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Abstract of the Dissertation

Language Grounding in Massive Online Data

by

Jianfu Chen

Doctor of Philosophy

in

Computer Science

Stony Brook University

2015

Truly understanding natural language requires grounding language to perceptions and

actions in the physical and social world. This goes beyond studying the textual modality

alone. Today’s web not only has sheer volume of data, but also increasingly multi-modal

data, intertwining text with videos, images, audios, and ontologies that are perceptions

or abstractions of people’s everyday life. Hence the web provides rich and ever growing

resources for studying grounded language. This thesis presents a series of investigations

of language woven into various types of online data, ranging from ontology and images

to time series. We contribute data distillation approaches and large-scale datasets con-

necting language to vision, a collection of models and algorithms, and multiple novel

applications in hierarchical product classification, image description, and photo album

summarization.
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Chapter 1

Introduction

Researchers in various areas have discovered that understanding natural language requires

grounding semantics to perceptions and actions in the physical world (Wittgenstein, 2010;

Pecher et al., 2011). This goes beyond looking at the textual modality alone. For instance,

it is impossible to learn the meaning of all words from only dictionary definitions. Because

the definition of each word is based on other words recursively, leading to cycles or infinite

regress, which is known as the symbol grounding problem (Harnad, 1990).

Today’s web not only has sheer volume of data, but also increasingly multi-modal data,

intertwining text with videos, images, audios, and ontologies that are perceptions or

abstractions of people’s everyday life. Hence the web provides rich and ever growing

resources for studying grounded language.

A thrust of recent works studies language grounded in conceptual abstractions, including

logical forms (Zettlemoyer and Collins, 2005; Artzi and Zettlemoyer, 2011; Liang et al.,

2013), diagrams (Seo et al., 2014; Seo et al., 2015), knowledge bases (Bordes et al., 2011;

Bordes et al., 2012), and databases (Riedel et al., 2013; Poon, 2013); and grounded in

perceptions and actions, e.g., images (Kuznetsova et al., 2012; Le et al., 2013; Silberer and

Lapata, 2014), videos (Yu and Siskind, 2013; Krishnamoorthy et al., 2013; Venugopalan

et al., 2015), sportscasts (Chen et al., 2010; Bordes et al., 2010; Hajishirzi et al., 2011;

Hajishirzi et al., 2012; Koncel-Kedziorski et al., 2014), robot instructions (Matuszek et

al., 2014), and navigation instructions (Kim and Mooney, 2012).

This thesis presents a series of endeavours on investigating language woven into various
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types of online data, ranging from ontology and images to time series.

Our first study relates text to a conceptual abstraction (§2). In an online shopping

platform, a taxonomy helps customers to explore and find products. We study classifying

a textual product description into a given taxonomic ontology. Instead of optimizing

0-1 error rate as standard approaches, we design a classifier based on its use in the e-

commerce world, that is, a vendor organizes a collection of products with a business goal

to maximize revenue.

Our second study straddles text and vision (§3). Casual online activities involve images in

conjunction with text. Researchers have explored this multi-modal web data to integrate

language and vision. The main challenge to tapping into the web data is noise. Although

readily available in very large quantities, naturally-existing web images and their captions

have varying degrees of semantic correspondence. Everyday captions contain extraneous

information (Kuznetsova et al., 2013b; Hodosh et al., 2013) that is not directly relevant

to what the image shows. We propose a new approach to harvesting an image-caption

dataset that makes better use of the existing web content and the future content exploding

with billions of online activities every day. We demonstrate the potential utility of the

new dataset in multiple ways.

Our third study aligns text with both vision and time series (§4). More often than

taking random photos individually, people take a sequence of photos when participating

a certain scenario, say wedding, camping, and Independence day. This results in a large

number of online photo albums with time stamps for each photo. We propose to tap into

the context of a photo stream to better understand both photos in sequence and their

accompanying captions. The key idea is to ground image captions to prototypical events

in a common scenario. For example, from a sequence of photos paired with captions

regarding a wedding scenario, we might identify certain typical events in wedding that

happen over time, for example, vows, ring exchange, reception, and dancing.

We now turn to the above three studies, respectively.

2



Chapter 2

Cost-Sensitive Hierarchical Product

Classification

2.1 Overview

Our first study relates text to a taxonomic ontology, which is a common way to organize

information.

E-commerce enables customers to buy products any time and anywhere. E-commerce has

expanded rapidly over the last decade, and is predicted to continue its fast growth with

the rise of smartphones and tablets.

In an online shopping platform, it is vital to enable customers find desired products

quickly. To this end, the two most popular mechanisms are taxonomy organization and

keyword search. A taxonomy organizes products by categories grouped hierarchically in a

tree structure, from general classes to more specific classes. Two examples are the catalogs

of Amazon.com and eBay.com. Such taxonomies complement keyword search. While

keyword search is good for quickly finding a very specific product in a customer’s mind,

a taxonomy organization also has its merits: (1) facilitates exploring similar products.

Categories are like departments in a supermarket that allow a customer to navigate and

roam around a vast number of aisles. Are you looking for gift ideas for a kid? Just browse

the sub-categories under the general “Toys&Games” category in Amazon.com. You will

find many possibilities in a systematic way, e.g., dolls, puzzles, and building toys. In fact,
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Figure 1: Part of the UNSPSC taxonomy

even for a keyword query, many online shopping websites allow a customer to browse

the search results by categories organized in a taxonomy. This helps a customer to filter

out the really relevant categories. (2) helps product recommendation. Intuitively, given

the products previously browsed or bought by a customer, we can use a taxonomy to

recommend similar products in similar categories. Formally, (Ziegler et al., 2004) studies

exploiting large taxonomies for personalized product recommendation.

Given the merits of a taxonomic organization of products, we explore automatic classi-

fication of textual product descriptions into a given taxonomy. Assume we are given a

taxonomy that is a tree structure, where each product belongs to a single leaf class, and

therefore also belongs to its more general ancestor classes. We want to classify a textual

description of a product into one of the leaf nodes of a taxonomy. Figure 1 shows part of

a product taxonomy called UNSPSC 1 .

In particular, we investigate two essential problems, performance evaluation and learning,

in a synergistic way. Unless we know what is the appropriate performance evaluation

metric for a task, we are not going to learn a classifier that has maximum utility for

the task. We study them under a unified view of empirical risk (Vapnik, 1999), the

average loss or misclassification cost. A performance evaluation metric defines a type of

1see www.unspsc.org for details.

4

www.unspsc.org


misclassification cost. Learning optimizes the average misclassification cost.

Performance evaluation is a seemingly trivial problem, and hence is often neglected in

real world applications. However, we argue that we should choose an appropriate per-

formance evaluation metric according to the characteristics of the task, rather than just

blindly choosing a common evaluation metric like error rate. We examine the special

characteristics of the task of hierarchical product classification, where a vendor classifies

products with a business goal of maximizing revenue (§2.2.1). We shed insight into how

and why common evaluation metrics can be misleading (§2.2.3). The analysis covers

metrics including error rate, mean error rate, average hierarchical loss, and average F1-

score, which is applicable when considering evaluating other real world tasks. Then we

design a new evaluation metric that fixes the problems of common evaluation metrics

and tailors this task to reflect a vendor’s business goal of maximizing revenue. The pro-

posed metric is essentially the average revenue loss, which depends on both the potential

revenue of individual products and the hierarchical distance of the true class and the

predicted class in the taxonomy.

After choosing an appropriate performance evaluation metric for the task of hierarchi-

cal product classification, we explore learning a classifier that optimizes the proposed

evaluation metric, average revenue loss, rather than error rate as commonly done by stan-

dard classifiers (§2.3). We use a generalization of multi-class SVM with margin re-scaling

(Tsochantaridis et al., 2006; Crammer and Singer, 2002) to optimize any loss functions.

It is a general approach to handle cost-sensitive learning. However, margin re-scaling is

sensitive to the scaling of loss functions, especially when the loss function, revenue loss,

can span a wide range. We propose an approach to normalize the loss function into a

fixed range, appropriately calibrating the scaling of the loss functions. Our loss nor-

malization approach is applicable to other classification and structured prediction tasks,

whenever using structured SVM with margin re-scaling.

Finally, we perform experiments on a large dataset that has more than one million prod-

ucts in about one thousand leaf classes (§2.4). The results show that our approach outper-

forms standard multi-class SVM in terms of our proposed evaluation metric, significantly

reducing the average revenue loss.

Our work is an application of cost-sensitive learning when different misclassification have

different costs (Elkan, 2001; Domingos, 1999; Zhou and Liu, 2006; Zadrozny et al., 2003).
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Very few works (Beygelzimer et al., 2008) study both example-dependent cost and class-

dependent cost, especially in a practical scenario as we do. Though we study a particular

task, this task represents an emerging class of applications that involve both a taxonomy

and items with individual values in large scale information management.

2.2 Performance evaluation for hierarchical product

classification

In this section, we first dissect the characteristics of the task of hierarchical product clas-

sification and envision the properties of a desirable performance evaluation metric. Then

under a unified view of empirical risk, we analyze that common performance evaluation

metrics, including accuracy, mean accuracy, and average hierarchical loss, fail to reflect a

vendor’s business goal sufficiently. Finally we propose a new evaluation metric that fixes

the problems of common evaluation metrics.

2.2.1 Characteristics of the task

A close look at the uses of the classified products in the task motivates us to delve into

the issue of classification performance evaluation.

2.2.1.1 Business goal

Consider the application scenario of product classification. A vendor or an online shopping

platform classifies a set of products into the leaf classes of a predefined taxonomy. The

vendor wants to classify the products as accurately as possible, so that potential customers

can explore and find their needed products without obstacles. We assume that if a product

is classified into the correct class, the vendor will realize an expected annual revenue from

that product. Otherwise, the vendor will lose some potential revenue, realizing only part

of the expected annual revenue of that product, because customers have trouble finding and

buying that product. Hereafter all references to revenue are meant to be calculated within

one year. Hence we drop the modifier “annual” for better readability.
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A vendor’s business goal is to maximize revenue. How should we evaluate a classifier’s

performance? To tailor a vendor’s interest, a reasonable measure is the revenue loss caused

by the classifier’s misclassification.

The next question is: how much revenue will a vendor lose due to the misclassification

of a product into a wrong class? Before we quantify the revenue loss in our proposed

evaluation metric in 2.2.4, we first do some qualitative comparative analysis in the next

section.

2.2.1.2 Taxonomy organization and customer behavior assumption

A qualitative analysis shows the misclassification cost, or equivalently, revenue loss of a

product into a sibling class should be smaller than that into a far-away class in the product

taxonomy. The analysis is based on the properties of the taxonomy organization and an

assumption about the customer behavior in online shopping.

A product taxonomy groups product classes hierarchically in a tree structure, from general

classes to more specific classes. Classes that share a common parent class are similar to

each other. For example, the class “mouse” and the class “computer keyboard” share

a common parent class “desktop computer and accessories”; the classes “hard drive”,

“SSD”, and “USB” share a common parent class “computer storage”. Those child classes

are similar in the sense that they have similar functions, or dominant usages in the

market.

We assume when a customer browses products by categories, the customer frequently looks

at sibling classes. Sibling classes have similar or related products. A customer often

compares similar products before buying them. One often wonders between the choice of

“hard drive” products and “SSD” products. A customer also frequently purchases related

products, say “mouse” and “computer keyboard” together.

Given the above properties of a product taxonomy and the assumption about customer

behavior, the amount of revenue loss incurred by the misclassification of a product into

different false classes should be different. In particular, we differentiate the misclassifi-

cation cost into a sibling class and that into a far-away class in terms of hierarchical

distance defined as the length of the shortest path between two nodes. We have assumed

that it is highly likely that a customer looks at sibling classes when browsing products by

7



categories. Suppose one product in the keyboard class, is misclassified into a sibling class,

say mouse, even though a customer looking for keyboard products cannot find that prod-

uct in its true class, the customer will likely check the sibling mouse class, hence can still

find and buy that keyboard product. However, if that keyboard product is misclassified

into a far-away class, say car, it is less likely that a customer will find and buy that key-

board product, because it is less likely that the customer will browse that far-away class

car together with the true class keyboard. Hence the misclassification cost of a product

into a sibling class should be smaller than that into a far-away class.

Given the characteristics of the task, now we turn to treat the problem of performance

evaluation formally.

2.2.2 A unified view of classification performance evalua-

tion

A unified view of a classification performance evaluation metric is empirical risk, which

is the average loss incurred by classifying an example. This view helps us both to analyze

performance evaluation metrics in 2.2.3 and 2.2.4, and to treat learning as empirical risk

minimization in 2.3.2.

Suppose we are given a set of labeled examples: {(x, y)}, where each example x ∈ RN

represents a product; x belongs to class y ∈ Y , where Y is the set of the leaf classes

in the product taxonomy. Assume each labeled example (x, y) is drawn i.i.d. from an

underlying joint distribution P (x, y). A classifier is a function f(x) that maps a given

example x onto a class label y′ ∈ Y .

A unified view of common classifier performance evaluation metrics is empirical risk

(Vapnik, 1999) , which is the average loss incurred by classifying an example. Formally,

let the loss function L(x, y, y′) represents the loss incurred by classifying an example x that

belongs to class y into class y′; the empirical risk is the average loss of the classification

over all examples,

Rem =
1

m

∑
(x,y,y′)∈D

L(x, y, y′)

8



where m is the total number of examples (m represents the same meaning hereafter).

Typically, for correct classification, L(x, y, y′) = 0; otherwise, L(x, y, y′) > 0. So the lower

the empirical risk is, the better the classifier performs.

In particular, we consider a class of loss functions that can be factorized as a weighted

classification error,

L(x, y, y′) = w(x) · 4(y, y′)

The error function 4(y, y′) quantifies the error of classifying an example that belongs

to class y into class y′. The error function depends on only the true class y and the

predicted class y′. Typically, for correct classification, 4(y, y′) = 0; otherwise, 4(y, y′) >

0. The example weight w(x) ≥ 0 represents the importance of the example x’s error

function.

With such loss functions, we interpret empirical risk as a weighted sum of classification

errors, ignoring the constant term 1
m

,

1

m

∑
(x,y,y′)∈D

w(x) · 4(y, y′) (1)

The higher the example weight w(x) is, the more importance the error function 4(y, y′)

associated with example x has in the weighted sum.

2.2.3 The problems of common performance evaluation met-

rics

Based on the characteristics of the task of hierarchical product classification, we analyze

that common classification performance evaluation metrics, including error rate, mean

error rate, average hierarchical loss, and average F1-score, do not adequately reflect a

vendor’s business goal of maximizing revenue.

9



2.2.3.1 Error rate

The simplest loss function is a boolean function L(x, y, y′) = [y 6= y′], where [·] is the

Iverson bracket that returns the 0/1 boolean value of the inside condition. If the example

is misclassified, then the loss is 1; otherwise the loss is 0. Hence it is called 0-1 loss. The

empirical risk as the average 0-1 loss over the set D becomes,

1

m

∑
(x,y,y′)∈D

[y 6= y′] (2)

This is equivalent to the number of misclassified examples divides by the total number of

examples. So the empirical risk with 0-1 loss is called error rate.

We interpret Eq.(2) as a special case of a weighted sum of classification errors in Eq.(1),

where the example weight w(x) = 1, and error function 4(y, y′) = [y 6= y′]. We see that

error rate has two problems that render it inadequate to reflect a vendor’s business goal

of maximizing revenue:

(1) It gives an equal weight to each example. A direct consequence is that error rate favors

the performance in large classes that have many examples relative to other classes. This

problem becomes severe when the class distribution is highly skewed, as is the case in our

task of product classification. Error rate might neglect the performance on small classes

that have relatively very few examples.

To see this formally, we group the error functions of examples by classes, and rewrite error

rate as a weighted sum of the error rates in all classes. Let the number of classes be K,

and the size of class y, that is the number of examples in class y, be Sy; we have,

1

m

∑
(x,y,y′)∈D

[y 6= y′] =
1

m

K∑
y=1

∑
(x,y,y′)∈D

[y 6= y′]

=
K∑
y=1

Sy
m
·

{∑
(x,y,y′)∈D[y 6= y′]

Sy

}

=
K∑
y=1

Sy
m
· Erry

10



where Erry denotes the error rate in class y.

We see that error rate is a weighted sum of the error rates in individual classes, where

the weight of each class is proportional to its class size. With a highly skewed class

distribution, error rate is dominated by the error rates in large classes, while ignores the

performance in small classes.

In product classification with a vendor’s business goal of maximizing revenue, we should

give importance to a class based on the total revenue of the products in that class. The

higher the total revenue of a class relative to other classes, the larger weight we should

give to that class, emphasizing the importance to classify most of the products in that

class correctly. It is inappropriate to give high importance to a class merely because the

class has a relatively large number of products.

(2) The second problem of error rate is that it treats the misclassification cost of an

example of class y into all other classes y′ equally. As long as an example is misclassified,

the error function [y 6= y′] will be 1. However, in hierarchical product classification, we

want to discriminate the misclassification cost of a product into different false classes.

According to the properties of a product taxonomy and the assumption about consumer

behavior, we have shown that the revenue loss of a product into sibling classes should be

smaller than that into far-away classes in the taxonomy in 2.2.1.2. If we cannot classify a

product into the true class exactly, we want to classify it into a class as close as possible,

to minimize the revenue loss.

In the next two sections, another two common performance evaluation metrics, mean error

rate and average hierarchical loss address the above two problems, respectively.

2.2.3.2 Mean error rate

We have shown the first problem of error rate is that it gives an equal weight to each

example, therefore favoring the performance in large classes, while neglecting the perfor-

mance in small classes, when the class distribution is highly skewed. A straightforward

remedy is to give equal weights to the error rates in individual classes. This is called

balanced error rate (Chen and Lin, 2006). We call it mean error rate here, since it is the

average error rate over individual classes. This view enables us to generalize it to use

different weighting methods later in this section. Formally, we define mean error rate

11



as,
K∑
y=1

1

K
· Erry (3)

where K is the number of classes, Erry is the error rate in class y, the number of mis-

classified examples in class y divided by the total number of examples in class y; formally

Erry =
∑

(x,y,y′)∈D[y 6=y′]
Sy

. We rewrite mean error rate to the equivalent form as a weighted

sum of classification errors,

1

m

∑
(x,y,y′)

m

KSy
· [y 6= y′]

We see that mean error rate gives an equal weight m
KSy

to each example in class y, such

that the sum of the weights in any class is uniformly m
K

.

Generalized mean error rate. A slight generalization of mean error rate is to give non-

uniform weights to the error rates in individual classes in Eq.(3). As long as those weights

are non-negative and sum to 1. We define generalized mean error rate as,

K∑
y=1

wy · Erry (4)

where class weight wy ≥ 0 for any class y, subject to
∑K

y=1wy = 1; and Erry is the error

rate in class y, defined the same as in Eq.(3). Similarly to mean error rate above, we

rewrite generalized mean error rate as a weighted sum of 0-1 error functions,

1

m

∑
(x,y,y′)

mwy
Sy
· [y 6= y′] (5)

We see that generalized mean error rate gives an equal weight mwy

Sy
to each example in

class y, such that the total weight of the examples in class y is mwy. It is easy to see

that both error rate and mean error rate are special cases of generalized mean

error rate, with different class priors, or equivalently class weights.

How should we choose the class weights wy’s? Consider the first problem of error rate.

With a highly skewed class distribution, there are huge differences among the weights of
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the large classes and those of the small classes. To alleviate this problem, a heuristic way

is to let the weight of a class y be proportional to log(Sy), or similarly
√
Sy, where Sy is

the number of examples in class y. In product classification, a more reasonable way is to

set the importance of a class proportional to the total revenue of that class.

We have seen how mean error rate and its generalized version try to fix the first problem

of error rate of giving an equal weight to every example. Nevertheless, from Eq.(5), we

see that both approaches still give equal weights to examples in the same class. However,

in product classification, even within the same class, the revenue of different examples

can span a wide range. To reflect a vendor’s business goal of maximizing revenue, a more

reasonable approach is to set the weight of each example proportional to its revenue. We

will do this in our proposed metric in 2.2.4.

2.2.3.3 Average hierarchical loss

To fix the second problem of error rate of treating the misclassification cost into all false

classes equally, a simple approach is to replace the 0-1 error function4(y, y′) = [y 6= y′] in

the weighted sum of classification errors as Eq.(1) with an error function that differentiates

the misclassification errors into different false classes. In particular, we use a loss matrix

L ∈ RK×K whose entry Lyy′ specifies the misclassification cost of an example from true

class y to predicted class y′. Let the example weight w(x) = 1, and error function in

Eq.(1) 4(y, y′) = Lyy′ . We define average hierarchical loss as,

1

m

∑
(x,y,y′)

Lyy′

In the case of hierarchical classification, we let Lyy′ = f(d(y, y′)), a monotonically non-

decreasing function of the hierarchical distance of y and y′ in the taxonomy.

However, this evaluation metric still gives equal weight to each example’s error function,

leaving the first problem of error rate untouched. Combining both the ideas of exam-

ple weighting and differentiating the misclassification cost of an example into different

classes, we will propose in 2.2.4 a new evaluation metric that fixes both problems of error

rate.
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2.2.3.4 Average F1-score

For completeness, we analyze the problem of another common evaluation metric, average

F1-score (Sun and Lim, 2001). It is a not a linear function of loss functions on individual

examples, hence cannot be naturally cast as a weighted sum of classification errors as the

above evaluation metrics. There are two types of average F1-score: micro-averaged F1-

score and macro-averaged F1-score. In a multi-class problem, micro-averaged F1-score

is equivalent to accuracy, that is 1 minus error rate, and thus has the same problems as

error rate. Macro-averaged F1-score is the average of the F1-score over all classes. The

problem of macro-averaged F1-score is that it gives an equal weight to the performance

of each class. In product classification, it makes more sense to give importance weight to

each class based on the total revenues of the products in that class.

2.2.4 Proposed performance evaluation metric - average rev-

enue loss

Combining both the ideas of example weighting and differentiating the misclassification

cost into different false classes, we propose a new evaluation metric. Intuitively, the

proposed metric represents the average revenue loss incurred by the classification over the

products, therefore directly reflecting a vendor’s business goal of maximizing revenue, or

equivalently, minimizing revenue loss.

The proposed metric basically quantifies the assumptions we make in 2.2.1. We assume

that,

(1) If a product x is classified into the correct class, then its potential customers will be

able to find it without hindrance, hence the vendor will fully realize a potential revenue

v(x) of product x.

(2) If a product x is misclassified into a wrong class, then its potential customers will have

trouble to find and buy it, hence the vendor will lose some percentage of the potential

revenue v(x) of that product, depending on the hierarchical distance of the true class and

the predicted class. The further apart the two classes are, the larger the percentage of

the revenue the vendor will lose. We call such a percentage as a loss ratio. Formally,

assume we are given the revenue loss ratio Lyy′ of classifying any product x of class y to
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class y′, such that 0 ≤ Lyy′ ≤ 1, and Lyy′ is a monotonically non-decreasing function of

the hierarchical distance d(y, y′) between y and y′. In particular, Lyy = 0 for any class y.

In a general sense, a loss ratio gives a partial credit to the classification. Going up to the

lowest common ancestor of classes y and y′, we have a class that is correct in a coarser

grain sense.

Based on the above two assumptions, the revenue loss of classifying a product x that

belongs to class y into class y′ becomes v(x) · Lyy′ . Let the loss function be the revenue

loss, L(x, y, y′) = v(x) ·Lyy′ , we propose a performance evaluation metric to represent the

average revenue loss caused by the classification over the products in the considered

set,
1

m

∑
(x,y,y′)∈D

v(x) · Lyy′

Technically, like other common evaluation metrics discussed, this evaluation metric is a

weighted sum of classification errors in Eq.(1). It gives an importance weight v(x) to each

product that is proportional to the product revenue. It discriminates the misclassification

cost of a product into different false classes based on the hierarchical distance of the true

class and the false class. Therefore, it solves both the two problems of error rate in 2.2.3.1.

Moreover, it encompasses both error rate and average hierarchical loss as special cases,

by setting Lyy′ = 1 and v(x) = 1, respectively.

2.3 Cost-sensitive learning for hierarchical product

classification

After choosing the average revenue loss as the appropriate performance evaluation metric

for this task of hierarchical product classification, we consider learning a classifier that

performs best with respect to this metric.

Standard classifier learning techniques like SVM (Crammer and Singer, 2002) usually try

to optimize error rate by minimizing a convex upper bound of the error rate. Therefore,

standard classifiers are expected to be optimal with respect to error rate, while is not

necessarily optimal in terms of our proposed evaluation metric.

We propose a cost-sensitive learning algorithm to optimize the average revenue loss in
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the training set. The algorithm is based on multi-class SVM with margin re-scaling. It is

a general approach for optimizing any misclassification cost. However, margin re-scaling

is sensitive to the scaling of loss functions. We propose a loss normalization approach

to make margin re-scaling achieve good performance in practice. The loss normalization

approach is applicable to other classification and structured prediction tasks whenever

using structured SVM with margin re-scaling.

2.3.1 Linear classifiers

We consider linear classifiers that have been shown to achieve state-of-the-art performance

for document classification. Given an example x ∈ RN , a linear classifier uses a weight

vector θy ∈ RN to score each class y ∈ Y by the inner product θTy x; then predict the class

y′ with the highest score,

y′ = f(x) = arg max
y
θTy x

where θy’s are parameters of the classifier. We use θ to represent the collection of all

θy’s.

2.3.2 Minimize empirical risk

Corresponding to that many performance evaluation metrics can be formulated as empiri-

cal risk in 2.2.2, many learning algorithms can be formulated as minimizing empirical risk

in the training set, additionally with parameter regularization (Teo et al., 2010). Assume

the parameters of a linear classifier are θ, learning becomes an optimization problem that

finds the optimal parameter θ∗ that minimizes the empirical risk Rem(D; θ), the average

loss in the training set, with parameter regularization to avoid over fitting,

θ∗ = arg max
θ

1

2
||θ||2 +Rem(D; θ)

= arg max
θ

1

2
||θ||2 +

1

m

∑
(x,y,y′)∈D

L(x, y, y′; θ) (6)

where L(x, y, y′; θ) is the loss function for an example x of class y and predicted into class
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y′, given the classifier parameters θ.

2.3.3 Minimize average revenue loss

To learn the parameters of a linear classifier, we use multi-class SVM with margin re-

scaling that scales the required margin according to the loss function, the revenue loss in

our case. We also propose a loss normalization approach to make margin-rescaling work

well in practice.

2.3.3.1 Margin re-scaling

Standard multi-class SVM by Crammer and Singer (Crammer and Singer, 2002) indirectly

optimizes error rate by minimizing a convex upper bound of average 0-1 loss. Similarly,

we try to optimize average revenue loss by minimizing a convex upper bound.

Let the loss function in Eq.(6) be revenue loss, L(x, y, y′; θ) = v(x) ·Lyy′ , then we optimize

the average revenue loss directly. Unfortunately, this is a non-convex objective function,

which is difficult to solve.

Similar to the hinge loss in multi-class SVM (Crammer and Singer, 2002), we use a convex

surrogate of the loss function,

max

{
0, max

y′ 6=y

{
L(x, y, y′; θ) + θTy′x− θTy x

}}
(7)

For correct classification, we want the score θTy x of the true class y to be higher than the

score θTy′x of any false class y′. The larger the difference, the more confident our prediction

is. In particular, we require the difference to be greater than the the misclassification cost

of x from class y to class y′: θTy x − θTy′x ≥ L(x, y, y′; θ) = v(x) · Lyy′ , which is called a

margin constraint; otherwise, we pay a positive loss for the margin violation. It is easy

to prove that this is a convex upper bound of the loss function L(x, y, y′; θ).

However, Eq.(7) is still non-differentiable. We reformulate the problem as a constrained

optimization problem with parameter regularization similarly to (Crammer and Singer,

2002). To absorb the violations of the margin constraints, we use a slack variables ξi for

each example. Let (xi, yi) be the ith training example, we have the following constrained
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optimization problem,

min
θ

1

2
||θ||2 +

C

m

m∑
i=1

ξi

s.t. ∀i, ∀y′ 6= yi : θTyixi − θ
T
y′xi ≥ L(xi, yi, y

′)− ξi (8)

ξi ≥ 0

where C is the regularization hyper parameter, L(xi, yi, y
′) = v(xi)Lyiy′ is the loss func-

tion. It is not difficult to prove that the solution to the above problem is also the so-

lution to the unconstrained optimization problem as Eq.(6) with the hinge loss Eq.(7).

So ξi ≥ L(xi, yi, y
′) for any y′; the objective is an upper bound of the empirical risk

1
m

∑
i L(xi, yi, y

′
i) (up to a constant factor C).

Eq.(8) is a special case of structured SVM with margin-rescaling (Tsochantaridis et al.,

2006). It is also a generalization of multi-class SVM (Crammer and Singer, 2002), which

uses 0-1 loss L(xi, yi, y
′) = [yi 6= y′] in Eq.(8).

Multi-class SVM with margin re-scaling shows a general way to do cost-sensitive learning,

by scaling the margin proportional to any loss function, hence minimizing the upper

bound of the average loss, empirical risk. In our experiments, we compare margin re-

scaling by our proposed loss function (denoted as REVLOSS) to by three other loss

functions, (1) the 0-1 loss, L(xi, yi, y
′) = [yi 6= y′], giving the standard multi-class SVM;

(2) the VALUE loss, that is the revenue of the product L(xi, yi, y
′) = v(xi)[yi 6= y′]. This

assumes misclassification causes losing the whole potential revenue. The misclassification

cost does not depend on hierarchical distance of the true class and the predicted class.

(2) the TREE loss, the height of the lowest common ancestor of the true class and the

predicted class L(xi, yi, y
′) = Lyiy′ , with Lyy = 0. The misclassification cost does not

depend on the product revenue.

2.3.3.2 Loss normalization

As §2.2.5 in (Tsochantaridis et al., 2006) pointed out, margin re-scaling is sensitive to the

scaling of the loss function. One should be careful in calibrating the scaling of the loss

function with respect to the scaling of the feature values.
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Indeed, in our experiments, margin re-scaling using the original revenue values in dollars

performs significantly worse than standard multi-class SVM, even after rescaling the rev-

enue by different units, say million $. Because the annual revenue of individual products

span from the order of hundred dollars to million dollars, hence so are the revenue loss.

Therefore the required margin for high revenue products can be much larger than those

for low revenue products. This means either (1) the required margin for large revenue

products are too large, but the feature values are word frequencies most of which are 1 to

2, which tends to force the norm of the parameters to be large to reach large margin; or

(2) the required margin for small revenue products are too small, close to zero, which es-

sentially don’t apply margin constraints for them. Both cases lead to larger generalization

error.

To adjust the difference between the influence of extreme high revenue loss and that of

extreme low revenue loss, we propose to linearly scale the loss function to a fixed range

[Mmin,Mmax],

Ls(x, y, y′) = Mmin +
L(x, y, y′)− Lmin
Lmax − Lmin

· (Mmax −Mmin)

where Lmin = min{L(x, y, y′)} is the minimum possible revenue loss in the training set,

calculated as the product of the minimum revenue value times the minimum loss ratio;

and similarly Lmax = max{L(x, y, y′)} is the maximum possible revenue loss. So that

Lmin is mapped to Mmin, and Lmax is mapped to Mmax.

It is not hard to see that minimizing the empirical risk with normalized loss is equivalent

to minimizing the original empirical risk in terms of choosing θ, since they differ only in

a linear transformation.

We recommend to use Lmin = 1, and tuning Lmax in a development set. In this way,

the objective in Eq.(8) with normalized loss has two appealing properties: (1) It upper

bounds 0-1 loss, which makes the optimization meaningful for minimizing error rate; (2) It

upper bounds the empirical risk with normalized loss
∑

i L
s(xi, yi, y

′) whose minimization

is equivalent to the original empirical risk
∑

i L(xi, yi, y
′), which makes the optimization

meaningful for minimizing the original empirical risk, the average revenue loss in our case.

The key to prove both properties is ξi ≥ L(xi, yi, y
′).

Regarding implementation, the large scale of the task requires highly efficient optimization
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method. We solve Eq.(8) in dual space along the line of (Crammer and Singer, 2002;

Keerthi et al., 2008), with a slight modification of the dual objective to reflect the desired

margin as the new loss function v(x(i))Ly(i)y′ . We choose sequential dual method (Keerthi

et al., 2008) for optimization. Our implementation uses the LIBLINEAR package (Fan et

al., 2008) and modifies the sequential dual solver specified with option “-s 4”. Empirically,

we find it very efficient on our large dataset, and is more than ten times faster than

cutting-plane method (Tsochantaridis et al., 2006).

An alternative to margin re-scaling is slack re-scaling (see (Tsochantaridis et al., 2006)

§2.2.5 for more discussion). However, our implementation with the cutting plane method

in SVM struct (Tsochantaridis et al., 2006) is way too slow on the large dataset in our

experiments. While we have very efficient sequential dual solvers in LIBLINEAR for

margin re-scaling. Hence we sought to improve margin re-scaling, which is widely used

in structured prediction problems (Roller, 2004). Our loss normalization approach

is applicable to general classification and structured prediction tasks, whenever using

structured SVM with margin-rescaling, especially when the loss function spans a wide

range.

In experiments we compare three loss normalization approaches: IDENTITY approach

that uses original revenue in dollars, UNIT normalization that scales the revenue by

different units, and our proposed RANGE normalization.

2.4 Experiments

Experiments show that our cost-sensitive learning algorithm with margin re-scaling and

loss normalization outperforms standard multi-class SVM, in terms of our proposed eval-

uation metric, average revenue loss.

2.4.1 Dataset

2.4.1.1 The UNSPSC dataset

We do experiments on a large dataset of more than 1 million products in 1073 classes.

Each product has a textual description of 5 fields: manufacturer name; UNSPSC code

20



# examples 1,439,097
# leaf (4th level) classes 1073

# 3rd level classes 300
# 2nd level classes 99
# 1st level classes 33

avg.±std. of description length 39.5± 23.6
# features 784,813

Table 1: Statistics of the UNSPSC dataset haha

that is the class label explained below; product name; description; and detailed description

that is possibly empty. The dataset is collected from multiple online marketplaces oriented

for Department of Defense and Federal government customers, including GSA advantage

and DoD EMALL. It covers a wide range of products and services.

Each product is labeled by an 8-digit code as belonging to a leaf class in a large taxonomy.

The taxonomy is called United Nations Standard Product and Service Code (UNSPSC)2

. It is the de factor standard in US industry for hierarchical classification of general prod-

ucts and services. It has four levels, representing segment, family, class, and commodity,

respectively. Each node in a level is specified by a 2-digit code and a text description.

We identify a leaf class by an 8-digit code, concatenating the 2-digit codes along the path

from the first level to the fourth level.

The whole UNSPSC taxonomy has more than 17,000 leaf categories and is still increasing.

Our dataset covers products in more than one thousand classes. We discard small classes

with less than 10 products, and consider a sub taxonomy with 1073 leaf classes. The

statistics of the preprocessed dataset used in our experiments is shown as Table 1. The

class distribution is highly skewed as shown in Figure 2, where the X-axis is the class

ranking from 1 to 1073 by size, that is, the number of examples in the class; and the

Y-axis is the log2 of the class size.

2.4.1.2 Revenue generation

The dataset does not come with the expected annual revenue for products. So we simulate

the revenue, similarly to other works in cost-sensitive learning (e.g., (Domingos, 1999;

Zhou and Liu, 2006)). We first generate the price and sales independently, then multiply

2see www.unspsc.org for details.
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Figure 2: The class distribution in the UNSPSC dataset

them as the revenue.

Our price model assumes the prices of products from one class are drawn from one log-

normal distribution lnN (µ, σ2). Different classes have different log-normal price distribu-

tions. Log-normal distribution is used in economics to model prices (Lee et al., 2010). To

generate the parameters µ and σ2 for each class, we use two Gamma distributions as prior

distributions, respectively. Gamma distribution is commonly used as a conjugate prior for

a parameter in Bayesian statistics. We choose Gamma(k = 1, θ = 100) to sample µ for

each class. To generate σ2 and control the amount of price fluctuations to be moderate

for most classes, we let σ = µ · sigma ratio, and prefer sigma ratio to be more likely in

[0.2, 0.5]. To generate such sigma ratio’s for each class, we use Gamma(k = 30, θ = 0.01).

After generating µ and σ2 for a class, we sample prices for the products in that class from

the log-normal distribution lnN (µ, σ2).

Similarly, our sales model assumes the sales of products from one class are drawn from

one Pareto(m, k) distribution. The survival function is given by Pr(X > x) = (m/x)k,

m > 0, k > 0, x ≥ m, where m is the minimum possible value of x. Pareto distribution

is an instance of the power law distribution that has been used to model a wide range

of social and natural phenomena, including the relationship between weekly sales and

sales ranks of books at Amazon.com (Anderson and Andersson, 2007). To generate the

parameters m and k for each class, we again use two priors. To sample the minimum sales

m for each class, we use a Weibull distribution that is often used to model extreme value
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distributions. We choose Weibull(λ = 2, k = 5) such that m has higher prior in [1, 3] with

thousand as unit. To sample the shape parameter k, we again use Gamma distribution.

We choose Gamma(k = 50, θ = 0.1) to let k have high prior in [4, 6] so that most classes

have reasonably skewed sales distribution.

2.4.1.3 Preprocessing

Data cleaning. We remove duplicate product records in the dataset by comparing both

manufacturer names and product names. We perform tokenization using simple delimiter

patterns like punctuations and spaces. All tokens are transformed into lower case.

Feature extraction. We use word frequencies as features. Each token corresponds to a

feature. To utilize the field information of manufacture name and product name, we add

a special prefix like “$MNFT ” to each token appearing in both fields, respectively.

2.4.2 Results

2.4.2.1 Experimental setting

We randomly split the UNSPSC dataset into training, development, and test set by size

ratios 4 : 3 : 3, and by stratified sampling per classes. Development set is used for select-

ing optimal parameters. The regularization parameter C is selected from {0.01, 0.1, 1},
as we empirically find that the performance is usually best with C = 0.1, with mono-

tonically decreasing performance on both sides. With larger C, the optimization also

takes much longer on our large dataset. Similarly, we select revenue rescaling unit

in {102, 104, 106, 107} in dollars; loss normalization range as [1,Mmax], where Mmax in

{2, 5, 10, 20}. The best Mmax is usually 10.

We generate 5 sets of revenues for the products using our revenue model. All results

reported are averaged over 5 runs of experiments with different sets of revenue samples.

Since the UNSPSC taxonomy is a 4-level balanced tree, there are only four different

hierarchical distances between two leaf nodes. We specify loss ratios Lyy′ as 0.2, 0.4, 0.6,

and 0.8, for hierarchical distances between the true class and the predicted class as 2, 4,

6 and 8, respectively.
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2.4.2.2 Results and discussion

Table 2 compares the performance of multi-class SVM with margin re-scaling by four

loss functions and three loss normalization approaches discussed in 2.3.2, in terms of

our proposed evaluation metric, average revenue loss. The table’s columns correspond to

different loss functions. The 0-1 loss corresponds to the baseline, standard multi-class

SVM. The rows correspond to different loss normalization approaches.

The combination of REVLOSS margin re-scaling with RANGE loss normalization

achieves the smallest average revenue loss. It reduces as much as 7.88% average rev-

enue loss incurred by standard SVM, which is significant with pairwise one-tailed t-test

at significant level p < 0.01. Such an amount of reduction is remarkable, because it is

achieved when the error rate of standard SVM is already as low as 3.8% (see 4), which

means most products already have zero revenue loss, so any further reduction of revenue

loss is non-trivial.

Comparing margin-rescaling with different loss functions, TREE loss increases average

revenue loss, while VALUE loss achieves a significant reduction of average revenue loss,

which is taken further by REVLOSS. This shows that most of the revenue loss reduction

comes from exploiting the revenue of individual products; differentiating misclassification

cost into different classes in REVLOSS further reduces the revenue loss slightly.

Comparing different loss normalization approaches (only applicable to VALUE and

REVLOSS), RANGE normalization effectively improves the performance than UNIT

rescaling and IDENTITY (no normalization).

To further look into what products and how the four loss functions with RANGE nor-

malization tend to misclassify, Table 3 describes the mean revenue and mean tree loss

(the height of the lowest common ancestor of the true class and the predicted class) of

the misclassified products by those approaches with a single random set of revenue values.

Comparing to standard SVM (0-1 loss) and TREE loss, VALUE and REVLOSS are able

to tap into the product revenue information, and tend to misclassify products of signifi-

cantly lower revenues on average. They tend to trade the accuracy of low revenue products

for the accuracy of high revenue products; even though the final error rate of VALUE and

REVLOSS is slightly higher than that of 0-1 (see Table 4), the average revenue loss of

VALUE and REVLOSS is lower. On the other hand, TREE loss achieves smallest mean
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0-1 TREE VALUE REVLOSS

IDENTITY

4.745 4.964
47.708 48.082

UNIT 5.092 5.082
RANGE 4.387 4.371

Table 2: Average revenue loss of different algorithms. All revenue loss reduction and
increase compared to standard SVM (0-1) are significant at p < 0.01 with pairwise one-
tailed t-test at the corresponding direction (either decrease or increase loss). Revenues in
both tables are of unit thousand dollar (K$).

measure 0-1 TREE VALUE REVLOSS

mean revenue 124.4±192 116.1±185 111.5±172 112.9±172

mean tree loss 2.342 2.156 2.330 2.328

Table 3: Statistics of misclassified products by different algorithms

tree loss among the misclassified products. REVLOSS combines the advantage of both

TREE and VALUE loss, yielding a desirable behaviour: If it cannot classify all products

correctly, it tends to sacrifice the performance of low revenue products; If it cannot clas-

sify a product into the true class, it tends to place the product into a class as close as

possible.

Table 4 shows the performance of four different margin rescaling approaches with RANGE

loss normalization, in terms of three common evaluation metrics. Standard SVM (0-1 loss)

performs best. VALUE and REVLOSS have slightly lower but comparable performance.

It might be confusing that TREE loss performs worse, even in terms of average tree loss

that it is aiming to minimize. However, from Table 3, TREE loss achieves smallest mean

tree loss among misclassified products, so it does its job; but unfortunately it tends to

increase the error rate too much, thereby increasing the average tree loss in the whole test

set.

We also explored classification methods that exploits the hierarchical structure. In partic-

ular, we experimented with cascading classifiers in a top-down way. We cascade two-level

measure 0-1 TREE VALUE REVLOSS

error rate 3.8 4.3 3.9 3.9
mean error rate 11.8 13.1 12.1 12.0
avg. tree loss 0.089 0.092 0.092 0.090

Table 4: Performance of different algorithms by common evaluation metrics
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classifiers. The results show similar amount of performance improvement with REVLOSS

margin-rescaling than standard SVM, which is not shown here due to page limits. How-

ever, cascading classifiers leads to error propagation. Both error rate and mean revenue

loss is slightly higher than the above flat approaches. We leave as future work to explore

other hierarchical approaches like global approaches that have been shown to have higher

accuracy than flat classifiers, as they leads to larger model and requires more computing

resource for large taxonomies.

2.5 Related works

Product classification. (Shen et al., 2012) study learning a hierarchy from the data for

product classification. (Kannan et al., 2011) improves product classification using images.

(Shen et al., 2009) classifies product queries. Those works usually use common evaluation

metrics, while we study the appropriate performance evaluation in product classification

when a vendor’s business goal is to maximize revenue, and the corresponding cost-sensitive

learning that optimizes the proposed metric.

Hierarchical classification. On performance evaluation for hierarchical classification,

see (Costa et al., 2007) and (Sun and Lim, 2001) for detailed reviews. Most works

generalize evaluation metrics designed for binary classification like precision, recall, and

F1-score to multi-class and hierarchical classification case. They try to be applicable

to general tasks. Though we design an evaluation metric that tailors the specific task

of product classification, the proposed metric has a very general form involving both

example-dependent cost and class-dependent cost. Most works tend to propose metrics

similar to F1 score that are non-linear function of the loss, hence they are not ideal for

optimization, unlike our treatment of performance evaluation metric as empirical risk that

is suitable for optimization. On classifier learning, see (Freitas and de Carvalho, 2007)

for a survey of numerous works. (Dekel et al., ; Cai and Hofmann, 2004) extend the

max-margin principle of SVM to hierarchical classification. Our experiment on cascading

classifiers in a top-down way is proposed in (Dumais and Chen, 2000).

Cost-sensitive learning. Most work studies misclassification costs that are either

example-dependent (Zadrozny et al., 2003) or class-dependent (Elkan, 2001; Domingos,

1999; Zhou and Liu, 2006), according to Zhou’s nomenclature (Zhou and Liu, 2006). The
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former give misclassification costs according to different examples. The latter give differ-

ent misclassification costs according to different predicted class, while the misclassification

cost into a particular false class is the same for all examples within a single class. Very

few works (Beygelzimer et al., 2008) study both of them. We study misclassification cost

that is both example-dependent and class-dependent. It specializes to one type of them

if we set the other type of cost uniform.

2.6 Summary

This chapter studies hierarchical product classification. In particular, we investigate two

problems, performance evaluation and learning, in a synergistic way, under a unified view

of empirical risk. Performance evaluation chooses an appropriate misclassification cost.

Learning minimizes the average misclassification cost. We emphasizes the importance

to design an appropriate performance evaluation metric for a real world task, otherwise

we are optimizing the wrong objective. We show how to apply such a synergistic way

to address the specific task of hierarchical product classification, and demonstrate its

effectiveness by experiments on a large dataset. We obtain general insight into how

and why several common evaluation metrics can be misleading, which is applicable to the

treatment of performance evaluation of other real world tasks. We propose a general cost-

sensitive learning algorithm that minimizes the upper bound of any loss functions, using

multi-class SVM with margin re-scaling and loss normalization. The loss normalization

approach is also applicable to general classification and structured prediction tasks when

using structured SVM with margin re-scaling.

Our work is an application of cost-sensitive learning. Very few works study both class-

dependent and example-dependent misclassification cost, especially in a practical scenario

as we do. However, application scenarios involving both types of cost are not rare, even

becoming more and more common in big data era, forming an emerging class of appli-

cations for large scale information and knowledge management. For example, Google

Inc. detects and classifies adversarial advertisements that violates Adword policies into

fine-grained classes for the benefits and safety of users (Sculley et al., 2011). The misclas-

sification cost of an advertisement can depend on its potential revenue, and the relation
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between the true class and the predicted class. Another example is that a company man-

ages numerous clients of different potential values by a taxonomy. We conjecture that

such applications will become increasingly pervasive, because both taxonomies and value

measures play increasingly bigger roles in modern economy and big data era. Taxonomies

like Wikipedia, semantic web and patent taxonomies are widely used to organize infor-

mation. On the other hand, items of monetary values abound everywhere in modern

economic world. Moreover, we can assign values to them as the importance of classifying

them correctly. Say in image or document classification, we assign higher values to items

from certain websites to emphasize their correct classification. Discriminating values of

different pieces of information takes care of important information given the sheer amount

of data available nowadays.
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Chapter 3

Image Description using Bipartite

Cross-modal Association Structure

3.1 Introduction

Our second study straddles language and vision, the two fundamental modalities with

which human perceive the world.

The use of multimodal web data has been a recurring theme in many recent studies

integrating language and vision, e.g., image captioning (Ordonez et al., 2011; Hodosh et

al., 2013; Mason and Charniak, 2014; Kuznetsova et al., 2014), text-based image retrieval

(Rasiwasia et al., 2010; Rasiwasia et al., 2007), and entry-level categorization (Ordonez

et al., 2013; Feng et al., 2015).

However, much research integrating complex textual descriptions to date has been based

on datasets that rely on substantial human curation or annotation (Hodosh et al., 2013;

Rashtchian et al., 2010; Lin et al., 2014), rather than using the web data in the wild

as is (Ordonez et al., 2011; Kuznetsova et al., 2014). The need for human curation

limits the potential scale of the multimodal dataset. Without human curation, however,

the web data introduces significant noise. In particular, everyday captions often contain

extraneous information that is not directly relevant to what the image shows (Kuznetsova

et al., 2013b; Hodosh et al., 2013).
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Butterflies are self propelled flowers (198) 

butterfly resting on a flower (26) 

After the sun has set (9) 

Sun is going to bed (21)   

can you spot the butterfly (88) 

The sky looks like it is on fire (58) 

The sun sets for another day (12) 

Evening walk along the beach (9) 

Chillaxing at the beach (20) 

Walk by the beach (557)  Rippled sky (44) 

In the sky (1013) 

Figure 3: The image-caption association graph of Déjà Image-Captions. Solid lines repre-
sent original captions and dotted lines represent paraphrase captions. This corpus reflects
a rich spectrum of everyday narratives people use in online activities including figurative
language (e.g., “Sun is going to bed”), casual language (e.g., Chillaxing at the beach”), and
conversational language (e.g., “Can you spot the butterfly”). The numbers in the paren-
thesis show the cardinality of images associated with each caption. Surprisingly, some
of these descriptions are highly expressive, almost creative, and yet not unique — as all
these captions are repeated almost verbatim by different individuals describing different
images.

In this chapter, we present a new approach to harvesting a large-scale, high quality image-

caption corpus that makes a better use of already existing web data with no additional

human efforts. Figure 3 shows sample captions in the resulting corpus, e.g., “butterfly

resting on a flower” and “evening walk along the beach”. Notably, some of these are

figurative, e.g., “rippled sky” and “sun is going to bed.”

The key idea is to focus on Déjà Image-Captions, i.e., naturally existing image captions

that are repeated almost verbatim by more than one individual for different images. The

hypothesis is that such captions represent common visual content across multiple images,

hence are more likely to be free of unwanted extraneous information (e.g., specific names,

time, or any other personal information) and better represent visual concepts. A surprising

aspect of our study is that such a strict data filtration scheme can still result in a large-

scale corpus; sifting through 760 million image-caption pairs, we harvest as many as 4

million image-caption pairs with 180K unique captions.

The resulting corpus, Déjà Image Captions, provides several unique properties that com-

plement human-curated or crowd-sourced datasets. First, as our approach is fully au-

tomated, it can be readily applied to harvesting a new dataset from the ever changing

multimodal web data. Indeed, a recent internet report estimates that billions of new pho-

tographs are being uploaded daily (Meeker, 2014). In contrast, human-annotated datasets

are costly to scale to different domains.
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Second, datasets that are harvested from the web can complement those based on

prompted human annotations. The latter in general are literal and mechanical readings of

the visual scenes, while the former reflect a rich spectrum of natural language utterances

in everyday narratives, including figurative, pragmatic, and conversational language, e.g.,

“can you spot the butterfly” (Figure 3). Therefore, this dataset offers unique opportunities

for grounding figurative and metaphoric expressions using visual context.

In conjunction with the new corpus, publicly shared at http://www.cs.stonybrook.edu/

~jianchen/deja.html, we also present three new tasks: visually situated paraphrases

(§3.5); creative image captioning (§3.7), and creative visual paraphrasing (§3.7). The

central algorithm component in addressing all these tasks is a simple and yet effective

approach to image caption transfer that exploits the unique association structure of the

resulting corpus (§3.3).

Our empirical results collectively demonstrate that when the web data is available at

such scale, it is possible to obtain a large-scale, high-quality dataset with significantly less

noise. We hope that our approach would be only one of the first attempts, and inspire

future research to develop better ways of making use of ever-growing multimodal web

data. Although it is unlikely that the automatically gathered datasets can completely

replace the curated descriptions written in a controlled setting, our hope is to find ways

to complement human annotated datasets in terms of both the scale and also the diversity

of the domain and language.

3.2 Dataset - captions in repetition

Our corpus consists of three components (Table 5):

main set The first step is to crawl as many image-caption pairs as possible. We use

flickr.com search API to crawl 760 million pairs in total. The API allows searching

images within a given time window, which enables exhaustive search over any time span.

To ensure visual correspondence between images and captions, we set query terms using

693 most frequent nouns from the dataset of Ordonez et al. (2011), and systematically
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slide time windows over the year 2013.1 For each image, we segment its title and the

first line of its description into sentences.

The crawled dataset at this point includes a lot of noise in the captions. Hence we apply

initial filtering rules to reduce the noise. We retain only those image-sentence pairs in

which the sentence contains the query noun, and does not contain personal information

indicators such as first-person pronouns. We want captions that are more than simple key-

words, thus we discard trivial captions that do not include at least one verb, preposition,

or adjective.

The next step is to find captions in repetition. For this purpose, we transform captions

into canonical forms. We lemmatize all words, convert prepositions to a special token

“IN”2 , and discard function words, numbers, and punctuations. For instance, “The bird

flies in blue sky” and “A bird flying into the blue sky” have the same canonical form, “bird

fly IN blue sky”. We then retain only those captions that are repeated with respect to

their canonical forms by more than one user, and for distinctly different images to ensure

the generality of the captions.

Retaining only captions that are repeated verbatim may seem overly restrictive. Nonethe-

less, because we start with as many as 760 million pairs, this procedure yields nearly 180K

unique captions associated with nearly 4M images.3 What is more surprising, as will be

shown later, is that many of these captions are highly expressive. Table 6 shows the dis-

tribution of the number of images associated with each caption.4 The median and mean

are 10 and 22.4 respectively, showing a high degree of connectivities between captions and

images.

paraphrase set Our dataset collection procedure finds one-to-many relations between

captions and images. To extend these relations to many-to-many, we introduce visually-

situated paraphrases (or visual paraphrases for shorthand) (§3.5). A visual paraphrase

relation is a triple (i, c, p), where image i has an original caption c, caption p is the visual

1To ensure enough number of images are associated with each caption, we further search captions with
no more than 10 associated images across all years.

2We do this transformation so as not to over-count unique captions with trivial variations, but merging
prepositions can sometimes combine prepositions that are not semantically compatible. We therefore also
keep original captions with original prepositions.

3We also keep user annotated image tags if available.
4Without counting additional edges created by visual paraphrasing (§5).
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set # captions # images
main 176,780 3,967,524

paraphrase
7,570 human-annotated triples
353,560 auto-generated triples

figurative
6,088 quotations 180,185
18,179 quotations +
predicted figurative captions

413,698

Table 5: Corpus Statistics

mean std 25% 50% 75% max
#imgs. 22.4 47.6 4 10 25 4617
#tokens 4.9 3.3 3 4 5 178

Table 6: Percentiles of the image count associated with each caption and the number of
tokens in each caption.

paraphrase for c situated in image i. We collect visual paraphrases for sample images

in our dataset, using both crowd sourcing (7,570 triples) and an automatic algorithm

(353,560 triples) (see §3.5 for details). Figure 4 shows example visual paraphrases.

Formally, our corpus represents a bipartite graph G = (T, V,E), in which the set of

captions T and the set of images V are connected by typed edges e(c, i, t), where caption

c ∈ T , image i ∈ V , and edge type t ∈ {original, paraphrase}, which denotes whether the

image-caption association is given by the original caption or by a visual paraphrase.

- Hanging out with dad (*) 
- Snuggling with dad 
- Cuddles with dad 

- Life on the ocean waves (*) 
- Swimming in the ocean 
- Playing in the ocean 

Playing(in(the(ocean(

- Good morning sun (*) 
- Sun through the trees 
- Here comes the sun 

Automatic Visual Paraphrases  

- Fly high in the sky (*) 
- Stretching to the sky 
- Reaching out to the sky 

!smiling(children(

- Children see magic   
because they look for it (*) 
- The soul is healed by 
being with children 

Stretching(to(the(sky(.(

Reaching(out(to(the(sky(

- A bee collecting pollen (*) 
- Bumble bee on purple flower 
- Working bee 

!Bumble(bee((
on(purple(flower(

!Working(bee(

There(is(a(storm(rolling(in(
Storm(clouds(coming(over(
Big(storm(is(coming(

!Big(storm(is(coming(!The(soul(is(healed(by(
being(with(children((

Crowd-sourced Visual Paraphrases  

!Storm(clouds((
coming(over(

Figure 4: Example visual paraphrases: automatic (left) and crowd-sourced (right). The first
caption marked with * indicates the original caption of the corresponding image. Some para-
phrases are not strictly equivalent to the original caption if considered out of context, while they
are pragmatically adequate paraphrases given the image.
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figure of speech #caps. % in fig. example (#imgs.)
quotation&idiom 70 41% The early bird gets the worm (77)

personification 43 25% Meditating cat (38)
metaphor 24 14% Wine is the answer (7)
question 18 11% Do you see the moon (82)

dialog 11 6% Hello little flower (37)
anaphora 6 4% Beads, beads and more beads (62)

simile 5 3% The lake is like glass (23)
hyperbole 1 < 1% In the land of a billion lights (3)

Table 7: Distribution of figurative language out of 1000 random captions (171 figurative captions
in total). The column “% in fig.” shows the percentages of different figures of speeches among
figurative captions. They add up to more than 100% because some captions uses more than one
figures of speeches.

polarity
% in

all caps.
mean/median

#imgs. per cap.
example (#imgs)

pos. 8% 20 / 8
Happy bride and groom (282)
The rock and pool,
is nice and cool (4)

neg. 2% 19.5 / 7
Bad day at the office (269)
Crying lightning (147)

Table 8: Distribution of caption sentiment. The polarity is determined by comparing number
of positive words and negative words (>: positive; <: negative) according to a sentiment lexicon
(Wilson et al., 2005) (counting only words of strong polarity).

figurative set We find that many repeating captions are surprisingly lengthy and ex-

pressive, most of which turn out to be idiomatic expressions and quotations, e.g., “faith is

the bird that feels the light when the dawn is still dark” from Tagore’s poem. We look up

goodreads.com and brainyquotes.com to identify 6K quotation captions illustrated by

180K images. We also present a manual labeling on a small subset of the data (Table 7)

to provide better insights into the degree and types of figurative speech used in natural

captions. Using these labels we build a classifier (§3.7) to further detect 18K figurative

captions associated with 410K images.

Insights As additional insights into the dataset, Figure 5 shows statistics of the visual

content, Table 9 shows syntactic types of the captions, and Table 8 shows positive and

negative sentiment in captions.
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Figure 5: Top 10 queries with the largest number of images and unique captions

type %caps. %imgs. mean #imgs. std #imgs.

verb
45% 44% 22 9

be, have, do, look,
go, make, come, get,
wait, take, love, play,
walk, fly, see, watch,
find, live, sleep, fall

Sky is the limit (3057)
Home is where the heart is (2480)
Lunch is served (2443)
Let them eat cake (2193)
Follow the yellow brick road (2077)

prep 44% 41% 21 9
in, of, on,
at, with, for,
from, by,
over, through

On the road (4617)
After the rains (4450)
Under the bridge (3443)
At the beach (3203)

adj 11% 15% 30 15
old, little, new,
red, blue, more,
white, big, beautiful,
black

Home sweet home (2398)
Good morning sun (1122)
Cabbage white butterfly (976)
Next door neighbors (838)

Table 9: Statistics on the syntactic composition of captions. verb: captions with at least one
verb. prep: prepositional phrases (without any verbs). adj : adjective phrases (without any
verbs and prepositions). For each caption type, we also show the top words that appear in the
most number of captions (left), and the top captions that are associated with largest number of
images (right).
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𝑐ଵ: Pelicans fly 
in formation

…

…

1

6

𝑐ଵ: Pelicans fly 
in formation

𝑐଺: Sunset 
over the seaQuery image q

Rank by image similarity

𝑖ଵ

𝑖଺

𝝓 𝒒,𝑵𝒄𝟏

𝝓 𝒒,𝑵𝑪𝟔

𝑐଺: Sunset 
over the sea

…

Final ranking

1

90

Rerank by neighborhood-based affinity

𝑁௖ల

𝑁௖భ

Original ranking

Reading a book

1. Can 𝒄 describe 𝒒?

2. How well does 𝐪 fits into 𝑵𝒄?

𝑵𝒄: Visual Neighborhood of c

(a) (b)

…

…

…

𝑞

𝑞

𝑐

Figure 6: (a) Using the association structure, we retrieve a caption for which the query image
is likely to be a prototypical visual rendering. We hypothesize that there can be multiple visual
prototypes of a caption. (b) Reranking by visual neighbourhood proximity.

3.3 Image captioning using association structure

We demonstrate the usefulness of the association between images and captions via

retrieval-based image captioning. Given a query image q and the corpus G = (T, V,E),

the task is to find a caption c ∈ T that maximizes an affinity function A(q, c), which

measures how well the caption c fits the query image q,

c∗ = arg max
c∈T

{A(q, c)} (9)

Visual Neighborhood: Each textual description, e.g., “reading a book”, can associate

with many different visual instantiations (Figure 6a). Our dataset G = (T, V,E) serves as

a database to navigate the possible visual instantiations of descriptive captions as observed

in online photo sharing communities. Let Nc = {i|e(c, i, original) ∈ E} denote the set of

adjacent nodes (i.e., visual instantiations) of a caption c. To quantify how well a caption

c describe a query image q, we propose to examine caption c’s visual neighborhood Nc as

provided in our dataset. Concretely, the affinity A(q, c) of a query image q to a caption

c is a function φ(q,Nc) of q and the visual neighborhood Nc defined as:

A(q, c) = φ(q,Nc) =
1

σ

σ∑
i=1

sim(q,N i
c ) (10)

where σ is a parameter; sim(·, ·) is a similarity function of two images; and Nc =

[N 1
c ,N 2

c , ...,N
|Nc|
c ] is sorted by sim(q,N i

c ) in descending order.
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Figure 6a illustrates the key insight: instead of directly transferring the caption of the

single image with the closest visual similarity to the query image (Ordonez et al., 2011),

we propose to retrieve a caption based on the aggregated visual similarity between its

visual neighborhood and the query image. The idea is to prefer a caption for which the

query image is likely to be a prototypical visual rendering (Ordonez et al., 2013; Deselaers

and Ferrari, 2011), hence avoid an unusual association between the text and the visual

information. Also, we hypothesize that there could be several diverse visual prototypes

of any given textual description c, so we focus on only the top σ nearest members of

Nc.

We apply the neighborhood-based affinity for image captioning via reranking (Figure 6b):

first we retrieve a pool of K candidate captions by finding top K closest images based

on their direct visual similarity to the query image, then compute the neighborhood-

based affinity to rerank the captions.5 The proposed approach is similar in spirit to

the non-parametric K nearest neighbor approach of (Boiman et al., 2008) in modeling

image-to-concept similarity rather than image-to-image similarity, but differs in that our

work is in the context of image description generation rather than classification.

3.4 Experiments: association structure improves im-

age captioning

Baselines: The proposed approach (to be referred as assoc) requires one-to-many map-

pings between captions and images at scale — a unique property of our dataset. We com-

pare against two baselines: instance-based retrieval of (Ordonez et al., 2011) (Instance)

and Kernel Canonical Correlation Analysis (kcca) (Hardoon et al., 2004; Hodosh et al.,

2013). We implement kcca with Hardoon’s code6 . We use a linear kernel since non-linear

kernels like RBF showed worse performance.

5We set K = 100 and choose parameter σ using a held-out development set of 300 images. If there
are less than σ available images, we use them all.

6http://www.davidroihardoon.com/Professional/Code_files/kcca_package.tar.gz
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method bleu meteor

Instance 0.125 0.029
kcca 0.118 0.024∗∗

assocgi w/ all 0.130 0.031
assocg+t w/ all 0.133 0.030
assocti w/ all 0.126 0.029

assocgi w/ σ 0.172∗∗ 0.033∗

assocg+t w/ σ 0.159∗∗ 0.033∗

assocti w/ σ 0.184∗∗ 0.034∗∗

Table 10: Automatic evaluation for image captioning: The superscripts denote the image
feature for reranking; gi: gist; ti: Tinyimage; g+t:= gi + ti. We report the best setting (gt)
for Instance and kcca. Results statistically significant compared to Instance with two-tailed
t-test are indicated with * (p < 0.05) and ** (p < 0.005).

Configurations: For image features, we follow (Ordonez et al., 2011) to experiment

with two global image descriptors and their combination: a) the gist feature that rep-

resents the dominant spatial structure of a scene (Oliva and Torralba, 2001); b) the

Tinyimage feature that represents the overall color of an image (Torralba et al., 2008); c)

a combination of the two. We compute the similarity as sim(Q, I) = −‖Q− I‖2. The

Instance and the kcca approaches use the feature combination. The assoc approach

also use the combination for preparing candidate captions, but can use different features

for reranking.

Dataset: We randomly sample 1000 images with unique captions as test set. The rest

of the corpus is the pool of caption retrieval after discarding : (1) the original caption c

and all of its associated images, to avoid potential unfair advantage toward assoc and

(2) the 10K captions used for training kcca and all of their associated images (about

280K).

Evaluation. Automatic evaluation remains to be a challenge (Elliott and Keller, 2014).

We report both bleu (Papineni et al., 2002) at 1 without brevity penalty, and meteor

(Banerjee and Lavie, 2005) with balanced precision and recall. Table 10 shows the re-

sults: the assoc approach (w/ σ) significantly outperforms the two baselines. The largest

improvement over instance is 60% higher in bleu, and 44% higher in meteor, demon-

strating the benefit of the innate association structure of our corpus. Using all visual

neighborhood (assoc w/ all) does not yield as strong results as selective neighborhood
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reranking feature Instance assoc

gi 42% 58%
g+t 50% 50%
ti 46% 54%

Table 11: Human evaluation for image captioning: the % of cases judged as visually more
relevant, in pairwise comparisons. gi: gist; ti: Tinyimage; g+t:= gi+ti.

(assoc w/ σ), confirming our hypothesis that each visual concept can have diverse visual

renderings.

We also compute crowd-sourced evaluation on a subset (200 images) randomly sampled

out of the test set. For each query image, we present two captions generated by two

competing methods in a random order. Turkers choose the caption that is more relevant

to the visual content of the given image. We aggregate the choices of three turkers by

majority voting. As shown in Table 11, assoc shows overall improvement over baselines,

where the difference is more pronounced when reranking is based on feature sets that

differ from the one used during the candidate retrieval.

3.4.1 Good and bad examples

Fig.7 (a) shows some good examples where the assoc approach retrieves captions of better

visual relevance than the Instance method for the given query images; and (b) shows

some bad examples.

Good examples. Example 1. By looking at multiple images in the visual neighbor-

hoods, the assoc approach is able to match the caption “Castle at dusk” that is se-

mantically much more accurate than “Agave in bloom”. The assoc method tends to be

semantically more accurate and reliable than the Instance method that looks at a single

most similar image.

Example 2. The assoc method tends to retrieve more general captions that are more

likely be transferable to many images. Since general captions usually have larger number

of examples in its associated visual neighborhood, it could be easier to find several images

in its neighborhood that are very close to the query image, and hence have higher Visual

Neighborhood Closeness. General captions tend to be accurate at a coarser semantic level
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(cite: entry-level paper).

Bad examples. Example 3. The assoc method might match a caption with a neigh-

borhood of images of very similar background as the query image, while the foreground

object (the bridge) in the matched caption is missing in the original image. Such unsta-

bility could be due to two reasons: (1) We use global image descriptors. (2) The visual

neighborhood of the matched caption has only two images in this case, which might not

be enough for estimating Visual Neighborhood Closeness reliably. We address (2) in

§3.5.

Example 4. When there is an almost identical image to the query image, the simple

Instance method works well. The assoc approach could be susceptible to the visual

diversity of the neighborhood of images associated with candidate captions. In this exam-

ple, the assoc approach lowers the rank of the good caption “nice white flower” because

the visual content in its image cluster is diverse, so the average similarity of the query

image to the top σ images are larger than that to the other caption “My first fondant

cake”.

3.5 Image captioning using visual paraphrases

We present an exploration of visually situated paraphrase (or visual paraphrase in short

hand), and demonstrate their utility for image captioning. Formally, given our corpus

G = (T, V,E), a visual paraphrase relation is a triple (i, c, p), where given an image i ∈ V
and its original caption c ∈ T (i.e., e(c, i, original) ∈ E), p ∈ T is a visual paraphrase for c

situated in a visual context given by the image i (i.e, e(p, i, paraphrase) ∈ E). We collect

visual paraphrases using both human annotation and an automatic algorithm.

(1) Visual Paraphrasing using Crowd-sourcing: We use Amazon Mechanical Turk

to annotate visual paraphrases for a subset of images in our corpus. Given each image

with its original caption, we showed 10 randomly sampled candidate captions from our

dataset that share at least one physical-object noun7 with the original caption. Turkers

7under the WordNet “physical entity.n.01” synset
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(a) good examples

(b) bad examples

Figure 7: Good and bad examples. *Good (or bad) examples where the assoc approach
retrieves captions of better (or worse) visual relevance than the Instance approach. In each
row, the left is the query image and its original caption; the middle and the right show the
caption retrieved by the Instance and the assoc method, respectively, shown with top similar
images to the query image in its visual neighborhood. The Instance approach looks at a single
image (the largest image in the center with glow). The assoc method consider a collection of
images associated with the captions.
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choose all candidate captions that could also describe the given image. We collect 7,570

(i, c, p) paraphrase triples in total.

(2) Visual Paraphrasing using Associative Structure: We also propose an al-

gorithm for automatic visual paraphrasing by adapting the assoc algorithm for image

captioning (§3.3) as follows: given an image-caption pair (i, c), it first prepares a set of

candidate captions that share the largest number of physical-object nouns with c, which

are likely to be semantically close to c; then we rerank the candidate captions using the

same neighborhood-based affinity as described in §3.3.

We apply this algorithm to generate a large set of visual paraphrases. For each caption

in our corpus, we randomly sample two of its associated images, and generate one visual

paraphrase for each image-caption pair, which yields 353,560 (i, c, p) triples. See Figure 4

for example paraphrases.

3.5.1 Image captioning using visual paraphrasing

We propose to utilize automatically-generated visual paraphrases to improve the assoc

approach (§3.3) for image captioning. One potential limitation of the assoc approach is

that for some captions, the number of associated images might be too small for reliable

estimations of the neighborhood based affinity. We hypothesize that for a caption with a

small visual neighborhood, merging its neighborhood with those associated with its visual

paraphrases will give a more reliable estimation of the affinity between a query image and

that caption. Thus we modify the assoc approach as follows.

After preparing a pool of K candidate captions {c1, c2, . . . , cK}, automatically generate

a visual paraphrase (ii, ci, pi) for each (ii, ci); then rerank the candidate captions by the

following affinity function that merges the visual neighborhood from the paraphrase,

A(q, Ci) = φ(q,Nci ∪Npi) (11)

42



method bleu meteor amt

Instance 0.125 0.029 n/a

assocgi 0.172 0.033 45%

assocgi
para 0.187 0.036 55%

assocti 0.184 0.034 45%
assocti

para 0.197 0.036 55%

Table 12: Automatic and human evaluation of exploiting visual paraphrases for image cap-
tioning. The superscripts represent the image feature used in the reranking step; gi: gist;
ti: Tinyimage. The amt column shows the percentages of captions preferred by human as of
better visual relevance, in pairwise comparisons. The improvement of assocpara over assoc is
significant at p < 0.002 for bleu, and p < 0.03 for meteor with two tailed t-test.

3.6 Experiments: visual paraphrasing improves im-

age captioning

The experimental configuration basically follows §3.4. We compare assocpara, the visual-

paraphrase augmented approach, to the vanilla assoc approach. The image feature

setting is the one with which the assoc approach performs best. Both approaches use

the gist+Tinyimage feature to prepare candidate captions, then use either the gist or

Tinyimage feature for reranking.

Table 12 shows that the assocpara approach significantly improves the vanilla assoc

method under both automatic and human evaluation. As a reference, the first row shows

the performance of the Instance method (§3.4). The assoc method significantly im-

proves over the Instance method. On a similar vein, the assocpara method further im-

proves over the assoc method, as automatic paraphrases provide a better visual neigh-

borhood. This improvement is remarkable since the paraphrasing association is added

automatically without any supervised training. This demonstrates the usefulness of the

bipartite association structure of our corpus.

3.7 Image captioning with creativity

Naturally existing captions reflect everyday narratives, which in turn reflect figurative

language use such as metaphor, simile, and personification. To gain better insights, one

of the authors manually categorized a set of 1000 random captions. About 17% are
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identified as figurative. Table 7 shows the distribution of different types of figurative

captions.

Creative Language Classifier: Using the small set of labels described above, we train

a simple binary classifier to identify captions with creative language.8 Using this classifier,

we can control the degree of literalness or creativity in generated captions. Based on 5-fold

cross-validation, the classifier performs with 77% precision and 43% recall.

Importantly, a high-precision and low-recall classifier suffices our purpose. It is because

in the context of creative captioning and creative paraphrasing presented below, we only

need to detect some figurative captions, not all.

3.7.1 Creative image captioning

Given a query image q, we describe it with the most appropriate figurative caption. We

propose the assoccreative approach that alters the assoc approach (§3.3) to return a

figurative caption from the candidate pool, excluding literal captions.

3.7.2 Creative visual paraphrasing

Given a query image q and its original caption c, we rephrase c to a more creative and

inspirational caption that still describes q. We use the paracreative approach that changes

our automatic visual paraphrasing algorithm (§3.5), by retrieving only figurative cap-

tions.

8We use a random forest classifier with features including words indicating reasoning (but, could, that),
generality (never, always), caption length, abstract nouns (life, and hope), and whether the caption is a
known idiom or quotation.
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method creativity relevance

assoc 33% 41%

assoccreative 67% 59%

Table 13: Human evaluation for creative captioning: % of captions preferred by judges in
pairwise comparisons

3.8 Experiments: creative image captioning and

paraphrasing

3.8.1 Creative captioning

We compare the assoccreative approach to the vanilla assoc approach. With the assoc ap-

proach, the top-rank caption is usually literal. Both approaches use the gist+Tinyimage

feature for preparing candidate captions, and the Tinyimage feature for reranking, which

is the best setting for the assoc approach (§3.4).

Similarly to §3.4, we sample 200 test images from our corpus, and use amt to compare

two algorithms in terms of visual relevance and creativity separately. For creativity, we

ask turkers to choose one of the two captions that is more creative and inspirational than

the other to describe each given test image. Results are shown in Table 13.

(1) Creativity. For 2/3 of the query images, captions produced by the assoccreative method

are judged as more creative than those produced by the assoc method. This result

indirectly validates that the figurativeness classifier has a reasonable precision to control

the literalness of the system caption.

(2) Visual relevance. Interestingly, not only the captions from the assoccreative method

are favored as creative, they are also judged as visually more relevant than those from

the assoc method, despite that each figurative caption has lower neighborhood-based

affinity than the literal counterpart. We conjecture that it is easier for human judges to

be imaginative and draw visual relevance between the query image and figurative captions

than the literal counterparts. This result also suggests that figurative language may be of

practical use in image caption applications as a means to smooth the potentially brittle

system output. Figure 8 shows example system output.
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3.8.2 Creative visual paraphrasing

We test 200 images that are associated with literal captions as predicted by the figurative-

ness classifier. The paracreative approach competes against two baselines: 1) the Original

captions , and 2) a text-only variant of the paracaption approach sans visual processing: it

randomly chooses a figurative caption that shares the largest number of physical-object

nouns with the original caption, without looking at the query image. This is for evaluating

the effect of visual context.

In addition to the evaluations as in §3.8.1, we also use a multiple-choice setting that allows

a turker to choose zero to two captions that are visually relevant to the query image. See

Table 14 for results, and Figure 8 for example outputs.

I. Comparing original captions with creative paraphrases (Original vs.

paracreative): The paraphrases are preferred over the original literal captions as more

creative most of the time. As for the visual relevance, the original captions are favored

over the paraphrases most of the time in the single-choice competition. However, when we

use a multiple-choice setting, paraphrases has a reasonable relevance rate (60%), despite

the simplicity of the algorithm. The fact that the original captions has a high relevance

rate (87%) shows that in our corpus the captions have high visual relevance to their

associated images most of the time.

II. Creative paraphrasing with and without the visual context (paracaption

vs. paracreative): In terms of creativity, the paracaption method is preferred over the

paracreative method. We conjecture that without conditioning on the visual content,

paracaption method tends to retrieve more unexpected captions that make turkers think

they are more fun and creative. As for the visual relevance, by conditioning on the visual

context given by query images, the paracreative method significantly improves the visual

relevance over the text-only counterpart, paracaption method. This result highlights the

pragmatic differences between visually-situated paraphrasing and text-based paraphras-

ing.
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method creativity relevance
single multiple

Original 32% 80% 87%
paracreative 68% 20% 60%
paracaption 56% 47% 63%
paracreative 44% 53% 74%

Table 14: Human evaluation for creative visual paraphrasing

-Hood under a 
full moon (*) 
-Mirror, mirror on 
the lake 

-Sky on the way home(*) 
-Red sky at night,  
Shepherd's delight 

-Bee on orange flowers(*) 
-When the flower looms,  
the bees come uninvited 

-Lights in cave(*) 
-There is a light that 
never goes out 

-Sail on by (*) 
-Row, row, row your 
boat gently down 
the stream 

Creative Image Captioning Creative Visual Paraphrasing 

-City of lights (*) 
-Great balls of fire 

-Young roe deer(*) 
-The tree that looks 
like a deer  

  

-The flight of the 
crane(*) 
-That’s a crane   

-long haired girl(*) 
-Diamonds are a girl's  
best friend   

-Sky on the way home(*) 
-Go home, sky, you’re 
drunk 

-Falling water(*) 
-Can you see the dogs   

-Red Bean Pastries (*) 
-When life gives you 
lemons 

< Good >  < Bad >   < Bad >   < Good >  

Figure 8: Examples of creative captioning and creative visual paraphrasing. The left column
shows good examples in blue, and the right column shows bad examples in red. The captions
marked with * are the original captions of the corresponding query images.

3.9 Related works

Image-caption corpus: Our work contributes to the line of research that makes use of

internet web imagery and text (Ordonez et al., 2011; Berg et al., 2010) by detecting the

visually relevant text (Dodge et al., 2012) and reducing the noise (Kuznetsova et al., 2013b;

Kuznetsova et al., 2014). Compared to datasets with crowd-sourced captions (Hodosh et

al., 2013; Lin et al., 2014), in which each image is annotated with several captions,

our dataset presents several images for each caption, a subset of which also includes

visually situated paraphrases. The association structure of our dataset is analogous to

that of ImageNet (Deng et al., 2009). Unlike ImageNet that is built for nouns (physical

objects) listed under WordNet (Miller, 1995), our corpus is built for expressive phrases and

full sentences and constructed without human curation. Our corpus has several unique

properties to complement existing corpora. As explored in a very recent work of (Gong

et al., 2014), we expect that it is possible to combine crowd-sourced and web-harvested

datasets and achieve the best of both worlds.
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Image captioning: Our work contributes to the increasing body of research on

retrieval-based image captioning (Ordonez et al., 2011; Hodosh et al., 2013; Hodosh and

Hockenmaier, 2013; Socher et al., 2014), by providing a new large-scale corpus with

unique association structure between images and captions, by proposing an algorithm

that exploits the structure, and by exploring two new dimensions: (i) visually situated

paraphrasing (and its utility for retrieval-based image captioning), and (ii) creative image

captioning.

Paraphrasing: Most previous studies in paraphrasing have focused exclusively on text,

and the primary goal has been learning semantic equivalence of phrases that would be

true out of context (e.g., (Barzilay and McKeown, 2001; Pang et al., 2003; Dolan et al.,

2004; Ganitkevitch et al., 2013)), rather than targeting situated or pragmatic equivalence

given a context. Emerging efforts began exploring paraphrases that are situated in video

content (Chen and Dolan, 2011), news events (Zhang and Weld, 2013), and knowledge base

(Berant and Liang, 2014). Our work is the first to introduce visually situated paraphrasing

in which the task is to find paraphrases that are conditioned on both the input text as well

as the visual context. (Chen and Dolan, 2011) collected situated paraphrases only through

crowd sourcing, while we also explore automatic collection, and further test the quality

of automatic paraphrases by using the learned paraphrases in an extrinsic evaluation

setting.

Figurative language: There has been substantial work for detecting and interpreting

figurative language (Shutova, 2010; Li et al., 2013; Kuznetsova et al., 2013a; Tsvetkov et

al., 2014), while relatively less work on generating creative or figurative language (Veale,

2011; Ozbal and Strapparava, 2012). We probe data-driven approaches to creative lan-

guage generation in the context of image captioning.

3.10 Summary

To conclude, we have provided insights into making a better use of multimodal web data

in the wild, resulting in a large-scale corpus, Déjà Image-Captions, with several unique
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properties to complement datasets with crowdsourced captions. To validate the useful-

ness of the corpus, we proposed new image captioning algorithms using the associative

structure, which we extended to several related tasks ranging from visually situated para-

phrasing to enhanced image captioning. In the process we have also explored several new

tasks: visually situated paraphrasing, creative image captioning, and creative caption

paraphrasing.
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Chapter 4

Multimodal Temporal Knowledge

Modelling with Photo Albums

4.1 Overview

Chapter 3 revealed and utilized the bipartite cross-modal association structure hidden

in the ocean of online image-caption pairs. This chapter further leverages the temporal

structure innate in online photo albums recording common scenarios, to understand both

images and text in context.

Activities and events in our lives are procedural, be it the process of sausage making, or a

trip to camping, or a ceremony of tying the knot. Many of them exhibit common temporal-

spatial patterns. For example, a wedding ceremony typically consists of a sequence of

events such as walking down the aisle, exchanging vows, cutting the cake, and dancing.

In addition, it is typical to see people in formal attires, toasting champagne, and playing

a violin, while less likely to see people reading books or chopping trees.

This observation of structural patterns in common events was at the heart of early AI re-

search. Scripts (Schank and Abelson, 1977), one of the earliest representation formalisms,

were developed to encode the knowledge of common events to support an inference en-

gine. However, purely symbolic approaches, as extensively pursued in 70s and early 80s,

required hand-coded representation of knowledge, which turned out to be too brittle when

used for reasoning and prohibitively difficult to scale.
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In recent years, however, there has been emerging research to learn scripts-like knowledge

statistically from large-scale unstructured natural language corpora; Narrative schema

(Chambers and Jurafsky, 2009) discovers the common sequence of verbs that describe

events such as book publishing and lawsuits, while (McIntyre and Lapata, 2009) learns

the typical story lines and plot structure from children’s stories.

In parallel, another line of research actively pursued in recent years is large scale grounding

of natural language text with web imagery, e.g., learning the typical textual descriptions

given a situation captured in an image (Ordonez et al., 2011; Ordonez et al., 2013; Ma-

son and Charniak, 2014; Kuznetsova et al., 2014), projecting multimodal signals into a

common semantic representation (Hodosh et al., 2013; Socher et al., 2014), and align-

ing part-based semantic correspondences between images and their corresponding textual

descriptions (Kuznetsova et al., 2012; Karpathy et al., 2014).

Drawing inspirations from both these avenues of research, in this chapter, we present the

first study to learn multimodal knowledge of common events from a large collection of

photo albums. A unique aspect of our work, compared to most prior efforts connecting

language and vision, is the temporal dimension. A photo album comprises of a sequence

of images, each with a time stamp and a corresponding caption. User contributed photo

albums, abundantly available at online communities, provide new opportunities to learn

procedural knowledge of common events that people experience and record.

Compared to online videos, as studied in recent work for generating short video de-

scriptions (Venugopalan et al., 2015), photo albums as sequences of images have a

few advantages. They span over much longer temporal spans (e.g., a camping trip

over a few days), accompany noisy but rich textual annotations as provided by on-

line users, and are significantly more manageable in terms of data storage and pro-

cessing. In this study we have compiled and organized 34,818 albums over 12 com-

mon scenarios such as ceremonies and travels (see Figure 9). The resulting dataset in-

cludes nearly 1.5 million pairs of images and captions. We share the dataset publicly at

www.cs.stonybrook.edu/~jianchen/albums.

We formulate the unsupervised learning of event structure as a sequential clustering prob-

lem. Specifically, we aim to find a sequence of sub-events characterized by groups of images

and captions. Using the learned multimodal event model (§4.3), we propose a collective

inference algorithm based on Integer Linear Programming (ILP) that infers the events
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reading vows presenting rings march of bride 
and groom

feeding cake

the starting line first mile marker water station approaching 
the finishing line

Figure 9: The part of two example albums in the wedding (top) and marathon scenarios
(bottom), respectively.

of each photo in a given album (§4.4). We then evaluate the quality and the usefulness

of the learned knowledge via two tasks (§4.5): (1) multimodal event segmentation that

partition a given album into coherent segments, and (2) multimodal album summariza-

tion that selects a few representative images and caption them to highlight the major

events in a given album. Our experiments demonstrate that our approaches based on

multimodal event model have a better understanding of image sequences and identifies

more representative photos in summaries than competitive baselines; and the collective

inference algorithm helps to better identify coherent event segments in an album.

4.2 Dataset

We compiled a new dataset that consists of about 1.5M image-caption pairs organized

into 35K albums. The album size ranges from 10 to over 1000 photos.

Collection We use the Flickr API to collect images at flickr.com across 12 common

scenarios in which people frequently participate and take photos in their daily life, e.g.,
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Scenario # of albums # of images
Wedding 4689 192374
Camping 4063 158869
Paris Trip 4603 306171
New York Trip 4205 267677
Independence Day 548 22053
Funeral 781 28182
Thanksgiving 5928 152514
Barbecue 735 21661
Marathon 3961 157813
Christmas 3449 97575
Cooking 1168 36369
Baby Birth 688 20738

Table 15: Statistics of the Dataset

weddings, barbecues, and camping trips (see Table 15). We search for these images using

a scenario name and its variations (e.g. Paris Trip, Paris Travel, Paris Vacation). For

scenarios with large quantities of images, we limit our search to the past 3 years. For

scenarios with less, we search images in all years. We collect an image only if the scenario

name we’re looking for is included in the image’s title, or its description. We then generate

a caption of the image by concatenating its title and the first sentence of its description.

In addition, we store the timestamp of every photo.

For each scenario, we assemble albums by sorting image-caption pairs by user and times-

tamp. We sequentially scan images over a certain period of time for a given user to form

albums. For example, for wedding scenario, we regard consecutive photos of the same

user up to 24 hours as an album; for travelling scenario, the time span of a single album

is up to 5 days.

Filtering Many online albums have few informative captions, since most flickr users are

in general lazy to caption every photo. For each scenario, we first keep up to top 10K al-

bums with largest number of unique captions. Then clean the titles and descriptions (e.g.,

removing non-ascii characters, detecing and removing automatically-generated captions

and advertisement captions).

By now, some albums in a given scenario, say wedding, might have many unique captions,

but the album does not actually capture about a typical wedding; it’s crawled only because
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one or two caption happen to mention the word “wedding”. To further filter albums with

high relevance to a given scenario, we count unique topic words for each album that

are highly indicative of a given scenario. Example topic words for the wedding scenario

include bride, groom, ring, flower, vow, and so on. We use heuristics based on the topic

word count to filter albums of high relevance to a given scenario, for example, we discard

albums that have less than thr topic words (we set thr to 7) and hence are less likely to

be relevant to a given scenario. To be precise, the topic words of a scenario are defined

as the top 200 most discriminative words in a given scenario. The descriminativeness

score of a word w in scenario S is defined as the posterior probability P (S|w) using Bayes

formula,

P (S|w) =
P (s, w)

P (w)
=

P (w|S)P (S)∑
S′ P (w|S ′)P (S ′)

(12)

where

P (w|S) =
|{sj|w appears in sj, sj ∈ S}|

|S|
(13)

sj is the jth album in scenario S.

4.3 Event modelling

The overarching goal of this chapter is to learn statistical knowledge about record-worthy

common events that people experience and share through online photo albums.

Events are inherently hierarchical. In this work, we assume a simple two-level structure

where the higher-level event is given (e.g., wedding, camping, funeral), and the goal is

to learn the lower-level events by clustering images and captions based on their content

similarities as well as their sequential regularities. Hereafter, we refer to the higher-level

events as scenarios, and lower-level events as sub-events or simply as events.

4.3.1 Representation

Given a set of albums that belong to the same scenario (e.g., wedding), we want to learn a

set of prototypical events and their temporal ordering in that scenario. For example, the

prototypical events in a wedding includes vows, ring exchange, reception, and dancing.

And vows usually happens early in the wedding scenario, while dancing usually happens
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Exchange rings 

-Reading our vows. 
-Our vows. 
 

Vows 

-Ring time. 
-Exchanging our rings. 
-Rings and promises. 
 

Kiss 

-Our first ever kiss. 
-You may kiss the bride. 
-Sealed with a kiss. 
 

Cut  cake 

-Cake cutting. 
-The cake was so solid. 
 

Dancing 

-Dancing excitement. 
-First dance. 
-Ballroom dancing. 

𝒆𝟐
𝑽: image cluster 

𝒆𝟐
𝑪: caption cluster 

𝐸: Events 

𝑇: Transition probabilities 𝑃: Precede probabilities 

t 𝑒1, 𝑒2 = 0.24    vows -> exchange rings 

𝑡 𝑒1, 𝑒5 = 0.05    vows -> dancing 

𝑡 𝑒4, 𝑒5 = 0.20    cut cake -> dancing 

𝒆𝟐
𝑳: event label 

𝑒2 = (𝑒2
𝐿, 𝑒2

𝐶 , 𝑒2
𝑉) 𝑒1 𝑒3 𝑒5 𝑒4 

𝑝 𝑒1, 𝑒3 = 0.71     vows --> kiss 

𝑝 𝑒4, 𝑒1 = 0.02     cut cake ---> vows 

𝑝 𝑒4, 𝑒5 = 0.67     cut cake ---> dancing 

Figure 10: The multimodal event model.

later. Such script-like event model encodes background knowledge of the context of a sce-

nario. We will demonstrate the event model helps better understand images and captions

in sequence in three tasks (§4.5).

Specifically, we model events in a given scenario as a triple M = (E, T, P ) of three sets,

where E is a multimodal, non-parametric representation of the events, T and P represents

the probabilistic temporal relations of those events (see Figure 10).

(1) E is a set of events {ei}, in which each event in turn is a triple ei = (eNi , e
C
i , e

V
i ),

where the event label eLi is a short and prototypical expression of that event (e.g., exchange

rings), eCi is a set of alternative captions describing ei (e.g., ring time; exchanging our

rings), and eVi a set of images that are associated with captions in eCi .

(2) T is a set of transition probabilities {t(ei, ej)}, where t(ei, ej) is the probability

that the successive event of ei is ej.

(3) P is a set of precede probabilities {p(ei, ej)}, where p(ei, ej) is the probability that

event ei happens before ej (there could be other events in between).
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4.3.2 Learning

Given a set of albums in a specific scenario, we first identify prototypical events using

the K-means clustering algorithm, then compute the transition and precede probabilities

between event pairs using observed empirical counts.

Identifying Events Given a scenario, we collect all captions across all albums in that

scenario and cluster them using the K-means algorithm1 . Each caption is represented by

the unigram feature of its content words (nouns, verbs, adjectives, and adverbs) weighted

by its discriminative score (Eq 12). We use 40 cluster centers, and perform the K-means

clustering for 300 iterations with 10 random initializations, then choose the one that

obtains the lowest inertia across the entire sample.

From each caption cluster, we learn a prototypical event ei = (eLi , e
C
i , e

V
i ), where eCi is

the caption cluster, and eVi is the image cluster associated with eCi . We extract the event

label eLi as the most frequent words that appear in more than 80% of the captions in that

cluster. If no such words exist, we use the single most frequent word.

Note that the largest cluster in a scenario is usually a special one we call miscellaneous

cluster. Since the captions in it does not represent a coherent event as do the remaining

clusters.

Estimating temporal relations The above clustering gives each caption in every al-

bum an event label corresponding to its cluster assignment. We estimate the transition

(t(ei, ej)’s) and precede (p(ei, ej)’s) probabilities between event pairs using observed em-

pirical counts as follows,

t(ei, ej) =
#(ei → ej)

#(ei → ·)
(14)

where #(ei → ej) is the number of event transition pairs (ei → ej) across all albums,

and #(ei → ·) is the sum of number of event transition pairs starting with ei. An event

transition pair (ei → ej) corresponds to two consecutive captions labelled with event ei

followed by ej. We count each event transition pair at most once per album.

1In each album, we collect only unique captions.
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p(ei, ej) =
#(ei � ej)

#(ei � ej) + #(ej � ei)
(15)

where #(ei � ej) is the number of event preceding pairs (ei � ej) across all albums.

An event preceding pair (ei � ej) corresponds to a pair of captions where one caption

labelled with event ei precedes another caption labelled with event ej (there might be other

captions in between). We count each event preceding pair at most once per album.

Both estimations remove all miscellaneous events when considering transition and pre-

ceding relations. We set transition and precede probabilities to zero for event pairs that

do not co-occur in any albums. For transition probabilities, we add two special events to

each album, representing the starting and ending of that album, respectively.

4.4 Event inference

We use event model to better understand images and captions in sequence. Given an

album of images with or without captions, we infer the event of each image in that album.

We jointly infer the events of all images in an album using Integer Linear Programming

(ILP). The ILP formulation aims to find an event assignment that has both high individual

affinity of each photo to its assigned event, and the mostly likely temporal ordering of

events (see Figure 11).

4.4.1 Notation

Suppose we are given a sequence of m photos P = {p1, . . . , pm} in a known scenario with

an event modelM = (E, T, P ), where each photo is an (image, caption) pair pi = (pIi , p
C
i ).

Note that we will study event inference with two kinds of input: (1) the input album has

both the images pIi ’s and the original captions pCi ’s; (2) the input album has only images

but no captions. There are n events in E = {e1, . . . , en}. We assign each photo to a single

event. The decision variable biα indicates whether photo pi is assigned to event eα.

To configure global event transitions, we think with segments. A segment is a sequence

of consecutive photos that belong to the same event. Two adjacent segments belong to

different events.
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Figure 11: Event inference using Integer Linear Programming. Given an album, we assign
each photo to a single event in a given event model. A boolean variable biα represents
whether photo pi is assigned to event α, which is shown as an arrow between pi and eα
(a solid arrow represents true and dotted one false; only one solid arrow is connected
with each photo). The consecutive photos that belong to the same event form a segment.
There is an event transition between two consecutive photos that belong to two different
segments (e.g., there is an event transition from event e3 at photo p8 to event e2 at photo
p9).

We use i, j, k, . . . ∈ {1, . . . ,m} to index photos, α, β, γ, . . . ∈ {1, . . . n} to index events,

s, t ∈ {0, 1, . . . , q, q+1} to index segments (where q upper bounds the number of segments),

function-like notation NewVar(args) to define a new variable based on existing variables

(see sec.4.4.5 for an explanation).

4.4.2 Objective function

The event inference maximizes a sum of four components,

obj =
m∑
i=1

n∑
α=1

Aiαbiα +
m−1∑
i=1

isimiSameEvent(i, i + 1) +
m−1∑
i=1

csimiSameEvent(i, i + 1) +

q∑
s≥0

n∑
α=1

n∑
β=1

tpαβTransit(s, α, β)

(1) Photo-Event-Affinity (EA), the sum of the photo-event affinity A(p, e), the affinity

of each individual photo p to its assigned event e. Aiα is the affinity between the photo
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pi = (pIi , p
C
i ) and the event eα (see §4.4.3 for the constraints),

• If the input album has both images and the original captions, let Aiα be the caption-

event affinity AC(pCi , eα), which is the cosine similarity between the caption pCi

and the center of the caption cluster eCα associated with eα. We use only captions

but not images to compute Aiα because textual signal is more robust.

Aiα = AC(pCi , eα) =
f(pCi ) · fα
‖f(pCi )‖‖fα‖

(16)

where f(pCi ) is the feature of the caption pCi , and fα is the feature of the center of

eCα . Our experiments use the same caption feature as in §4.3.2.

• If the input album has only images, let Aiα be the image-event affinity AI(p
I
i , eα),

which is the visual neighbourhood based affinity between the image pIi and the image

cluster eVα associated with eα,

Aiα = AI(p
I
i , eα) = A(pIi , e

V
α ) (17)

which is the average cosine similarity between the image of pi and its top σ = 15

most similar images in eVα (see Eq.10). Our experiments represent images using the

CNN features as in (Karpathy et al., 2014).

(2) Image Similarity (IS), a term to reward similar consecutive images having the same

event assignment. The coefficient isimi is the cosine similarity between pIi and pIi+1. A

boolean variable SameEvent(i, i + 1) indicates whether pi and pi+1 belongs to the same

event. It is defined based on some other boolean variables. See §4.4.3 for details and

related constraints.

(3) Caption Similarity (CS), a term to reward similar consecutive captions having

the same event assignment. The coefficient csimi is the cosine similarity between pCi and

pCi+1.

(4) Transition Probability (TP), a term to reward likely transitions between two

consecutive segments according to the learned event model M. The coefficient tpαβ =

t(eα, eβ) is the transition probability between the event α and the event β. A boolean

variable Transit(s, α, β) indicates whether there is an event transition from eα at segment
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s to eβ at segment s + 1. See §4.4.3 for details and related constraints. We use s = 0

and s = q + 1 to index the virtual starting and ending segments added to each album,

respectively.

4.4.3 Constraints and additional boolean variables

We add the following linear constraints to ensure the validity of event assignment and the

intended semantics of all boolean variables.

(1) Each photo belongs to one and only one event,

∀i,
∑
α

biα = 1

(2) The boolean variable SameEvent(i, j) represents whether photos pi and pj are assigned

to the same event, which is defined as follows,

SameEvent(i, j) =
∑
α

δijα

where the boolean variable δijα = biα ∧ bjα indicates whether photos pi and pj are both

assigned to event α (see §4.4.5 for how to construct δijα using linear constraints). Then

SameEvent(i, j) ∈ {0, 1}, since each photo has to be assigned to one and only one event,

δijα’s for all events α’s are either all 0’s, or all 0 except a single 1.

(3) The boolean variable cis indicates whether photo pi belongs to the segment s ∈
{1, . . . q}. Each photo belongs to one and only one segment,

∀i
q∑
s=1

cis = 1

(4) The segment index s starts from 1 and increases by 1 with each event transition, which

is guaranteed by the following constraints,

Base case: the first photo has segment index 1,

c11 = 1
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Continue Segment: If two consecutive photos have the same event, then they also have

the same segment,

∀i < m, s, ci+1,s ≥ SameEvent(i, i + 1) + cis − 1

End Segment: If two consecutive photos have different events, then the segment index

of the latter photo increases by 1,

∀i < m, s, ci+1,s+1 ≥ cis − SameEvent(i, i + 1)

We define ci,q+1 = 0 for all i to handle the second to the last photo correctly.

(5) The boolean variable esα indicates whether the segment s belongs to the event eα.

The following constraints specify the relation among the segment-level variables esα’s,

cis’s, and the photo-level variables biα.

The first photo belongs to the first segment,

∀α, e1α = b1α

If a photo pi is assigned to the segment s and the event α, then the segment s belongs to

the event α,

∀s, α, i ≥ s, cis + biα − 1 ≤ esα

where i ≥ s because each segment has at least one photo, and segment s has to start at

least from photo s, that is, ∀i < s, cis = 0.

Otherwise, the following constraints force esα to be 0,

Each segment is assigned to at most one event (not all of the q segments are used),

∀s,
∑
α

esα ≤ 1
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If no photo is assigned to segment s (segment s is not used), then all esα’s are 0,

∀s,
∑
α

esα ≤
∑
i

cis

(5) To avoid too many scattering small segments that belong to the same event, we allow

each event appear in at most thr segments,

∀α,
∑
s

esα ≤ thr

4.4.4 Approximation

The above ILP formulation yields tens of millions of constraints for an album with about

300 photos, which incurs very slow inference. To speed up inference, we merge consecutive

photos with similar images and close timestamps as super nodes according to a heuristic,

as they are likely to belong to the same event. We then run the ILP inference with super

nodes whose number is much fewer than individual photos.

4.4.5 Defining a boolean variable

We use the following constraints to guarantee a new boolean variable c = a ∧ b as the

conjunction of two existing variables (a and b),

c ≤ a

c ≤ b

c+ (1− a) + (1− b) ≥ 1

4.5 Experiments

We evaluate our event inference algorithm (§4.4) based on event modelling in two tasks:

album segmentation and album summarization.
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4.5.1 Segmentation

Our first experiment tested how well we managed to segment the photos in the albums

into coherent events, which is a foundation for photo sequence understanding and album

summarization.

Data and annotation. We had an impartial annotator label where they thought events

began and ended in the album and tested how well our model could replicate these bound-

aries. The annotator labels 10 albums for each of the three scenarios: wedding, camping,

Paris trip. Each album is relatively long with about 100 to 150 photos.

Performance evaluation. We evaluate performance using 4 metrics: precision, recall,

F1, and the event number difference between our models and the annotations, d. We base

precision, recall, and F1 scores on the model’s ability to recover the start of an event.

Method Precision Recall F1 d
cluster .189 .598 .270 32.8
ilpea+tp .509 .420 .425 4.9
ilpea+tp+cs .434 .379 .379 3.8
ilpea+tp+cs+is .484 .449 .438 2.9

Table 16: Segmentation performance. F1 is computed based on the segment starting
points. The column d shows the average difference between the number of segments of
the annotation and that of the corresponding algorithm.

Methods. We compare the independent event assignment (cluster) to ILP event in-

ference with objective ablation. Each input album has both images and original captions.

cluster assigns event to each photo independently to maximize each individual photo-

event affinity (§4.4.2). The remaining three methods correspond to the ILP event inference

with different objectives denoted by the subscripts. Each objective is a sum of 2 to 4 terms

separated by + (see §4.4.2 for the meaning of each two-letter acronym).

Results. Table 16 shows that the ILP inference with different objective functions

all achieves a higher F1 score than cluster. Furthermore, the full ILP formulation

(ilpea+tp+cs+is) gives the best precision/recall balance and also the lowest d value. While
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cluster does have a better recall, we attribute this performance to the sheer number of

fragmented events that it identifies (32.8 more than annotated on average).

4.5.2 Multimodal album summarization

People share many long albums with hundreds of photos in social media websites. We

propose the task of multimodal album summarization: Given a photo album, we pick a

few representative photos and give each of them a caption, which highlights the major

events in the album and tell a story over time.

Summarization based on event inference We explore summarization with two kinds

of input: (1) The input album has both images and original captions, and the a summa-

rization algorithm selects images and use their original captions in the summary; (2) The

input album has only images, and a summarization algorithm generates a caption for each

selected image. The latter is a much more challenging task than the former, since it tries

to directly understand visual content.

Given a budget B and a photo album with or without captions, we first use the ILP

inference (§4.4) to assign an event to each photo. Then choose the top B most important

unique events as the events with largest (image or caption) cluster sizes (excluding the

miscellaneous event that always has the largest cluster). The cluster size approximates

the importance of an event. For each chosen event e, we select a single photo p that

maximizes the photo-event affinity A(p, e) to e among all photos labelled with e. The

photo-event affinity is computed similarly to §4.4.2 depending on whether captions are in

the input,

i. If the input album has both images and captions, the photo-event affinity A(p, e)

is a weighted sum of the image-event affinity (Eq.17) and the caption-event affinity

(Eq.16),

A(p, e) = w · AI(pI , e) + (1− w) · AC(pC , e)

We set w = 2/3 in our experiments to make both terms in about the same range. Since

the range of AI(p
I , e) is about [0, 0.5], and the range of AC(pC , e) is about [0, 1] that is

about twice as large as the former. See Figure 12 for example summaries.
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Figure 12: Example summaries generated by the ILP event inference (with both the images
and their original captions as the input). Each row shows a summary of one album. The
green tag at the bottom-right of each image shows the label of the inferred event of that
image.

ii. If the input album has only images but no captions, the photo-event affinity A(p, e) is

set to the image-event affinity (Eq.17),

A(p, e) = AI(p
I , e)

After selecting the photo p for a chosen event e = (eL, eC , eI), we transfer the caption of

p’s most similar image in the image cluster eI (in terms of cosine similarity) as the caption

of p. See Figure 13 for example summaries.

Experimental settings We randomly select 100 long albums in the wedding scenario2

with at least 50 photos as a test set. The remaining albums in the scenario form the

training set from which we learn the event model. We set the budget B = 7 photos.

We compare the above summarization algorithm based on event inference (denoted as

ilp) to the following two baselines,

(1) kth, choose every K = n/B photos starting from the n/Bth photo. If the input

2Though we evaluated only on the wedding scenario, our approach is applicable to all scenarios.
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Figure 13: Example album summaries generated by the ILP event inference (with only
the images as the input). Each row is a summary of one album. The green tag at the
bottom-right of each image shows the label of the inferred event of that image.

has only images, we transfer the caption of the query image’s most similar image in

the training set. This baseline is not informed by any event models as the background

knowledge.

(2) cluster, similar to ilp except that the first step (event inference) assigns an event

e to each photo p independently, by maximizing the photo-event affinity A(p, e). If the

input album has only images, we set A(p, e) = AI(p
I , e) (Eq 17, the image-event affinity),

otherwise A(p, e) = AC(pC , e) (Eq 16, the caption-event affinity).

In both ilp and cluster, if there are only N unique inferred non-miscellaneous events

and N < B, we select the remaining B − N photos from the photos labelled with the

miscellaneous event using the kth method, or randomly select remaining photos from the

entire album if there are no photos labelled with miscellaneous event.

Results We evaluate the performance of the three methods using Amazon Mechanical

Turk (AMT). The test set has 100 albums held out from the training set from which

we learn the event model. For each album, in random order we present two summaries
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methods
selection rates
(img.+cap.)

selection rates
(img. only)

ilp vs. kth 59% 41% 45% 55%
ilp vs. cluster 47% 53% 54% 46%
cluster vs. kth 57% 43% 53% 47%

Table 17: Human evaluation of album summarization: the percentages of summaries
preferred by judges in pairwise comparisons. img.+cap. represents each input album
has both images and original captions. img. only represents each input album has only
images (the summarization algorithm also generates captions for the selected images).

generated by two algorithms, respectively. Turkers are instructed to choose a better

summary considering both the images and the captions. For each task, we aggregate

answers from three turkers by majority voting.

Table 17 shows the percentages of summaries preferred by human judges in pairwise

comparisons.

(1) When the input albums have both the images and the original captions (img.+cap.),

both ilp and cluster perform significantly better than kth (Figure 14). This demon-

strates that our event model helps to identify major events and choose representative

photos effectively.

(2) When the input albums have only images (img. only, see Figure 15), cluster is

also preferred over kth, confirming that knowing the event model improves visual under-

standing, hence gives a better summarization. However, ilp performs worse than kth.

Our conjecture is that our estimation of the image-event affinity (Eq.17) requires im-

provement. So far it is based on the global image similarity using CNN feature, which

might have its limitations in discriminating the subtle difference of different events in the

same scenario (say in a wedding scenario, many events all show groups of people with

slightly different actions). More advanced visual features regarding actions or training a

probabilistic classifier to compute image-event affinity might be helpful.

4.6 Related works

Researchers have explored unsupervised induction of the salient content structure by ex-

ploiting a large collection of text exhibiting redundancies in content. In their pioneering
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KTH

CLUSTER

ILP

Figure 14: Comparisons of summaries generated by three algorithms (with both the images
and their captions as the input). The green tag at the bottom-right of each image shows
the label of the inferred event of that image. Both cluster and ilp select photos that
highlight important and representative events (e.g., ring exchange, kiss, and dance) in
general, while kth tends to select more photos that shows random and miscellaneous
events.
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KTH

CLUSTER

ILP

Figure 15: Comparisons of summaries generated by three algorithms (with only the im-
ages as the input). The green tag at the bottom-right of each image shows the label of the
inferred event of that image. Both cluster and ilp select photos that highlight impor-
tant and representative events (e.g., ring exchange, kiss, and dance) in general, while kth
tends to select more photos that shows random and miscellaneous events. The captions
of both cluster and ilp have more accurate interpretation of the image content than
kth.
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work, Barzilay and Lee (2004) presented the first empirical study demonstrating how sta-

tistical regularities in the content flow in newswire articles can be modelled using Hidden

Markov Models, for specific topic domains such as earthquakes for which many similar

articles exist. The learned content models find applications in automatic summarization

and coherency detection. In addition, discovering temporal structure from text has been

studied before by building a temporal graph (Bramsen et al., 2006). More recently, new

work has been introduced in extracting storylines and summarizing complex events in

newswire text (Xu et al., 2013), and learning hierarchical events in social media text (Gu

et al., 2011; Gu et al., 2013).

Another line of research that finds the common event structure from a collection of related

text, where the learned motifs and plot structure were used to stochastically generate new

stories (McIntyre and Lapata, 2009; Goyal et al., 2010; Goyal et al., 2013), or the learned

common sense knowledge is used for question answering about a story (Hajishirzi and

Mueller, 2011) or sportscasts (Hajishirzi et al., 2011). Our work similarly learns the

typical temporal patterns that define common events and experiences, but in an entirely

different genre and domain of online photo albums.

Compared to the recent stream of research that learns narrative schemas from natural lan-

guage corpora (Chambers and Jurafsky, 2008; Chambers and Jurafsky, 2009; Chambers,

2013; Cassidy et al., 2014), or compiles script knowledge from crowd sourcing (Modi and

Titov, 2014), our work explores a new source of knowledge that allows grounded schema

learning with temporal dimensions, resulting in a new dataset that includes event and

scenario types that are not naturally accessible from news wire or literature.

Finally, a few recent studies have explored videos as a source of discovering complex events

and learning the sequential patterns of events (Tang et al., 2012; Kim and Xing, 2014a;

Kim and Xing, 2014b; Tschiatschek et al., 2014), but explored only the visual modalities

without drawing a connection to natural language descriptions.
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Chapter 5

Conclusion

To summarize, this thesis investigates language grounded in massive online data, ranging

from ontology, images, to time series. We have presented three studies as follows,

5.1 Cost-sensitive hierarchical product classifica-

tion

Our first study relates text to a conceptual abstraction (§2). We study classifying a

textual product description into a given taxonomic ontology. Instead of optimizing 0-1

error rate as standard approaches, we design a classifier based on its use in the e-commerce

world, that is, a vendor organizes a collection of products with a business goal to maximize

revenue.

In particular, we investigate two problems, performance evaluation and learning, in a

synergistic way, under a unified view of empirical risk. Performance evaluation chooses an

appropriate misclassification cost. Learning minimizes the average misclassification cost.

We emphasizes the importance to design an appropriate performance evaluation metric for

a real world task, otherwise we are optimizing the wrong objective. We show how to apply

such a synergistic way to address the specific task of hierarchical product classification,

and demonstrate its effectiveness by experiments on a large dataset. We obtain general

insight into how and why several common evaluation metrics can be misleading, which

is applicable to the treatment of performance evaluation of other real world tasks. We
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propose a general cost-sensitive learning algorithm that minimizes the upper bound of

any loss functions, using multi-class SVM with margin re-scaling and loss normalization.

The loss normalization approach is also applicable to general classification and structured

prediction tasks when using structured SVM with margin re-scaling.

Our work is an application of cost-sensitive learning. Very few works study both class-

dependent and example-dependent misclassification cost, especially in a practical scenario

as we do. However, application scenarios involving both types of cost are not rare, even

becoming more and more common in big data era, forming an emerging class of applica-

tions for large scale information and knowledge management.

5.2 Image description using bipartite cross-modal as-

sociation structure

Our second study straddles text and vision (§3). The main challenge to tapping into the

online image-caption data is noise. Everyday captions contain extraneous information

that is not directly relevant to what the image shows. We provide insights into making

a better use of the existing web content and the future content exploding with billions

of online activities every day. The key idea is to focus on Déjà Image-Captions, i.e.,

naturally existing image captions that are repeated almost verbatim by more than one

individual for different images. The hypothesis is that such captions are more likely

to be free of unwanted extraneous information (e.g., specific names, time, or any other

personal information) and better represent visual concepts. The new corpus of Déjà

Image Captions, publicly shared at http://54.69.114.42:8080, comprises four million

image-caption pairs with about 180K unique captions.

We demonstrate the potential utility of Déjà Image Captions in multiple ways: new ap-

proaches to image caption retrieval using the associative structure of the corpus (§3.3);

strengthening the association structure via visually-situated paraphrases to further en-

hance image captioning (§3.5); creative image captioning and paraphrasing that control

literalness or figurativeness of the automatic captions (§3.7).
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5.3 Multimodal temporal knowledge modelling with

photo albums

Our third study aligns text with both vision and time series (§4). We propose to tap

into the context of a photo stream to better understand both photos in sequence and their

accompanying captions. The key idea is to ground image captions to prototypical events

in a common scenario. For example, from a sequence of photos paired with captions

regarding a wedding scenario, we might identify certain typical events in wedding happen

over time, for example, vows, ring exchange, reception, and dancing.

Concretely, we collect a large-scale dataset of online photo albums aligned with narrative

captions and time stamps, for 12 common scenarios in which people participate in their

daily life. We propose to learn a multimodal temporal model from albums about a given

scenario, which identify prototypical events and their typical temporal ordering in that

scenario. Each prototypical event has a set of visual instantiations (images) and a set of

textual instantiations (captions). Based on the event model, we then propose a collective

event inference algorithm that infers the events of each photo in a given album, which

serves as an understanding of the given photo sequence. We demonstrate the effectiveness

of our event inference algorithm based on event modelling with two tasks: album segmen-

tation that segment a photo sequence into coherent segments, and album summarization

that summarizes a photo album with a few representative images paired with narrative

descriptions.

5.4 Contributions

The major contributions of this thesis include:

• Data. Two large-scale datasets with language grounded in vision: Déjà Image-

Captions with a bipartite association structure bridging nearly 180K captions and

about 4M images (§3); Common Scenario Albums that has thousands of photo

streams aligned with narrative captions for each of 12 common scenarios, including

wedding, camping, and so on (§4).

• Models and algorithms. (i) A general cost-sensitive learning algorithm based
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on multi-class SVM with margin re-scaling and a new loss normalization approach

(§2.3); (ii) Image captioning algorithms using bipartite association structure (§3.3

and §3.5); (iii) Automatic visual paraphrasing algorithm (§3.5); (iv) Algorithms for

creative image captioning and creative visual paraphrasing, respectively (§3.7); (v) A

multi-modal event model of prototypical events and their temporal ordering learned

from photo albums in a common scenario (§4.3); (vi) A collective event inference

algorithm based on the multimodal event model using Integer Linear Programming

to infer the events of each photo in a given album; (vii) A multi-modal summa-

rization algorithm to give an overview of a photo album with a few representative

images paired with narrative captions (§4.5.2).

• Novel applications. (i) Hierarchical Commercial product classification with a

business goal of maximizing revenue (§2); (ii) Visually-situated paraphrases (§3.5);

(iii) Creative image captioning and creative visual paraphrasing (§3.7); (iv) Multi-

modal summarization of online photo albums (§4.5.2).
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