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 Abstract—This work demonstrates the implementation and use 

of an encoder-decoder model to perform a many-to-many 

mapping of video data to text captions. The many-to-many 

mapping occurs via an input temporal sequence of video frames 

to an output sequence of words to form a caption sentence. 

Data preprocessing, model construction, and model training are 

discussed. Caption correctness is evaluated using 2-gram BLEU 

scores across the different splits of the dataset. Specific 

examples of output captions were shown to demonstrate model 

generality over the video temporal dimension. Predicted 

captions were shown to generalize over video action, even in 

instances where the video scene changed dramatically. Model 

architecture changes are discussed to improve sentence 

grammar and correctness.  

Index Terms—BLEU, captioning, decoder, encoder, many-tomany 
mapping, sequence.  

I. INTRODUCTION  

Video captioning is an important extension of image 

captioning. As data generation and storage capacity increases, 

multimodal data, such as video, increases in abundance. A 

necessary tool for accessibility, archival, and display is the 

ability to generate human-readable captions from these new 

data sources. Specifically, generating captions for video data 

that include description of action would be highly useful for 

automatic video labeling. Captioning video data is a more 

difficult task than image captioning, as video data is the 

concatenation of image frames across a temporal dimension. 

In the temporal domain, there can be many changes across 

the image frames, such as changes in brightness, camera 

angle, camera position, fieldof-view, subject actions, and even 

the scene itself.  

Video action recognition is the subfield of deep learning and 

computer vision that broadly describes the recognition of 

actions in video data. A subset of this problem is constraining 

video action to human actions, although the superset of all 

video actions certainly includes any action capable of being 

recorded on video. There are many different approaches to 

video action recognition, including 3D convolutional neural 

networks (CNNs) with and without attention layers, as well as 

multiple stream networks utilizing different video temporal 

segments, temporal resolutions, and even optical flow [1]. The 

most difficult part of video action recognition, or as described 

in this work as video captioning, is the temporal change in the 

image frames.  

A basic approach to handling the temporal dimension of the 

image data is to treat the video stream as simply a list of 

temporal image frames. A one-to-many model for text 

generation can be highly effective at captioning individual 

frames. In this work, we extend image captioning to video 

captioning using a many-to-many architecture based on an 

encoder-decoder model [2]. An encoder (long short-term 

memory layer) LSTM is added to handle the temporal domain 

of the input video, while the decoder LSTM handles the text 

sequence output. Feature vectors are generated using a 

pretrained 2D CNN model to convert each frame to a feature 

vector. In the video domain, this feature vector is now a 

matrix with a temporal dimension. The goal of this project is 

to produce a single caption for each video that is more general 

than a caption for any single frame of the video. With input 

video data that undergoes significant scene or subject changes 

across the temporal dimension, the caption can be a  

summary or amalgamation of all frames.  

II. RELATED WORKS  

Video captioning: This uses the concept of giving a video 

and a language query to track the moment in the video. The 

goal is to localize objects that are mentioned in the sentence 

in the video. Many works have been done in the attempt to 

localize a moment in the video. Video localizing aims to track a 

moment from an untrimmed video for a given text query. 

Some of the challenges in this area are the need for densefine 

regional annotations in the videos and a possible solution can 

be achieved by exploring weakly supervised video captioning, 

zero-shot video captioning, and fully supervised video 

captioning. How to characterize the relationships between 

videos and sentences is another notable challenge. Some of 

the previous solutions are matching spatial regions in specific 

frames with nouns/pronouns in the sentence but the 

limitation in this approach is that the spatio-temporal 

dynamics of the videos are not exploited. The 

nouns/pronouns are less expressive than a natural sentence 

[3]–[6].  

Fully Supervised Video captioning: In fully supervised visual 

localization, there is need for annotation of the action in the 



video. No focus on precision in video moment localization and 

sliding window approach has fixed window and anchor based 

compromises on precision of moments. The boundary aware 

temporary language captioning and self-attention mechanism 

on interaction between video and language for capturing 

contextual information for better semantic understanding are 

proposed [7], [8]. Increasing temporal receptive fields, and 

using regression for action boundary prediction and distance 

of the given frame from the start and end frame [9], [10]. The 

fully supervised visual localization is very extensive and 

timeconsuming to annotate the videos. In an attempt to 

reduce the cost of annotation, weakly supervised, 

unsupervised, and zero shot approaches are explored. The 

common evaluation metric depends on the mean value which 

is not robust to anomalies, extreme values, and outliers.  

Weakly Supervised Video captioning: Weakly supervised 

method uses some unlabeled and labeled data to train a 

model. Fully supervised requires heavy annotations, but 

temporal localization (frame-wise attention), spatial 

interaction, hierarchical multi-instance levels for optimization 

are achieved through weakly supervised [11]. Co-attention 

was not previously used in video moment retrieval tasks until 

multi-level co-attention mechanics helped to improve 

alignment between video and text including positional 

encoding on frame features [12]. Decomposing the spatial and 

temporal representations to collect all-sided cues for precise 

captioning, there are interaction level counterfactual 

transformations of feature, temporal video captioning using 

video corpus for moment retrieval, and cross modal retrieval 

with the aid of contrastive learning [13]– [15]. Weakly 

supervised was able to take care of annotation due to video 

captioning, but the additional cost of natural language was 

not reduced in this approach. Using densely big networks 

during pretraining and fine-tuning, the size of the features is 

inversely proportional to the benefit of the unlabeled data 

derived from the dense networks. Accuracy was used in 

evaluating the performance and the metric is not appropriate 

for sparse data [16].  

Unsupervised Video captioning: Unsupervised visual 

localization uses the unsupervised model to establish a 

location of a visual object with respect to the corresponding 

text based data. A method was proposed to map languages 

through the visual domain using only unpaired instructional 

videos in paper [5]. Prototypical contrastive learning is an 

unsupervised method that connects clustering and contrastive 

method to encrypt semantic structures. This is obtained by 

clustering into the grounded space after learning low-level 

labels for the aim of object contrasting [6]. Some of the 

problems like clustering similar activities and 

manuallycaptioned videos lacking some activities that are not 

captioned are addressed by the prototypical contrastive 

learning model which maps languages with the unpaired 

videos as input. The problem of connecting words in different 

languages by visual object is tackled with unsupervised 

method.  

The strengths of unsupervised visual localization include 

fewer data captioning for training the model, reduction in 

annotation cost, and time efficiency in the training. Self 

supervised learning is a method that uses unlabeled data to 

build a model [3], [4] and it can be a sub-division of 

unsupervised method. Most of the models used accuracy as 

evaluation metrics which does not perform well in a situation 

of imbalanced data.  

III. METHODS  

The data used for this project was the Microsoft Research 

Video Description Corpus (MSVD) [17]. The MSVD dataset 

contains 1970 video files from YouTube with their text 

descriptions. Each video file had multiple text descriptions, 

typically 20 to 40 labeled sentences describing each video. The 

dataset was split into 3 sets: training, validation, and test. The 

training set was taken to be 90% of the dataset, with 5% held 

out for validation and 5% held out for test. Thus, the training 

dataset contained 1773 videos, while the validation and test 

datasets contained 99 and 98 videos, respectively.  

The labeled text descriptions were stored in a text file 

containing the video file name and the nested list of its 

descriptions. Thus, this file was parsed, and a description 

dictionary was created to map keys (video filenames) to their 

descriptions (nested list of sentence captions). During parsing, 

each sentence description was prepended and appended with 

unique tokens to denote the beginning and end of the 

description sentence. Also during parsing, sentence 

descriptions with length less than six words or greater than 

ten words were not added to the description dictionary. 

Figure 1 shows the histogram of word lengths in the final 

description dictionary. As descriptions outside of the desired 

word length range were not considered, only descriptions 

between six and ten words exist in the dictionary. Most 

descriptions in the dictionary had eight words.  

After associating each video in the entire dataset with its 

filtered-length descriptions, the list of video keys (filenames) 

were randomly shuffled and split into the training, validation, 

and test lists. To create the vocabulary of the corpus, a Keras 

tokenizer was created to parse the descriptions in the training 

set only. Limiting the vocabulary generation to only the 

training set descriptions ensures the model only knows words 

associated with the training videos. The tokenizer was used to 

generate a vocabulary of 1500 words, so only the most 

frequently occurring 1500 words in the training set were kept. 

Figure 2 shows the thirty most commonly occurring words 

(tokens) in the training set from the tokenizer. The most 

commonly occurring token is ”a”, while the next two most 



commonly occurring words are “bos” and “eos”, the beginning 

and end of string tokens.  

The tokenizer also creates dictionaries to map the words in 

the vocabulary to numerical indices (“a” goes to 1, “bos” goes 

to 2, etc.) and also indices back to words (1 back to “a”). 

Figure 3 shows the tokenizer output on a training sentence, 

where the sentence (top line) is mapped to a list of token 

indices (bottom line).  

For data generation for the encoder-decoder training model, 

the sentence descriptions were padded to the same maximum 

length of ten words, and the sequence indices were converted 

to one-hot encoded (categorical) vectors. Thus, each sentence 

description was a matrix of size 10x1500. These descriptions 

form the output of the decoder training model. The encoder 

training model takes the video spatial and temporal 

information. The VGG16 pre-trained model was used from 

Keras to extract feature vectors from each video frame. For 

each video, all of its temporal frames were extracted using 

OpenCV, resized spatially, and stored in a temporal list. As 

each video had a different number of frames, a linearly spaced 

vector of 80 frame indices were generated and mapped to the 

length of each video. For example, a video of length 123 

frames would have 80 frames extracted, where the zeroth 

frame was the zeroth frame and the 80th frame was the 123th 

frame. This temporal decimation ensures that each video had 

the same dimension in the time domain. Each frame was then 

passed to the VGG16 CNN model to extract a 4096 long 

feature vector for each frame. Thus, each video was 

associated with a feature matrix of size 80x4096, and this data 

was stored in a dictionary associated with the video keys 

(filenames). Figure 4  

shows an example feature matrix for a video in the training 

set. The matrix rows are the image spatial feature vectors 

extracted from the VGG16 model, while the image columns 

represent the temporal dimension of the video. An abrupt 

change from row to row in the feature matrix corresponds to 

a scene change in the video.  

With the data preprocessed, the model was then 

constructed. The encoder-decoder model for video captioning 

using two LSTMs to perform sequence-to-sequence (or 

manyto-many) mapping between the input and output data. 

The encoder model encodes video temporal information using 

the video feature matrices, while the decoder part of the 

model takes the one-hot-encoded text data to generate 

output words. Figure 5  

  

Fig. 4: Example video feature matrix.  

shows the constructed model, where the encoder and 

decoder LSTMs each have a latent dimension of 512 and their 

output shape is the temporal dimension of each dataset. In 

other words, the 80 temporal steps of the encoder (80 video 

frames) and the 10 temporal steps of the decoder (10 word 

sentences) form the output shape along with the latent 

dimensions. Only the last temporal LSTM cell is taken from the 

encoder model, as its hidden and cell states contain 

information of all 80 temporal inputs. The decoder LSTM is 

then connected to a dense layer with softmax activation 

function to output the one hot-encoded target vector for the 

next predicted word in the caption.  

 

The model was trained using a data generator function which, 

for each training epoch, loops through all video keys in the 

training data set, extracts the feature matrix from the feature 

dictionary, and extracts the padded and one-hot encoded 

description matrices from the description dictionary. For each 

token in the description matrix (text decoder input), the input 

and target for the decoder are extracted by taking the last 

token as the output target and all previous tokens as the 

decoder inputs. These iterations are counted, and when the 

iterations equal the batch size, yielded to the model for fitting. 

A batch size of 50 was used to train the model for 80 epochs 

using the Adam optimizer with a learning rate of  

0.0001 And categorical cross-entropy loss. Loss and accuracy 

metrics were recorded for the training and validation datasets 

during training. Figure 6 shows the categorical cross-entropy 

loss of the model during training, while Figure 7 shows the 

categorical accuracy.  

  

With the encoder-decoder model architecture, the training 

and inference models are different. The encoder model is the 

same for training and inference, as only the state of the last 

cell of the encoder LSTM is used in both cases. During training, 

the encoder and decoder models see both inputs (temporal 

video and text data) simultaneously to update the model 

weights with respect to both inputs. However, during 

inference, the text decoder model only uses as input the final 

temporal state of the video encoder model. Thus, during 

inference, the encoder and decoder models are used 

separately. The encoder model takes the 80x4096 video 

feature matrix for each frame and outputs only the hidden 

and cell state of the last LSTM layer. These states are fed to 

the text decoder model simultaneously with the text token. To 

predict captions, the first text token is the “bos” token to 

denote the start of the string. The index of the maximum of 

the one-hot-encoded output vector (greedy search) is taken 

and converted to a text word using the tokenizer. The 

inference model is applied in a loop to generate successive 

tokens from the “bos”, appended each output token to the 

input sentence, and using the previous output as the next 

iteration’s input. The loop stops when the “eos” token is 



predicted, denoting the end of the sentence, or the maximum 

length of the description (set as ten words) is reached.  

IV. EXPERIMENTAL RESULTS  

The inference model was applied to all videos in each 

dataset (training, validation, and test). Predicted captions 

were stored in a dictionary accessible via the video keys. A 

2gram BLEU score was generated to compare the predicted 

caption to all the labeled descriptions for each video. A scatter 

plot of the BLEU scores for each video in each split of the 

dataset is shown, as well as a histogram.  

A. Training set  

For the training set, the categorical accuracy of the model at 

the end of training was close to 80%, so the expectation is 

that the BLEU scores between predicted and labeled captions 

in the training set is quite good. Figure 8 shows the BLEU 

scores across all videos in the training set. Figure 9 shows the 

frequency distribution (histogram) of BLEU scores in the 

training set. The average BLEU score for predicted captions on 

the training set is 91.8%, which is quite high than the state 

ofart [18] which is 57.8% for BLEU-4.  

 

B. Validation Set  

For the validation set, the categorical accuracy of the model 

at the end of training was saturated at around 55%, so the 

expectation is that the BLEU scores between predicted and 

labeled captions in the validation set is worse than the 

training set. Figure 10 shows the BLEU scores across all videos 

in the validation set. Figure 11 shows the frequency 

distribution (histogram) of BLEU scores in the validation set. 

The average BLEU score for predicted captions on the training 

set is 45.8%..  

C. Test set  

The test set is an identically random set to the validation 

set, so the expectation is the scores are the same in the test 

and validation set. Figure 12 shows the BLEU scores across all 

videos in the test set. Figure 13 shows the frequency 

distribution (histogram) of BLEU scores in the test set. The 

average BLEU score for predicted captions on the test set is 

43.3%. The validation and test set are the same in that each 

dataset was not provided to the model for training. However, 

the validation set was used during training to assess loss and 

accuracy at each epoch, and was thus used for optimization. 

Therefore, holding out a separate test set used only during 

inference to assess model performance was necessary.  

D. Caption prediction  

To show the model’s ability to generalize captions across 

video temporal frames compared to a single frame image 

caption, figures are presented here (as well as more in the 

appendix). In the following figures, the video feature matrix is 

displayed. Scene changes in the video appear in the feature 

matrix as changes throughout the vertical dimension 

(columns) of the matrix. One of the labeled descriptions 

(ground truth) for the video is displayed above the feature 

matrix. To show video scene changes across the video in this 

document, three frames are extracted at instances where the 

video scene is different. These frames were selected from 

rows in the feature matrix that show abrupt changes. The 

frames are labeled by number, which corresponds to the row 

in the feature matrix indicated by the red dashed horizontal 

line. Compelling videos are chosen from the dataset splits to 

report here.  

Figure 14 shows a person wearing hockey equipment in the 

first 60 frames of the video, then the last 20 frames of the 

video switches to another scene with a baby sitting at a table. 

The labeled caption is “a baby is on football dress” while the 

predicted caption is “the baby dressed in equipment fell down 

over”. The person wearing equipment in the beginning of the 

video indeed falls over, so this part of the caption is correctly 

predicted by the model. The model however uses the last few 

frames in which a baby is present to change the subject of the 

Figure 17 shows a video where a tortoise walks across sand, 

then changes scene to an otter swimming in  

Figure 18 shows a video of a man cutting a water bottle 

with a sword. The labeled caption is “someone slices a bottle 

with a sword”. However, the model predicted caption is “a 

man is cutting something with a tree”. The model correctly 

captioned the first part of the video where the man cuts the 

bottle, and it also used the scene change in the last few 

frames of the video where a tree is in frame. Again it is clear 

the model is generalizing a caption across video frames.  

V. DISCUSSIONS  

The BLEU scores were computed using 2-gram similarity. 

Thus, the score was above zero even if only two-word 

sequences were similar between the predicted and 

groundtruth captions. For a stricter performance evaluation, a 

5gram BLEU score could be used, as this is the midpoint of the 

sentence length of ten words. BLEU scores were above 90% 

for the training set, which demonstrates good model 

convergence for all videos and captions in the training set. 

Certainly, the model is complex enough for the given training 

data. The poorer performance of BLEU scores on the water. 

The labeled caption is “a large tortoise is walking downhill” 

while the model predicted caption is “a small animal is 

running  

The number of tokens in the vocabulary determines one 

dimension of the decoder model. Thus, increasing the words 

used for training will also increase the dimension of the one-  

validation and test data can be explained by model 

overtraining in the test set. The videos in the MSVD dataset 

have wildly varying subjects, including videos of sports, 



cooking, and other random actions. Thus, even though the 

videos were shuffled to generated the 3 splits in the dataset, 

one cannot expect the model to perfectly generalize to new 

video subjects. hot-encoded word vectors. With a latent 

dimension of 512 for each the model LSTMs, the number of 

trainable parameters of the model was already quite high at 

over 14 million. During training, the GPU memory of my 

training desktop used around 5.3gB out of the 6gB of the GTX 

1660 Ti GPU. Thus, We were already dealing with memory 

issues loading the current model. We also had to keep the 

batch size at 50 video and sequence target pairs to ensure no 

memory issues. If a word is in the validation or test 

description sets, and it is not also in the training set, the BLEU 

score will be worse, as their will not be an n-gram match even 

if the sentence sentiment is the same. An analysis of words in 

the validation and test sets and their prevalence in the 

training vocabulary was not performed in this project, but 

certainly increasing the words from the training descriptions 

kept in the vocabulary will increase the likelihood that the 

training vocabulary is a superset of all words in the validation 

and test sets.  

The sentence length was kept to ten words for the same 

memory performance as described in the previous . The 

prediction sentence length determines the second dimension 

of the text decoder input, so increasing this dimension will 

further increase the memory usage during model training. As 

the model is trained on videos with significant scene changes, 

there are often multiple subjects in a single video. Thus, there 

were videos for which the predicted caption was 

grammatically correct for the first ten words but incomplete. 

For example, Figure 15 shows a predicted caption “a girl is 

showing how to do a ” which ends in the article “a”. Thus, this 

sentence is grammatically correct and correctly describes the 

video subject but is incomplete due to the maximum 

predicted sentence length. As the video captioning model 

attempts to produce a general caption for all scenes in the 

video, videos with multiple subjects will require longer 

sentence to describe the multiple subjects. This performance 

could be improved by increasing the description length.  

The most significant observation of the 

sequencetosequence architecture for video captioning is that 

the predicted models are indeed able to generalize their 

captions across the video scene changes. Predicted captions 

were often more general and less specific in their description 

of the scenes. For videos where the scene dramatically 

changed to a different subject, the nouns present in both 

scenes were included in the output caption. For example, 

Figure 14 shows a video in the training set which switches 

dramatically to a  

different subject in later frames. The caption is “the baby 

dressed in equipment fell down over” correctly describes the 

action in the first scene, where a person wearing hockey 

equipment falls over. However, the last few frames show a 

baby sitting at a table and playing. The model correctly 

identifies the subject of the these frames, the baby, and 

inserts it into the action of the first scene of the video. Thus, it 

is clear that the model is able to utilize all of the temporal 

information in the frames of the video to produce a general 

caption, but this effect is at the sake of grammatical 

correctness of the predicted caption. Increasing the word 

length of the model (text decoder temporal dimension) would 

maintain the model generality but improve sentence grammar 

by allowing for compound sentences. A correct caption for 

this example could be “the person dressed in equipment fell 

over and a baby is sitting”. These correct compound sentences 

certainly require a higher temporal dimension of the decoder 

LSTM. We believe this work can help most generative models 

like GPT, LLM, image generative model, and video generative 

model to interpret any visual data to get captions/texts.  
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