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ABSTRACT OF THE THESIS

Quantum States of a Time-Asymmetric Universe: Wave

Function, Density Matrix, and Empirical Equivalence

by Keming Chen

Thesis Director:

Sheldon Goldstein

What is the quantum state of the universe? Although there have been several interesting

suggestions, the question remains open. In this paper, I consider a natural choice for

the universal quantum state arising from the Past Hypothesis, a boundary condition

that accounts for the time-asymmetry of the universe. The natural choice is given not

by a wave function (representing a pure state) but by a density matrix (representing a

mixed state). I begin by classifying quantum theories into two types: theories with a

fundamental wave function and theories with a fundamental density matrix. The Past

Hypothesis is compatible with infinitely many initial wave functions, none of which

seems to be particularly natural. However, once we turn to density matrices, the

Past Hypothesis provides a natural choice—the normalized projection onto the Past

Hypothesis subspace in the Hilbert space. Nevertheless, the two types of theories

can be empirically equivalent. To provide a concrete understanding of the empirical

equivalence, I provide a novel subsystem analysis in the context of Bohmian theories.

Given the empirical equivalence, it seems empirically underdetermined whether the

universe is in a pure state or a mixed state. Finally, I discuss some theoretical payoffs

of the density-matrix theories and present some open problems for future research.
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0.1 Introduction

What is the quantum state of the universe? There are probably many universal quan-

tum states compatible with our observations. But is there a particularly natural choice?

There have been several interesting suggestions. In the context of quantum gravity, Har-

tle and Hawking (1983) propose that the quantum state of the universe is the natural

wave function of a universe with “no boundaries.” It is given by a path integral over

all compact Euclidean four-geometries which have the relevant three-geometry and its

matter configuration at the boundary. This pure state is positive and real; it also

satisfies the Wheeler-DeWitt equation.

In this paper, we turn to quantum statistical mechanics and consider another natural

choice for the universal quantum state. It arises from considerations about the Past

Hypothesis, which is an attempt to account for the thermodynamic arrow of time in our

universe. The natural choice is not a pure state, represented by a wave function, but a

mixed state, represented by a density matrix. Moreover, it can be complex-valued (in

the case of spinless particles). This offers a perspective that may be complementary to

the proposal of Hartle and Hawking (1983).

Since the goal of this paper is largely conceptual, we will focus on the simple context

of non-relativistic quantum mechanics and leave to future work how to extend this

proposal to more advanced theories such as quantum gravity. In the simple context,

we will consider six different theories that fall into two types:

1. Theories with a fundamental wave function.

2. Theories with a fundamental density matrix.

The qualification “fundamental” is necessary. First, in a universe with a pure state,

impure density matrices can nonetheless emerge both as descriptions of our ignorance

(statistical density matrices) and as subsystem descriptions (reduced density matrices).

Second, in a universe with a mixed state, wave functions can emerge at the subsystem

level.
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In §2, we begin by formulating three theories in each type and consider how to com-

bine them with the Past Hypothesis. We notice that there is an interesting difference.

In theories with a fundamental wave function, there is a canonical measure of probabil-

ity (or typicality) but no natural choice of the initial quantum state. In theories with

a fundamental density matrix, there is a natural choice of the initial quantum state

but there does not seem to be a canonical measure of probability (or typicality). The

natural choice of the quantum state is given by the Initial Projection Hypothesis (IPH).

Hence, only in the second type of theories do we obtain a natural choice for the univer-

sal quantum state. For each type, we also discuss how to combine it with solutions to

the quantum measurement problem: Bohmian mechanics, Everettian mechanics, and

GRW spontaneous collapse theories.

In Chen (2018a), I introduced the Initial Projection Hypothesis as a new postulate

about a natural initial density matrix of the universe. In that paper, I focused on

its relevance to the debate about the nature of the quantum state. In Chen (2019),

I focused on its relevance to the status of statistical mechanical probabilities. In this

paper, I focus on the question of empirical equivalence.

In §3, we suggest that the two types of theories can nonetheless be made empirically

equivalent. In particular, if the probability measure over wave functions gives rise to

a statistical density matrix that equals to the fundamental density matrix in the other

theory, the two theories will have the same probability distributions over measurement

outcomes. In Bohmian theories, this fact lets us prove a general theorem about empirical

equivalence, from which we obtain an important corollary. The general argument from

equivalent probability distributions will be supplemented by a novel analysis about the

Bohmian subsystems. Empirical equivalence also apply to the two types of Everettian

theories and the two types of GRW theories.

In §4, we discuss some theoretical payoffs of the density-matrix theories in compar-

isons with the wave-function theories. In particular, the density-matrix theories lead to

a simple and (more or less) unique initial quantum state. It makes the nomological in-

terpretation of the quantum state much more compelling, reduces statistical mechanical

probabilities to quantum mechanical ones, and provides significant gain in theoretical
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unification. There are also interesting open problems in the density-matrix approach.

A noteworthy consequence is that our particular choice of the initial quantum state

will be non-normalizable if the Past Hypothesis subspace of the Hilbert space turns

out to be infinite-dimensional. This requires us to face head-on the problem of non-

normalizable quantum states, a possibility that has so far been discussed mainly in the

context of quantum gravity and quantum cosmology.

0.2 Wave Function, Density Matrix, and the Past Hypothesis

In this section, we first discuss quantum mechanics with a fundamental wave function.

Our discussion will be informed by Boltzmannian quantum statistical mechanics and

solutions to the quantum measurement problem. We will then turn to quantum theories

with a fundamental density matrix and explain why, given the Past Hypothesis, there

is a natural density matrix.

0.2.1 Quantum Mechanics with a Fundamental Wave Function

Ψ-QM

Standard quantum mechanics is often presented with a set of axioms and rules about

measurement. Firstly, there is a quantum state of the system, represented by a wave

function ψ. For a spin-less N -particle quantum system in R3, the wave function is

a (square-integrable) function from the configuration space R3N to the complex num-

bers C. Secondly, the wave function evolves deterministically according to the the

Schrödinger equation:

ih̵
∂ψ

∂t
=Hψ (1)

whereH is a self-adjoint operator (the Hamiltonian). Thirdly, the Schrödinger evolution

of the wave function is supplemented with collapse rules. The wave function typically

evolves into superpositions of macrostates, such as the cat being alive and the cat

being dead. This can be represented by wave functions on the configuration space with

disjoint macroscopic supports X and Y . During measurements, which are not precisely
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defined processes in the standard formalism, the wave function undergoes collapses.

Moreover, the probability that it collapses into any particular macrostate X is given

by the Born rule:

P (X) = 󱮬
X
󳈌ψ(x)󳈌2dx (2)

As such, quantum mechanics is not a candidate for a fundamental physical theory.

It has two dynamical laws: the deterministic Schrödinger equation and the stochastic

collapse rule. What are the conditions for applying the former, and what are the

conditions for applying the latter? Measurements and observations are extremely vague

concepts. Take a concrete experimental apparatus for example. When should we treat

it as part of the quantum system that evolves linearly and when should we treat it as

an “observer,” i.e. something that stands outside the quantum system and collapses

the wave function? That is, in short, the quantum measurement problem.1

Various solutions have been proposed regarding the measurement problem. Bohmian

mechanics (BM) solves it by adding particles to the ontology and an additional guidance

equation for the particles’ motion. Ghirardi-Rimini-Weber (GRW) theories postulate

a spontaneous collapse mechanism that disrupts the linear Schrödinger evolution of

the wave function. Everettian quantum mechanics (EQM), according to the “Oxford

interpretation,”2 simply removes the collapse rules from standard quantum mechanics

and suggest that there are many (emergent) worlds, corresponding to the branches of

the wave function, which are all real. My aim here is not to adjudicate among these

theories. Suffice it to say that they are all quantum theories that remove the centrality

of observations and observers.

In the following, we will write down the standard formalism of BM, GRW, and EQM

with a fundamental wave function.

(1)Ψ-BM. In addition to the wave functionΨ that evolves unitarily according to the

Schrödinger equation, there are actual particles that have precise locations in physical

1See Bell (1990) and Myrvold (2017) for introductions to the quantum measurement problem.

2See Wallace (2012) for an up to date development and defense.
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space, represented by R3. The particle configuration Q = (Q1,Q2, ...,QN) ∈ R3N follows

the guidance equation (written for the i-th particle):

dQi

dt
= h̵

mi
Im
󰑢iψ(q)
ψ(q)

(q = Q) (3)

Moreover, the initial particle distribution is given by the quantum equilibrium distri-

bution:

ρt0(q) = 󳈌ψ(q, t0)󳈌2 (4)

By equivariance, if this condition holds at the initial time, then it holds at all times. (See

Dürr et al. (1992).) Consequently, BM agrees with standard quantum mechanics with

respect to the Born rule predictions (which are all there is to the observable predictions

of quantum mechanics). For a universe with N particles, let us call the wave function

of the universe the universal wave function and denote it by Ψ(q1, q2, ...qN).

(2) Ψ-GRW. There are several versions of GRW theories. In the first one, Ψ-

GRW0, the fundamental ontology consists only of the universal wave function. The

wave function typically obeys the Schrödinger equation, but the linear evolution is

interrupted randomly (with rate Nλ, where N is the number of particles and λ is a

new constant of nature of order 10−15 s−1) by collapses:

ΨT+ =
Λk(X)1󳆋2ΨT−

󳈌󳈌Λk(X)1󳆋2ΨT− 󳈌󳈌
(5)

where ΨT− is the pre-collapse wave function, ΨT+ is the post-collapse wave func-

tion, the collapse center X is chosen randomly with probability distribution ρ(x) =

󳈌󳈌Λk(x)1󳆋2ΨT− 󳈌󳈌2dx, k ∈ {1,2, ...N} is chosen randomly with uniform distribution on

that set of particle labels, and the collapse rate operator is defined as:

Λk(x) =
1

(2πσ2)3󳆋2
e−
(Qk−x)

2

2σ2 (6)

where Qk is the position operator of “particle” k, and σ is another new constant of

nature of order 10−7 m postulated in current GRW theories.

It has been argued that the GRW theory can and should be given a primitive

ontology, i.e. fundamental and localized quantities in physical space.3 There are two

3See, for example, Allori (2007); Allori et al. (2008); Allori (2013) and Bell (1995).
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choices of primitive ontology: mass densities and flashes. In Ψ-GRWm, the fundamental

ontology includes a mass-density function on physical spacetime:

m(x, t) = ⟨Ψ(t)󳈌M(x) 󳈌Ψ(t)⟩ (7)

where x is a physical space variable, M(x) = ∑imiδ(Qi−x) is the mass-density operator,

which is defined via the position operator Qiψ(q1, q2, ...qn) = qiψ(q1, q2, ...qn). This

allows us to determine the mass-density ontology at time t via Ψ(t). In Ψ-GRWf,

the fundamental ontology includes F , the collection of spacetime events, the spatial

components of which are the centers of the spontaneous collapses and the temporal

components of which are the instants of the collapses:

F = {(X1, T1), (X2, T2), ...(Xi, Ti), ...} (8)

(3) Ψ-EQM. There are several versions of Everettian theories. In the first one, Ψ-

EQM0, the fundamental ontology consists only in terms of the universal wave function.

The wave function always and exactly obeys the Schrödinger equation.

The Everettian theory can also be given a primitive ontology, such as a mass-density

function on physical space in the same way as in GRW theories. By using (7), we define

a mass-density m(x, t) as part of the fundamental ontology and obtain Ψ-EQMm.

The Everettian theories faces two challenges: the ontology problem and the proba-

bility problem. First, it is prima facie unclear whether the fundamental ontology can

adequately describe our world. Since there is no spontaneous collapse, the wave func-

tion and the mass-density function will have contributions from every possible outcome

of experiments. It has been argued (Wallace (2012)) that decoherence can effectively

separate them into branches that do not interfere with each other. Second, since every

outcome obtains, it is not clear what the Born rule probability means. It has been sug-

gested that we can use Savage-style decision theory (e.g. Wallace (2012)) or self-locating

probabilities (e.g. Sebens and Carroll (2016)) to make sense of the probabilities. Here it

is not the place to evaluate these proposals. But it is worth pointing these out because

the challenges take on different forms in the density-matrix versions.

For a survey of some conceptual issues of interpreting Ψ-QM, see Chen (2018b).
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ΨPH-QM

Ψ-QM with the solutions of the measurement problem attempt to describe various

quantum phenomena in nature and in the laboratories, such as the interference patterns

of the double-slit experiment and the Stern-Gerlach experiment. With the exception of

Ψ-GRW theories, they are all time-reversal invariant.

However, the behaviors of macroscopic systems with a large number of particles are

often irreversible; they display the thermodynamic arrow of time—entropy tends to

increase until thermal equilibrium. Not only that, we also find that we are currently

not in thermal equilibrium and our observations tell us that our past had even lower

entropy. To understand these thermodynamic phenomena, it is helpful to use the tools

of statistical mechanics. We will review the standard postulates in the Boltzmannian

quantum statistical mechanics, we shall largely follow Goldstein et al. (2010a) and Gold-

stein and Tumulka (2011). Just as in Boltzmannian classical statistical mechanics, we

will invoke notions of microstate, macrostate, energy shell, probability measure, Boltz-

mann entropy, approach to thermal equilibrium, and a low-entropy boundary condition

called the Past Hypothesis. However, in the quantum case, the state space is no longer

the classical phase space but the Hilbert space of wave functions.

In Boltzmannian quantum statistical mechanics, it is standard to take the microstate

to be the normalized wave function of the system.4

ψ(q1, ...,qN) ∈Htotal = L2(R3N ,C) , ∥ ψ ∥L2= 1, (9)

where Htotal = L2(R3N ,C) is the total Hilbert space of the system, which is also the

state space of the wave functions. A wave function is a (normalized) vector in the

Hilbert space. The wave function evolves according to the Schrödinger equation (1).

We will focus on the physically relevant wave functions that are contained in the energy

shell:

H ⊆Htotal , H = span{φα ∶ Eα ∈ [E,E + δE]}, (10)

4In Bohmian theories, we have the additional microvariables given by particle configurations. It is
not clear whether we should include that as part of the statistical mechanical microstate. However, it
might help in the case of superposition of macrostates with distinct entropy.
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This is the subspace (of the total Hilbert space) spanned by energy eigenstates φα

whose eigenvalues Eα belong to the [E,E + δE] range. Let D = dimH , the number

of energy levels between E and E + δE.5 To give a notion of typicality, we choose the

measure µE as given by the normalized surface area measure on the unit sphere in the

energy subspace S (H ).6 With a choice of macro-variables,7 the energy shell H can

be orthogonally decomposed into macro-spaces:

H = ⊕νHν , 󱮦
ν

dimHν =D (11)

Each Hν corresponds to a macrostate (more or less to small ranges of values of macro-

variables that we have chosen in advance). Typically, a wave function is in a super-

position of macrostates and is not entirely in any one of the macrospaces. However,

we can make sense of situations where ψ is (in the Hilbert space norm) very close to a

macrostate Hν :

⟨ψ󳈌 Iν 󳈌ψ⟩ ≈ 1, (12)

where Iν is the projection operator onto Hν . This means that almost all of 󳈌ψ⟩ lies

in Hν .
8 Typically, there is a dominant macro-space Heq that has a dimension that is

almost equal to D:

dimHeq

dimH
≈ 1. (13)

A system with wave function ψ is in equilibrium if the wave function ψ is very close to

Heq in the sense of (12): ⟨ψ󳈌 Ieq 󳈌ψ⟩ ≈ 1. Given the definition of (12), it is reasonable to

expect that µE-most wave functions are in thermal equilibrium.9

5If the energy spectrum is discrete, it is necessary to use this fattened interval because otherwise
there may not be any energy eigenstates with the exact eigenvalue.

6In cases where the energy shell is infinite-dimensional, we should use a Gaussian measure.

7They need to be suitably “rounded” à la Von Neumann (1955))

8In the Bohmian theories, the particle configuration may help resolve some of the ambiguities even
when the universal wave function is in no particular macrostate. If the universal wave function Ψ(x, y)
has Y-supports which are macroscopically distinct and if Y the actual configuration of the environment
is in one of them, then the effective wave functionΨ(x,Y ) can be defined to be in a particular macrostate
in the sense of (12).

9Had we required the expectation value to be exactly one, a wave function will have to be entirely
contained in Heq to be in thermal equilibrium. But since that is only a proper subspace of the energy
shell, complete containment is extremely atypical.
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The Boltzmann entropy of a quantum-mechanical system with wave function ψ that

is very close to a macrostate Hν is given by:

SB(ψ) = kBlog(dimHν), (14)

for which ψ is in the macrostate Hν in the sense of (12). Any wave function ψeq in

thermal equilibrium macrostate thus has the maximum entropy:

SB(ψeq) = kBlog(dimHeq) ≈ kBlog(D), (15)

where Heq denotes the equilibrium macrostate. A central task of Boltzmannian quan-

tum statistical mechanics is to establish mathematical results that demonstrate (or

suggest) the following conjecture:

B-Conjecture: µE-most wave functions in any macrostate will evolve to states of

higher entropy and eventually to thermal equilibrium.10

The B-Conjecture is highly plausible because the equilibrium macrostate is almost the

entire energy shell, in terms of dimensions. Typically, a random walk in the Hilbert

space will evolve a microstate into subspaces (in the sense of (12)) of higher dimensions,

which correspond to higher entropy. However, as in the classical case, the B-Conjecture

admits exceptions. It is reasonable to assume that there are infinitely many wave

functions that will evolve to lower-entropy states. But we expect them to be atypical

with respect to µE . Although there are many results that are highly suggestive, no

such conjecture has been rigorously proven for realistic physical systems. Nonetheless,

it is reasonable to expect that it is true.

Assuming the B-Conjecture, almost any initial wave functions in non-equilibrium

states will be on trajectories towards equilibrium. However, that is only part of the

puzzle about time’s arrow. Why are we currently out of thermal equilibrium, and

why was our past of even lower entropy? To answer those questions, it is standard to

postulate a low-entropy initial condition of the universe, which David Albert (2000)

10What we really want is something stronger and more specific. We would like to show, in the case
of applying it to the universe as a whole and getting satisfactory explanations for the Second Law,
for a typical universal wave function it will evolve in such a way that the wave functions of typical
subsystems will evolve to states of higher entropy and eventually to thermal equilibrium.
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calls the Past Hypothesis. In the quantum case with a fundamental wave function, we

postulate that the Past Hypothesis takes the following form:

Ψ(t0) ∈HPH , dimHPH ≪ dimHeq ≈ dimH (16)

where HPH is the Past Hypothesis macrospace with dimension much smaller than that

of the equilibrium macrospace and also much smaller than the current macrospace.

Hence, the initial state has very low entropy in the sense of (27).

Moreover, we make the Statistical Postulate that the initial wave functions are

distributed randomly according to the (normalized) surface area measure µ on the unit

sphere in HPH :

ρ(dψ) = µ(dψ) (17)

Given a finite-dimensional subspace, the choice of the surface area measure is natural.

It gives rise to a uniform probability distribution on the unit sphere. It is with respect

to this measure we can say that µ-most (typical) initial wave functions compatible with

the Past Hypothesis will approach thermal equilibrium. This gives rise to a statistical

version of the Second Law of Thermodynamics. For technical reasons, we assume that

HPH is finite-dimensional, so that we can use the (normalized) surface area measure

on the unit sphere as the typicality measure. It remains an open question in QSM

about how to formulate the low-entropy initial condition when the initial macro-space

is infinite-dimensional. We will come back to this point in §4.2.

The Past Hypothesis and the Statistical Postulate are additional postulates about

the initial condition and the initial probabilities, which can be added to the Ψ-theories.

We will call this new family of theories ΨPH -QM, which consists in the following

theories: ΨPH -BM, ΨPH -GRW0, ΨPH -GRWm, ΨPH -GRWf, ΨPH -EQM0, and ΨPH -

EQMm. They are solutions of the quantum measurement problem that also have re-

sources to account for the thermodynamic arrow of time. For example, ΨPH -BM is

defined as the theory with the state given by (Q,Ψ), dynamical equations (1) and (3),

boundary condition (16), and initial probability distributions (4) and (17).
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Ψ?-QM

Each ΨPH -theory admits many initial quantum states. Given the Past Hypothesis, the

initial wave function is randomly chosen from HPH , the Past Hypothesis subspace. As

discussed earlier, there is a natural choice for the probability distribution given by the

normalized surface area. Is there also a natural choice for the initial wave function?

There does not seem to be one.

Suppose, in the simplest case, the low-entropy initial condition arises from a compact

region in the configuration space such that any wave function in HPH has to have

compact support in that region and is zero elsewhere. The most natural function on that

compact region will be uniform in that entire region. This function will be discontinuous

at the boundary, which means that it will have non-zero inner product with wave

functions of arbitrarily high energy. Such a wave function is unphysical. Suppose

we were to make this function continuous and differentiable, then we lose uniqueness,

because there are many choices for such a function, none of them is particularly more

natural than the others. So there does not appear to be a natural choice for Ψ0 even

in the simplest case. It presumably generalizes to more complicated cases.

Hence, a ΨPH -theory with a natural initial wave function does not seem to exist.

As we shall see, the situation is radically transformed in the density-matrix theories.

0.2.2 Quantum Mechanics with a Fundamental Density Matrix

In this section, we consider quantum mechanics with a fundamental density matrix.

The density matrix plays the same dynamical role as the wave function does in the

previous theories.

W -QM

In W -QM, the quantum state of a system is represented by a density matrix W . W is

the complete characterization of the quantum state; it does not refer to a statistical state

representing our ignorance of the underlying wave function. For a spin-less N -particle

quantum system, a density matrix of the system is a positive, bounded, self-adjoint
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operator Ŵ ∶H →H with trŴ = 1, where H is the Hilbert space of the system. In

terms of the configuration space R3N , the density matrix can be viewed as a function

W ∶ R3N ×R3N → C.

A density matrix Ŵ is pure if Ŵ = 󳈌ψ⟩ ⟨ψ󳈌 for some 󳈌ψ⟩. Otherwise it is mixed. For

W -QM, the quantum state of a closed system (or that of the universe) can be pure or

mixed. In the unitary case, Ŵ always evolves deterministically according to the von

Neumann equation:

ih̵
dŴ (t)
dt

= [Ĥ, Ŵ ]. (18)

Equivalently:

ih̵
∂W (q, q󰐞, t)

∂t
= ĤqW (q, q󰐞, t) − Ĥq󰐞W (q, q󰐞, t), (19)

where Ĥq means that the Hamiltonian Ĥ acts on the variable q. The von Neumann

equation generalizes the Schrödinger equation (1).

As before, W -QM with just the von Neumann equation faces the quantum measure-

ment problem. Below we write down three solutions to the measurement problem with

a fundamental density matrix.

(1) W -BM. In addition to the density matrix W that evolves unitarily according

to the von Neumann equation, there are actual particles that have precise locations in

physical space, represented by R3. The particle configuration Q = (Q1,Q2, ...,QN) ∈

R3N follows the guidance equation (written for the i-th particle):11

dQi

dt
= h̵

mi
Im
󰑢qiW (q, q󰐞, t)
W (q, q󰐞, t)

(q = q󰐞 = Q), (20)

Moreover, the initial particle distribution is given by the density-matrix version of the

quantum equilibrium distribution:

P (Q(t0) ∈ dq) =W (q, q, t0)dq. (21)

The system is also equivariant: if the probability distribution holds at t0, it holds at all

times.12

11This version of the guidance equation is first proposed by Bell (1980), then discussed for a funda-
mental density matrix in Dürr et al. (2005).

12Equivariance holds because of the following continuity equation:

∂W (q, q, t)
∂t

= −div(W (q, q, t)v),
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(2) W -GRW. As before, there are several versions of W -GRW theories. In the

first one, W -GRW0, the fundamental ontology consists only in terms of the universal

density matrix. The density matrix typically obeys the von Neumann equation, but

the linear evolution is interrupted randomly (with rate Nλ, where N is the number of

particles and λ is a new constant of nature of order 10−15 s−1) by collapses:13

WT+ =
Λk(X)1󳆋2WT−Λk(X)1󳆋2

tr(WT−Λk(X))
(22)

where WT− is the pre-collapse density matrix, WT+ is the post-collapse density matrix,

with k uniformly distributed in the N -element set of particle labels and X distributed

by the following probability density:

ρ(x) = tr(WT−Λk(x)), (23)

where the collapse rate operator is defined as before in (6).

As before, we can add primitive ontology to the GRW theory. For W -GRWm,

the version with a mass-density ontology, the mass-density is defined as a function of

variables of physical spacetime:

m(x, t) = tr(M(x)W (t)), (24)

where M(x) is the mass-density operator as defined after (7). This allows us to de-

termine the mass-density ontology at time t via W (t). In W -GRWf, the fundamental

ontology includes F , as given in (8), a collection of spacetime events, the spatial com-

ponents of which are the centers of the spontaneous collapses of W (t) and the temporal

components of which are the times of the collapses.

(3) W -EQM. There are two versions of Everettian theories with a fundamental

density matrix. In the first one, W -EQM0, the fundamental ontology consists of only

the universal density matrix. The density matrix always and exactly obeys the von

Neumann equation.

where v denotes the velocity field generated via (20). See Dürr et al. (1992, 2005). We will discuss this
equation in more detail in §3.

13These equations first appear in Allori et al. (2013). I am indebted to Roderich Tumulka, Sheldon
Goldstein, and Matthias Leinert for helpful discussions.
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The Everettian theory can also be given a primitive ontology, such as a mass-density

function. By using (24), we define a mass-density function m(x, t) from the universal

density matrix. That will be part of the fundamental ontology. We thus obtain W -

EQMm.

The ontology problem and the probability problem for Everett take on a different

form, and they seem more challenging in W -EQM theories than in Ψ-EQM theories.

In general, the universal density matrix can be decomposed into wave functions that

have overlapping supports in the configuration space. Even if each wave function, by

decoherence, gives rise to a branching structure, it is not clear whether there will be such

a branching structure for the collection of overlapping wave functions. By the linearity

of the von Neumann equation, we know that each wave function will evolve linearly

without interference from the other wave functions. So there is still independence,

but it is not at all clear how to recover the talks about branches in W -EQM theories.

Since the branching structure is crucial for the attempted solutions to the ontology

problem and the probability problem in Ψ-EQM theories, the strategies will need to

be significantly modified to apply to the W -EQM theories. It is interesting that the

extension from Ψ-BM to W -BM requires no such changes, as the analysis of probability

and ontology in a Bohmian universe remains largely the same.

WPH-QM

Once we have the W theories, we can proceed to consider how to implement the low-

entropy initial condition in them. First, it is important to notice that in such theories

W is the quantum statistical microstate. So our discussions of Boltzmannian quantum

statistical mechanics in terms of ψ will need to be adapted for W . Here are the key

changes:

• Being in a macrostate: typically, a density matrix is in a superposition of macrostates

and is not entirely in any one of the macrospaces. However, we can make sense

of situations where W is very close to a macrostate Hν :

tr(WIν) ≈ 1, (25)
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where Iν is the projection operator onto Hν . This means that almost all of W is

in Hν . In this situation, we say that W is in macrostate Hν .

• Thermal equilibrium: typically, there is a dominant macro-space Heq that has a

dimension that is almost equal to D:

dimHeq

dimH
≈ 1. (26)

A system with density matrix W is in equilibrium if W is very close to Heq in

the sense of (25): tr(WIeq) ≈ 1.

• Boltzmann entropy: the Boltzmann entropy of a quantum-mechanical system

with density matrix W that is very close to a macrostate ν is given by:

SB(W ) = kBlog(dimHν), (27)

for which W is in macrostate Hν in the sense of (25).

Next, let us consider how to adapt the Past Hypothesis for density matrices. Recall

that, for ΨPH -QM, we use (16) to constrain the initial wave functions: every initial

wave function is entirely contained in the Past Hypothesis subspace HPH . Similarly,

for density-matrix theories, we can similarly propose that every initial density matrix

is entirely contained in the Past Hypothesis subspace:

tr(W (t0)IPH) = 1 , dimHPH ≪ dimHeq ≈ dimH (28)

where IPH is the projection operator onto the Past Hypothesis subspace, which is

consistent with our notation so far. (In §2.2.3, we will consider another version of the

low-entropy initial condition for density matrices, which is arguably more natural.)

Given the W -version of the Past Hypothesis, every initial density matrix will be

contained in the low-entropy subspace HPH . Given time-reversal invariance, it is rea-

sonable to expect there to be anti-entropic density matrices HPH . Nonetheless, it is

reasonable to expect that these anti-entropic density matrices are atypical. However,

unlike the situation for ΨPH theories, it is far from clear whether there is any canonical

probability (or typicality) measure for density matrices in a subspace. If there is, it is

unlikely to be as natural and simple as the surface area measure on the unit sphere.
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WIPH-QM

Surprisingly, although there does not seem to be a canonical probability measure in

WPH -theories, there is a natural choice for the initial density matrix. Recall that, for

every subspace V of a vector space V 󰐞, there is a projection operator IV such that it

is idempotent and takes every vector in V to itself. Moreover, the projection operator

is unique. In some sense, the projection operator encodes all the information about

V . For example, when we say that a wave function Ψ is entirely contained or almost

entirely contained in some subspace Hν , we may express it in terms of the statement

IV Ψ = Ψ. So the choice of the projection is canonical given the choice of any vector

space.

The Past Hypothesis picks out a particular subspace HPH . It is canonically associ-

ated with its projection IPH . In matrix form, it can be represented as a block-diagonal

matrix that has a k × k identity block, with k = dimHPH , and zero everywhere else.

There is a natural density matrix associated with IPH , namely the normalized projec-

tion IPH

dimHPH
. Hence, we have picked out the natural density matrix associated with the

Past Hypothesis subspace. We propose that the initial density matrix is the normalized

projection onto HPH :

ŴIPH(t0) =
IPH

dimHPH
. (29)

We call this postulate the Initial Projection Hypothesis (IPH). This is introduced in

Chen (2018a). Crucially, it is different from (16) and (28); while IPH picks out a

unique quantum state given the Past Hypothesis, the other two permit infinitely many

possible quantum states inside the Past Hypothesis subspace.

Remarkably, we no longer need a fundamental postulate about probability or typ-

icality for the quantum state. We know that we can decompose a density matrix

(non-uniquely) into a probability-weighted average of pure states, and in the canonical

way we can decompose ŴIPH(t0) as an integral of pure states on the unit sphere of

HPH with respect to the uniform probability distribution:

ŴIPH(t0) = 󱮬
S (HPH)

µ(dψ) 󳈌ψ⟩ ⟨ψ󳈌 . (30)

If the B-Conjecture in §2.1.2 is true, then µ-most wave functions in HPH will increase in
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entropy and eventually approach thermal equilibrium. Thus, almost all of ŴIPH(t) will

be in higher-entropy macrostates and eventually approach thermal equilibrium. Hence,

assuming the B-Conjecture, we know that ŴIPH(t) will be (in the sense of (25)) in

a higher-entropy macrostate or in a superposition of higher-entropy macrostates and

will eventually be in thermal equilibrium. It is worth emphasizing that the probability

measure is not fundamental in the theory for two reasons. First, the fundamental

density matrix is, in the first instance, not to be interpreted as a probabilistic mixture

of wave functions. Second, the decomposition into probabilistic mixture is not unique;

we could have chosen a discrete probability distribution that assigns equal weights to

the vectors in {󳈌n⟩}, an orthonormal basis of HPH :

ŴIPH(t0) =
k

󱮦
n=1

1

k
󳈌n⟩ ⟨n󳈌 . (31)

Theory Possible Initial Quantum States Natural Probability Measure

Ψ-QM no restrictions µ; uniform

ΨPH -QM any Ψ(t0) s.t. Ψ(t0) ∈HPH µ; uniform

Ψ?-QM unclear unclear

W -QM no restrictions unclear

WPH -QM any W (t0) s.t. tr(W (t0)IPH) = 1 unclear

WIPH -QM ŴIPH(t0) = IPH

dimHPH
unnecessary

In this section, we have presented two types of quantum theories: theories with a

fundamental wave function and theories with a fundamental density matrix. We have

found that there is a significant difference between the two, namely, given the Past

Hypothesis:

• There is a natural probability (typicality) measure over initial wave functions, but

there is no natural choice for the initial wave function.

• There does not seem to be a natural probability (typicality) measure over initial

density matrices, but there is a natural choice for the initial density matrix, which

makes the probability measure unnecessary.

We summarize the finding in the table above.
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0.3 Empirical Equivalence

The two types of theories, one given by a fundamental wave function Ψ and the other

given by a fundamental density matrix W , are intimately related to each other. The

von Neumann equation for the evolution of W is a generalization of the Schrödinger

equation of Ψ; the W guidance equation is a generalization of the Ψ guidance equation.

The same is true for the collapse equation and the definition of primitive ontology in

the GRW theories. However, there are also many differences. The W theories not only

allow universal pure states but also allow universal mixed states, while the latter are

impossible in the Ψ theories.

It is natural to wonder whether we have empirical grounds for distinguishing between

the two types of theories. In particular, we may ask: can a theory with a universal

mixed state be empirically equivalent to one with a universal pure state? In this section,

we will show that the answer is yes. In §3.1, we present a general theorem for Bohmian

theories from which we obtain a corollary that ΨPH -BM is empirically equivalent to

WIPH -BM. We also show that the Everettian theories are also empirically equivalent

and the GRW theories are empirically equivalent. In §3.2, we provide a more concrete

understanding of their empirical equivalence by focusing on the Bohmian theories. In

particular, we obtain some notions about subsystems in W -BM in parallel to those

in Ψ-BM, including effective density matrix, conditional density matrix, collapse, and

effective collapse. We derive the fundamental conditional probability formula for W -

BM.

0.3.1 General Argument

Bohmian Theories

Let us now focus on Ψ-BM and W -BM. Regarding the question of their empirical

equivalence, Dürr et al. (2005) write:

One may wonder whether one can decide empirically between Bohmian me-

chanics and W -Bohmian mechanics, or, in other words, whether one can
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determine empirically in a universe governed by W -Bohmian mechanics if

the fundamental density matrix is [pure]. The question is delicate. We think

that the answer is no, for the following reason: compare a W-Bohmian uni-

verse with a Bohmian universe with a random wave function such that the

associated statistical density matrix equals the fundamental density matrix

of the W-Bohmian universe. Since an empirical decision, if it can be made

at time [t], would have to be based solely on the configuration [Qt] at that

time, and since the distribution of [Qt] is the same in both situations, it

seems that there cannot be a detectable difference: A given [Qt] could as

well have arisen from an appropriate wave function from the random wave

function ensemble as from the corresponding fundamental density matrix.

(Dürr et al. (2005), §7.3, with “t0” replaced by “t” to avoid possible ambi-

guities)

Here, the comparison is between Ψ-BM with a statistical density matrix W and W -BM

with a fundamental density W . Any empirical differences between the two theories, at

time t, will manifest as differences in the outcomes of experiments, which are grounded

in the configuration of particles at t. However, the probability distribution of Q(t) is the

same in both theories, which means the typicality facts are the same on both theories.

Hence, the two cannot be empirically distinguished. In what follows, I will expand this

argument by stating a criterion of empirical equivalence and proving a theorem using

that criterion.

Criterion for Empirical Equivalence: Theories A and B are empirically equivalent

if they assign the same probability to every outcome in every measurement.

From this general criterion, we can derive a special criterion for Bohmian theories.

Since in a Bohmian universe every measurement apparatus is made out of particles

with precise positions, every measurement boils down to a position measurement. So

we just need the two theories to agree on probability of the particle configurations.

Criterion for Empirical Equivalence of Bohmian Theories: Bohmian theoriesA

and B are empirically equivalent if at any time t, PA(Qt ∈ dq) = PB(Qt ∈ dq).
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Theorem 0.3.1 Let WR-BM be the theory of (W , Q) such that W evolves by (18), Q

evolves by (20) and satisfies (21); moreover, a particular W (t0) is chosen. Let ΨR-BM

be the theory of (Ψ, Q) such that Ψ evolves by (1), Q evolves by (3) and satisfies (4);

moreover, Ψ(t0) is chosen at random from a statistical ensemble represented by the

density matrix W (t0). WR-BM and ΨR-BM are empirically equivalent.

Remark: WR-BM is a more restrictive version of W -BM. WIPH -BM corresponds to

a particularly natural choice of W (t0). ΨR-BM is a version of Ψ-BM with an initial

probability distribution over wave functions. ΨPH -BM corresponds to a particularly

natural choice of the probability measure given the Past Hypothesis. The probability

distributions of particle positions are the same given WIPH -BM and ΨPH -BM, because

they are given by the same density matrix in the beginning, the density matrix evolve by

the von Neumann equation in both theories, and the two theories are both equivariant.

Proof: At t0, the particle configurations are distributed as follows:

• W -BM: PWR−BM(Q0 ∈ dq) =W (q, q, t0)dq.

• ΨR-BM: PΨR−BM(Q0 ∈ dq) =W (q, q, t0)dq.

PWR−BM follows from (21). PΨR−BM follows from (4) and the definition of the density

matrix W :

Ŵ = 󱮬 µ(dψ) 󳈌ψ⟩ ⟨ψ󳈌 (32)

where µ is the appropriately chosen measure for the statistical ensemble. In ΨR-BM,

Ψ satisfies the Schrödinger equation (1), from which we obtain the continuity equation:

∂ρ

∂t
= −div(J). (33)

We choose ρ = 󳈌ψ(q, t)󳈌2 and v = J󳆋ρ. Then 󳈌ψ(q, t)󳈌2 is equivariant:

∂󳈌ψ(q, t)󳈌2

∂t
= −div(󳈌ψ(q, t)󳈌2vΨ) (34)

where vΨ denotes the velocity field generated by (3). Let us integrate both sides of (34)

with respect to µ, then we have:

∂⟨󳈌ψ(q, t)󳈌2⟩µ
∂t

= −div(⟨󳈌ψ(q, t)󳈌2vΨ⟩µ) (35)



21

and equivalently,

∂W (q, q, t)
∂t

= −div(W (q, q, t)vW ) (36)

where W (q, q, t) = ∫ µ(dψ)󳈌ψ(q, t)󳈌2 = ⟨ρ⟩µ and vW = ⟨J⟩µ󳆋⟨ρ⟩µ denotes the velocity

field generated by (20). Hence W (q, q, t) is also equivariant. Therefore, the probability

formulae for WR-BM and ΨR-BM will remain of the same form at any time:

• WR-BM: PWR−BM(Qt ∈ dq) =W (q, q, t)dq.

• ΨR-BM: PΨR−BM(Qt ∈ dq) =W (q, q, t)dq.

Therefore, WR-BM and ΨR-BM are empirically equivalent. ◻

It follows from the previous theorem that:

Corollary 0.3.2 WIPH-BM and ΨPH-BM are empirically equivalent.

The above argument is slightly weaker than the original argument in the quote

of Dürr et al. (2005). While Dürr et al. (2005) talks about a typical wave function,

our argument above invokes a random wave function. We have only shown that a

Bohmian theory with a random wave function and a statistical density matrix WR

can be empirical equivalent to a Bohmian theory that takes WR to be objective and

fundamental. However, we can extend our argument to the case of a typical wave

function by making the following observation, which is the second and final step of

Dürr et al. (2005)’s argument. Suppose we try to come up with some experimental test

about whether the universal quantum state is pure or mixed, in the form of testing

whether there will be a series of experimental outcomes, G. Suppose WR passes the

G-test:

PWR(G) ≈ 1. (37)

For the ΨR theory, we set the statistical density matrix to be equal to the fundamental

density matrix in the WR theory. So we have:

󱮬 µ(dψ)PΨR(G) ≈ 1. (38)

Now, in the case of comparing WIPH -BM and ΨPH -BM, we can choose the measure

µ(dψ) to be the uniform one (normalized surface area measure on the unit sphere of
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HPH . Then it is easy to see that a typical wave function Ψ from the ensemble will also

pass the G-test (otherwise the weighted average will not be approximately 1):

PΨ(G) ≈ 1. (39)

Hence, we have arrived at a stronger claim that the same probability distribution over

particle histories can be given by both WIPH -BM and a typical wave function compat-

ible with ΨPH -BM.

Everettian and GRW Theories

For the Everettian theories, we can draw the same conclusion about the respective

theories. Let WR-EQM be the theory of W such that W evolves by (18); moreover, a

particular W (t0) is chosen. Let ΨR-EQM be the theory of Ψ such that Ψ evolves by

(1); moreover, Ψ(t0) is chosen at random from a statistical ensemble represented by

the density matrix W (t0). WR-EQM and ΨR-EQM are empirically equivalent.

The reason is that they assign the same probability to every outcome in every

experiment. Let A be a self-adjoint operator corresponding to some observable such

that its spectrum may not be completely discrete. Suppose that its spectral measure

is given by A , a projection-valued measure. Then the probability that at time t, the

outcome of the measurement x will be within some measurable set M is:

• WR-EQM: PWR−EQM(x ∈M) = tr(WtA (M)).

• ΨR-EQM: PΨR−EQM(x ∈M) = tr(WtA (M)).

Under the assumption that probability makes sense in theΨ-Everettian andW-Everettian

theories, the two types of Everettian theories are empirically equivalent.

For the GRW theories, the WR and ΨR versions with different choices of the prim-

itive ontology (m or f) are also empirically equivalent to each other (with the arrows

denoting empirical equivalence):

ΨR-GRWf 󰈣󰈣

󰈃󰈃

WR-GRWf

󰈃󰈃

󰉣󰉣

ΨR-GRWm 󰈣󰈣

󰉃󰉃

WR-GRWm

󰉃󰉃

󰉣󰉣

(40)



23

First, Allori et al. (2013) show that WR-GRWf is physically equivalent14 to ΨR-

GRWf, which implies that they are empirically equivalent. Their argument focuses on

the joint distribution of all flashes.

PWR−GRWf(F ∈ S) = tr(G0(S)W0) = PΨR−GRWf(F ∈ S), (41)

where S is any set of flash histories, G0(⋅) is the suitable positive-operator valued

measure (POVM) governing the distribution of the flashes in Ψ-GRWf, and W0 is the

initial density matrix.

Second, Goldstein et al. (2012) show that Ψ-GRWf is macro-history equivalent15

to Ψ-GRWm, which implies that they are empirically equivalent. They consider a

macroscopic system corresponding to a pointer that can point to either position 1 or

position 2 at time t. The wave function of the system has the form Ψt = c1Φ1 +

c2Φ2, where 󳈌c1󳈌2 + 󳈌c2󳈌2 = 1 and Φi is concentrated on configurations for which the

pointer points to position i. Suppose, from the perspective of Ψ-GRWf, most flashes

are in position 1. Then 󳈌c1󳈌2 ≫ 󳈌c2󳈌2, which means m(1, t) ≫ m(2, t). Hence, from the

perspective of Ψ-GRWm, matter is concentrated in position 1. Now, suppose, from the

perspective of Ψ-GRWm, matter is concentrated in position 1. Then m(1, t)≫m(2, t),

which means 󳈌c1󳈌2 ≫ 󳈌c2󳈌2. Hence, from the perspective of Ψ-GRWm, with overwhelming

probability, most flashes are in position 1.

Third, similarly, it follows from the previous argument that WR-GRWf is macro-

history equivalent to WR-GRWm, which implies that they are empirically equivalent.

Again, let us consider a macroscopic system corresponding to a pointer that can point

to either position 1 or position 2 at time t. The density matrix of the system has the

form Wt = c1W1 + c2W2 + c3W3, where c1 + c2 = 1, W1 and W2 are concentrated on

configurations for which the pointer points to position 1 and to position 2 respectively,

and W3(q, q󰐞) may not be zero and it has disjoint (q, q)-support from both W1(q, q󰐞)

and W2(q, q󰐞). Suppose, from the perspective of WR-GRWf, most flashes are in position

14Here I am relying the definition given by Allori et al. (2013). Roughly, two theories are physically
equivalent if they assign the same probability to all possible histories of the primitive ontology.

15Two theories are macro-history equivalent if there can be no noticeable macroscopic differences
between the two.
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1. Then c1 ≫ c2, which means c1 ≫ c2. From the perspective of WR-GRWm, matter is

concentrated in position 1. The other direction is similar as above.

Therefore, by the transitivity of empirical equivalence relation, we can conclude that

all four versions of GRW theories in (40) are empirically equivalent.

0.3.2 Subsystem Analysis of W -BM

For Bohmian theories, the previous general argument and the corollary suffice to show

that the relevant types of Bohmian theories can be empirically equivalent. However,

in actual practice, it is rare to use the quantum state of the universe or to use the

probability distribution over universal quantum states. For the wave function versions,

Dürr et al. (1992) have provided a subsystem analysis that is used to clarify and justify

the quantum equilibrium hypothesis (Born rule distribution). It would be illuminating

to see that the usual Bohmian subsystem analysis carries over to the density-matrix

theories, which will also shed further light on their empirical equivalence. However,

it is beyond the scope of this paper to conduct a thorough statistical analysis of the

quantum equilibrium hypothesis. Nevertheless, we will closely follow their strategies to

define conditional density matrix, effective density matrix, and effective collapse, which

we will then use to derive the fundamental conditional probability formula. These will

show that it is possible to derive a W -version of the quantum equilibrium hypothesis

using the method of Dürr et al. (1992).

An Example

We begin by considering a simple example, which we hope shows that it is reasonable to

expect the subsystem analysis of Dürr et al. (1992) can carry over to Bohmian theories

with a fundamental density matrix. The example will provide us the motivations for

the general statements in the next section.

Suppose the universal configuration is split into Q = (X,Y ), where X is the con-

figuration of some subsystem of interest and Y is that of the environment. Consider

three quantum states below where x and y denote generic variables for the subsystem

and the environment:
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W1(x, y, x󰐞, y󰐞) = Ψ1(x, y)Ψ∗1(x󰐞, y󰐞). (42)

W2(x, y, x󰐞, y󰐞) = Ψ2(x, y)Ψ∗2(x󰐞, y󰐞). (43)

W3(x, y, x󰐞, y󰐞) =
1

2
W1(x, y, x󰐞, y󰐞) +

1

2
W2(x, y, x󰐞, y󰐞). (44)

Suppose further that Ψ1 adequately describes a situation after a measurement:

Ψ1(x, y) = ψ(x)φ1(y) +Ψ󳃞1(x, y), (45)

such that φ1 and Ψ󳃞1 have macroscopically disjoint y-supports (which also means that

φ∗1 and Ψ󳃞∗1 have macroscopically disjoint y󰐞-supports) and

Y ∈ supp φ1, (46)

from which we can deduce that Y ∈ supp φ∗1 .

Similarly for Ψ2, suppose that it also adequately describes the same measurement:

Ψ2(x, y) = ψ(x)φ2(y) +Ψ󳃞2(x, y), (47)

such that φ2 and Ψ󳃞2 have macroscopically disjoint y-supports (which also means that

φ∗2 and Ψ󳃞∗2 have macroscopically disjoint y󰐞-supports) and

Y ∈ supp φ2, (48)

from which we can deduce that Y ∈ supp φ∗2 .

Let us now expand W1:

W1(x, y, x󰐞, y󰐞) = Ψ1(x, y)Ψ∗1(x󰐞, y󰐞)

= (ψ(x)φ1(y) +Ψ󳃞1(x, y))(ψ∗(x󰐞)φ∗1(y󰐞) +Ψ󳃞∗1 (x󰐞, y󰐞))

= ψ(x)φ1(y)ψ∗(x󰐞)φ∗1(y󰐞) + [ψ(x)φ1(y)Ψ󳃞∗1 (x󰐞, y󰐞)+

Ψ󳃞1(x, y)ψ∗(x󰐞)φ∗1(y󰐞) +Ψ󳃞1(x, y)Ψ󳃞∗1 (x󰐞, y󰐞)]

=M1(x, y, x󰐞, y󰐞) +W 󳃞
1 (x, y, x󰐞, y󰐞), (49)
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where

M1(x, y, x󰐞, y󰐞) = ψ(x)φ1(y)ψ∗(x󰐞)φ∗1(y󰐞), (50)

and

W 󳃞
1 (x, y, x󰐞, y󰐞) = ψ(x)φ1(y)Ψ󳃞∗1 (x󰐞, y󰐞) +Ψ󳃞1(x, y)ψ∗(x󰐞)φ∗1(y󰐞) +Ψ󳃞1(x, y)Ψ󳃞∗1 (x󰐞, y󰐞).

(51)

Since φ1 and Ψ󳃞1 have macroscopically disjoint y-supports, and φ∗1 and Ψ󳃞∗1 have macro-

scopically disjoint y󰐞-supports, we know that M1(x, y, x󰐞, y󰐞) and W 󳃞
1 (x, y, x󰐞, y󰐞) have

macroscopically disjoint (y, y󰐞)-supports.

Similarly,

W2(x, y, x󰐞, y󰐞) = ψ(x)φ2(y)ψ∗(x󰐞)φ∗2(y󰐞) + [ψ(x)φ2(y)Ψ󳃞∗2 (x󰐞, y󰐞)+

Ψ󳃞2(x, y)ψ∗(x󰐞)φ∗2(y󰐞) +Ψ󳃞2(x, y)Ψ󳃞∗2 (x󰐞, y󰐞)]

=M2(x, y, x󰐞, y󰐞) +W 󳃞
2 (x, y, x󰐞, y󰐞), (52)

Similarly,M2(x, y, x󰐞, y󰐞) andW 󳃞
2 (x, y, x󰐞, y󰐞) have macroscopically disjoint (y, y󰐞)-supports.

Thus, we can expand W3 as follows:

W3(x, y, x󰐞, y󰐞) =
1

2
W1(x, y, x󰐞, y󰐞) +

1

2
W2(x, y, x󰐞, y󰐞)

= 1

2
[M1(x, y, x󰐞, y󰐞) +M2(x, y, x󰐞, y󰐞)] (53)

+ 1

2
[W 󳃞

1 (x, y, x󰐞, y󰐞) +W 󳃞
2 (x, y, x󰐞, y󰐞)]

=M3(x, y, x󰐞, y󰐞) +W 󳃞
3 (x, y, x󰐞, y󰐞), (54)

where

M3(x, y, x󰐞, y󰐞) =
1

2
[M1(x, y, x󰐞, y󰐞) +M2(x, y, x󰐞, y󰐞)]

= 1

2
[ψ(x)φ1(y)ψ∗(x󰐞)φ∗1(y󰐞) + ψ(x)φ2(y)ψ∗(x󰐞)φ∗2(y󰐞)] (55)

W 󳃞
3 (x, y, x󰐞, y󰐞) =

1

2
[W 󳃞

1 (x, y, x󰐞, y󰐞) +W 󳃞
2 (x, y, x󰐞, y󰐞)]. (56)

In general, M3(x, y, x󰐞, y󰐞) and W 󳃞
3 (x, y, x󰐞, y󰐞) can have overlapping (y, y)-supports.

However, situations after measurements are quite special. Suppose (45) and (47) de-

scribe two wave functions after some experiment on the x-subsystem such that both
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wave functions are compatible with our observations. Then it is reasonable to expect

that supp φ1 and supp φ2 do not differ by a macroscopically significant amount. In

that case, we can infer that φ2 and Ψ󳃞1 have macroscopically disjoint y-supports and

that φ1 and Ψ󳃞2 have macroscopically disjoint y-supports. Therefore, in this case, M3

and W 󳃞 have macroscopically disjoint (y, y)-supports.

Now, let us consider M3. It has a product form:

M1(x, y, x󰐞, y󰐞) = ψ(x)ψ∗(x󰐞)[φ1(y)φ∗1(y󰐞) + φ2(y)φ∗2(y󰐞)] = ρ(x,x󰐞)γ(y, y󰐞) (57)

The effective density matrix of the subsystem is ρ(x,x󰐞). Moreover, γ(y, y󰐞) and W 󳃞
3

have macroscopically disjoint (y, y)-supports by the previous argument. Hence, even if

the universe is in a mixed state W3, the subsystem can nonetheless be in a pure state

ρ(x,x󰐞). In this case, the effective density matrix ρ corresponds to the wave function

ψ.

Now, let us define the conditional density matrix of the x-system as follows:

w(x,x󰐞)Y =W (x,Y, x󰐞, Y ), (58)

where we identify quantum states related by a non-zero constant factor. In the case of

W3, the conditional density matrix is:

w3(x,x󰐞)Y =W3(x,Y, x󰐞, Y ) =M3(x,Y, x󰐞, Y ) + 0 = ρ(x,x󰐞)γ(Y,Y ) = Cρ(x,x󰐞). (59)

where C is a real number that can be taken care of by normalization. Here we have

used W 󳃞
3 (x,Y, x󰐞, Y ) = 0, since we know that Y is not in the union of the y-supports of

Ψ󳃞1 and Ψ󳃞2 .

General Statements

Motivated by the previous example, we propose the following general statements about

W -BM subsystems.

(1) Splitting. For any given subsystem of particles we have a splitting:

q = (x, y), (60)
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with x the generic variable for the configuration of the subsystem and y the generic

variable for the configuration of the environment, i.e. the complement of the subsystem.

(60) provides a splitting of the actual configuration into two parts:

Q = (X,Y ). (61)

So we can write the universal density matrix in terms of W =W (x, y, x󰐞, y󰐞).

(2) Effective density matrix. The subsystem corresponding to the x-variables

has an effective density matrix (at a given time) if the universal density matrix

W (x, y, x󰐞, y󰐞) and the actual configuration Q = (X,Y ) (at that time) satisfy:

W (x, y, x󰐞, y󰐞) = ρ(x,x󰐞)γ(y, y󰐞) +W 󳃞(x, y, x󰐞, y󰐞), (62)

such that γ(y, y󰐞) and W 󳃞(x, y, x󰐞, y󰐞) have macroscopically disjoint (y, y)-supports,16

and

(Y,Y ) ∈ supp γ(y, y󰐞), (63)

In this case, the effective density matrix of the subsystem is ρ(x,x󰐞). We expect that our

definition of effective density matrix coincides with the usual practice of the quantum

formalism for assigning quantum states to subsystems, whenever the latter does assign

quantum states.

(3) Conditional density matrix. The effective density matrix for a subsystem

does not always exist. However, we can always define the conditional density matrix in

the following way:

w(x,x󰐞) =W (x,Y, x󰐞, Y ). (64)

Here we identify quantum states differing by a constant factor. Given the definition

of the velocity (20), the velocity field of the x-system will be given by its conditional

16This condition can be relaxed to allow for almost macroscopically disjoint (y, y)-supports or even
weaker notions of disjointness. In typical measurement situations, γ(y, y󰐞) and W 󳃞(x, y, x󰐞, y󰐞) may not
be disjoint at all. For example, if γ(y, y󰐞) corresponds to the situation where the pointer points to “1”
and W 󳃞(x, y, x󰐞, y󰐞) corresponds to the situation where the pointer points to “2,” their (y, y)-supports
may be contiguous at the boundary. But as long as ρ(x, x󰐞)γ(y, y󰐞) and W 󳃞(x, y, x󰐞, y󰐞), the two parts
of the density matrix, will not interfere too much with each other at later times, we can treat ρ(x, x󰐞)
as the effective quantum state of the subsystem under observation. The same relaxation can be made
in the definition of the effective wave functions in Dürr et al. (1992). In fact, they anticipate the
possibilities to allow for weaker conditions in footnote #20. They call such states (with sufficiently
disjoint supports) more-general-effective wave functions.
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density matrix. However, the conditional density matrix does not always evolve in a

unitary way, because of the interactions between the subsystem and the environment.

However, when the system and the environment are suitably decoupled, such as after

measurement when (62) and (63) are satisfied, then the conditional density matrix

becomes the effective density matrix and will obey its own von Neumann equation.

(4) Collapse and effective collapse. When (62) and (63) are satisfied, we can

neglect, for all practical purposes, W 󳃞(x, y, x󰐞, y󰐞). The configuration will be carried

by the relevant part of the universal density matrix—ρ(x,x󰐞)γ(y, y󰐞)—into the future,

without much interference from the other parts contained in W 󳃞(x, y, x󰐞, y󰐞). In this

case, we can say that during measurement, the universal density matrix has undergone

an effective collapse from Wt− to Wt+ = ρ(x,x󰐞, t+)γ(y, y󰐞, t+). However, from the point

of view of the subsystem density matrix, represented by the conditional density matrix

w(x,x󰐞, t), there is a real discontinuous change to w(x,x󰐞, t+). Hence, the subsystem

density matrix has undergone a genuine collapse, which is consistent with the prescrip-

tions of textbook quantum mechanics. As in the Ψ-BM, the subsystem analysis of

W -BM provides an explanation for the usefulness of talking about collapses even in a

universe fundamentally governed by unitary dynamics.

(5) The Fundamental Conditional Probability Formula. By equivariance

(36) the distribution of Qt is always given by W (q, q, t). By (64), at time t, for the con-

ditional probability distribution of the configuration of a subsystem Xt given the actual

configuration of the environment Yt, we have the fundamental conditional probability

formula for W theories:

P (Xt ∈ dx󳈌Yt) = w(x,x, t)dx, (65)

where w(x,x󰐞, t) = w(x,x󰐞, t)Yt is the conditional density matrix of the subsystem at

time t. Similar to the situation in Ψ-BM, the configurations Xt and Yt are condition-

ally independent given the density matrix w(x,x󰐞, t). As in the Ψ-BM situation, we

expect that we can extract the entire empirical statistical content, including an analo-

gous “principle of absolute uncertainty,” from the fundamental conditional probability

formula. However, we will not attempt to carry out the task of a complete statistical

analysis here. It is reasonable to expect that what we have provided above should be
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sufficient for that task.

0.4 Discussions

In §2, we introduced quantum theories with a fundamental density matrix. In §3, we

found that a certain class of W theories are empirically equivalent to a certain class of

Ψ theories. In this section, I discuss some theoretical payoffs of W theories and present

some open questions for future research.

0.4.1 Theoretical Payoffs

(1) A natural initial condition. Each version of Ψ-QM can be viewed as a special

class of W -QM where the fundamental density matrix is pure. Every possibility of

Ψ-QM is a possibility of W -QM, but not vice versa. The latter allows many more

possibilities with mixed states. If Ψ-QM is empirically adequate, why should we be

interested in a theory with redundant possibilities?

One might appeal to the (controversial) paradox about black hole information loss.

Suppose the universe consists in two systems that are entangled. If we throw one system

into an evaporating black hole, then the universal quantum state, even if it started as

a pure state, will become mixed after the evaporation. So we seem to be forced to

consider the possibility of universal mixed states. However, it is unclear to me whether

W -QM can help with the paradox, since the pure to mixed transition is not allowed in

any version of W -QM we considered in §2.2.17

One reason we should be interested in W -QM, I think, is that they can be nicely

combined with the Past Hypothesis. As we saw in §2.2.3, the Past Hypothesis subspace

suggests a natural choice of the initial density matrix WIPH(t0). We thus obtain WIPH -

QM. Given a choice of the Past Hypothesis subspace, there is only one initial quantum

state allowed by WIPH -QM—the normalized projection. This is highly unusual in

theoretical physics. Theories we usually consider allow for (infinitely) many initial states

17Perhaps it can be helped by a W -GRW theory with a Lindblad equation as the fundamental
equation of density matrix evolution. That is formulated as Mm in Goldstein et al. (2012).
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given an initial macrostate: Newtonian mechanics, Maxwellian electrodynamics, Ψ-QM,

ΨPH -QM, W -QM, and WPH -QM. All versions of WIPH -QM, with the exception of

WIPH -BM, allow for only one initial state at t0, given the Past Hypothesis macrostate.

Even for WIPH -BM, there is only one possible initial quantum state. Of course, the

Past Hypothesis macrostate can be arbitrary. Given a choice of macro-variables, the

boundary of “the” Past Hypothesis subspace can be fuzzy. However, since the projection

onto HPH now plays both the macroscopic role of giving us the low-entropy boundary

condition and the microscopic role of figuring in the microscopic dynamics, the choice

of the Past Hypothesis subspace might becomes less arbitrary.18

(2) Reduction of statistical mechanical probabilities. Fundamental statis-

tical probabilities arise as a measure of typicality over initial phase points in classical

mechanics or over initial wave functions in quantum mechanics. It is necessary because

not every initial phase point and not every initial wave function will evolve to states of

higher entropy. The anti-entropic initial states, however, have extremely small measure

and are thus overwhelmingly unlikely. In the quantum case, the statistical mechani-

cal probabilities are an additional source of randomness beyond the usual randomness

of measurement outcomes (Born rule distribution). Hence, we have two sources of

fundamental randomness in a theory such as ΨPH -QM.

However, as we point out in §2.2.3, fundamental statistical probabilities are no

longer necessary in WIPH -QM. Given the Past Hypothesis subspace, the theory allows

only one initial quantum state—the normalized projection onto the subspace. If the

B-Conjecture holds for typical wave functions, then it also holds for the normalized

projection—it will, with certainty, evolve to states of higher entropy and eventually to

thermal equilibrium. Hence, we no longer need statistical mechanical probabilities in

addition to quantum mechanical ones. The only source of probabilities, in WIPH -QM,

are quantum mechanical probabilities, however they are to be understood in the end.19

18Given a unique choice of the Past Hypothesis subspace, there is only one choice of the initial
quantum state. For WIPH -Everettian theories, since the dynamics is deterministic, that means there
is only one possible history of the universe. This could be case of strong determinism in the sense of
Penrose (1989). I discuss this point in more detail in “Nomic Vagueness and Imprecise Probabilities”
(ms.).

19I discuss this idea in more detail in Chen (2019).
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(3) Theoretical unity. Theories with a fundamental density matrix also leads to

an increased level of theoretical unity. In W -BM (and other more restrictive versions

with PH or IPH), there is dynamical unity for the universal level and the subsystem

descriptions. The universe is described by a density matrix; the configuration of the

universal system follows the W -BM guidance equations. The same is true for any

subsystem: it is described by a conditional density matrix which guides the subsystem

configuration via the W -BM guidance equation (20).

The situation is to be contrasted with the situation in Ψ-BM with spin, where the

universe is in a pure state but a typical subsystem will not have a conditional wave

function. Instead, it may only have a conditional density matrix, which guides the

subsystem configuration not via the Ψ-BM guidance equation (3) but with the W -BM

guidance equation (20).

For W -GRW and W -EQM, both the universe and the subsystem are described by

density matrices. In Ψ-GRW and Ψ-EQM, the universe is described by a wave function

but the subsystems are described by reduced density matrices which are typically mixed

states (because of the prevalence of entanglement).

(4) The nature of the quantum state. Since the quantum state is defined on a

high-dimensional space, it remains a puzzle in quantum foundations how to understand

what it represents in the physical world. An attractive proposal, due to Dürr et al.

(1996); Goldstein and Teufel (2001), and Goldstein and Zangh̀ı (2013), is to regard it

as nomological, i.e. on par with the fundamental laws of nature. The analogy is with

the Hamiltonian function in classical mechanics: H(p, q) can be understood as a simple

description of the kinetic energy and pair-wise interactions among the point particles,

so that it does not have to be represented as part of the material ontology but rather

as on par with other dynamical laws of nature. To be nomological, H satisfies four

features: (a) it generates motion, (b) it is simple, (c) it is fixed by the theory, and (d)

it does not represent things in the material ontology.

The wave function in Ψ-BM satisfies (a), as it generates the velocity field on con-

figuration space. However, generic wave functions are neither simple nor fixed by the

theory. Dürr et al. (1996) observe that the wave function might be nomological in
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some theories of quantum gravity that satisfy the Wheeler-DeWitt equation. In those

theories, the wave function can be regarded as stationary, which means it does not have

time-dependence and probably have many symmetries. In that case, it could be quite

simple. Given the simplicity, we can stipulate such a wave function explicitly in the

Bohmian theory, which can play the nomological role as the classical Hamiltonian.

WIPH -BM also supports the nomological interpretation of the quantum state. At

t0, we have a quantum state WIPH(t0) that is as simple and as unique as the Past

Hypothesis subspace. Moreover, it has been suggested that the Past Hypothesis can

be a law of nature. So we have another route to the simplicity of the initial quantum

state—through the Initial Projection Hypothesis. Furthermore, any later quantum

states can be written as products of the time-evolution operator and WIPH(t0), both

of which are simple. In this sense, WIPH(t0) generates motion in a simple way. This

route to the nomological interpretation is novel because it does not depend on specific

proposals about quantum gravity.20

0.4.2 Open Questions

W -QM give rise to several open questions. Here I mention two which I hope to address

in future work.

(1) Non-normalizable quantum states. WIPH -QM requires the initial quan-

tum state to be the normalized projection onto the Past Hypothesis subspace HPH .

For technical reasons, we have assumed that HPH is finite-dimensional, such that the

projection can be normalized by 1󳆋dimHPH . If HPH is infinite-dimensional, then the

normalization will not work. Given an infinite dimensional HPH , we may not have a

canonical density matrix as natural as IPH

dimHPH
. However, it is not hopeless, as we have

learnt from quantum cosmology that there are many situations that we need to deal

with non-normalizable quantum states.

In cases where HPH turns out to be infinite dimensional, it is still an option to

take the initial quantum state to be the projection IPH . It is no longer a density

20I discuss this in more detail in Chen (2018a) §6.
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matrix because it is not normalized. However, the dynamics is still well-defined. The

von Neumann equation (18) governs the time evolution of W (t), where W (t0) = IPH .

Moreover, W (t) can still give rise to a velocity field on configuration space via the

W -Bohmian guidance equation (20). The definition of the matter-density and flash

ontology can be tricky given a non-normalizable quantum state. Let us call these

theories WIPH∞-QM. The usual statistical analysis will not extend trivially to such

theories. But perhaps something different can be applied. It is an open question what

measure of typicality and what analysis of probability we can use when the universal

quantum state is non-normalizable.

(2) Ontology and probability of W -Everettian theories. The Bohmian and

GRW theories inherit no new problems about ontology or probability when we move

from a wave-function theory to a density-matrix theory. However, as we noted in §2, new

questions emerge for the W -Everettian theories. Since decoherence may not by itself

be sufficient to show that there is an emergent branching structure in the fundamental

density matrix, we cannot just use the standard arguments in Ψ-Everettian theories

to justify the emergent ontology and probability. It is still an open question what and

whether new techniques can be applied to solve these problems. If they can be solved,

it would be interesting to compare the techniques used to justify the W versions and

the Ψ versions. If they cannot be solved, then it seems that the Everettian framework

does not allow for universal mixed state on pain of being empirical inadequate. That

would be highly surprising.

0.5 Conclusion

In this paper, we have looked at two types of quantum theories: one with a fundamental

wave function and the other with a fundamental density matrix. We found that there is

a crucial difference: on the first type of theories, there is a natural measure of probability

(or typicality) over quantum states, but there is no natural choice for an initial quantum

state, while the opposite is true on the second type—there is a natural choice for the

initial quantum state but does not appear to be a natural measure of probability.

We showed that they can nonetheless be empirically equivalent descriptions of the
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world. To that end, we gave some general arguments for agreement of measurement

outcome statistics for Bohmian, GRW, and Everettian theories, and we introduced a

novel subsystem analysis for the Bohmian theory. Finally, we suggested that there are

some theoretical payoffs and open questions on the density-matrix approach.

Is the universe in a pure state or a mixed state? We probably cannot know the

answer based on empirical grounds. However, if we would like to find a natural choice

of the universal quantum state, we can easily do so if we allow the universe to be in

a fundamental mixed state, with the initial quantum state given by the normalized

projection onto the Past Hypothesis subspace.
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Dürr, D., Goldstein, S., and Zangh̀ı, N. (1992). Quantum equilibrium and the origin of

absolute uncertainty. Journal of Statistical Physics, 67(5-6):843–907.
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