
Accelerating Turing Machines∗

B. JACK COPELAND
Philosophy Department, University of Canterbury, Private Bag, Christchurch, New Zealand;
E-mail: bjcopeland@canterbury.ac.nz

Abstract. Accelerating Turing machines are Turing machines of a sort able to perform tasks that are
commonly regarded as impossible for Turing machines. For example, they can determine whether or
not the decimal representation of π contains n consecutive 7s, for any n; solve the Turing-machine
halting problem; and decide the predicate calculus. Are accelerating Turing machines, then, logically
impossible devices? I argue that they are not. There are implications concerning the nature of effect-
ive procedures and the theoretical limits of computability. Contrary to a recent paper by Bringsjord,
Bello and Ferrucci, however, the concept of an accelerating Turing machine cannot be used to shove
up Searle’s Chinese room argument.

Key words: accelerating Turing machine, Chinese room argument, Church–Turing thesis, decision
problem, effective procedure, halting problem, hypercomputer, hypercomputation, infinity machine,
π-machine, oracle machine, super-task

1. Effective and effective

One might use Turing’s own words to define the topic of this volume: An effective
procedure is ‘any definite rule of thumb process which could have been done by
a human operator working in a disciplined but unintelligent manner’ (1950, p. 1).
Such a human operator is a computer in the original sense of the term – a clerk
whose task is to calculate in accordance with instructions provided by a supervisor.
The clerk works with-nothing but pen and paper. The instructions must not demand
insight or ingenuity from the clerk, must lead unambiguously from one step to the
next, and must be such that the clerk can complete them in a finite span of work.
The Turing machine is a model, idealised in certain respects, of a human computer,
and was introduced as such by Turing (1936, p. 231).

In her “Is the Church–Turing Thesis True?” (Cleland, 1993; see also Cleland,
1995), Cleland develops an alternative analysis of the concept of an effective pro-
cedure. The present paper tills the same field, but without following Cleland in her
rejection of the analysis of effective procedures in terms of Turing machines.

The requirement that the instructions encapsulating an effective procedure be
capable of being carried out in a finite span of work is usually expressed by saying
that the complete execution of the instructions should demand only a finite number
of primitive (or ‘atomic’ or ‘fundamental’) computing steps. But an alternative
account is possible: complete execution of the instructions should demand only a
finite amount of time. The two accounts are sometimes treated as being the same
(e.g., by Hofstadter, 1980, pp. 40–41). However, they are not. In order to mark the

Minds and Machines 12: 281–301, 2002.
© 2002 Kluwer Academic Publishers. Printed in the Netherlands.

小甜心
Highlight

小甜心
Highlight

小甜心
Highlight

小甜心
Highlight

小甜心
Highlight



282 B. JACK COPELAND

distinction without introducing new terminology, procedures satisfying the finite-
time account will be said to be ‘Effective’, always with capital ‘E’.

2. The Russell–Blake–Weyl Temporal Patterning

Neither Turing nor Post, in their descriptions of the devices that we now call Turing
machines, made much mention of time (Turing, 1936; Post, 1936). They listed the
primitive operations (or fundamental processes) that their devices perform – read
a square of the tape, write a single symbol on a square of the tape, move one
square to the right, and so forth – but they said nothing about the duration of each
primitive operation. Temporal considerations are not relevant to the functioning
of the devices as described, nor to the soundness of the proofs that Turing gave
concerning them. Things are very different in the case of the boolean networks of
McCulloch and Pitts (1943) and Turing (1948), where the duration of each primit-
ive operation is a critical factor.1 Turing’s boolean networks were synchronised by a
central clock and each primitive operation took one ‘moment’ of clock time (1948,
p. 10). When working with Turing machines it is no doubt intuitive to imagine each
primitive operation to be similarly fixed in duration (or even to be instantaneous),
but this is no part of the original conception. No conditions were placed on the
temporal patterning of the sequences of primitive operations.

Bertrand Russell, Ralph Blake and Hermann Weyl independently described one
extreme form of temporal patterning. Weyl considered a machine (of unspecified
architecture) that is capable of completing

an infinite sequence of distinct acts of decision within a finite time; say, by
supplying the first result after 1/2 minute, the second after another 11

4 minute,
the third 1/8 minute later than the second, etc. In this way it would be possible
... to achieve a traversal of all natural numbers and thereby a sure yes-or-no
decision regarding any existential question about natural numbers. (Weyl, 1927,
p. 34; English translation from Weyl, 1949, p. 42.)

It seems that this temporal patterning was first described by Russell, in a lecture
given in Boston in 1914. In a discussion of Zeno’s paradox of the race-course
Russell said ‘If half the course takes half a minute, and the next quarter takes a
quarter of a minute, and so on, the whole course will take a minute’ (Russell, 1915,
pp. 172–173). Later, in a discussion of a paper by Alice Ambrose (Ambrose, 1935),
he wrote:

Miss Ambrose says it is logically impossible [for a man] to run through the
whole expansion of π . I should have said it was medically impossible. ... The
opinion that the phrase ‘after an infinite number of operations’ is self-contra-
dictory, seems scarcely correct. Might not a man’s skill increase so fast that he
performed each operation in half the time required for its predecessor? In that
case, the whole infinite series would take only twice as long as the first operation.
(1936, pp. 143–144.)

小甜心
Highlight

小甜心
Highlight

小甜心
Highlight

小甜心
Highlight

小甜心
Highlight

小甜心
Highlight

小甜心
Highlight



ACCELERATING TURING MACHINES 283

Blake, too, argued for the possibility of completing an infinite series of acts in
a finite time:

A process is perfectly conceivable, for example, such that at each stage of
the process the addition of the next increment in the series 1/2, 1/4, 1/8, etc.,
should take just half as long as the addition of the previous increment. But ...
then the addition of all the increments each to each shows no sign whatever
of taking forever. On the contrary, it becomes evident that it will all be accom-
plished within a certain definitely limited duration. ... If, e.g., the first act ... takes
1/2 second, the next 1/4 second, etc., the [process] will ... be accomplished in
precisely one second. (1926, pp. 650–651)
The human computer may carry out the steps of an Effective procedure in ac-

cordance with the Russell–Blake–Weyl temporal patterning (that this is ‘medically
impossible’ is of no more relevance than that real human computers, unlike their
idealised counterparts, suffer from wear and tear, run out of paper, and die). Im-
posing the same temporal patterning upon a Turing machine produces what I have
termed an accelerating Turing machine (Copeland, 1998b, c). These are Turing
machines that perform the second primitive operation called for by the program in
half the time taken to perform the first, the third in half the time taken to perform
the second, and so on. Let the time taken to perform the first primitive operation
called for by the program be one ‘moment’. Since

1/2 + 1/4 + 1/8 + · · · + 1/2n + 1/2n+1 + · · ·
is less than 1, an accelerating Turing machine – or human computer – can perform
infinitely many primitive operations before two moments of operating time have
elapsed. Because accelerating Turing machines are Turing machines (pace Stein-
hart’s treatment in this volume), the restricted quantifiers ‘all Turing machines’,
‘some Turing machines’ and ‘no Turing machines’ have accelerating Turing ma-
chines among their range.

Stewart (1991, pp. 664–665) gives a cameo discussion of accelerating Turing
machines. Related to accelerating Turing machines are the anti de Sitter machines
of Hogarth (1992, 1994) (concerning which see also Earman and Norton, 1993,
1996) and the Zeus machines of Boolos and Jeffrey (1980, pp. l4–15).2 Also re-
lated are the trial-and-error machines of Putnam (1965) and Gold (1965). Hamkins
and Lewis (2000) give a mathematical treatment of the computability theory as-
sociated with accelerating Turing machines (which they term ‘infinite-time Turing
machines’). Copeland and Hamkins (in preparation) discuss the physical plausibil-
ity of accelerating Turing machines with respect to Newtonian physics, relativistic
physics, and quantum theory. Sorensen (1999, Section 6) contains a discussion of
accelerating Turing machines based on Copeland (1998b).

The Church–Turing thesis for Effective procedures is:
Each Effective procedure can be performed by a Turing machine.

Accelerating machines are counted in, of course. So long as ‘can be performed by
a Turing machine’ is taken in what is termed in Section 7 its external sense, the

小甜心
Highlight

小甜心
Highlight

小甜心
Highlight

小甜心
Highlight



284 B. JACK COPELAND

thesis would seem to be true. Even if the thesis is accepted, however, there is scope
for disagreement about the extent of Effective procedures, as noted in Section 8.
My own view is that the Effective procedures do not extend beyond a proper subset
of the procedures that can be carried out by the machine OH defined in Section 6.

3. π -Machines

To say that a Turing machine computes a number is to say that if the machine is
set in motion with its tape blank, it will write out successively the digits of the
decimal, or binary, representation of the number, halting when it reaches the last
digit if there is one. Where the number is irrational – π , for example – or is a
recurring rational, its representation has no last digit, and so each act of writing is
followed by further operations culminating in another act of writing. Nevertheless,
each digit of the representation is written down by the machine after some finite
number of primitive operations has been performed.

Since a Turing machine can be programmed to compute π , an accelerating
Turing machine can execute each act of writing that is called for by this program
before two moments of operating time have elapsed. That is to say, for every n, the
accelerating machine writes down the nth digit of the decimal representation of π

within two moments of operating time. Such a machine can be further programmed
to indicate whether or not there exist, say, three consecutive 7s in the decimal rep-
resentation of π (a question famously discussed by Wittgenstein). Such a machine
constitutes an Effective procedure for settling Wittgenstein’s question.

A number of philosophers have maintained that (to use Ambrose’s words) it is
‘logically impossible to run through the entire expansion [of π ]’ (1935, p. 320).
Some of these philosophers have even put forward arguments for this view. (Am-
brose herself is not among them. She was content to let the claim just quoted
rest on the assertion that ‘the phrase “to run through the entire expansion” is self-
contradictory’ (loc.cit.).) In the 1950s and 1960s, there was a vigorous debate over
whether such a ‘π -machine’ and other machines that perform an infinite number of
operations in a finite time – collectively termed ‘infinity machines’ – are logically
possible.3 If it is correct that a π -machine is a logical impossibility, then accel-
erating Turing machines stand exposed as logically impossible devices. However,
there is little doubt that defeat went to those who attempted to defend versions of
the position staked out by Ambrose: no inconsistency in the notion of a π -machine
was ever demonstrated.

In 1954 Thomson introduced the term ‘super-task’ for a task whose completion
involves carrying out all of an infinite number of subtasks (1954, p. 2). He believed
at the time that there are ‘reasons for supposing that super-tasks are not possible
of performance’ (1954, p. 5). He offered the following example in support of his
view.

There are certain reading-lamps that have a button in the base. If the lamp is off
and you press the button the lamp goes on, and if the lamp is on and you press

小甜心
Highlight

小甜心
Highlight

小甜心
Highlight

小甜心
Highlight

小甜心
Highlight

小甜心
Highlight



ACCELERATING TURING MACHINES 285

the button the lamp goes off. So if the lamp was originally off, and you pressed
the button an odd number of times, the lamp is on, and if you pressed the button
an even number of times the lamp is off. Suppose now that the lamp is off, and
I succeed in pressing the button an infinite number of times, perhaps making
one jab in one minute, another jab in the next half-minute, and so on, according
to Russell’s recipe. After I have completed the whole infinite sequence of jabs,
i.e., at the end of the two minutes, is the lamp on or off? It seems impossible to
answer this question. It cannot be on, because I did not ever turn it on without at
once turning it off. It cannot be off, because I did in the first place turn it on, and
thereafter I never turned it off without at once turning it on. But the lamp must
be either on or off. This is a contradiction. (Loc. cit.)
Although Thomson did not say so explicitly, it seems clear that his purpose in

introducing the ‘Thomson lamp’, as it became known, was to illustrate a particular
form of argument, applicable to any device that allegedly completes a super-task,
and turning on the question of what the state of the device could be after it com-
pletes its task. Concerning the π -machine in particular he made the following
remarks. (A parity machine scans a numeral and indicates whether the number
represented by it is odd or even.)

This type of argument refutes also the possibility of a machine built according
to Russell’s prescription that say writes down in two minutes every integer in
the decimal expansion of π . For if such a machine is (logically) possible so
presumably is one that records the parity, 0 or 1, of the integers written down
by the original machine as it produces them. Suppose the parity-machine has a
dial on which either 0 or 1 appears. Then, what appears on the dial after the first
machine has run through all the integers in the expansion of π? (Loc. cit.)
The latter argument is weak. From the fact that a device composed of two

subdevices cannot possibly carry out its advertised function – in the present case,
that of coming to rest with the parity of the last digit of the decimal representa-
tion of π displayed on its dial – it hardly follows that the subdevices themselves
cannot carry out their advertised functions. For instance, there can be a machine
satisfying the specification ‘serves to keep the voltage across wire AB constant
and high’ and a machine satisfying the specification ‘serves to keep the voltage
across wire AB constant and low’, but there can be no machine that satisfies both
these specifications simultaneously. Any attempt to build one – e.g., by connecting
the ‘high’ machine and the ‘low’ machine in parallel – will inevitably result in
a machine that, whatever else it does (burn out, for example), fails to satisfy the
conjunctive specification. Even supposing that the π -machine and the (acceler-
ating) parity machine are both logical possibilities, it remains the case that the
composite machine described by Thomson is a logical impossibility. There is no
entailment from the impossibility of the composite machine to the impossibility of
the component π -machine.

The argument concerning the Thomson lamp is also unsuccessful, although for
a more subtle reason. In a marvellous reply to Thomson’s paper, Benacerraf argued

小甜心
Highlight

小甜心
Highlight

小甜心
Highlight

小甜心
Highlight

小甜心
Highlight



286 B. JACK COPELAND

that ‘The lamp is on at the end of the two minutes’ and ‘The lamp is off at the end
of the two minutes’ are both logically consistent with the statement that the super-
task in question has been carried out (1962, pp. 767–770). (Benacerraf’s point
was partially anticipated by Blake (1926, pp. 651–652).) The instruction issued
to the super-lamplighter is essentially this: Use the button to make the lamp cycle
between its two states, never allowing the one state to go unfollowed by the other,
the first half-cycle to take one minute, and each subsequent half-cycle to take half
as long as its predecessor. Call this the Thomson instruction. Since each change
of state brought about by the lamplighter’s obeying the Thomson instruction must
occur before the end of the second minute, nothing about the state of the lamp at the
end of the second minute or thereafter is logically entailed by the statement that the
Thomson instruction has been obeyed. So Thomson cannot derive the contradiction
that he said he could derive. His previous conclusion (a few sentences earlier in the
quotation), that it seems impossible to answer the question ‘What is the state of
the lamp at the end of the two minutes?’, is slightly nearer the mark. Given only
the information that the Thomson instruction has been successfully obeyed, it is
impossible to answer that question. But that is not to say that the question need not
have a perfectly good answer (an answer dictated, perhaps, by a sudden failure of
the power supply at the end of the second minute, or in general by causes other
than the lamplighter’s obeying of the instruction).

In a subsequent paper, Thomson graciously acknowledged that Benacerraf had
faulted his argument. He wrote:

I thought that there was some conceptual difficulty about the idea of a lamp
having been turned on and off infinitely often, because, roughly speaking, of
the question about the state of the lamp immediately afterwards. Unfortunately,
I tried to make out that there was a difficulty here by arguing that the lamp
could not be in either of its two states. This argument was worthless ... I am now
inclined to think that there are no simple knock-down arguments to show that the
notion of a completed [super-task] is self-contradictory. (1970, pp. 130–131.)
Nevertheless, Thomson’s query as to what state an infinity machine may con-

sistently be supposed to be in after it completes its super-task is a good one.
As Thomson points out, Benacerraf’s successful critique of his earlier arguments
hardly relieves the advocate of one or another type of infinity machine of the burden
of supplying an answer to this form of question (1970, pp. 133–134). Thomson
does not suggest (in the later paper) that the question is always unanswerable, but
he does emphasise that any adequate treatment of the subject matter must confront
the question squarely.

In 1965 Chihara urged the unintelligibility of a π -machine:
The difficulty, as I see it, is ... the inconceivability of how the machine could
actually finish its super-task. The machine would supposedly print the digits on
tape, one after another, while the tape flows through the machine, say from right
to left. Hence, at each stage in the calculation, the sequence of digits will extend
to the left with the last digit printed being ‘at center’. Now when the machine

小甜心
Highlight

小甜心
Highlight



ACCELERATING TURING MACHINES 287

completes its task and shuts itself off, we should be able to look at the tape
to see what digit was printed last. But if the machine finishes printing all the
digits which constitute the decimal expansion of π , no digit can be the last digit
printed. And how are we to understand this situation? (1965, p. 80.)

Chihara’s specification of the π -machine is simply inconsistent. He requires the
machine to print the unending decimal representation of π and yet he also requires
it to halt having performed a last printing. It is not surprising that, having described
a flatly impossible device, Chihara is able to discern ‘something unintelligible’
about his ‘hypothetical machine’ (loc. cit.).

Let us see what can be done to render intelligible a device reasonably similar to
Chihara’s, in that the device prints the decimal of π and then halts. The first point
to notice is that this device cannot be a Turing machine. A Turing machine halts
when it finds an instruction to do so in its program and, by the nature of a Turing
machine, if an instruction to halt is obeyed one may ascertain which instruction
was obeyed immediately prior to it, and also which square the scanner was resting
on when the prior instruction was obeyed, and then ascertain which instruction
was obeyed immediately prior to that one, and so forth. Since this process cannot
discover a printing of a digit of π – for that would be a printing of the last digit
of π – it follows that either no digit of π was ever printed by the machine or that
the machine carried out some further super-task, for example the task of printing
infinitely many 0s, in between carrying out the π super-task and halting. But, taking
the latter case, exactly the same reasoning can be applied to this second super-task.
Once the total task has been completely specified – for example, the machine is
to write out the digits of π and halt, or is to write out the digits of π followed by
the digits of e and halt – then it can be shown, in the above fashion, that no Turing
machine can carry out the task.

The solution of this particular difficulty is to embed a Turing machine in some
further structure. The program of the Turing machine effects the printing of the
digits of π and contains no instruction to halt. The cessation of operation that
Chihara desires is brought about by the larger machine shutting itself and all its
components off by some means. For example, the machine may contain a clock
and arrangements be made so that the machine disconnects itself from its energy
source at the end of the second moment of operation.

Further difficulty is occasioned by Chihara’s demand for a tape with a first and
a last square and infinitely many squares in between. The tape of a Turing machine
– which as Post put it is ‘ordinally similar to the series of integers’ (Post, 1936,
p. 103) – cannot possibly be like that. But the machine need not print successive
digits on successive squares. Since the point at issue is the intelligibility of the
proposition that the machine carries out an infinite number of printings and then
halts, we may allow the machine to carry out each of its printings of digits of π

on the same square, to be called the π -printing square (a printing involves first
deleting any symbol previously inscribed on the square to be printed upon). The
auxiliary printings performed by the machine in the course of computing any digit

小甜心
Highlight

小甜心
Highlight

小甜心
Highlight

小甜心
Highlight

小甜心
Highlight

小甜心
Highlight



288 B. JACK COPELAND

of π are carried out on a strip of tape to be called the auxiliary strip. (Digits printed
on the auxiliary strip during the computations leading to the production of the nth
digit of π are overwritten during the computations leading to the production of the
n + lth digit.)

By hypothesis, the printing operations performed by the machine on the π -
printing square have no last member. What, then, is inscribed on the π -printing
square after the machine ceases its activity? The lesson of Benacerraf’s argument
is that the specification of the machine as so far given entails no answer to this
question. For an answer to exist, the specification must be extended. Not every
way of doing this will produce a specification of a possible machine. For example,
if it is set down that the only manner in which information can be introduced
onto the π -printing square is by means of a printing operation performed by the
Turing machine’s scanner, and that information can be lost from the square only
during the deleting phase of one of these printing operations, then we may grant
that no machine can possibly satisfy the extended specification. But not all ways
of extending the specification so as to incorporate an answer to the question at
issue will end in impossibility. For example, let it be set down that the information
introduced onto the square during an act of printing decays as soon as that printing
is completed (rendering the deleting phase of the next printing operation obsolete).
One might further require that the information persists undecayed throughout a
final ‘resting’ phase of each printing operation (perhaps the resting phase occupies
10% of the time taken by the entire printing operation). The latency of the auxiliary
strip is so arranged that the digits inscribed on it during the computations leading
to the printing of the nth digit of π decay as soon as the printing operation that
produces the nth digit of π is completed. Once the machine’s activity has ceased,
the tape bears no traces of any of the printings that were performed. It is blank.

Where the specification for the machine provides for loss of information from
the tape, the specification can be satisfied, but if the specification is altered so as to
prohibit loss of information, other things remaining the same, then the specification
cannot possibly be satisfied. So the protasis of the question ‘What would have been
written on the tape if the information had not decayed?’ (understood as elliptical
for ‘if the machine in question were to satisfy an amended specification in which
information loss is prohibited, other things remaining the same’) is a supposition
to the effect that a logical impossibility be true. The question seeks a reply that is a
true counterfactual statement with a logically impossible antecedent. Many spring
to mind!

Equally, impossibility is bound to be the fruit of any attempt to extend the spe-
cification of the π -machine to a specification for a compound device in which the
π -machine operates in conjunction with an accelerating scanner-cum-memory that
compensates for the non-retentiveness of the tape. As in the case of the parity ma-
chine, two device-specifications that are satisfiable individually may be impossible
to satisfy if taken jointly.

小甜心
Highlight

小甜心
Highlight

小甜心
Highlight

小甜心
Highlight



ACCELERATING TURING MACHINES 289

So logically consistent answers can be given to Thomsonian questions about the
condition of a halting π -machine after it has halted. However, as a specimen of a
π -machine, the foregoing is a shade disappointing. It performs its advertised super-
task but leaves no record of its printings. Moreover, it is not a Turing machine (as
previously discussed). The Turing machine � described next leaves its user holding
(at the end of the second moment) the end of an infinitely long tape on which each
digit of the decimal of π is written.

The Newtonian equations of motion have what are known as ‘escape solutions’
whereby a body disappears from the universe in consequence of its velocity in-
creasing without bound (Geroch, 1977, p. 82, Earman, 1986, p. 34). For example,
let the velocity of a body β increase in accordance with the Russell–Blake–Weyl
formula: β takes 1 second to cover the first metre of its trajectory, a 1/2 second
to cover the next metre, and so on. β’s velocity is always finite but is unbounded.
At the end of the second second of motion, β disappears from the universe. Take
any Euclidean coordinate system originated on any point of β’s trajectory: the axes
specify every location in the universe and β is to be found at none of them!

� is an accelerating Turing machine programmed to churn out the decimal of
π , the digits to be written on successive squares of the tape. �’s scanner moves
in tandem with a tape generator which supplies a further square of tape each time
the scanner reaches the end of the strip of tape already generated (perhaps the tape
generator is bolted to the scanner). Each square of the tape is of side 1 unit. The user
holds the free end of the tape and presses the start button. With each move-right
operation called for by the program, the scanner travels one unit further from the
user along a linear trajectory. By the end of the second moment the user is holding
an endless tape on which can be found each digit of the decimal of π . The answer
to the Thomsonian question ‘Where is the scanner at that point?’ is: Nowhere.

4. Solving the Halting Problem by Clerical Labour

Every Turing machine has a program of instructions ‘hard wired’ into its scanner.
By using some suitable system of coding conventions, the instructions of any given
Turing machine can be represented by means of a single (large) binary number. Call
this the machine’s program number.

Before a Turing machine is set in motion some sequence of binary digits may
be inscribed on its tape.4 This is the input, the data upon which the machine is
to operate, encoded in binary form. Call this number the machine’s data number.
Naturally the data number will alter from run to run of the machine. One may speak
of the machine being set in motion bearing such-and-such a data number. (The data
number of an initially blank tape is zero.)

The famous halting function H takes pairs of integers as arguments and returns
the value 0 or 1. H may be defined as follows, for any pair of integers x and y:
H(x, y) = 1 if and only if x is the program number of a Turing machine that
eventually halts if set in motion bearing data number y; H(x, y) = 0 otherwise.

小甜心
Highlight

小甜心
Highlight

小甜心
Highlight

小甜心
Highlight

小甜心
Highlight

小甜心
Highlight

小甜心
Highlight

小甜心
Highlight



290 B. JACK COPELAND

Notice that if the integer x is not a program number of a Turing machine then
H(x, y) = 0 for every choice of y; and if x is a program number, say of Turing
machine t, then H(x, y) = 0 if and only if t fails to halt when set in motion bearing
y.

A machine able to ‘solve the halting problem’ can inform us, concerning any
given Turing machine, whether or not that machine would halt when set in motion
bearing any given data number. The halting theorem states that no Turing machine
can compute the value of the halting function for each pair of integers x, y. The
theorem notwithstanding, an accelerating Turing machine can produce the values
of the halting function.

Let t be any Turing machine. A universal Turing machine that is set in motion
bearing the data number formed by writing out the digits of t’s program number p
followed by the digits of t’s data number d will simulate t. The universal machine
performs every operation that t does, in the same order as t (although interspersed
with sequences of operations not performed by t), and halts just in case t does. A
machine H that computes the values of the halting function for all integers x and
y will result if one equips an accelerating universal Turing machine (or a human
clerk) with a signalling device – a hooter, say – such that the hooter blows when
and only when the machine halts.5 To obtain the value of the halting function for
a given machine t, one writes out the digits of t’s program number p followed by
the digits of t’s data number d on H’s tape and sets H in motion. If the hooter
blows within two moments of the start of the simulation then H(p, d) = 1, and if
it remains quiet then H(p, d) = 0.6 Given any Turing machine bearing any data
number, H can inform us whether or not that machine halts.

The next section describes a modified form of H which decides the full first-
order predicate calculus. H is not, within the meaning of the act, an Effective
procedure, since according to the characterisation of effectiveness (section 1), the
human computer has no access to any machinery other than a pen, not even a
hooter. No matter. Section 7 describes a minor variant of H, HT, which is an
Effective procedure for solving the halting problem, and another variant, DT, which
is an Effective procedure for deciding the predicate calculus. HT and DT are Turing
machines. There is, of course, an air of paradox about this, to be addressed in
Section 7.

5. Deciding the Predicate Calculus

Church explains the Entscheidungsproblem, or decision problem, as follows:
By the Entscheidungsproblem of a system of symbolic logic is here understood
the problem to find an effective method by which, given any expression Q in
the notation of the system, it can be determined whether or not Q is provable in
the system. (Church, 1936, p. 41.)

Famously, Turing (1936) argued that there is no such effective method in the case
of the predicate calculus, proving that no Turing machine can compute the function

小甜心
Highlight

小甜心
Highlight

小甜心
Highlight

小甜心
Highlight

小甜心
Highlight



ACCELERATING TURING MACHINES 291

D(x) whose value is 1 if formula x is a theorem of the calculus and 0 if x is not a
theorem. Nevertheless, an accelerating machine is able to compute this function.

A Turing machine can be programmed to derive theorems of the first order
predicate calculus. The machine is given a set of axioms for the calculus (e.g.,
the Bernays–Hilbert–Ackermann axioms (Hilbert and Ackermann, 1928)) and is
programmed to apply the rules of the calculus – such as modus ponens – iterat-
ively, both to axioms and to formulae already derived. The simplest form of such a
program works blind: the rule-applications are not selected by the machine in such
a way as to lead to some particular theorem but are carried out according to an
inflexible and exhaustive regime specified by the programmer. Nevertheless, each
and every rule-application produces a theorem of the calculus, and if the machine
runs on forever, each theorem of the calculus is produced sooner or later.

As Stewart remarks, an accelerating machine ‘could prove all possible theorems
in a finite period of time, by pursuing all logically valid chains of deduction from
the axioms’ (1991, p. 665). Let an accelerating Turing machine equipped with a
hooter be given a program of the sort just described for churning out the theorems
of the predicate calculus. Each time the accelerating machine derives a formula it
compares the formula to a formula x of the predicate calculus that was written on
its tape by the user before setting the machine in motion. The machine hoots if
and only if it proves a formula that matches x symbol-for-symbol. Thus, if a hoot
comes, x is a theorem of the calculus, and if no hoot comes by the end of the second
moment of operating time, x is not a theorem.

6. Oracle Machines with Accelerating Components

Turing introduced the concept of an O-machine in Section 4 of his PhD thesis
(Turing, 1938). An O-machine is a Turing machine equipped with an additional
device – a black box – that, when presented with arguments of some non Turing-
machine-computable function, returns the corresponding values of this function.
For example, the black box may respond to an input of a pair of integers, x and
y, with the corresponding value of the halting function, H(x,y), for every x and y.
Turing called such black boxes ‘oracles’ and described O-machines as ‘a new kind
of machine’. As in the case of an ordinary Turing machine, the behaviour of an O-
machine is determined by a table of instructions (or program). The table provides
an exhaustive specification of which primitive operations the machine is to perform
when it is in such-and-such state and has such-and-such symbol in its scanner.

The tables of the two sorts of machine differ only in the following respect: an
O-machine’s table may contain instructions of the form ‘TRANSFORM #*’.7 ‘#*’
refers to some particular string of symbols on the machine’s tape, the beginning of
the string being marked by the presence on the tape of a reserved symbol ‘#’ and
the end of the string being marked by a reserved symbol ‘*’. The instruction causes
the portion of tape so marked to be presented to the black box. The symbols on
this portion of tape constitute a specification of an argument of whatever function

小甜心
Highlight

小甜心
Highlight

小甜心
Highlight

小甜心
Highlight

小甜心
Highlight

小甜心
Highlight

小甜心
Highlight

小甜心
Highlight



292 B. JACK COPELAND

it is that the box generates (or of a series of n arguments in case the function
is n-ary). The box replaces the symbols on the tape with a specification of the
corresponding value of the function. The transform operation performed by the
oracle is, in Turing’s expression, one of the ‘fundamental processes’ of the machine
(op. cit., p. 173).8 (He gave no indication of how this fundamental process might
conceivably be carried out, saying only that an oracle works by ‘unspecified means’
and that ‘we shall not go any further into the nature of [an] oracle’ (op. cit., pp.
172–173).)

In summary: An O-machine consists of a ‘head’ and a paper tape of unbounded
length bearing discrete symbols. The ‘head’ contains various sub-devices, at least
one of which is an oracle. The O-machine manipulates symbols on the tape in a
serial, step-by-step manner in accordance with the rules specified by its program.
Every primitive operation of an O-machine that is not among the primitive opera-
tions of a Turing machine is a formal operation on discrete symbols (in essence an
operation that replaces a binary string with 1 or 0).

One way of specifying a mechanism by means of which an oracle can do its
work is in terms of H. Let OH be an O-machine of which H itself serves as oracle.
OH consists of a (non-accelerating) universal Turing machine T operating in con-
junction with H, and including a clock, and resources for delivering digits from T’s
tape to H’s tape, for setting H in motion at the appropriate time, and for detecting
and recording the presence or absence of a signal within two moments of H’s work
commencing. OH will be described as being set in motion bearing data number x
just in case T is so set in motion, and to halt (with 1 [0] under its head) just in case
T halts (with 1 [0] under its scanner). In case OH’s computation requires more than
one ‘call to the oracle’, OH has resources to create fresh copies of H ad libitum
(the equivalent of a potential infinity of accelerating human clerks). In this way,
the Thomsonian question ‘How is H’s scanner to be brought back to the starting
position again?’ is avoided. (In my 2000 paper I describe some ways of realising
an oracle that do not involve the use of accelerating components, e.g., by means of
a device capable of storing a real number; see also Copeland and Sylvan, 1999.)

OH is able to compute the halting function and all ‘uncomputable’ functions
reducible to the halting function. There is certainly no paradox here. OH is not
a Turing machine. OH consists of two Turing machines plus additional equipment
(most conspicuously the clock and signalling equipment): OH is more than a Turing
machine. The same is true of H: H is a Turing machine plus a signalling device.
OH’s program of instructions is not a Turing machine program. Since OH is not a
Turing machine, the fact that OH computes the halting function cannot contradict
the halting theorem.

But might not the considerations used in the proof that a Turing machine cannot
compute the halting function also apply to OH, enabling one to infer that OH is a
logical impossibility?

The proof of the halting theorem proceeds by reductio ad absurdum. One as-
sumes that there is a Turing machine h that computes the halting function. The

小甜心
Highlight

小甜心
Highlight

小甜心
Highlight

小甜心
Highlight

小甜心
Highlight

小甜心
Highlight

小甜心
Highlight

小甜心
Highlight

小甜心
Highlight



ACCELERATING TURING MACHINES 293

argument may proceed via the introduction of a further machine, h2, derived from
h by two simple modifications (see for example Minsky, 1967, pp. 148–149). The
first modification produces a machine h1 which, when set in motion bearing the
same data number as h, halts with 0 under its scanner if and only if h does so, but
which never halts with 1 under its scanner. The modification consists of adding
some instructions to h’s program in order to make the scanner shuffle endlessly
back and forth between some pair of adjacent squares of the tape in the case where
it would otherwise have halted with 1 beneath it. A second modification produces
h2 from h1. h2 is identical to h1 except that h2 first writes out a copy of its data
number (beginning on the square immediately following the last digit of the initial
occurrence of the data number). Thereafter h2 behaves exactly as h1. So if h2 is set
in motion bearing the data number m, then once the copying phase is completed,
h2 will behave exactly as h1 behaves when set in motion bearing the data number
m�m (x�y – x concatenated with y – is the number formed by first writing out the
digits of x and then the digits of y).

To set h in motion bearing the data number n�n formed from the program number
n of some Turing machine t is to ask h whether or not t will halt if t is set in motion
bearing its own program number as data number. Suppose, then, that we were to set
h in motion bearing the data number k� k, k being h’s own program number. Doing
so would tie a knot of self-reference every bit as tangled as those exhibited in the
more familiar semantic paradoxes. The point of the construction leading to h2 is to
bring the contradiction contained in this knot right out into the open. Writing p for
h2’s program number and writing h2 ↓ p to mean that h2 halts when set in motion
bearing p, each of the following is entailed:

h2 ↓p ↔ H(p, p) = 0 H(p, p) = 0 ↔ ¬h2 ↓p.

If h exists, then h2 exists; but h2 exists on pain of contradiction.
It is the fact that OH’s program number, r say, differs from the program number

of each Turing machine that stalls this train of reasoning as applied to OH. The
halting behaviour of h and its derivatives bears messages concerning the halting
behaviour of Turing machines. Thus the means of tying the self-referential knot and
producing the contradiction. The halting behaviour of OH (and suitable derivatives)
also bears such messages about Turing machines, but since OH is not a Turing ma-
chine, these messages say nothing about OH itself. Investigating a machine H2 that
bears the same relationship to OH as h2 bears to h will make these considerations
concrete. Let OH be arranged so that its halting behaviour when set in motion
bearing a data number x�y (which is to say, the halting behaviour of its component
machine T when set in motion bearing this data number) is as follows: OH halts
with 1 under its head just in case the oracle H delivers a signal when fed x�y and
OH halts with 0 under its head just in case the oracle delivers no signal when fed
x�y. Writing ‘m↓0n’ [‘m↓1n’] to mean ‘machine m halts with 0[1] under its head
when set in motion bearing data number n’:

for every x, y : OH ↓0x�y ↔ H(x, y) = 0 & OH ↓1x�y ↔ H(x, y) = 1. (1)

小甜心
Highlight

小甜心
Highlight

小甜心
Highlight

小甜心
Highlight

小甜心
Highlight

小甜心
Highlight

小甜心
Highlight



294 B. JACK COPELAND

H1 is obtained from OH by exactly the moves that yield h1 from h. So:

for every x : H1 ↓x ↔ OH ↓0x. (2)

H1 is modified to produce H2 in just the way that h1 is modified to produce h2. So:

for every x : H2 ↓x ↔ H1 ↓x�x. (3)

As with h2, let us consider the effect of setting H2 in motion bearing its own
program number, r, as data number:

H2 ↓ r ↔ H1 ↓ r�r (from 3) (4)

H1 ↓ r�r ↔ OH ↓0r�r (from 2) (5)

OH ↓0r�r ↔ H(r, r) = 0 (from 1) (6)

H2 ↓ r ↔ H(r, r) = 0 (4-6, transitivity). (7)

Since r is not the program number of a Turing machine, H(r, r) is in fact 0. Thus
one can conclude that H2 does halt if set in motion bearing its own program number
as data number.

The inference (above) to:

H(p, p) = 0 ↔ ¬h2 ↓p

requires the knowledge that p (h2’s program number) is the program number of a
Turing machine (for it is only if this is so that H(p, p) being 0 entails that the Turing
machine so numbered does not halt when fed p). It is exactly this inference that is
blocked in the case of H2.

O-machines form an infinite hierarchy. At the bottom are the first-order O-
machines: the O-machines whose only oracle produces the values of the halt-
ing function H(x, y). The halting function for first-order O-machines, H1(x, y),
is defined as follows (for all integers x and y): H1(x, y) = 1 if and only if x is the
program number of a first-order O-machine that halts if set in motion bearing data
number y; H1(x, y) = 0 otherwise. Second-order O-machines have an additional
oracle, producing the values of H1(x, y). That OH lies right at the bottom of this
hierarchy will be important in Section 8.

Perhaps the biological brain – abstracted out from sources of inessential bounded-
ness, such as mortality – is an O-machine (although doubtless not one with ac-
celerating components). Elsewhere I dub this view wide mechanism (Copeland,
2000).

7. Internal and External Computability

H is not a Turing machine. However, as this section explains, H can be mimicked
by a Turing machine pure and simple, HT. The same is true in the case of the ac-
celerating machine for deciding the predicate calculus. It might be thought that the

小甜心
Highlight

小甜心
Highlight

小甜心
Highlight

小甜心
Highlight



ACCELERATING TURING MACHINES 295

negations of the halting theorem and Turing’s undecidability theorem are thereby
entailed, yielding a logically rigorous demonstration that – just as those in the
Ambrose camp always suspected – a contradiction lurks in the proposition that
infinitely many operations can be performed in a finite time. The thought, however,
is mistaken.

As with H, HT is set in motion bearing the concatenation of a pair of integers.
HT’s first actions are to position the scanner over the first square to the left of the
input string – called the designated square – and print 0 there. The remainder of
HT’s program is identical to H’s except that the instruction to blow the hooter is
replaced by a block of instructions that causes the scanner to move back to the
designated square and change the 0 to 1 before halting. H computes the halting
function and HT mimics H exactly (save for writing 1 on the designated square
instead of hooting): HT – a Turing machine fair and square – computes the halting
function. For any x and y, if HT is set in motion bearing the data number x�y, the
value H(x, y) can be read from the designated square at the end of the second mo-
ment of operating time. But according to the halting theorem, the halting function
is not Turing-machine-computable. A blatant contradiction, it might be said.

At bottom, the reason that the contradiction just touted cannot validly be ob-
tained is that the halting theorem is in fact a somewhat weaker proposition than is
sometimes supposed. It is time to be more precise in stating the halting theorem.

Standardly, to say that a function f(x) each of whose values is 0 or 1 is Turing-
machine-computable is to say that there is a Turing machine which, if set in motion
bearing x as data number (for any x in the function’s domain), will eventually
halt with its scanner resting on the corresponding value of the function. (Similarly
for functions of more than one argument and for functions whose values include
integers other than 0 and 1. In the latter case, it is stipulated that the scanner should
halt resting on, say, the last digit of the function’s value.) The halting theorem is
this: in the sense just given the halting function is not Turing-machine-computable.
(Only this much was proved by the reductio described earlier, for it is crucial to
the construction employed in the reductio that the machine h should halt with the
value of the function, 0 or 1, beneath its scanner. Unless this is so, the recipe for
obtaining h1 from h is inapplicable.)

One must distinguish between two senses in which a function may be said to
be computable, which I term the internal sense and the external sense.9 A function
is computable by a machine in the internal sense just in case the machine can
produce values from arguments (for all arguments in the domain), halting once any
value has been produced, where what counts as halting can be specified in terms
of features internal to the machine and without reference to the behaviour of some
device or system – e.g. a clock – that is external to the machine. (This condition
on the manner of production of values of the function will be referred to as the
internalist condition.) Numerous behaviours on the part of a machine can count as
halting, for example complete cessation of activity, or emitting a hoot, or writing
any sequence of digits in a certain location.

小甜心
Highlight

小甜心
Highlight

小甜心
Highlight

小甜心
Highlight



296 B. JACK COPELAND

A function is computable by a machine in the external sense just in case the
machine can produce values from arguments (for all arguments in the domain),
displaying each value at a designated location some pre-specified number of mo-
ments after the corresponding argument is presented. The machine may or may not
halt once a value has been displayed. For example, it is in the external sense that a
given function may be computable by a logic circuit (one of Turing’s own boolean
networks, for instance). The value of the function is displayed at some designated
node – the output node – n moments after the argument is presented at the input
nodes (mutatis mutandis for functions of more than one argument and functions
whose values require more than one binary node for their expression). Before and
after that critical time, the activity of the output node may afford no clue as to the
desired value. (n, which is a constant for that circuit and that function, is known as
the delay time.)

Even where the logic circuit never stabilises (in the sense of eventually pro-
ducing an output signal that remains constant until such time as the input signal
alters), the circuit nevertheless computes values of a function in the external sense
if it displays them at the designated location at the prespecified times. The same is
true of neural networks. A particular network may compute the values of a certain
function in the external sense even though the network never stabilises (a network
stabilises, or ‘halts’, if and only if after some point there is no further change in the
activity level of any of its units).

Both H and HT compute the halting function in the external sense, but not in the
internal sense, and OH computes the function in the internal sense. Any machine
that computes a function in the external sense can always be converted into one
that computes the function in the internal sense by the addition of some additional
equipment. Of course, adding the extra equipment may result in a machine not of
the same type.

The halting theorem speaks only of computability by Turing machine in the
internal sense, not of computability in the external sense. This is what was meant by
the earlier statement that the halting theorem is weaker than is sometimes supposed.
If the internalist condition is lifted, a Turing machine will compute functions that
are not Turing-machine-computable when the internalist condition is in place. A
Turing machine liberated from the internalist condition is an example of what I
have elsewhere termed a hypercomputer (Copeland and Proudfoot, 1999).

A Turing machine DT, similar to HT, decides the predicate calculus. The user
inscribes a formula X of the predicate calculus on DT’s tape, leaving the leftmost
square of the tape (the designated square) blank, sets DT in motion, and at the
end of the second moment of operating time finds either 1 or 0 inscribed on the
designated square, 1 indicating that X is a theorem, 0 indicating that it is not. There
is no contradiction with the result of Turing’s mentioned earlier, for Turing proved
that the function D(x) is not Turing-machine computable in the internal sense.

Each of HT and DT constitutes an Effective procedure. Actual human com-
puters, who computed only in the internal sense, would at the end of their labour

小甜心
Highlight

小甜心
Highlight

小甜心
Highlight

小甜心
Highlight

小甜心
Highlight



ACCELERATING TURING MACHINES 297

screw the tops back on their pens and hand their results to a supervisor. An acceler-
ating human computer has no such ceremony to look forward to, and the supervisor
must watch the clock, awaiting a signal.

8. The Chinese Room

Searle has repeatedly emphasised that the fact that computers have ‘no more than
just formal symbols’ entails that programs ‘cannot constitute the mind’ and that
this entailment is demonstrated by the Chinese room argument (1989, p. 33, 1992,
p. 200).

The whole point of the [Chinese room] example was to argue that symbol ma-
nipulation by itself couldn’t be sufficient for understanding Chinese. (1980, p.
419.)

[F]ormal syntax ... does not by itself guarantee the presence of mental contents.
I showed this a decade ago in the Chinese room argument. (1992, p. 200.)
As I argue in my 1998a paper, O-machines point up the fact that the concept

of a programmed machine whose activity consists of the manipulation of formal
symbols is more general than the restricted notion of formal symbol-manipulation
targetted in the Chinese room argument. The Chinese room argument depends
upon the occupant of the room – a human clerk working by rote and unaided by
machinery; call him or her Clerk – being able to carry out by hand each operation
that the program in question calls for (or in one version of the argument, to carry
them out in his or her head). Yet an O-machine’s program may call for fundamental
symbol-manipulating processes that rote-worker Clerk is incapable of carrying out.
In such a case, there is no possibility of Searle’s Chinese room argument being
deployed successfully against the functionalist hypothesis that the brain instantiates
an O-machine – a hypothesis which Searle will presumably find as ‘antibiological’
(1990, p. 23) as other functionalisms. If there is a general implication from ‘is
defined purely formally or syntactically’ to ‘is neither constitutive of nor sufficient
for mind’, it is not one that could possibly be established by the Chinese room
argument.

Bringsjord, Bello and Ferrucci (2001) attempt to defend Searle against my ob-
jection. Clerk (or Searle) can hand-work the program of an O-machine, they say,
by accelerating in the Russell–Blake–Weyl fashion.

Jack Copeland ... has recently argued that oracle machines ... are immune to
Searle’s (1980) CRA-based claim that mere symbol manipulation is insufficient
for genuine mentation ... Unfortunately, oracle machines are not immune to the
Chinese room ... It’s easy to imagine that Searle in the Chinese Room manip-
ulates symbols in order to parallel the operation of a Zeus machine [a machine
operating in accordance with Russell–Blake–Weyl] ... The only difference is
that in (what we might call) the ‘Zeus room,’ Searle works much faster. But this
speed-up makes no difference with respect to true understanding.

小甜心
Highlight



298 B. JACK COPELAND

The problem with this effort to shore up Searle’s argument is that it leaves what
is supposed to go on in the ‘Zeus room’ radically under-described. Bringsjord,
Bello and Ferrucci (2001) owe us answers to some difficult Thomsonian questions.
How is it with Clerk after the period of acceleration? Suppose the program calls for
H to run twice, with different inputs, or even infinitely many times – how is Clerk
supposed to manage this? It is not certainly not enough that Clerk carry out the
simulation of H and (in the manner of Section 3) sail out of the universe, a hoot,
if there is one, returning to the waiting crowd. One way or another, Clerk must be
there in order to participate in the necessary facts. If the Chinese room argument
is not to be subverted by the new twist to the story, it must be a fact about Clerk
that, having carried out all the symbol-manipulations called for by the program, he
or she does not understand Chinese. Moreover, this fact must be epistemologically
accessible to us.

Thomsonian difficulties multiply where the machine that Clerk is supposed to
mimic lies not at the very bottom of the infinite hierarchy mentioned earlier, as OH

does, but higher up. Bringsjord, Bello and Ferrucci (2001) do not mention this case
at all, yet it is crucial to their attempt to defend the ‘CRA-based claim that mere
symbol manipulation is insufficient for genuine mentation’. They must demonstrate
– to good Thomsonian standards – that Clerk is able to simulate not only OH but
every programmed symbol-manipulator in the ascending hierarchy.

The stakes are high. If Bringsjord, Bello and Ferrucci (2001) can meet this chal-
lenge, they will show that the extent of Effective procedures is very considerable –
greater, perhaps, than anybody ever dreamed.

Notes
∗Research on which this article draws was supported in part by University of Canterbury Research
Grant no. U6271. Thanks to David Armstrong, Chris Bullsmith, Keith Campbell, Philip Catton, Peter
Farleigh, Diane Proudfoot and Neil Tennant for valuable comments and discussion.
1‘Turing’s boolean networks and his connectionist project involving them are described in Copeland
and Proudfoot (1996, 1999).
2The term ‘anti de Sitter machine’ is from Copeland and Sylvan (1999). Boolos and Jeffrey envisage
Zeus being able to act so as to exhibit (what is here called) the Russell–Blake–Weyl temporal pattern-
ing (1980, p. 14). By an extension of terminology (which Boolos and Jeffrey do not make) a Zeus
machine is any machine exhibiting the Russell–Blake–Weyl temporal patterning. All accelerating
Turing machines are Zeus machines, but not vice versa. For example, an O-machine that exhibits the
Russell-Blake-Weyl patterning – such as the machine OH of Section 4 – is a Zeus machine but is not
a Turing machine.
3See, for example, Benacerraf (1962), Black (1951), Chihara (1965), Grünbaum (1968), Hinton and
Martin (1954), Taylor (1951), Thomson (1954), (1970) and Watling (1952).
4Each Turing machine is equivalent to a Turing machine employing the binary alphabet.
5Turing and his colleagues enjoyed the possibilities afforded by the hooter of the Manchester Mark I
computer (the world’s first fully electronic stored-program digital computer). Turing’s programming
manual for the Manchester machine describes the hooter as producing ‘a steady note, rich in har-
monics’ (1950, p. 24). One of the machine’s instructions would send a single pulse to the hooter;
a train of pulses, timed correctly, would produce a note. Turing displays a loop of two instructions



ACCELERATING TURING MACHINES 299

producing middle C, and a loop of three instructions ‘which gives a slightly louder hoot a fifth lower
in frequency’ (ibid.). The first program of any significant size to run on the machine – written by
Strachey at Turing’s behest – brought its activity to a close by playing the British National Anthem
on the hooter.
6Since, by definition, H(x,y) is 0 whenever x is not the program number of a Turing machine, H

must not halt and blow its hooter in this case. This is achieved by adding some instructions that drive
H into an infinitely repeated loop if it determines x not to be the program number of some Turing
machine.
7For ease of exposition, the present account departs from Turing’s own in various matters of detail.
8In Turing’s original exposition, these new fundamental processes produce the values only of π0

2
functions. In the subsequent technical literature, the notion of an O-machine has been widened to
include fundamental processes that produce values of any function on the integers that is not Turing-
machine-computable. I employ this extended notion here.
9The distinction is from Copeland (1998b).

References

Ambrose, A. (1935), ‘Finitism in Mathematics (I and II)’, Mind 35, pp. 186–203, pp. 317–340.
Benacerraf, P. (1962), ‘Tasks, Super-Tasks, and the Modern Eleatics’, Journal of Philosophy 59, pp.

765–784.
Black, M. (1951), ‘Achilles and the Tortoise’, Analysis 11, pp. 91–101.
Blake, R.M. (1926), ‘The Paradox of Temporal Process’, Journal of Philosophy 23, pp. 645–654.
Boolos, G.S., Jeffrey, R.C. (1980), Computability and Logic, 2nd edition, Cambridge: Cambridge

University Press.
Bringsjord, S., Bello, P. and Ferrucci, D. (2001), ‘Creativity, the Turing Test, and the (Better)

Lovelace Test’, Minds and Machines 11, pp. 3–27.
Chihara, C.S. (1965), ‘On the Possibility of Completing an Infinite Process’, Philosophical Review

74, pp. 74–87.
Church, A. (1936), ‘A Note on the Entscheidungsproblem’, Journal of Symbolic Logic 1, pp. 40–41.
Cleland, C.E. (1993), ‘Is the Church–Turing Thesis True?’, Minds and Machines 3, pp. 283–312.
Cleland, C.E. (1995), ‘Effective Procedures and Computable Functions’, Minds and Machines 5, pp.

9–23.
Copeland, B.J. (1997), ‘The Broad Conception of Computation’, American Behavioral Scientist 40,

pp. 690–716.
Copeland, B.J. (1998a), Turing’s O-machines, Penrose, Searle, and the Brain’, Analysis 58, pp. 128–

138.
Copeland, B.J. (1998b), ‘Even Turing Machines Can Compute Uncomputable Functions’, in C.

Calude, J. Casti, and M. Dinneen, eds., Unconventional Models of Computation, London:
Springer-Verlag, pp. 150–164.

Copeland, B.J. (1998c), ‘Super Turing-Machines’, Complexity 4, pp. 30–32.
Copeland, BJ. (2000), ‘Narrow Versus Wide Mechanism’, Journal of Philosophy 96, pp. 5–32.
Copeland, B.J. and Hamkins, J.D. (in preparation), ‘Infinitely Fast Computation’.
Copeland, B.J. and Proudfoot, D. (1996), ‘On Alan Turing’s Anticipation of Connectionism’,

Synthese 108: pp. 361–377.
Copeland, B.J. and Proudfoot, D. (1999), ‘Alan Turing’s Forgotten Ideas in Computer Science’,

Scientific American 280 (April), pp. 76–81.
Copeland, B.J. and Sylvan, R. (1999), ‘Beyond the Universal Turing Machine’, Australasian Journal

of Philosophy 77, pp. 46–66.
Earman, J. (1986), A Primer on Determinism, Dordrecht: Reidel.
Earman, J. and Norton, J.D. (1993), ‘Forever Is a Day: Supertasks in Pitowsky and Malament–

Hogarth Spacetimes’, Philosophy of Science 60, pp. 22–42.



300 B. JACK COPELAND

Earman, J. and Norton, J.D. (1996), ‘Infinite Pains: The Trouble with Supertasks’, in A. Morton and
S.P. Stich, eds., Benacerraf and his Critics, Oxford: Blackwell.

Geroch, R. (1977), ‘Prediction in General Relativity’, in J. Earman, C. Glymour and J. Stachel,
eds., Foundations of Space-Time Theories, Minnesota Studies in the Philosophy of Science, 8,
Minneapolis: University of Minnesota Press.

Gold, E.M. (1965), ‘Limiting Recursion’, Journal of Symbolic Logic 30, pp. 28–48.
Grünbaum, A. (1968), Modern Science and Zeno’s Paradoxes, London: Allen and Unwin.
Hamkins, J.D. and Lewis, A. (2000), ‘Infinite Time Turing Machines’, Journal of Symbolic Logic

65, pp. 567–604.
Hilbert, D. and Ackermann, W. (1928), Grundziige der Theoretischen Logik, Berlin: Springer.
Hinton, J.M and Martin, C.B. (1954), ‘Achilles and the Tortoise’, Analysis 14, pp. 56–68.
Hofstadter, D.R. (1980), Gödel, Escher, Bach: An Eternal Golden Braid, Harmondsworth: Penguin.
Hogarth, M.L. (1992), ‘Does General Relativity Allow an Observer to View an Eternity in a Finite

Time?’, Foundations of Physics Letters 5, pp. 173–181.
Hogarth, M.L. (1994), ‘Non-Turing Computers and Non-Turing Computability’, PSA 1994 1, pp.

126–138.
McCulloch, W.S., and Pitts, W. (1943), ‘A Logical Calculus of the Ideas Immanent in Nervous

Activity’, Bulletin of Mathematical Biophysics 5, pp. 115–33.
Minsky, M.L. (1967), Computation: Finite and Infinite Machines, Englewood Cliffs, NJ.: Prentice-

Hall.
Post, E.L. (1936), ‘Finite Combinatory Processes – Formulation 1’, Journal of Symbolic Logic 1, pp.

103–105.
Putnam, H. (1965), Trial and Error Predicates and the Solution of a Problem of Mostowski’, Journal

of Symbolic Logic 30, pp. 49–57.
Russell, B.A.W. (1915), Our Knowledge of the External World as a Field for Scientific Method in

Philosophy, Chicago: Open Court.
Russell, B.A.W. (1936), The Limits of Empiricism’, Proceedings of the Aristotelian Society 36, pp.

131–150.
Searle, J. (1980), ‘Minds, Brains, and Programs’, Behavioral and Brain Sciences 3, pp. 417–424,

450–456.
Searle, J. (1989), Minds, Brains and Science, London: Penguin.
Searle, J. (1990), ‘Is the Brain’s Mind a Computer Program?’ Scientific American 262(1), pp. 20–25.
Searle, J. (1992), The Rediscovery of the Mind, Cambridge, MA: MIT Press.
Sorensen, R. (1999), ‘Mirror Notation: Symbol Manipulation without Inscription Manipulation’,

Journal of Philosophical Logic 28, pp. 141–164.
Stewart, I. (1991), ‘Deciding the Undecidable’, Nature 352, pp. 664–665.
Taylor, R. (1951), ‘Mr. Black on Temporal Paradoxes’, Analysis 12, pp. 38–44.
Thomson, J.F. (1954), ‘Tasks and Super-Tasks’, Analysis 15, pp. 1–13.
Thomson, J.F. (1970), ‘Comments on Professor Benacerraf’s Paper’, in W.C. Salmon, ed., Zeno’s

Paradoxes, Indianapolis: Bobbs-Merrill.
Turing, A.M. (1936), ‘On Computable Numbers, with an Application to the Entscheidungsproblem’,

Proceedings of the London Mathematical Society, Series 2, 42 (1936–37), pp. 230–265.
Turing, A.M. (1938), ‘Systems of Logic Based on Ordinals’. Dissertation presented to the faculty

of Princeton University in candidacy for the degree of Doctor of Philosophy. Published in
Proceedings of the London Mathematical Society 45 (1939), pp. 161–228.

Turing, A.M. (1948), ‘Intelligent Machinery’, National Physical Laboratory Report, in B. Meltzer
and D. Michie, eds., Machine Intelligence 5, Edinburgh: Edinburgh University Press. A digital
facsimile of the original document may be viewed in The Turing Archive for the History of
Computing. <http://www.AlanTuring.net/intelligent_machinery>.

Turing, A.M. (1950), ‘Programmers’ Handbook for Manchester Electronic Computer’, University
of Manchester Computing Laboratory. A digital facsimile of the original may be viewed in The



ACCELERATING TURING MACHINES 301

Turing Archive for the History of Computing document.
<http://www.AlanTuring.net/programmers_handbook>.

Watling, J. (1952), ‘The Sum of an Infinite Series’, Analysis 13, pp. 39–46.
Weyl, H. (1927), Philosophie der Mathematik und Naturwissenschaft, Munich: R. Oldenbourg.
Weyl, H. (1949), Philosophy of Mathematics and Natural Science, Princeton: Princeton University

Press.


