm cases of thinking in humans involve T. That might lead us to identify thinking with T, and to conclude that thinking requires sensing. The thesis that all thinking involves T will then serve as a defeater of the claim that thinking without sensing is possible.

On this view, one might say that apparent possible cases of thinking without sensing, say in an AI system, are not genuine cases. They lack the hidden essence T, so they do not involve thinking at all. Instead, they involve a different but superficially similar phenomenon that we might call *schminking*.

Now, my own view is that mental concepts such as *thinking* don’t work this way. If a being is schminking, it is thinking. And even if not, schminking will be in many ways tantamount to
I think in light of current cognitive science and philosophy, there are no compelling candidates for a defeater involving a hidden essence of thinking that ties it to sensing.

One potential defeater arises from *strong concept empiricism*: the thesis that all thought is constituted by sensory experience or sensory representation. This differs from weak concept empiricism, which holds that some thought is constituted by sensory experience or representation. It is very plausible that a concept such as *red* is constituted by sensory experience. But it is much less plausible that a concept such as *two* is so constituted. Strong empiricist theorists such as Lawrence Barsalou and Jesse Prinz have argued for sensory theories of mathematical concepts and of other concepts that appear to be independent of the senses, but these theories are widely rejected even for humans. So the science of concepts does not yield a defeater here.

Another potential defeater arises from *strong externalism*: the thesis that all thought is constituted by environmental relations. This differs from *weak externalism*, which holds that some thought is constituted by environmental relations. Weak externalism is very plausible, but strong externalism is much less plausible. For example, Putnam’s externalist arguments make a plausible case that possessing the concept *water* thoughts always requires certain environmental relations. Burge’s externalist arguments make a plausible case that for any concept (even *two*), possessing that concepts *can* be grounded in environmental relations, at least in cases of semantic deference. But these considerations do little to suggest that that thinking about *two* or *plus* must be grounded in environmental relations in all cases. The intuitive judgment that a nondeferential thinker without senses might think that two plus two is four is left untouched by the Putnam-Burge case for externalism.

A third defeater arises from what we might call the *strong extended mind* thesis, holding that all thinking is constituted by active connections to environmental tools, mediated by perception and action. Again, this contrasts with the weak extended mind thesis, which holds that some thinking is so constituted. The standard arguments for the extended mind thesis (e.g. those by Andy Clark and me) make a case for the weak extended mind thesis. But they do not purport to make a case for the strong thesis. Indeed, the Clark and Chalmers argument for the extended mind thesis (via parity of internal and external processes) assumes that some non-extended cases of thinking are possible. So there is no defeater to be found here.

A fourth potential defeater arises from what we might call the *strong embodied mind* thesis, which holds that all thinking is constituted by processes involving the body. Again the strong embodied mind thesis contrasts with a weak thesis, and again the weak thesis is much more plau-
sible. While numerous embodied mind theorists [who, exactly?] have argued that some thinking is constituted by bodily processes, few [who?] have argued that all thinking is so constituted, and the strong view is widely rejected.

We could consider many other defeaters, but this is enough for now. My suspicion is that the pattern establish here will hold more generally. I don’t mean to exclude the possibility that some deep new hidden essence of thought might be discovered which would connect at least human thought to sensing. But for now, I would say that both prima facie and secunda facie, pure thinkers are possible.

What could a pure thinker think?

In her “Experience and Immortality” (2008), Catherine Wilson paints an austere picture of Cartesian pure intellects would lead an austere life. She suggests that Descartes should have described his view as follows:

“If our minds endure after death, ... they will feel neither pain, nor pleasure, for they will no longer form a composite with our bodies. We will no longer see colours, touch objects, and hear sounds. We will not remember events of our past lives. We will be numb and inert. ... We humans will be almost nothing - at most capable of unintuitive, imageless thought and intellectual memory.”

Wilson is probably right that it would not be much fun to be a pure thinker. But I don’t think that being a pure thinker would be almost nothing. We’ve already seen that a pure thinker could still engage in mathematical thought. Many other thoughts will be available to it as well.

To analyze this, we need to answer the following tongue-twister: what sort of thing could a pure thinker think, if a pure thinker could think things?

For a start, there is no obvious obstacle to such a being being able to think *cogito*-like thoughts such as *I think, therefore I am*. Prima facie, the self-concept *I* would be thinkable for a pure thinker, as could mental concepts such as *think* and *judge* and logical concepts such as *and*, *exist*, and *therefore*. And secunda facie, the sorts of defeaters discussed in the last section don’t seem to defeat these claims. For example, standard externalist arguments don’t seem to establish that self-concepts, mental concepts, and logical concepts require connections to the environment, and the case that these require sensory grounding is weak.

Of course the justification for accepting the Cogito’s premise *I think* plausibly depends on
introspection. But it is thinkability and not justification that is currently at issue. It is at least arguable that introspective capacities is not required to possess the concepts \textit{I} and \textit{think}, and thereby to think the thought \textit{I think}. In any case, at least for now we are not counting introspection as a sense, so that introspective justification is available to a pure thinker.

It is likewise plausible that a pure thinker could think thoughts involving metaphysical concepts such as \textit{object}, \textit{property}, \textit{part}, and \textit{fundamental}. The same goes for causal and nomic concepts such as \textit{cause}, \textit{law}, and \textit{chance}, and semantics concepts such as \textit{truth} and \textit{reference}. For all of these cases, it is hard to get a Putnam-style Twin Earth case off the ground, and it is hard to find an essential role for the senses in possessing these concepts.

These resources will allow a pure thinker to think all sorts of thoughts about the external world, and not just about itself. For example, it could think \textit{There exists a thinker distinct from myself, There exists something that causes my thoughts}. It could also express detailed scientific hypotheses about the world, such as “There exist quantities \(q, r, s\) that stand in such-and-such lawful relations.”

If we allow pure thinkers to have introspective capacities, they might even be justified in some of these hypotheses. Introspection would enable them to know what they are thinking, and abduction would allow them to formulate and evaluate hypotheses about the causes of their thoughts. A pure thinker might even develop a small empirical science to explain its patterns of thought. If introspection is disallowed, then a pure thinker will be restricted to a priori reasoning and support for contingent empirical hypotheses about the world will be harder to come by. But such a being could still at least speculate about the character of its world.

That said, there are some obvious limits on what a pure thinker could think. It’s plausible that without senses, a pure thinker could not fully possess sensory concepts such as \textit{red}, \textit{painful}, and \textit{loud}. A pure thinker could at best possess these concepts in the way that Mary in her black and white room possesses the concept \textit{red}: that is, with an incomplete understanding that is mediated by linguistic deference or perhaps by mathematical structure.

Likewise, it is arguable that in lacking perception of the body and of bodily action, a pure thinker could not fully possess certain practical concepts tied to bodily action, such as concepts of walking or dancing or singing. In a similar way, a pure thinker could not fully grasp certain sorts of practical understanding, such as knowing or understanding how to ride a bicycle. That said, a pure thinker might at least be able to grasp various concepts tied to mental action (such as judging or deciding), and they might at least have a structural or theoretical understanding of some aspects of bodily action.
A difficult question is whether a pure thinker could have concepts of space and time. I am inclined to think that at least some element of our concept of space—what I have elsewhere called Edenic space—is anchored in the perceptual experience of space. It’s arguable that just as a pure thinker couldn’t fully possess the experiential concept of redness (which is itself tied to Edenic redness), they couldn’t fully possess the concept of Edenic space. But they could at least have a structural or mathematical conception of space, tied to space as characterized mathematically by modern science. Something similar applies to time, except that it is arguable that an introspective pure thinker could acquire a concept of time—perhaps even Edenic time?—through introspecting the succession of thoughts.

Without perceptual capacities, a pure thinker will also be unable to use perceptual demonstratives such as *this* and *that*, applied to objects one is perceiving. An introspective pure thinker could presumably use introspective demonstratives to pick out their own thoughts and mental states, while a non-introspective could arguably not use demonstratives for any part of the concrete world (perhaps it could use demonstratives for numbers?). Pure thinkers could still formulate descriptive concepts that pick out entities in the external world (e.g. *the entity causing this thought*) but the absence of concrete demonstrative thought about perceived objects will certainly be a lack.

It’s arguable that pure thinkers will lack singular concepts of entities in the external world more generally. Could a pure thinker have the concept *Barack Obama*? Possessing that concept arguably requires having a causal and cognitive connection to Obama himself, which a pure thinker will lack. Something similar applies to many kind concepts, such as *water*, which requires an appropriate connection to water. Again, a pure thinker could have a descriptive concept that picks out Obama as *the person with such-and-such characteristics* (for appropriate characteristics that a pure thinker could grasp), or that picks out *water* as *the stuff with such-and-such characteristics around here*. Such a descriptive concept might be able to play some of the roles of a singular concept, but it certainly would not play all of them.

In my view, pure thinkers would be largely *structuralist* thinkers, at least where nonmental reality is concerned. Here, structural concepts include logical and mathematical concepts along with metaphysical, causal, and semantic concepts. Pure thinkers will be able to entertain structural hypotheses about the external world, akin to the sort of hypotheses that science puts forward according to structural realism. As we have seen, they will be able to entertain structural hypotheses about colors such as redness. But they will not be able to possess nonstructural concepts such as Mary’s full-blown concept of red when she leaves the room.
Pure thinker/talkers and large language models

How does our discussion of pure thinkers apply to AI systems? It suggests that the mere absence of sensory capacities in an AI system does not entail that the system cannot think or understanding. The absence of sensory capacities may impose some limits on thinking, but they do not rule it out altogether. If we devised a “pure” AI system with no input/output connections to the world, its lack of connections to the world would not alone prevent it from being able to think and understand a good deal, from mathematics to philosophy to speculative scientific hypotheses about reality. Of course there could be other factors that can rule out thinking and understanding in AI systems altogether, but the lack of sensory grounding is not one of them.

Large language models are trickier, as they are not obviously pure thinkers. They have a robust input/output system, receiving textual inputs and producing textual outputs. Does textual input in a language model count as a sense? That depends on how one defines senses.

If a sense is simply an input system, large language models have senses and are therefore not pure thinkers. If a sense requires a special sort of rich sensory experience, or perhaps a special sort of analog representation, it is arguable that large language models do not have senses. This would leave the door open to their being pure thinkers, though their nonsensory input capacities would make them quite unlike the paradigmatic pure thinkers considered in the last section. Finally, on our official working definition where a sensory capacity just requires at least one of these three factors (input, sensory experience, analog representation), textual input will count as a sense, and large language models will therefore not count as pure thinkers.

On any of these approaches to senses, large language models go beyond the paradigmatic pure thinkers described in the last section. Perhaps the best aspiration for a large language model is not a pure thinker but a pure thinker/talker: a pure thinker augmented with the ability to process linguistic inputs and produce linguistic outputs. A pure thinker/talker will lack vision, hearing, and other paradigmatic senses. We might stipulate that it lacks rich sensory experience and sensory representation altogether: its linguistic inputs are not experienced through vision, hearing, or touch but through some form of discrete or digital input mechanism. A non-technological version of a pure thinker/talker might be a being who talks to others by telepathy.

Note that I’m not asserting that language models are in fact pure thinker/talkers. That would depend on many difficult issues about whether they can in fact think. Instead, as with pure thinkers, I’m exploring the capacities of pure thinker/talkers to see what limitations the lack of sensory capacities beyond language might impose.
Pure thinker/talkers will have many capacities that pure thinkers lack. For a start, they have the ability to produce and understand language. They will also have many social, cognitive, and epistemic capacities that pure thinkers lack but that language use facilitates.

Pure thinker/talkers can plausibly use linguistic inputs to know many things about the world. If someone tells them “I am conscious”, a pure thinker/talker could use this testimony to know at least that they are receiving the input “I am conscious”. Given enough patterns, they will also know about patterns in their inputs and they can use abduction to form theories about the world that produces these inputs. Depending on how the epistemology of testimony works, they could also know that someone else is conscious. They could come to know mathematical results and scientific laws by testimony in a similar way. They could likewise come to know many social and historical claims about the world, at least when cast in broadly structural terms.

A pure thinker/talker could also use language to acquire a much broader class of concepts than a pure thinker alone. For example, upon receiving inputs such as “Obama was US president from January 2009 through 2017”, “Obama is from Hawaii”, and so on, a pure thinker/talker could start to use the term “Obama” and indeed to think about Obama. This parallels the way that we acquire many singular concepts, perhaps in conversation or from reading newspaper articles. It plausibly could lead to a pure thinker/talker’s having many singular concepts such as Obama, kind concepts such as water, and so on.

There will be some limits. In the absence of sensory capacities, a pure thinker/talker will still not be able to fully master sensory concepts such as red. Like Mary in her black and white room, a pure thinker/talker could pick up the word “red” and use it knowledgeably in conversation, but this would involve the sort of partial understanding enabled by the division of linguistic labor and linguistic deference. The pure thinker/talker would still not have the sort of fully sensory understanding of the concept that a user with color vision would have. Something similar goes for other sensory concepts, for concepts of bodily action, and arguably for spatial concepts.

Where demonstratives (that) are concerned, pure thinker/talkers will lack traditional perceptual demonstratives, but they can at least use demonstratives for linguistic inputs. They could also perhaps acquire anaphoric demonstrative concepts that are parasitic on another speaker’s perceptual demonstrative. (Speaker 1: “That person (perceptual) is hungry”; Pure thinker/talk: “OK, that person (anaphoric) is hungry.”)

One thing that’s going on in these cases is that language itself involves a sort of causal grounding in the environment. When one uses the concept Obama, this was brought about in part by use of the linguistic token “Obama”, which itself causally originated partly in the individual Obama.
The same goes for water and for demonstrative concepts. Here a linguistic community provides a causal connection between thought and environment that suffices to secure reference. The same may well be true of language models (see Linzen and Mandelkern).

We could even have a Twin Earth cases with two physically identical pure thinker/talkers on Earth and Twin Earth, processing and producing “water” tokens and thinking corresponding thoughts. The pure thinker/talker on Earth will refer to H_2O, and the pure thinker/talker on Twin Earth will refer to XYZ. In principle, there is no obvious reason why this could not also be true for language models.

All this brings out that language use enables pure thinker/talkers to know many things that pure thinkers cannot, and to think and understand many things that a pure thinker cannot. Pure thinker/talkers may still be structuralist thinkers at some level, perhaps without a full experiential understanding of sensory concepts such as redness. But they can know a great deal about the world, and they can think and refer to things in the world straightforwardly.

Can large language models think?

Where does all this leave large language models? I have not argued directly that large language models *can* think. There are all sorts of arguments against thought in AI systems, from Gödelian arguments to arguments that thought requires biology, that I have not addressed. There are also arguments specifically against thought in LLMs, from arguments that LLMs lack consciousness to arguments that they are “stochastic parrots”. All those arguments require separate treatment.

Still, I have rebutted one argument against thinking in LLMs: the argument from sensory grounding. I have argued that the absence of (nonlinguistic) sensory capacities in large language models is not itself an obstacle to their thinking. If I am right, the standard grounding argument against LLM thought at the start of this paper fails. The second premise (genuine thought requires sensory capacities) is false: our examination of pure thinkers and also pure thinker/talkers has shown us that genuine thought does not require sensory capacities. The first premise (LLMs lack sensory capacities) may also be false, at least if we count linguistic inputs in LLMs as a sensory capacity. As a result, the grounding argument is not a compelling reason to reject LLM thought.

My analysis does suggest some limitations on LLM thinking. We have seen that in the absence of sensory experience, pure thinker/talkers may not fully master sensory concepts, though they may possess sensory concepts at least partially via linguistic deference or via a structural characterizations. If so, then LLMs, even if they can think, will at best be in the same boat.
Of course it is also possible to extend LLMs with quasi-sensory capacities. Multimodal LLMs process image and audio inputs, in a way that might be counted as a sort of vision and hearing respectively. Would this count as a sense? As usual, this depends on which factors we require for a sense. Environmental inputs? Image and audio files certainly involve these, although this does not change much as pure LLMs already have inputs. Analog representation? In standard form image files involve digital representation. Sensory experience? This is far from obvious, and partly turns on the question of whether LLMs are conscious at all. But if multimodal LLMs do have the capacity for sensory experience where pure LLMs do not, this might allow them to fully possess sensory concepts (such as redness) that a pure LLM cannot.

Does sensing boost thinking?

Even if thinking does not require sensing, does sensing at least boost thinking? That is, do sensory capacities enhance cognitive capacities, in the sense of improving performance on cognitive tasks even when they are not essentially tied to the sensory domain? In humans, the answer seems to be yes. The use of visual imagery can sometimes improve performance on mathematical tasks, for example, and visual memory can certainly enhance performance on memory tasks.

What about in language models? Does adding multimodal capacities boost performance on textual tasks specified entirely using language? One might expect the answer to be yes, if only because images can convey so much more information than text (a picture is worth a thousand words). In practice, however, the boost seems surprisingly small. For example, GPT-4 comes in a pure text and a multimodal version, and both versions were tested on various standardized tests such as law school exams and the like. Their performance was typically equal or very similar. Sometimes the multimodal version was ahead, but not by much. The small multimodal advantages may well be explained by training images giving relevant information that is not present in the relevant training text.

There is a growing body of empirical evidence that likewise suggests that language models do well even at tasks involving sensory domains, and that they perform in a way that is quite similar to multimodal models. For example, the computational linguist Ellie Pavlick (2023) and colleagues (Abdou et al 2021, Patel and Pavlick 2022) have studies suggesting that when a language model is trained on text about colors or spatial directions, it acquires a representational for colors or spatial directions that is near-isomorphic to the representational space acquired by a multimodal model. When the spaces are near-isomorphic, we can expect that performance will be similar too.
There are interesting connections here to the well-known Heideggerian critique of AI by Hubert Dreyfus (19xx) and the feminist critique of AI by Alison Adam (19xx), both of which center on the importance of embodied knowledge-how and the absence of this knowledge from disembodied AI systems. Where language models are concerned, we have seen that pure language models lack embodied know-how while multimodal models that control a body can perhaps have a form of embodied know-how. At the same time, recent empirical work has suggested that it is surprisingly easy to take the representations for pure LLMs and adapt them (via brief training) for use in embodied action in a multimodal model. Just as we found near-isomorphic spaces for colors in pure LLMs and multimodal LLMs, we find near-isomorphic spaces for actions.

One moral is that even though pure LLMs have at best knowledge-that and lack embodied know-how, there is not a huge gulf between their knowledge-that and a multimodal model’s know-how. In effect, the extensive text training of pure LLMs gives them much of the Heideggerian background needed for the know-how of embodied action. All this suggests that at least in these deep learning systems, knowing that and knowing how are intimately linked.

Let’s return to whether multimodal models yield a performance boost on text tasks. What if we ensure that the same information is given to both pure language models and multimodal models, for example by spelling out all of the multimodal model’s image data in textual form and feeding it to a pure language model? On a priori grounds, we would expect the two models to perform similarly, at least if they have similar architecture and size. Translating information between image and text formats will be near-trivial for a powerful language model, so that the difference between formats should not make a significant difference to performance.

This suggests at least one sense in which in language models, sensing does not boost thinking: multimodal processing does not boost performance on textual tasks, at least once training information is held constant. This is akin to saying, in the human case, that sensing does not boost thinking, once information is held constant. Sensing may enable sensory experience and full sensory concepts, and these may enable thoughts that the system could not have thought before, but these boosts need not boost performance on answering text questions and on other cognitive tasks.

The case of Mary in the black and white room (who has full objective knowledge of the physical world but no experience of redness) provides an analogy here. Inside the room, an idealized version of Mary can use her full physical knowledge to answer many questions about redness, even though she lacks color experience. When she leaves her room for the first time, this gives her new experiences and new concepts. Will she be able to use these to questions that she could not have answered before? If Mary is a nonideal human, she may now be able to use her experience to
answer questions about colors that used to be difficult for her. But if Mary is an ideal reasoner, it’s not clear that she will be able to answer any new questions that she could not already answer using her knowledge inside the room. At best, perhaps her new capacities will enable her to answer the old questions faster. As with language models, her new sensory experience and new concepts need not entail a boost on cognitive tasks.

A residual puzzle arises from the deep similarities between a pure LLM and a multimodal LLM. Both process inputs consisting of sequences of binary numbers and produce outputs of the same form. The origins of the sequences differ (text, images), but their processing may be very similar. We have already seem that image data can in principle be translated to a pure LLM as a text input, and a powerful LLM might process both inputs just as well.

How can we reconcile these similarities with the idea that multimodal models can possess sensory concepts (and perhaps even sensory experiences) that pure language models cannot? Why should the fairly trivial difference between processing an image file and processing an image-to-text file yield a difference in the concepts that these systems can possess? In a human being, the processing of visual inputs and text inputs takes completely different forms, so it is not surprising that these are associated with different forms of experience and with different concepts as a result. In LLMs, on the other hand, the processing of these inputs will be much more similar, so the puzzle is more acute.

There are at least three possible answers:

1. Pure LLMs (like multimodal models) can have sensory experiences and full-blown sensory concepts, at least when they process appropriate textual translations of image files.

2. Neither multimodal LLMs nor pure LLMs can have sensory experiences or full-blown sensory concepts.

3. Multimodal LLMs have sensory experiences and sensory concepts while pure LLMs do not, in virtue of differences arising from the different functional roles of text and images in these systems.

I am tentatively inclined toward the first option, perhaps saying that these pure LLMs are so good with processing of text versions of image files that this counts as a sense. In effect, a pure language model already has multimodal sensory capacities. The new image-processing capacity coincides so closely with linguistic processing of text files, though, that it is less than clear whether
to classify it as linguistic, sensory, cognitive, or all of the above. Perhaps it is not surprising that large language models would start to blur the border between sensing and thinking. In any case, I will leave the puzzle as an open question.

[Notes and references still coming.]