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1 Discovery and Diversity in the
Modeling Ecosystem

There are many different kinds of model and scientists
do all kind of things with them. This diversity of
model type and model use is a good thing for science.
Indeed, it is crucial especially for the biological and
cognitive sciences, which have to solve many differ-
ent problems at many different scales, ranging from
the most concrete of the structural details of a DNA
molecule to the most abstract and generic principles of
self-organization in networks. Getting a grip (or more
likely many separate grips) on this range of topics
calls for a teeming forest of techniques, including many
different modeling techniques. Barbara Webb’s target
article strikes us as a proposal for clear-cutting the for-
est. We think clear-cutting here would be as good for
science as it is for non-metaphorical forests. Our argu-
ment for this is primarily a recitation of a few of the
ways that diversity has been useful.

Recently, looking at the actual practice of artifi-
cial life modelers, one of us distinguished four uses of
simulation models classified in terms of the position
the models take up between theory and data (see Fig-
ure 1). The classification is not exhaustive, and the
barriers between kinds are not absolute. Rather, the
purpose of the taxonomy is to open up the view for an
epistemic ecology of modeling practices. First, and
closest to the empirical domain, there are mechanistic
models, in which there is an almost one-to-one corre-
spondence between variables in the model and observ-
ables in the target system and its environment. Webb’s
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cricket robot is a paradigmatic example of this type.
Second, there are functional models, which aim for a
behavioral or functional rather than a variable-to-vari-
able correspondence between the model system and
its target. Many models in cognitive psychology are of
this type, as are many in biology when the underlying
mechanisms are not accessible to modeling corre-
spondence (see Vickerstaff & Di Paolo, 2005, for a
good example of this). Third, there are generic mod-
els, which cover a wide spectrum of phenomena in
search for generic principles of complex systems. Cel-
lular automata, random Boolean networks, and the
like belong to this class. Finally, there are conceptual
models, which do not target any particular natural sys-
tem nor a wide spectrum of them. Instead conceptual
models are built from theories, for which they embody
assumptions, illustrate concepts, simulate theoretical
principles, and so forth. Beer’s model and many other
animats are of this type (for more details see Barandi-
aran, 2008, chap. 2; Barandiaran & Moreno, 2006).
Modeling is a relational activity, it involves the
template or construct (usually referred as the model)
and also an interpretative framework (made of assump-
tions, generalizations, definitions, etc.) that puts the
model in connection with other models, theories or
objects. It is this interpretative framework and the
modelers’ intentions that situate a given model into
one of the categories of models. But only mechanistic
models are used as Webb suggests all models should
be: “the cricket robot is a mixed physical and compu-
tational implementation of a particular hypothesis about
an observed phenomenon of sensorimotor behavior in
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a certain animal. It is relevant to biology to the extent
that its components and behavior can be directly com-
pared with that animal” (sec. 3). The validity of this
type of model depends on its correspondence with
empirical data. However, this is not the only way in
which a model can become relevant to biology, as
Webb herself points out.

It is worth noting at this juncture that this work has not
simply been a case of using the robot model to verify or
falsify existing hypotheses in the biological literature. It
has involved substantial integration of disparate informa-
tion about auditory mechanisms, neural data, and behavio-
ral observations. It has led to the proposal of several novel
hypotheses about the function, some of which have been

supported, and some contradicted, in subsequent investi-

gations. It has also made much more apparent the areas in
which biological data is most critically lacking. (sec. 2.1).

The point Webb is making here is that her models are
acting as guides to discovery (Chemero, 2000, 2009).
A guide to discovery is some means for a scientific
research program to advance by making predictions
for future experimentation, or extending the reach of
the program to new phenomena, or solving conceptual
problems within the program, or casting empirical
findings in a new light, and so forth. A scientific
research program, in other words, needs a guide to
discovery in order to be progressive in the Lakatosian
sense (Lakatos, 1970). Models, because they are
poised between theory and data, are in an ideal posi-
tion to act as guides to discovery. So, although she
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does not use this language, Webb is correct that
detailed mechanistic modeling can act as a guide to
discovery for a research program in the biological and
cognitive sciences. But so too can conceptual models,
the type that most animat models fit into. Webb seems
to miss this point and tries to shoehorn animat research
into the category of mechanistic models:

However, in the general area of animat models, and spe-
cifically in work such as that of Beer, the systems ... are
constructed to represent (however loosely or abstractly)
some mechanisms taken, by hypothesis, to have causal
relevance to biology.... establishing the relevance requires
some explicit specification of how the two systems—artifi-
cial and biological—are supposed to correspond.” (sec. 3.4).

She latter adds “the question of its relevance to biol-
ogy remains dependent on the existence and extent of
the mapping between his agent and real cognitive sys-
tems.” (sec. 4.1).

As we will see in detail in what follows, concep-
tual models are used to illustrate or embody theoreti-
cal concepts, and their validity depends on how fruitful
they are in terms of disclosing contradictions within
theories, forcing precise definitions, reorganizing con-
ceptual systems, comparing explanatory paradigms,
and exploring their potential interaction among sepa-
rate theories. All of which is to say that conceptual
and generic models can also serve as guides to dis-
covery, but not in virtue of close correspondence
with any particular animal. Their relevance does not
depend “on the existence and extent of the mapping
between agent and real cognitive system”, as Webb
claims.

We will detail a few of the ways in which concep-
tual models act as guides to discovery in the biologi-
cal and cognitive sciences in what follows, but before
doing so we simply state our contention that any type
of model (or mathematical tool or experimental meth-
odology) that acts as a guide to discovery in the bio-
logical and cognitive sciences is legitimate. This
includes animat research, Beer’s in particular.

2 Validity and Correspondence of
Conceptual Models

Conceptual models involve the simulation or realiza-
tion of processes which are, in virtue of some dynamic

or structural analogy with theoretical notions, concep-
tualized under a certain theory of the living, cognitive,
social or, more generally, complex systems. Concep-
tual models can be very abstract or very specific
depending on the theory under which they are inter-
preted/constructed. For an instance of the former case,
the model could work to illustrate, formalize, or com-
pare one or more theories of reduction and emergence
using, let us say, cellular automata patterns (e.g., Ber-
sini, 2004; Crutchfield, 1994). For an instance of the
latter, a domain-specific conceptual model can be
exemplified by a simulation of active perception in situ-
ated agents (such as Beer’s animat). In either case, con-
ceptual models are not abstractions from specific sets
of biological data, but from the biological theories
themselves: for example, from generalization and
abstractions of other models, from the theoretical
assumptions required to interpret a family of models, or
from idealized and artificial applications of generic
principles. Conceptual models are not attempts to cap-
ture some specific set of worldly facts, but are virtual
worlds in their own right (e.g., Tierra; Ray, 1992).
Webb is not the first to criticize animat research along
these lines. Maynard Smith called artificial life into
question arguing that it is a “science without facts”
(quoted in Horgan, 1995), and asking how to assess a
set of computational models whose (potential) empiri-
cal references are imprecise or non-existent. However,
it would be an error to evaluate conceptual simulation
models by traditional empiricist or observational
standards (as Webb’s repeated appeal to “validity” sug-
gests). The main interest (and methodological novelty)
of conceptual simulation models lies in their capacity to
develop experimental research on the internal con-
ceptual relationships within theories of biological or
cognitive organization. This computational research
allows what Dennett (1994) calls the realization of
highly rigorous and far-reaching thought experiments,
which the naked human mind could never perform on
its own.

Bedau (1998) and, particularly, Di Paolo, Noble,
and Bullock (2000) have elaborated a more detailed
account of the role and methodology of artificial life
as opaque thought experiments. The opacity of the
thought experiment lies on the complexity of the
model. The unfolding of properties and patterns from
a set of premises (local rules or differential equations)
are not always predictable in the absence of a compu-
ter simulation that performs recursive calculations of
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non-linear functions, integrates random perturbations,
visualizes the results, and so on. As is the case with
traditional thought experiments, the epistemic value
of conceptual simulation models does not lie on their
adequacy to some empirical phenomena (since the
thought experiment involves hypothetical and ideal-
ized situations). On the contrary, the model operates
on the hidden assumptions of the theories used to
design and interpret the model and on the conceptual
relationships between these assumptions.

When relationships among the concepts of a the-
ory cannot be derived on logical grounds, computer
simulations and robotic artifacts become cognitive
tools for theoretical development (Casti, 1997; Har-
vey, 2000) and necessary guides to discovery. For
instance, learning and ontogenetic or phenotypic plas-
ticity have intricate effects on evolution. The interac-
tion between these scales is difficult to study through
natural fossil records or other empirical means. Fur-
thermore, it turns out to be extremely difficult to theo-
rize about the interplay between dynamics that occur
at two radically different time scales and with conse-
quences that only appear through repeated interactions
and infinitesimal (and often non-linear) cumulative
changes. An alternative is to develop artificial worlds
(whose local rules are abstractions of the generic prin-
ciples that evolutionary theory takes to be essential for
natural evolution) where simplified forms of evolution
and learning can be studied. The Baldwin effect (Bald-
win, 1896), for example, was nicely demonstrated by a
computer model by Hinton and Nowlan (1987) and
gave rise to a revival of the subject (Weber & Depew,
2003). Subsequent artificial life research has made
explicit many other properties and dynamic relation-
ships between learning and evolution (Ackley & Litt-
man, 1992; Mills & Watson, 2005; Suzuki & Arita,
2004) that remained opaque or hidden to naked human
thinking and analytic mathematical techniques. For
instance, Mills and Watson (2006), making use of a
simulation model, argued that genetic assimilation is,
at least, theoretically sufficient for the Baldwin effect
to occur and that canalization is not necessary. These
conceptual models act as guides to discovery prima-
rily forcing biologists to reconsider the phenomena
they observe, a reconsideration that would not have
occurred had the models been ruled out as irrele-
vant.

3 Webb and Beer, Not Webb Versus
Beer

It is not at all clear why conceptual models are not
valid for Webb, but it is clear that targeting real ani-
mals is not required for conceptual models to become
relevant to biology. In fact, some undeniably useful
conceptual models could not possibly target any spe-
cific, empirically addressable phenomenon. Consider
for instance simulation models of the Baldwin effect
just discussed. There is no doubt that this type of
model is relevant to biology. Biology as a science is
not only about concrete real animals but also, and per-
haps more importantly, about general principles of
biological organization, development and evolution. It
is this type of general principle that models of the
Baldwin effect are trying to capture, improve upon,
reconceptualize or illustrate for theoretical purposes.
How could the targeting of a specific species be of
help or even possible for this purpose? Or, to take an
example from Webb’s target article, Bongard and
Paul (2000) explore the correlation between bilateral
symmetry and locomotive efficiency. What exactly
would have their model gained if it had targeted jelly-
fish radial body plans versus that of early bilaterians
(which are anyway lost and only theoretically recon-
structed)?

It is obvious to us that there are a variety of mode-
ling practices in biology, each of which is necessary
and none of which is sufficient, on its own, to solve all
the real problems of biology. Some models (particu-
larly most of the good animat models) are valid and
useful for biological and cognitive theories without
having to target existing animals. These conceptual
models, and Beer’s in particular, act as guides to dis-
covery. Because of this, Webb’s insistence that one
needs a mapping between the simulated agent and the
real animal for a model to be of relevance to biology
is mistaken. It is hard for us to see why Webb fails to
see the importance of modeling like Beer’s. One pos-
sibility is that it is so different from what she does.
Indeed, what Beer is doing is just the opposite of
Webb’s biorobotic implementation of specific mecha-
nisms. Beer is raising the theoretical question of the
importance of embodiment and situatedness for cogni-
tive behavior and illustrating epistemological and meth-
odological principles for cognitive explanations. He is
doing so in the (theoretical) context of representation-
hungry problems which, according to computational
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theories, in principle required internal representational
tokens. Beer’s model shows this not to be the case and
challenges the explanatory role of representations in
cognitive science. Perhaps more importantly, Beer
provides one of the first (and certainly the most com-
plete) dynamicist explanations of full brain—body—
environment system in the context of a minimally cog-
nitive task. This is not to say that a model of a real ani-
mal could not have done the job and there is no
problem in using a model originally developed as a
mechanistic model to raise conceptual and methodo-
logical issues. But even in such a case, the fact that the
model could correspond to a specific target organism
would be irrelevant for the theoretical claim made; it
could even obscure the claim by including unnecessary
and irrelevant details that only apply to the specific
organism that it models.

We want to be clear that we are not to be inter-
preted as criticizing mechanistic models, or Webb’s
models in particular. We are fans of Webb’s work on
cricket phonotaxis. It is clear to us, though, that Webb
holds too narrow a conception of models, their valid-
ity and how they might serve as guides to discovery.
Science is not only about directly and empirically
addressable hypotheses and their instantiation in mod-
els. It is also about theoretical articulation of hypothe-
sis, about principles, about explanations of the
possible (not only about the contingently real in our
world). And scientific models can be adapted to a
variety of uses. By making a model represent a real
existing animal, there is a gain in specific explanatory
usefulness, potential applicability and one can experi-
mentally enrich the model with feed-back from its tar-
get. There is no doubt about this. Yet, Beer’s animat is
a perfectly valid model without having to target any
real existing organism. And like Beer’s many other
theoretical and conceptual models are of great rele-
vance in biology and cognitive science. They act as
guides to discovery when science deals with princi-
ples of complex systems whose theoretical articula-
tion often requires the aid of computer simulations.
Animats are but one species of such models and pre-
serving diversity is vitally important in the modeling
ecosystem, just as it is in real ecosystems. We should
not be forced to choose between animats and ani-
mals.

References

Ackley, D., & Littman, M. (1992). Interactions between learn-
ing and evolution. In C. G. Langton et al. (Eds.), Proceed-
ings of Artificial Life 1l (pp. 487-509). Redwood City,
CA: Addison-Wesley.

Baldwin, J. M. (1896). A new factor in evolution. The Ameri-
can Naturalist, 30, 441-451, 536-553.

Barandiaran, X. (2008). Mental life. A naturalized approach to
the autonomy of cognitive agents. Unpublished doctoral
dissertation, University of the Basque Country, Spain.
http://barandiaran.net/phdthesis/

Barandiaran, X., & Moreno, A. (2006). Alife models as epis-
temic artefacts. In L. M. Rocha, L. S. Yaeger, M. A.
Bedau, D. Floreano, R. L. Goldstone, & A. Vespignani
(Eds.), Artificial Life X: 10th International Conference on
the Simulation and Synthesis of Living Systems (pp. 513—
519). Cambridge, MA: MIT Press.

Bedau, M. A. (1998). Philosophical content and method of arti-
ficial life. In T. W. Bynum & J. H. Moor (Eds.), The dig-
ital phoenix: How computers are changing philosophy
(pp- 135-152). Oxford, UK: Basil Blackwell.

Bersini, H. (2004). Whatever emerges should be intrinsically
useful. In Artificial Life 9 (pp. 226-231). Cambridge, MA:
MIT Press.

Bongard, J., & Paul, C. (2000). Investigating morphological
symmetry and locomotive efficiency using virtual embod-
ied evolution. In J.-A. Meyer et al. (Eds.), From Animals
to Animats: The Sixth International Conference on the
Simulation of Adaptive Behavior.

Casti, J. (1997). Would-be worlds. New York: John Wiley.

Chemero, A. (2000). Anti-representationalism and the dynami-
cal stance. Philosophy of Science, 67(4), 625-647.

Chemero, A. (2009). Radical embodied cognitive science.
Cambridge, MA: MIT Press.

Crutchfield, J. P. (1994). The calculi of emergence: Computa-
tion, dynamics, and induction, Physica D, 75, 11-54.
Dennett, D. (1994). Artificial life as philosophy. Artificial Life,

1(3), 291-292.

Di Paolo, E. A., Noble, J., & Bullock, S. (2000). Simulation
models as opaque thought experiments. In M. A. Bedau, J.
S. MacCaskill, N. H. Packard, & S. Rasmussen (Eds.),
Artificial Life VII: The Seventh International Conference
on the Simulation and Synthesis of Living Systems, (pp.
497-506). Cambridge, MA: MIT Press.

Harvey, 1. (2000). Robotics: Philosophy of mind using a screw-
driver. In T. Gomi (Ed.), Evolutionary Robotics: From
Intelligent Robots to Artificial Life, Vol. III (pp. 207-230).
Ontario, Canada: AAI Books.

Hinton, G. E., & Nowlan, S. J. (1987). How learning can guide
evolution. Complex Systems, 1, 495-502.

Horgan, J. (1995). From complexity to perplexity. Scientific
American, 272, 104—109.



292 Adaptive Behavior 17(4)

Mills, R., & Watson, R. A. (2005). Genetic assimilation and
canalization in the Baldwin effect. In M. Capcarrere et
al. (Eds.), Proceedings of the Eighth European Confer-
ence on Artificial Life (pp. 353-362). Berlin: Springer
Verlag.

Ray, T. (1992). An approach to the synthesis of life. In C. G.
Langton, C. Taylor, J. D. Farmer, & S. Rasmussen (Eds.),
Artificial Life II. Proceedings of the Workshop on Artifi-
cial Life (pp. 325-371). Redwood City, CA: Addison-
Wesley.

Suzuki, R., & Arita, T. (2004). Drastic changes in roles of
learning in the course of evolution. In J. B. Pollack, M.
Bedau, P. Husbands, T. Ikegami, & R. A. Watson (Eds.),
Proceedings of Artificial Life IX (pp. 369-374). Cam-
bridge, MA:MIT press.

Vickerstaff, R. J., & Di Paolo, E. A., (2005). Evolving neural
models of path integration. Journal of Experimental Biol-
0gy, 208, 3349-3366.

Weber, B. H., & Depew, D. J. (Eds.) (2003). Evolution and
learning. The Baldwin effect reconsidered. Cambridge,
MA: MIT Press.



