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Abstract
Many biologists, especially in ecology and evolution, analyze their data by estimat-
ing fits to a set of candidate models and selecting the best model according to the 
Akaike Information Criterion (AIC) or the Bayesian Information Criteria (BIC). 
When the candidate models represent alternative hypotheses, biologists may want 
to limit the chance of a false positive to a specified level. Existing model selection 
methodology, however, allows for only indirect control over error rates by setting 
a threshold for the difference in AIC scores. We present a novel theoretical frame-
work for parametric Neyman-Pearson (NP) model selection using information cri-
teria that does not require a pre-data null and applies to three or more non-nested 
models simultaneously. We apply the theoretical framework to the Error Control 
for Information Criteria (ECIC) procedure introduced by Cullan et al. (J Appl Stat 
47: 2565–2581, 2019), and we show it shares many of the desirable properties of 
AIC-type methods, including false positive and negative rates that converge to zero 
asymptotically. We discuss implications for the compatibility of evidentialist and 
severity-based approach to evidence in philosophy of science.

1  Introduction

Statistical theory and practice are important sources of insights for philosophers 
investigating the concept of evidence. The development of the Akaike Informa-
tion Criterion (AIC), named after Hirotsugu Akaike, has transformed the theoreti-
cal foundations for statistical model selection in science (Burnham & Anderson, 
2002; Wagenmakers et al., 2004), building deep connections to information theory 
and spawning a larger number of related information criteria with different statistical 
properties (Ding et al., 2018; Markatou et al., 2021). The AIC has been infuential 
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for philosophers analyzing the justification for parsimony (simplicity) as a basis for 
choosing between alternative theories or models (Forster & Sober, 1994; Bandyo-
padhyay & Boik, 1999). While model selection using the AIC or other criteria is 
closely related to a likelihood ratio test, it also differs in important ways that have 
led philosophers to revise major leading theories of evidence, including evidential-
ism, severe testing, and Bayesianism (Lele, 2004; Bandyopadhyay & Brittan, 2006; 
Dennis et al., 2019).

Unlike classical Neyman-Pearson (NP) testing, model selection using the AIC or 
Bayesian Information Criterion (BIC) does not provide a general procedure for con-
trolling how often one accepts or rejects a candidate model by chance. At the same 
time, the AIC and BIC apply to a broader array of statistical contexts that are com-
mon in scientific practice. In ecology and evolution, for example, scientists increas-
ingly seek to compare many alternative models simultaneously without designating 
one model as an a priori null (Burnham & Anderson, 2002; Sullivan & Joyce, 2005; 
Hunt, 2006; Ripplinger & Sullivan, 2008; Aho et al., 2014). This appears to chal-
lenge the importance of methodological theories, such as error statistics (Mayo & 
Spanos, 2006), that view controlling error rates as necessary to acquiring strong 
statistical evidence. A key gap has been demonstrating how one can generalize the 
Neyman-Pearson approach to accommodate model selection methods using infor-
mation criteria while benefiting from their statistical virtues (Dennis et al., 2019).

We address this gap by presenting a new theoretical framework for deriving the 
error rates of the Error Control for Information Criteria (ECIC) approach (Cullan 
et al., 2019). The ECIC approach subjects the model with the best (assumed here 
to be the lowest) observed information criterion score to a test that bounds the false 
positive rate at or below a pre-specified level. In this way, ECIC combines the flex-
ibility of the AIC and BIC, where multiple unrelated models may be considered, 
with the methodology of NP testing that explicitly controls false positive rates. We 
suggest that ECIC can also be interpreted in similar ways as classical NP tests: one 
can apply it as a decision rule with desirable long-run error frequencies, or as  a 
severe test for a single case (Mayo & Spanos, 2006).

We analyze the performance of an amended numerical algorithm for ECIC in the 
context of a correctly-specified set of candidate models, and we show the algorithm 
provides an expected false positive rate less than or equal to a user-specified level of 
� without the need to designate a null or conduct multiple testing. We also analyze 
the conditions under which ECIC will succeed at controlling error rates when the 
model set is misspecified. These are notable advances on the asymptotic rates of 
classical NP tests, which converge to � in a well-specified setting and may converge 
to 1 in a misspecified setting. In this manner, we establish a parametric approach to 
NP classification that parallels recent progress in non-parametric model selection 
(Tong et al., 2016, 2018).

The theoretical framework we develop also contributes to a deeper methodologi-
cal understanding of the duality between information criteria and error probabilities. 
Many studies have now explored the AIC and BIC’s relationships to rates of model 
selection errors in a wide range of model and data types (Dziak et al., 2020). In any 
application context, the procedure of choosing the model with the lowest AIC or 
BIC score corresponds to a locally specific probability of getting a false positive, 
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i.e., choosing a model that does not include the true (or closest-to-true) distribution. 
However, the chance of a false positive also varies substantially depending on the 
specific models being compared, the sample size, and the adequacy of the models 
to the data (Markon & Krueger, 2004; Kuha, 2004; Glatting et al., 2007; Sayyareh 
et al., 2010; Hegyi & Laczi, 2015; Brewer et al., 2016). While one can always reduce 
the error rate for a particular analysis by requiring the difference of model scores to 
exceed a higher threshold value, any fixed choice of threshold (e.g., ΔAIC > 2 ) will 
also have varying error rates across contexts. To date, there has been no similarly 
general procedure for implementing a ΔAIC or ΔBIC threshold that corresponds to 
the user’s desired false positive rate ≤ �.

Based on this technical advance, we suggest there is greater compatibility than 
generally appreciated between evidentialist and severity-based theories of evidence 
in philosophy (Spanos, 2010; Dennis et al., 2019; Bandyopadhyay & Brittan, 2006; 
Bandyopadhyay et al., 2016b). In particular, one valid interpretation of ECIC is that 
it implements a severe test using an evidence function in the sense of (Lele, 2004) 
without having to designate a pre-data null or assume the candidate models are well-
specified (i.e., contain the true distribution). This suggests that some key points of 
contention on both sides of the evidentialist-severity debate are based on contingent 
features of particular model selection methods rather than essential points of differ-
ence between the two conceptions of evidence (Spanos, 2010; Dennis et al., 2019). 
To put it differently, ECIC undercuts the perception that AIC-type model selection 
renders severe testing obsolete.

In Sect. 1 we introduce the original ECIC algorithm from (Cullan et al., 2019) 
and present the amended ECIC algorithm we developed in light of our new theoreti-
cal analysis. The amended version avoids some limitations of the original, such as 
relying on potentially biased maximum likelihood estimates, and is more tractable 
for theoretical analysis. Section  2 introduces the novel theoretical framework and 
analyzes the performance of the amended algorithm in correctly versus incorrectly 
specified settings and where all parameters are known or must be estimated. In par-
ticular, we define a theoretical benchmark for performance in the absence of model 
uncertainty, and we compare the benchmark’s error rates to the amended ECIC algo-
rithm and the ΔIC > 2 rule. Lastly, Sect. 3 discusses how our results advance the 
methodological debate about error statistical versus evidentialist approaches in ecol-
ogy and evolution. We close by discussing the appropriate use of ECIC as a model 
selection tool, its known limitations, and potential strategies for addressing them.

2 � Controlling False Positives Using Information Criteria

ECIC’s primary contribution to model selection methodology is to provide a posi-
tive, error-statistical alternative to Dennis et al.’s argument that evidentialism “sur-
passes” severity as a theory of evidence (Dennis et  al., 2019, p. 25). Scientists in 
fields such as ecology and evolutionary biology commonly use information criteria 
to select the best-supported model as a basis for drawing further conclusions about 
their data. Dennis et al. provide an excellent review of model selection approaches 
for an ecology audience with a special focus on the issue of how one can understand 
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statistical evidence under model misspecification, and they argue on this basis that 
an evidentialist approach is superior to classical statistical testing. In particular, they 
highlight how classical NP hypothesis testing (i.e., likelihood ratio tests between 
a null and alternate model) are fairly limited tools in practice and may perform 
very poorly using misspecified models. We follow their definition of misspecifica-
tion here, which states that a parametric model is misspecified when its distribu-
tions are all non-identical to the true distribution under the Kullback–Leibler (KL) 
divergence, i.e., all have some divergence from the truth. Similarly, the concept of 
a “quasi-true” distribution in a model can be defined as the distribution with the 
smallest KL divergence from the true distribution. Dennis et al. refer to this as the 
distribution “closest” to the truth.

A particularly troublesome reality for NP tests (and Fisherian significance analy-
sis) is that the total error rate – i.e., the rate of false positives (FP) plus false nega-
tives (FN) – does not approach zero asymptotically. In correctly specified cases, the 
FN rate approaches zero, but since a fixed nominal FP rate � is calculated for all 
sample sizes, the total error rate approaches � . In misspecified modeling contexts, 
Dennis et al. demonstrate that the total error rate for classical NP testing can asymp-
totically approach 1. Conceptually, this alarming result occurs when the null and 
alternate models are, in terms of KL divergence, far from each other but both fairly 
close to the true model. The same root concerns also apply to generalized likelihood 
ratio tests (Vuong, 1989; Pesaran, 1990).

In light of these limitations, (Dennis et al., 2019) propose evidence functions as 
a superior interpretation of information-theoretic model selection methods (Lele, 
2004). Conceptually, they describe an evidence function for a given divergence 
measure as “a data-based estimate of the difference of divergences of two approxi-
mating models from the underlying process that generated the data” (Dennis et al., 
2019), p. 17). A divergence measure is a pseudometric such as the KL divergence 
that quantifies the discrepancy between two probability distributions. Evidence 
functions are a generalization of Royall’s likelihoodist concept of evidence, which 
compares the difference of log-likelihoods for two models to a fixed value k that is 
independent of sample size (Royall, 1997, 2000).

A list of intuitive conditions that an evidence function should satisfy is provided 
in (Lele, 2004). These are discussed more thoroughly in Sect. 4 where we demon-
strate how ECIC meets these conditions in the applications relevant to this article. 
We emphasize for now that (Dennis et  al., 2019) demonstrate that the difference 
between two BIC or AIC scores, denoted as ΔBIC12 and ΔAIC12 , respectively, both 
qualify as evidence functions in certain contexts. The AIC has several desirable 
asymptotic behaviors, such as predictive efficiency, and its popularity and ease of 
use have inspired researchers in many fields to develop a wide assortment of other 
information criteria that prioritize other statistically desirable properties (Ding et al., 
2018). The BIC, for instance, uses a different model complexity penalty in order 
to ensure asymptotic statistical consistency in a setting that includes overlapping 
models.

From the evidentialist perspective, ΔBIC qualifies as an evidence function irre-
spective of the modeling context. On the other hand, ΔAIC does not qualify when 
the models being compared are nested or overlapping. The basic reasoning can be 
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stated using the general form of an information criterion −2 log(L̂i) − cnri , where L̂i 
is a model with parameters estimated using maximum likelihood, ri is the dimension 
of the model’s parameters, and cn scales the penalty for model complexity. Differ-
ences in information criteria qualify as evidence functions irrespective of the mod-
eling context when the rate of growth for cn is < n and > log(log(n)) (Nishii, 1988). 
Since we are concerned with whether one can control error rates using commonly 
applied criteria, the evidence function framework provides us a good setting to dis-
cuss the contributions of ECIC to model selection.

Our main technical result will be to show that ECIC allows one to construct NP 
tests using a transformation of the AIC or BIC that have false positive rates at or 
below a pre-specified level and preserve key virtues of evidence functions. Cul-
lan et  al. developed ECIC with the aim of maintaining the basic logical structure 
of hypothesis testing while avoiding some of the limitations of having to designate 
fixed null or alternative models in advance of the data or of having to conduct multi-
ple tests when there are more than two candidate models (Cullan et al., 2019). Infor-
mally, ECIC can be understood as a form of composite testing. Post data, it treats 
the best scoring model as the alternative model and compares it against the other, 
worse-scoring candidate models as “null” models. Instead of conducting pair-wise 
tests, however, ECIC uses a minimax approach (Berger, 1985) to identify the most 
conservative decision threshold among the null models and uses it to determine 
whether the best scoring alternative model should be accepted.

More formally, Cullan et al. introduced ECIC using the AIC and BIC in a cor-
rectly specified setting, i.e., assuming a model set M = {M1,… ,Mk} where the 
model containing the true distribution Mt(�t) for t ∈ {1,… , k} is contained in M 
(Cullan et al., 2019). We understand a statistical model here to be a set of probabil-
ity distributions indexed by one or more parameters. We use �t∗ to index the unique 
quasi-true distribution as the distribution in M closest to the true one based on KL 
divergence. Note that Cullan et al. did not formally consider the misspecified setting 
where Mt ∉ M.

Given data D ∈ D , their general framework for model selection involves 
specifying criterion, preference, and decision functions. The criterion func-
tion f ∶ M ×D → ℝ

k assigns a score to all Mi ∈ M , i = 1,… , k . We slightly 
alter the range of their preference function g ∶ ℝ

k
→ 1,… , k to identify the index 

b of the best scoring model instead of the model itself. The decision function 
h ∶ M ×ℝ

k
→ {0, 1} returns 1 if Mb is selected and 0 otherwise. Letting F denote 

the vector 
(
f (Mi,D) ∶ i = 1,… , k

)
 , this yields four possible outcomes: 

1.	 True Positive (TP): b = t and h(Mb,F) = 1

2.	 False Positive (FP): b ≠ t and h(Mb,F) = 1

3.	 False Negative (FN): b = t and h(Mb,F) = 0

4.	 True Negative (TN): b ≠ t and h(Mb,F) = 0

The crux of ECIC lies in defining the decision function h such that the FP rate is 
controlled at level � over many random draws from D . In effect, one can think of 
this as calculating the locally correct ΔAIC or ΔBIC threshold to give the desired 
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false positive rate. However, this threshold will depend on which of the candi-
date models contain the true distribution. ECIC provides a way to do this without 
making pre-data assumptions that treat some models asymmetrically, i.e., without 
choosing a fixed null or comparing model pairs in a predetermined order.

The first step is to define a difference-in-goodness-of-fit (DGOF) statistic Δfj 
that measures the difference between the best and second best score based on 
simulating data from model Mj (Wagenmakers et al., 2004).

Following the classical NP approach, we are interested in controlling the potential 
for false positives, which we can represent jointly by the probability that a false 
model scores best, P(b ≠ t) , and the probability the false model scores a certain 
amount better than the next best model, which is described by the distribution of 
negative values for Δf  given b ≠ t . ECIC estimates and considers both of these 
inputs in order to determine its decision function.

Letting Δfobs denote the observed DGOF score and q(�) the � th quantile of the 
distribution of Δf  , the class of decision function h that ECIC uses is defined as

The goal is therefore to select � so that the FP rate is equal to or less than � , recog-
nizing that q(�) must be estimated since the true distribution is unknown. To achieve 
this goal, we provide a numerical algorithm that uses parametric sampling from the 
“null" models Mj to estimate Pj(b ≠ j) and Δfj . The algorithm uses the largest value 
of Pj(b ≠ j) to set a conservative value for q(�) so that the FP rate will be less than or 
equal to � in the case that any Mj≠b ends up being the correct one.

To describe the numerical algorithm we present here, we make some changes 
in notation and steps in the original ECIC implementation summarized in Algo-
rithm 1 to help facilitate comparison. Three points are worth highlighting about 
the original algorithm. First, steps 5 − 8 are achieved by simulating draws from 
Mj≠b and subsequently applying the criterion function to each draw. We use b here 
to denote the best observed model and b∗

jl
 to denote the best model on simulated 

data Djl . Second, step 11 is the key to bounding the FP rate since it sets the low-
est, i.e., strictest available, decision threshold for step 12. Third, the distribution 
estimated in line 8 of Algorithm 1 only includes negative values since it is condi-
tioned on Mb being the observed best. If Δfj is empty, then we can remove Mj 
from consideration as it has no probability of generating data that scores a differ-
ent model best. As illustrated in Algorithm  1, if any Mi ∈ M has unknown 
parameters then maximum likelihood estimation is used and the models with esti-
mated parameters are denoted as Mi(𝜃̂) or just M̂i for short.

Δfj(D,M) = f (Mb,D) −min{f (Mr,D) ∶ r ≠ b}.

(1)hq(𝜏) =

{
1 if Δfobs < q(𝜏)

0 else.
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Algorithm 1   Original ECIC Algorithm

As we will show in our results below, several changes are required in the origi-
nal algorithm in order to achieve the desired � level in a general way. To begin, 
the formula for estimating q(�) in line 9 of Algorithm 1 actually controls the FP 
rate at level � ∗ (k − 1) , where k = |M| . An ostensible correction would be to 
replace the original 𝜏j with min{

𝛼

(k−1)𝜋̂j
, 1} . However, even with this change, 𝜏j 

does not necessarily suffice to control the FP rate at the nominal level � when 
parameter estimation is required. The root problem is that in lines 7 − 8 , the origi-
nal ECIC algorithm conditions its estimate of �j and Δfj on model b being 
observed best from the empirical data in line 2: the parameter estimates for M̂j 
conditioned on model b having scored best are not equal to the unconditioned 
expectations, and hence will typically be biased compared to the standard MLEs 
(Cullan et al., 2019).

In response, we establish and analyze Algorithm  2 in the remainder of the 
paper. Critically, note that the amended algorithm does not reference the best 
observed model, Mb , in its core steps for estimating the decision quantile q(�) . 
Instead, it estimates the chance that a model other than Mj scores best when the 
distribution M̂j is assumed true. We then calculate Δfj based on the score dif-
ference between the best false model (i.e., Mr where r = min(f (Ms) ∶ s ≠ j) ) and 
any other model on the simulated data from M̂j . Figure 1 illustrates how Algo-
rithm 2 works with three candidate models in the correctly specified case where 
one model includes the true distribution.

Algorithm 2   Amended ECIC Algorithm
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Fig. 1   Flowchart illustrating the basic logic of Algorithm 2 in the correctly-specified case with three can-
didate models. From left to right, the first box indicates that Model 1 is true and generates the observed 
data, although this is not known in the remainder of the procedure. The next stage shows that any one of 
the three candidate models may score best (Algorithm 2 steps 1-3). The first column of pink triangles 
indicate the for loop in the algorithm (steps 4-9) where the remaining candidate models are analyzed 
to determine �j and Δfj , resulting in the decision threshold q̂(𝜏) shown in the second column of pink 
triangles (steps 10-13). The blue boxes mark the decision made to accept or not accept the best observed 
model (step 14), and the corresponding outcome in the colored ovals
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3 � Error Control Properties of ECIC

We now turn to address both the finite sample and asymptotic behaviors of the FP and 
FN rates using ECIC. We will highlight how ECIC can work under well-specified and 
misspecified model sets, i.e., when the true distribution is and is not included within 
the candidate models, respectively. In particular, we consider four model selection 
contexts: the correctly specified setting where all model parameters are known (CK), 
the correctly-specified setting where all model parameters are unknown (CU), the mis-
specified setting where all model parameters are known (MK), and the misspecified 
setting where all parameters are unknown (MU). We begin by defining a theoretical 
performance benchmark that assumes knowledge of the true distribution, which we 
use to compare ECIC against in practice where model uncertainty may be substantial. 
From there, we conduct simulations to highlight interesting elements of the benchmark 
versus in-practice performance across varying sample sizes. We ultimately show that 
although finite sample behavior may differ depending on the specific context for M , 
the FP and FN rates both asymptotically approach zero in all cases. This contrasts with 
classical NP tests where the total error rate converges to � at best, and may be higher if 
the model set is misspecified.

3.1 � Defining a Theoretical Benchmark

As mentioned, the formula in (1) must be estimated since the true distribution Mt(�t) 
is unknown. In order to provide a comparative baseline for the quality of our estima-
tion in practice, we introduce a decision function that assumes knowledge of Mt(�t) 
to serve as a theoretical benchmark. The perfect decision function

is not very informative for our purposes since it does not follow the basic logic 
of ECIC where models from M are used to determine a quantile for the decision 
threshold. We instead use

where

The role of minr≠t(Pr(b = t|M̂r)) in the b = t condition of (3) is to ensure that when 
the best observed model is the true one, we choose the largest DGOF quantile, and 
hence the most permissive threshold, for deciding on Mb . This is desirable if b = t 
since selecting Mb would evade a false negative. When the distributions are known, 

hperfect =

{
1 if b = t

0 else

(2)hB =

{
1 if Δfobs < q̂(𝜏B(t))

0 else

(3)𝜏B(t) =

⎧
⎪⎨⎪⎩

min

�
𝛼

Pt(b≠t�M̂t)
, 1

�
if b ≠ t

min

�
𝛼

minr≠t(Pr(b=t�M̂r))
, 1

�
b = t
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we drop the need for MLEs to find M̂r and M̂t and use just Mr and Mt instead to des-
ignate the specific distributions. We use the notation Pj(X) in this case to mean the 
probability of X given Mj is the assumed true distribution. We emphasize that (3) 
does not necessarily globally minimize error rates but rather serves to illustrate the 
performance possible for the ECIC approach when we remove uncertainty about the 
model, Mt , that contains the true distribution.

We now explore the error control properties of the benchmark decision function 
(2) in each modeling context. Our approach is to write down equations for the FP 
and FN rates by adding up the chances of hB selecting the observed best model Mb 
across the possible observed best models and alternate models used to set the deci-
sion threshold (see Fig. 1). Beginning with the Benchmark CK (BCK) setting, the 
FP rate for a fixed sample size n is:

Note that the min term enters in 4 by substituting for the definition of �B(t) when 
b ≠ t . The correction factor Pt(b ≠ t) serves to rescale � to account for the total 
probability of a getting a false positive by picking any model other than Mt . The 
intuition is that as the chance of false positives goes to zero, we can set a propor-
tionately more permissive quantile than � and still get a FP rate less than or equal to 
� . When Pt(b ≠ t) < 𝛼 , we no longer need a decision threshold at all. This is key to 
ensuring that both FP and FN rates go to zero asymptotically, in contrast to classi-
cal NP testing. Asymptotically, using a statistically consistent information criterion 
ensures that limn→∞ Pt(b ≠ t) → 0 , so that the minimum in (4) eventually becomes 1 
and limn→∞ PBCK(FP) → 0.

Next, let us look at the asymptotic behavior of the FN rate:

(4)

PBCK(FP) = Pt(∪jb = j ≠ t&Δfobs < q(𝜏B(t)))

=
∑
j≠t

Pt(b = j&Δfobs < q(𝜏B(t)))

=
∑
j≠t

Pt(b = j)Pt(Δfobs < q(𝜏B(t))|b = j)

=
∑
j≠t

Pt(b = j)min
{

𝛼

Pt(b ≠ t)
, 1
}

≤
∑
j≠t

Pt(b = j)
𝛼

Pt(b ≠ t)

=
𝛼Pt(b ≠ t)

Pt(b ≠ t)

= 𝛼

(5)

PBCK(FN) = Pt(b = t&Δfobs ≥ q(�B(t)))

= Pt(b = t)Pt(Δfobs ≥ q(�B(t))|b = t)

= Pt(b = t)

(
1 −min

{
�

minr≠t(Pr(b = t))
, 1

})



Error Statistics Using the Akaike and Bayesian Information…

Here, the other case of �B(t) enters in (5) because b = t . It is difficult to find a 
neat analytical solution because the FN rate may depend on which r sets the min 
for a given n. Nonetheless, the asymptotic behavior is straightforward. In this case, 
limn→∞ minr≠t(Pr(b = t)) → 0 , so the value of the minimum in (5) always eventually 
reaches 1, which implies limn→∞ PBCK(FN) = 0.

In the BCU setting, the main difference is that the models are no longer single 
distributions and we use the maximum likelihood method to estimate parameters, 
including for Mt . If we update (3) to reflect this, we get an expression with M̂t and 
M̂r that now behaves stochastically. We therefore aim to demonstrate E[FP] ≲ 𝛼, 
i.e., that the expectation is less than or approximately equal to the nominal level. 
We start with the FP rate as before and arrive at � times a ratio of probabilities 
with the MLE in the denominator:

We can estimate the denominator, Pt(b ≠ t|M̂t) , by sampling parametrically from 
M̂t , counting the times the condition is met, and dividing by the number of sam-
ples. This estimator is a function of a Binomial distribution: 𝜋̂t ∼ 1∕n ∗ B(n, pM̂t

) . 
If E[B(n, pM̂t

)] = npMt
 , so that the MLEs provide an unbiased estimate of the true 

conditional probability, then E[𝜋̂t] = Pt(b ≠ t).

To calculate the expected FP rate expressed in (6), we then need to handle the 
fact that 𝜋̂t appears in the denominator. We can do that by looking at the proper-
ties of f (X) = n∕X where X ∼ B(n, pM̂t

) . In particular, we can use a Taylor series 
expansion based on the facts that

together with the first two non-zero terms of the Taylor series:

(6)

PBCU(FP) =
∑
j≠t

Pt(b = j)Pt(Δfobs < q(𝜏B(t))|b = j)

=
∑
j≠t

Pt(b = j)min
{

𝛼

Pt(b ≠ t|M̂t)
, 1
}

≤ 𝛼
∑
j≠t

Pt(b = j)

Pt(b ≠ t|M̂t)

= 𝛼
Pt(b ≠ t)

Pt(b ≠ t|M̂t)

f (X) = n∕X, f �(X) = −n∕X2, and f ��(X) = 2n∕X3,
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The last approximation follows because we can make n arbitrarily large by drawing 
more samples from M̂j when estimating �j . Now we can finish by showing

More weakly, for the asymptotic behavior we can assume just that the MLEs are 
asymptotically consistent. Then we have that limn→∞ M̂t → Mt for any model in M . 
Thus, by the same reasoning used in the BCK setting, limn→∞ PBCU(FP) → 0 . Simi-
larly, the FN rate:

likewise approaches zero asymptotically.
We now turn to the two misspecified settings where the true distribution is not con-

tained in M . We denote Mt∗ as the model closest to the true distribution in terms of KL 
divergence and use it in lieu of Mt in (3). A true positive in this context would therefore 
be selecting Mb when b = t∗ . As before, we consider the cases where the parameters are 
known versus unknown. In the Benchmark MK setting we thus have:

E[f (X)] ≈ f (E[X]) + f ��(E[X])∕2 ∗ Var(X)

= f (npMt
) + f ��(npMt

)∕2 ∗ Var(𝜋̂t)

=
n

npMt

+
2n

2 ∗ (npMt
)3

∗ (npMt
(1 − pMt

))

=
1

pMt

+
(1 − pMt

)

np2
Mt

≈
1

pMt

E[PBCU(FP)] ≤ E

[
𝛼

Pt(b ≠ t)

Pt(b ≠ t|M̂t)

]

= 𝛼Pt(b ≠ t)E

[
1

𝜋̂M̂t

]

= 𝛼Pt(b ≠ t)E
[
n

X

]

≈ 𝛼Pt(b ≠ t)

(
1

pMt

)

= 𝛼

PBCU(FN) = Pt(b = t)

(
1 −min

{
𝛼

minr≠t(Pr(b = t|M̂r))
, 1
})
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In general, it is possible that Pt(b ≠ t∗) > Pt∗ (b ≠ t∗) , since the closest distribution 
Mt∗ in the candidate models may be a poor proxy for the true distribution Mt . The 
benchmark decision function therefore does not guarantee a ceiling on FP at a finite 
sample size.

For the false negative rate, we have:

The results in the BMU setting are similar after accounting for conditioning on M̂t∗ 
or M̂r . Both the finite-sample and asymptotic properties for the error rates in the 
Benchmark MK and MU settings are similar to those in the CU setting — that is, the 
finite-sample FP error rates are determined by the discrepancy between probabilities 
under the true and closest models, but all asymptotic error rates still approach zero 
as long as limn→∞ PBCU(FP) → 0.

3.2 � Practical Performance for Correctly Specified Case

Having set out a reasonable theoretical baseline, we can move to assess ECIC’s 
practical performance in the correctly specified setting with both known (CK) and 
unknown (CU) parameters. We present results from a simulation study involving 
normal distributions for the former and spline regression fits for the latter.

3.2.1 � Known Parameters

The FP rate for a fixed sample size n in the CK setting is:

PBMK(FP) =
∑
j≠t∗

Pt(b = j)Pt(Δfobs < q(𝜏B(t∗))|b = j)

=
∑
j≠t∗

Pt(b = j)min
{

𝛼

Pt∗ (b ≠ t∗)
, 1
}

≤
∑
j≠t∗

Pt(b = j)
𝛼

Pt∗ (b ≠ t∗)

= 𝛼
Pt(b ≠ t∗)

Pt∗ (b ≠ t∗)

PBMK(FN) = Pt(b = t∗)

(
1 −min

{
�

minr≠t∗ (Pr(b = t∗))
, 1
})
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Since for all r, limn→∞ Pr(b ≠ r) → 0 , it is easy to see that limn→∞ PCK(FP) → 0 
by using the same reasoning in the Benchmark CK setting. The FN rate can be 
expressed as:

As above, this also approaches zero asymptotically.
Figure  2 presents a simulation study for Gaussian distributions with known 

parameters across sample sizes that are multiples of 50 between 50 and 3,  500 
inclusive. Here, M = {N(3.9, 1),N(4, 1),N(4.2, 1)} , Mt = N(4, 1) , and the informa-
tion criterion used is the negative log likelihood since all models represent single 
distributions. We set � = 0.05 , sample 7, 000 draws from the true model for each 
sample size to generate observed data, and simulate 7, 000 data sets for perform-
ing ECIC. The top three graphs in Fig. 2 are the FP rates using the Benchmark CK 
threshold, ECIC, and Burnham and Anderson’s ΔIC rule of thumb from (Burnham 
& Anderson, 2002), respectively. This latter method selects the model with the low-
est observed IC score if Δfobs is less than a fixed value set by the analyst, which we 
set to the commonly used value of −2 . The bottom three graphs correspond to the 
FN rates under the same model selection approaches used in the top graphs.

Overall, we see that both the benchmark and practical implementations of ECIC 
achieve control over the FP rate at the desired level, with small exceptions due to 
our numerical procedure that we discuss in more detail below. For the ΔIC < −2 
approach, we see a value of ≈ 0.02 for the FP rate at a sample size of 50, followed by 
a subsequent spike and drop back down. This is due to the observed DGOFs being 
relatively close to zero at a sample size of 50. In fact, 6,880 of the 7,000 samples 
here have an observed DGOF greater than −2 , which leads to a high rejection rate in 
general. Since each model is observed as best at about similar frequencies, this leads 
to a lower FP rate and higher FN rate. We therefore see that in this model selection 
context, the ΔIC < −2 rule corresponds to a slightly more conservative � level than 
0.05.

PCK(FP) = Pt(∪jb = j ≠ t&Δfobs < q̂)

=
∑
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Pt(b = j)min
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𝛼
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, 1
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≤
∑
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Pt(b = j)
𝛼

maxr≠j(Pr(b ≠ r))

≤
∑
j≠t

Pt(b = j)
𝛼

Pt(b ≠ t)

= 𝛼
Pt(b ≠ t)

Pt(b ≠ t)

= 𝛼

PCK(FN) = Pt(b = t&Δfobs ≥ q̂)

= Pt(b = t)Pt(Δfobs ≥ q̂|b = t)

= Pt(b = t)

(
1 −min

{
𝛼

maxr≠t(Pr(b ≠ r))
, 1
})

.
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As we would expect, then, the practical version of ECIC set to � ≤ 0.05 shows a 
slightly improved FN rate compared to the ΔIC rule, modulo two peaks due to a dis-
cretization effect. The ECIC benchmark illustrates the ideal behavior we expect: the 
FP rate is held at � until the sample size is large enough that the total chance of a FP 
is below � , at which point the decision threshold becomes progressively weaker until 
the best-scoring model is always accepted. For the FN rates, we can see, as expected, 
a sharper spike and heavier right-skewed tail in the CK versus the BCK setting. Addi-
tionally, both the practical and benchmark procedures show the FN rate declining to 
zero. A key takeaway here is that although each approach successfully controls the FP 
rate in this instance, there is no theoretical guarantee of this happening in the general 
case with the rule of thumb approach.

We identify two artificial effects in ECIC’s performance due to using a finite-
sample DGOF distribution. First, the small upticks above 0.05 for smaller sample 
sizes arise from numerical error due to discretization. That is, these upticks flatten 
out as a greater number of draws from each model are made.

Second, the sudden upticks of FN rates in the CK graph arises from an artifact 
of discretization for the simulated data sets. For example, the first uptick in the CK 
graph that occurs a little bit after the sample size of 1,000 is due to there being 
only one negative DGOF value, ≈ −4.38 , in the estimated distribution used to set 
the decision quantile. Whenever the true model, N(4, 1), is observed best, there are 
1,926 observed DGOF values that are greater than −4.38 , which leads to the esti-
mated FN rate of 1, 926∕7, 000 ≈ 0.28 . If the number of simulated data sets were 

Fig. 2   Simulation study where the top three graphs correspond to linearly interpolated FP rates using 
thresholds for ECIC in the BCK context, ECIC in the CK context, and Burnham and Anderson’s rule of 
thumb with a threshold of −2 where the red lines mark the nominal � level. The bottom graphs corre-
spond to linearly interpolated FN rates under the same methods
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increased, then values between −4.38 and zero would be drawn and a less stringent 
decision threshold might be set.

3.2.2 � Unknown Parameters

As with the BCU setting, the dependence on ML estimation for the model parame-
ters in the CU setting frustrates the establishment of a deterministic analytical bound 
for PCU(FP) . However, we are still able to demonstrate that E[FP] ≲ 𝛼 since the FP 
rate is still bounded by 𝛼 P(b≠t|Mt)

P(b≠t|M̂t)
:

As for the FN rate,

Both of these errors rates approach zero since P(b ≠ r|M̂r) will decay to zero for all 
r.

For our CU simulations, we let M consist of 3 cubic spline regression models using 
B-spline bases with knots placed at the quintiles, sextiles, and septiles of the interval 
[−10, 10] . The true model places knots at the quintiles of [−10, 10] and has a coef-
ficient vector of � = (0.3,−0.6, 0.4,−0.6, 0.5,−0.5, 0.1) . Thus, in this simulation the 
knot locations are fixed for each model but the parameters are unknown. We included 
sample sizes that are multiples of 10 between 20 and 260 inclusive and distributed 
observed points uniformly beginning at −10 and ending at 10. We set � = 0.05 , sam-
pled 2,000 draws from the true model with added independent and identically distrib-
uted N(0, 0.062) noise for each sample size to generate observed data, and simulated 
3,000 data sets for performing ECIC. The IC used is the BIC since it will consistently 
select the true model as sample size increases under conditions which are met in the 
current setup (Vrieze, 2012). A lower number of sample draws and simulations are 
used here compared to the CK exercise to make the simulations faster.

(7)

PCU(FP) =
∑
j≠t

Pt(b = j)Pt(Δfobs < q̂|Mt, b = j)

=
∑
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}

≤
∑
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𝛼
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∑
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= 𝛼 ∗
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= Pt(b = t)

(
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, 1
})
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To give a sense of what these spline fits might look like, in Fig. 3 we fit all three 
models to the first of the 2,000 simulated draws of 20 points. It should be clear in 
this figure that visual inspection alone may be insufficient to select an appropriate 
model, showing the utility of a model selection procedure. Figure  4 presents the 
error rates resulting from our simulations. We see that there is slight uncontrol of 
the FP rate for some smaller sample sizes under the benchmark threshold, whereas 
the in-practice threshold maintains control for all sample sizes. This former observa-
tion is perhaps unsurprising given that the bound derived in the BCU calculation is 
approximate, and its error only diminishes asymptotically as the number of samples 
used in simulating the DGOF distributions increases.

The rule of thumb approach can result in an FP rate that significantly exceeds the 
nominal rate, as it does for n = 20 in which it is a little over double that of 0.05. 
Although the rule of thumb approach catches up to the performance of ECIC for 
moderately larger sample sizes, the high degree of instability for smaller sample sizes 
highlights the benefit of the theoretical framework of ECIC. For the FN rates, the 
benchmark threshold and rule of thumb approach perform similarly with rates begin-
ning around 0.20 that taper off to rates closer to zero around sample sizes of 100. On 
the other hand, it is only until sample sizes of around 250 that the FN rates using the 
in-practice threshold begin to taper off to around zero. This exemplifies the conserva-
tive nature of ECIC, in that strong evidence must be present in order for it to select a 
model, as well as the potential cost of demanding control over only the FP rates.

Fig. 3   A fit of all three spline regression models in the BCU/CU context to a simulated draw of 20 
points. The dashed black line represents the (true) model with knots at the quintiles of [−10, 10] . The 
green, orange, and blue lines represents a cubic spline regression fit to the data using knots at the quin-
tiles, sextiles, and septiles of [−10, 10] , respectively
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3.3 � Misspecified Model Sets In Practice

Following (Dennis et al., 2019), we extend our analysis of ECIC to consider model 
selection contexts where the candidate model set M does not include the true dis-
tribution. In both the known and unknown parameter settings, we find that ECIC 
controls the FP rate for finite samples under restricted circumstances and hence does 
not guarantee � universally. However, what can still be guaranteed is the asymptotic 
decay of both the FP and FN rates to zero.

3.3.1 � Known Parameters

The error rate calculations for the MK setting are the same as the CK setting, except 
that we must now consider the model Mt∗ that is closest to Mt in terms of KL diver-
gence to be the most desirable model. The error rates for MK can be expressed as:

Fig. 4   Simulation study where the top three graphs correspond to linearly interpolated FP rates using 
thresholds for ECIC in the BCU context, ECIC in the CU context, and Burnham and Anderson’s rule of 
thumb with a threshold of −2 where the red lines mark the nominal � level. The bottom graphs corre-
spond to linearly interpolated FN rates under the same methods
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DELETE will be below � when

Unfortunately, whether this inequality holds in practice is difficult to assess because 
we have assumed that the true distribution is outside the candidate model set. None-
theless, both error rates will still converge to zero because maxr≠j(Pr(b ≠ r)) and 
Pt(b ≠ t∗) will converge to zero asymptotically.

Figure 5 presents a simulation study across sample sizes that are multiples of 
50 between 50 and 2,000 inclusive. Here, M = {N(3.8, 1),N(4.1, 1),N(4.15, 1)} , 
Mt = N(4, 1) , Mt∗ = N(4.1, 1) and the IC used is the negative log likelihood. We 
set � = 0.05 , sample 7,000 draws from the true model for each sample size to 
generate observed data, and simulate 7,000 data sets for performing ECIC. As 

PMK(FP) =
∑
j≠t∗

Pt(b = j)min

{
�

maxr≠j(Pr(b ≠ r))
, 1

}

≤ �
∑
j≠t∗

Pt(b = j)

maxr≠j(Pr(b ≠ r))

PMK(FN) = Pt(b = t∗)

(
1 −min

{
�

maxr≠t∗ (Pr(b ≠ r))
, 1

})

∑
j≠t∗

Pt(b = j)

maxr≠j(Pr(b ≠ r))
< 1

Fig. 5   Simulation study where the top three graphs correspond to linearly interpolated FP rates using 
thresholds for ECIC in the BMK context, ECIC in the MK context, and Burnham and Anderson’s rule 
of thumb with a threshold of −2 . The bottom graphs correspond to linearly interpolated FN rates under 
these methods
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previously warned, the FP rates for ECIC under the benchmark and in-practice 
thresholds are inflated above 0.05 until samples sizes are larger than about 750. 
The rule of thumb approach also experiences inflation above the nominal rate, 
albeit less dramatically. A similar sudden spike in FN rates as in the CK case 
appears in the MK case as well. Lastly, all error rates for ECIC eventually decay 
to zero with increasing sample size as expected.

3.3.2 � Unknown Parameters

Lastly, the MU setting closely resembles the CU setting. The error rates can be 
expressed as:

Using results from the previous cases, we can see that both approach zero 
asymptotically.

The simulation setup for the MU case will exactly resemble the CU setup 
except that the first model in M places knots at the noniles of [−10, 10] and the IC 
used is the AIC (more on this shortly). We generate the exact same data from the 
true model, which places knots at the quintiles of [−10, 10] , as we did in the CU 
example. In Fig. 6, we fit all three models to the first of the 2,000 simulated draws 
of 20 points and again see that it is difficult to select a model by visual inspection 
alone.

A slight complication with the MU simulation is exactly how to define the model 
that is closest to the truth and thus should be selected. In the MK simulation we 
could consider the Gaussian distribution whose mean had the closest absolute dis-
tance to the true mean as closest. Since parameters are not fixed in the current con-
text, such a straightforward scheme is not possible. We use the AIC to determine 
the closest model since it will select the model that minimizes KL divergence with 
increasing sample size (Vrieze, 2012). Thus, after examining the best observed AIC 
scores for the data we simulated, we found that the regression model with knots at 
the noniles was overwhelmingly selected as sample size increased. Therefore, we 
consider this model to be the one closest to the true model.

Figure  7 displays the results of our simulations. We actually see in this case 
that FP rates using both the benchmark and in-practice threshold for ECIC remain 
bounded below 0.05, whereas the rule of thumb has inflated values until the sam-
ple size reaches about 180. Compared to the CK simulation, the FN rates drop sig-
nificantly slower with increasing sample size, but an asymptotic decrease to zero is 
apparent for each method, nonetheless. Together with the MK case, this illustrates 
how ECIC is sometimes able to control FP rates for misspecified model sets, but this 
depends on the particulars of the model selection context.

PMU(FP) ≤ 𝛼
∑
j≠t∗

Pt(b = j)

maxr≠j(Pr(b ≠ r|M̂r))

PMU(FN) ≤ Pt(b = t∗)

(
1 −

𝛼

maxr≠t∗ (Pr(b ≠ r|M̂r))

)
.
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Fig. 6   A fit of all three spline regression models in the BMU/MU context to a simulated draw of 20 
points. The dashed black line represents the (true) model with knots at the quintiles of [−10, 10] . The 
green, orange, and blue lines represents a cubic spline regression fit to the data using knots at the noniles, 
sextiles, and septiles of [−10, 10] , respectively

Fig. 7   Simulation study where the top three graphs correspond to linearly interpolated FP rates using 
thresholds for ECIC in the BMU context, ECIC in the MU context, and Burnham and Anderson’s rule 
of thumb with a threshold of −2 where the red lines mark the nominal � level. The bottom graphs corre-
spond to linearly interpolated FN rates under the same methods
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4 � Discussion

Our results provide a proof-of-concept result that NP testing can be generalized to 
operate in a fully information-theoretic model selection paradigm. Improving on 
prior work by (Cullan et al., 2019), we presented a revised algorithm for error con-
trol using the AIC and BIC, and we established some key theoretical properties of 
the algorithm’s finite sample and asymptotic behaviors. In this section, we discuss 
some of the broader implications of our results for ongoing debates about statistical 
methodology in biology. Our focus will be on addressing the criticisms in (Dennis 
et al., 2019) of the practical limitations of error statistics based on classical NP tests. 
Overcoming these practical limitations may open the door to new epistemic inter-
pretations and norms for applying severity as a form of evidence, e.g., in response to 
(Bandyopadhyay et al., 2016b; Taper & Ponciano, 2016).

The ultimate project is to understand the epistemic implications of using the 
AIC and BIC, which have a deep theoretical foundation in information theory, 
for model selection practices in the sciences. Classical Fisherian significance and 
NP tests both use a test statistic that compares the data to a null model selected 
before observing the data, and which may or may not be true. Information-theo-
retic model selection, in contrast, uses statistics such as the AIC or BIC to esti-
mate a candidate model’s relative divergence from the true distribution (Ponciano 
& Taper, 2019). How does this underlying shift in reference point and theoretical 
background affect our understanding of statistical evidence?

Evidentialist statistics represents one answer, which developed as an outgrowth 
of Royall’s likelihoodist theory of statistical evidence (Royall, 1997, 2000) in 
response to modeling practices in ecology (Lele, 2004; Taper & Ponciano, 2016; 
Dennis et al., 2019; Taper & Lele, 2021). A key advance was defining evidence 
functions as a generalization of likelihoods that keep some of their most impor-
tant features while accommodating a broader array of measures, such as the AIC 
and BIC, for the divergence between distributions (Lele, 2004; Dennis et  al., 
2019). On the evidentialist approach, evidence is defined by comparing the scores 
of two or more models using an evidence function. The larger the difference, the 
stronger the evidence. An observed score difference can also be contextualized by 
calculating probabilities of misleading or weak evidence.

Error statistics, based on the concept of severity, has often been viewed as 
a mutually exclusive alternative to evidentialism. Historically, error statistics 
developed from Karl Popper’s falsificationist theory of the scientific method in 
response to a growing appreciation of the specific reasoning practices scientists 
use in designing and interpreting experiments (Mayo, 1996; Matthewson & Weis-
berg, 2009; Spanos & Mayo, 2015). The key advance here was the concept of a 
severe test: “Hypothesis H passes a severe test with [evidence] e if (i) e fits [alter-
native] H ∗ and (ii) the test procedure T has a very low probability of producing 
a result that fits H as well as (or better than) e does, if H were false or incorrect” 
(Matthewson & Weisberg, 2000, p. S198).

Previously, advocates for error statistics have been critical of information-theo-
retic methods precisely because they do not guarantee any particular level of error 
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probabilities (Spanos, 2010). At the same time, many of the favorite examples 
used by advocates of error statistics rely on problematic model selection methods 
from an evidentialist perspective. Classical NP tests, for example, do not guaran-
tee that the probability of strong evidence for the true model converges to one as 
the sample size increases (Dennis et al., 2019). The main frequentist and Bayes-
ian justifications of severity as a theory of evidence also rely on the true model 
assumption (Mayo & Spanos, 2006; Bandyopadhyay & Brittan, 2006). Howver, 
many scientists view this assumption as false, or at least deeply flawed, in fields 
such as ecology (Burnham & Anderson, 2002; Anderson, 2008; Aho et al., 2014; 
Sterner & Lidgard, 2021).

Our results using ECIC suggests these criticisms may be overcome in part 
through technical advances in model selection methods. However, we also need to 
consider how ECIC relates to existing theories of evidence. We approach this by 
considering ECIC as a statistical procedure that may be interpreted as compatible 
with one or more philosophical interpretations. We suggest it is compatible with 
error statistics, evidentialism, and the behavioristic view that Jerzy Neyman some-
times adopted for classical NP tests.

ECIC can be interpreted as implementing severe testing in an analogous way 
that Mayo and Spanos proposed for classical NP tests (Mayo & Spanos, 2006). 
Let model M̂j∗ be the most conservative model that determines the value of the 
quantile threshold, q(�). Then one can re-express the decision function h as: if 
P(Δf < Δfobs|M̂j∗ ) < P(Δf < q̂(𝜏)|M̂j∗ ) then h = 1, else h = 0. This shows how 
P(Δf < Δfobs|M̂j∗ ) is analogous to a p-value, because it expresses a conservative 
estimate of the probability that one would get an observed score difference at least 
as large if the observed best model was false. One can therefore define a severity 
function using h in the same way as for classical NP tests.

Another compatible interpretation is the “behavioristic” view of the decision 
function h as a rule that can be applied to many datasets, e.g., as part of quality test-
ing in a factory or classifying patterns of variation in a large population of genetic 
sequences. On this view, ECIC is useful as a way to constrain the long-run frequen-
tist properties of the model selection decision.

From an evidentialist perspective, what matters is the Δfobs function at the core of 
ECIC, which qualifies as an evidence function according to the five main properties 
proposed in (Lele, 2004). The first two properties are translation and scale invari-
ance. Since P(Δfobs < q̂) = P(Δfobs + c < q̂ + c) and P(Δfobs < q̂) = P(cΔfobs < cq̂) 
for any real constant c ≠ 0 , the observed DGOF and elements of each of the j ≠ b 
bootstrapped distributions can be translated and scaled by the same value without 
changing the decision of ECIC. The third property is invariance to one-to-one repa-
rameterization of the parameter space. This follows directly from the invariance 
property for general transformations of MLEs (Casella & Berger, 2002), which 
implies that the ordering of the IC scores computed in both the initial data scoring 
and bootstrapping steps of the ECIC algorithm would be preserved. The fourth prop-
erty is invariance to one-to-one transformations of the data. This follows directly 
from the the fact that likelihood ratios, and thus differences in the IC scores, are 
invariant to one-to-one transformations of random variables due to a cancellation 
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of the Jacobian terms. This again preserves the ordering of IC scores throughout 
the algorithm. The final property is the probability of strong evidence for the true 
hypothesis converging to 1 as the sample size increases. For ECIC at a specified 
level � , we can interpret this as the FP and FN rates both converging to 0 with 
increasing sample size, which we demonstrated in Section 3. ECIC can therefore be 
understood as using a transformation of an evidence function, i.e. the decision pro-
cedure h as a function of Δfobs , to control error rates.

Table  1 summarizes how ECIC leverages the benefits of the AIC and BIC to 
achieve many of the same benefits for severe testing as are available for the eviden-
tialist approach. We discuss each of the items in more detail here:

•	 Equal status for null and alternatives: As with the evidentialist approach, ECIC 
treats all the candidate models a priori symmetrically. Post-data, it does distin-
guish between the the observed best-scoring model Mb and the remaining mod-
els in the candidate model set. One can therefore think of ECIC as comparing a 
post-data alternative model (the observed best model) to a set of null models (the 
remaining candidate models), but this is not identical to the procedure used in 
classical NP testing.

•	 Allows evidence for Null: Evidence for Mb , which in principle can be any 
Mi ∈ M , is encapsulated in the observed DGOF Δfobs , which is also the basis for 
carrying out a severe test. If passed, Δfobs is deemed to be sufficient evidence in 
support of Mb and is insufficient otherwise. It is therefore possible for ECIC to 
find evidence for any of the candidate models, which is not the case for the null 
model in classical NP tests.

•	 Accommodates multiple models: ECIC can, in principle, support any finite set of 
non-overlapping candidate models. It further inherits the property of IC-based 
model selection where all pairs of models can be compared.

Table 1   A comparison of inferential characteristics between classical frequentist tests, ECIC, and eviden-
tial statistics

The table is updated from (Dennis et al., 2019) to highlight how ECIC addresses key practical criticisms 
of the error statistical approach by showing it is not limited to classical testing methods. See the main 
text for more explanation

Inferential characteristic P-value Classical NP ECIC Evidence

Equal status for null and alternatives NA No Yes Yes
Allows evidence for Null No No Yes Yes
Accommodates multiple models No Awkward Yes Yes
All error rates go to zero
as sample size increases

No No Yes Yes

Total error rate always decreases
with increasing sample size

No No Unknown Yes

Can be used with non-nested models NA Not standard Yes Yes
Evidence and error rates distinguished No No Yes Yes
Robust to model misspecification Yes No Partial Yes
Promotes exploration of new models Yes No Yes Yes
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•	 All error rates go to zero as sample size increases: This was demonstrated in 
Section 2 for the CK, CU, MK, and MU contexts. ECIC therefore benefits from 
the statuses of the ΔBIC and ΔAIC (under certain circumstances) as evidence 
functions, but it provides an alternative way of understanding evidence than the 
simple magnitude of the ΔIC score.

•	 Total error rate always decreases with increasing sample size: The total error 
rate for ECIC would be defined as the sum of false positives and false nega-
tives. Since our implementation of ECIC relies on a numerical algorithm involv-
ing stochastic elements, it is unlikely that the total error rate will always decrease 
in a strictly monotonic way with increasing sample size. One could potentially 
investigate the expected behavior of FP + FN using the theoretical framework 
we introduced, but we have not done so here, and therefore we list it as unknown 
at this point.

•	 Evidence and error rates distinguished: ECIC is compatible with both severity 
and evidentialist interpretations. ECIC can be understood as a decision procedure 
based on a transformation of an evidence function. It can also be understood as a 
severe test because the decision is based on the probability that one would get at 
least as good an observed score difference if the observed best model is false. As 
a result, it permits a clear distinction between evidence and error rates, although 
not necessarily in the same way that evidentialists do.

•	 Robustness to model misspecification: The standard set by (Dennis et al., 2019) 
is the asymptotic decay of error rates as sample size increases, which ECIC has 
been shown to meet. However, ECIC explicitly sets a higher standard for robust-
ness that is not necessarily met for misspecified model sets, i.e., control of FP 
rates at a nominal level � . We have seen that ECIC sometimes succeeds at this in 
misspecified contexts, but this depends on the particularities of how the candi-
date models relate to the external true distribution and is not universally guaran-
teed. We therefore list it as partially satisfied by ECIC at this time.

•	 Promotes exploration of new models: This criterion is somewhat vague, but we 
understand the main thrust of Dennis et  al.’s critique to be the assumption of 
classical NP tests that the null and alternative hypothesis form a closed, com-
plementary set of possibilities. Since ECIC accommodates an indefinite number 
of candidate models, it is consistent with commonly recommended practices of 
exploring model adequacy as a means to identify new models, especially from an 
error statistical perspective. For this reason we list it as “Yes.”

Because ECIC changes so much about the practical features of severe testing, it may 
also suggest new ways to draw epistemic conclusions from the results of a severe 
test. We highlight a few points of interest in lieu of a more comprehensive discussion 
that remains for future work. One central question for model selection, for exam-
ple, is whether we have good reason to believe a hypothesis is true when it passes 
one or more severe tests. This has been a point of contention with evidentialists, 
who call it the “true-model” assumption of error statistics (Bandyopadhyay et  al., 
2016b; Bandyopadhyay & Brittan, 2006), p. 75). Since ECIC can (in some cases) 
operate successfully in a misspecified model context, this assumption is therefore 
not required for severe testing. Instead, the assumption might be better labeled as the 
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“quasi-true” model assumption, since ECIC can provide us with a severe test that 
the best observed model contains the distribution closest to the truth.

ECIC is designed to be stringent in ruling out relevant alternatives to Mb , where 
relevance is determined by inclusion in the candidate set. The key benefit of this is 
that some degree of control is provided for FP rates in finite samples. However, as 
we saw in simulations for simple modeling contexts, this can also result in nontrivial 
FN rates for finite samples. Thus, ECIC is most suited for situations in which it is 
acceptable or perhaps even informative to conclude insufficient evidence for Mb.

The preceding notion can be naturally tied to an emphasis on representational fidel-
ity, or how well a model describes the causal structure of a data generating process 
(Matthewson & Weisberg, 2008). That is, in conceiving which candidate models may 
be included in M , it may be most informative to include ones with distinct explana-
tory features. The idea here would be to have the selection of Mb implicating reliable 
information about the underlying mechanics of a data generating process. On the other 
hand, not selecting Mb would implicate some degree of ambiguity for such mechanics.

A final point to be made here concerns the cardinality of M . As mentioned 
before, there is no restriction for this beyond finiteness in principle. However, given 
the conservative nature of ECIC, including superfluous models in M may unnec-
essarily frustrate the chances of a model being selected. For example, in keeping 
with the spirit of our spline examples in Section 3, ECIC would perform poorly if 
M were to include many spline regression models that are all fairly competitive in 
terms of a chosen information criterion. This, however, would also apply to ΔIC 
procedures, and so it is not a unique problem to ECIC. Putting these suggestions 
together, the ideal setup for ECIC would involve a manageable-sized set of models 
that each have distinct explanatory features and would yield useful information both 
when a decision is and is not made. While it is difficult to designate a precise num-
ber for what qualifies as a manageable model set, simulation studies under plausible 
conditions can provide some guidance.

5 � Conclusion

We identify several areas for future work emerging from ECIC’s finite sample 
and asymptotic properties. On the philosophical side, an important next step is to 
develop a more comprehensive and systematic epistemology for severe testing using 
ECIC. This would further clarify its general implications and novelty in the philoso-
phy and methodology of statistics.

It may also be possible to extend our theoretical framework to provide stronger 
guarantees for the misspecified model case and to cover the important class of 
model selection problems where one or more candidate models are nested. 
For the former issue, it would be important to improve the reliability of ECIC 
under model misspecification. A plausible future strategy to achieve a more gen-
eral guarantee for FP would be to use non-parametric bootstrapping to estimate 
the DGOF distribution and estimator 𝜋̂NP (Taper & Lele, 2021). A smoothing 
approach may be required for small sample sizes, however, to avoid artifacts in 
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the distribution of score differences. This would also restrict the scope of the 
approach to settings where an unbiased non-parametric bootstrap estimator exists.

In addition, it may be possible to generalize the ECIC algorithm to apply to any 
combination of nested and non-nested models. Shao and Rao provide an impor-
tant result here using the Generalized Information Criterion for linear regression 
(Shao & Rao, 2000). More generally, when two models are nested in M , e.g., 
Mi ∈ Mj , we must provide a more nuanced interpretation of when a model counts 
as a false positive in order to apply ECIC. In particular, if Mi(�i) is the true dis-
tribution, then there is no unique value of t, since Mi(�i) ∈ Mj . Nonetheless, the 
convention is to designate selecting the simpler model as correct, so that a statis-
tically consistent criterion should eventually (almost) always score Mi(�i) as best.

This poses a challenge for NP testing, since when the BIC converges on select-
ing Mi(�i) , it will also appear that M̂j has a very high false positive rate. In this 
context, the algorithm we defined for non-nested models will control the FP rate 
as desired, but the FN rate for Mi(�i) will converge to 1 instead of 0. It is odd to 
say that choosing a subset of Mj should count as a false positive, though, suggest-
ing that this context will require us to reconsider exactly how we define our can-
didate models to reflect their nested logical relationships.

From an error statistical perspective, one strategy may be to recognize that 
hypothesis tests are not as perfectly precise in practice as the mathematical models 
we use to represent them. Instead, we can interpret the BIC as actually the sum of 
two values: (1) a model fitting penalty that corrects for expected bias in estimating 
KL divergence from the true distribution, and (2) a tacit effect size penalty that 
privileges simpler models. The first part corresponds to the AIC in the non-nested 
case, while the second part reflects the additional penalty imposed by the BIC, i.e., 
klog(n) − 2k for log(n) > 2 . In effect, we can understand this additional penalty as 
asserting that any distribution in Mj within a KL divergence of klog(n) − 2k of Mi 
should be treated as part of Mi . If Mj is related to Mi by setting a parameter to zero, 
this assertion corresponds to restricting Mj to sufficiently large values of the param-
eter, and hence we can interpret it as an implicit effect size requirement that modu-
lates the boundaries of the smaller model in parameter space. In other words, it may 
be possible to transform the nested models case into a non-nested case by excluding 
distributions in the larger model from consideration when they are too close to the 
smaller model.

On the applied side, it may be possible to improve ECIC’s performance by inte-
grating methods and theoretical results from adjacent topics, e.g., research on error 
exponents for Markov model classification (Chambaz, 2006; Eguchi & Copas, 2006; 
Leong et al., 2007) and non-parametric NP classification (Tong et al., 2016, 2018). 
These may suggest strategies to improve ECIC’s finite sample error rates and pro-
vide analytical bounds for more complex asymptotic cases.
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