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Abstract

When a doctor finds a patient, he diagnoses what the illness the patient has and prescribes it

in accordance with his diagnosis. Likewise, when a logician faces a problematic argument

(or proof), he characterizes the problem and solves it on the basis of his characterization.

It is often believed that solutions to the paradoxes are closely tied with the characteriza-

tion of the paradoxes. For instance, an informal characterization of a paradox proposed by

Sainsbury (2009, p. 1) says that it is an unacceptable conclusion elicited from the accept-

able premises via acceptable reasoning. A diagnosis of the paradoxes through Sainsbury’s

characterization can be that it is a trouble that acceptability leads to unacceptability. Thus,

from the diagnosis with the characterization, three responses to the paradoxes can be pro-

posed such that either the premises or the reasoning is not in fact acceptable, or else the

conclusion is acceptable. We shall call the first response the premise-rejection, the second

the reasoning-rejection, and the last the conclusion-acceptance. Of course, it is not to say

that traditional characterizations of and solutions to the informal notion of a ‘paradox’ are in

full conformity with Sainsbury’s definition. However, his informal definition is the simplest

way to understand ‘paradox’ and the solution to it. In this dissertation, we presume that the

traditional understandings of ‘paradox’ are quite coherent with Sainsbury’s definition.

It seems to be that a proof-theoretic solution to the paradoxes relies on how we charac-

terize the informal notion of a ‘paradox’ in a proof-theoretic fashion. In this regard, it is

possible that the proof-theoretic criterion for and the solution to the paradoxes differ from

Sainsbury’s definition. The present dissertation aims to investigate the proof-theoretic cri-

terion for and the solution to the paradoxes from the perspectives on the Prawitz-Tennant

analysis of the paradoxes.

First of all, we will mainly deal with the set-theoretic/semantic paradoxes which were

primarily discussed in the late 19th to the early 20th century for the foundation of math-

ematics. In other words, we will center on paradoxes, often called self-referential para-

doxes. This dissertation consists of five chapters. Chapter 1 will summarize the tradi-

tional approaches to the paradoxes by dividing the cases into the set-theoretic paradox and

the semantic paradox. The traditional approaches consist of three types of responses: the



premise-rejection, the reasoning-rejection, and the conclusion-acceptance. Traditional ap-

proaches to the paradoxes have some aspects that a constructivist can hardly accept. Those

approaches use a model-theoretic method which often applies constructively invalid infer-

ences, such as classical reductio. Also, the proof-theoretic investigation of the paradoxes

may offer the uniform solution to the set-theoretic and semantic paradoxes on the perspec-

tives of constructivism.

In the last part of Chapter 1, Section 1.3, we will introduce the Prawitz-Tennant anal-

ysis of the paradoxes. While investigating Russell’s paradox in natural deduction, Prawitz

(1965, p. 95) first remarks, ‘the set-theoretic paradoxes are ruled out by the requirement

that the [derivations] shall be in normal.’ His derivation formalizing Russell’s paradox falls

into a non-terminating reduction sequence and so is not reducible to a normal derivation.

The requirement of a normal derivation may be a promising proof-theoretic solution to the

paradoxes and it can be interpreted as below.

The Requirement of a (Full) Normal Derivation(RND): For any derivation D in natural

deduction, D is acceptable only if D is (in principle) convertible into a (full) normal

derivation.

Neil Tennant (1982, 1995, 2016, 2017) regards the non-terminating reduction sequence

as the primary feature of genuine paradoxes and proposes his criterion for paradoxicality

(TCP).

Tennant’s Criterion for Paradoxicality:(TCP) Let D be any derivation of a given natural

deduction system S. D is a T-paradox iff

(i) D is a (closed or open) derivation of ⊥,

(ii) id est inferences (or rules) are used in D,

(iii) a reduction procedure of D generates a non-terminating reduction sequence, such as a

reduction loop.

When he first introduces his criterion, Tennant (1982, p. 268) wants to regard the criterion

as the conjecture for genuine paradoxes that for any derivation D, D formalizes a genuine



paradox iff D is a T-paradox. if his conjecture is true, any derivation of a genuine paradox

is T-paradox. Also, since a T-paradox is unable to be reduced to a normal derivation, RND

can block the T-paradox and becomes to be a proof-theoretic solution to the paradoxes.

In this dissertation, we shall investigate whether TCP can be a correct criterion for gen-

uine paradoxes and whether RND can be a proof-theoretic solution to the paradoxes. Ten-

nant’s criterion has two types of counterexamples. The one is a case which raises the prob-

lem of overgeneration that TCP makes a paradoxical derivation non-paradoxical. The other

is one which generates the problem of undergeneration that TCP renders a non-paradoxical

derivation paradoxical. Chapter 2 deals with the problem of undergeneration and Chapter

3 concerns the problem of overgeneration. Chapter 2 discusses that Tenant’s diagnosis of

the counterexample which applies CR−rule and causes the undergeneration problem is not

correct and presents a solution to the problem of undergeneration. Chapter 3 argues that

Tennant’s diagnosis of the counterexample raising the overgeneration problem is wrong and

provides a solution to the problem. Finally, Chapter 4 addresses what should be explicated

in order for RND to be a proof-theoretic solution to the paradoxes. The contents of Chapter

2–4 are summarized as follows:

Abstract of Chapter 2. In order to solve the problem of undergeneration raised by Rogerson-

type counterexamples, Tennant (2015) seems to presume that the application of Clas-

sical Reductio, i.e. CR−rule, is the culprit of the trouble that it disguises the main

feature of paradoxicality, such as a non-terminating reduction sequence. Tennant may

not take the problem of undergeneration seriously. We will claim that the undergen-

eration problem is not solved by simply accusing CR−rule of the trouble. In order to

show that the occurrence of a non-terminating reduction sequence is independent of

the use of CR−rule. We suggest two examples of the Liar paradox. First, we suggest

derivations of the Liar paradox and Curry’s paradox which neither use CR−rule nor

generate a non-terminating reduction sequence. In addition, we provide derivations

of the Liar paradox in which the non-terminating reduction sequence is produced

even though the CR−rule is used. After we diagnose the culprit of preventing a

non-terminating reduction sequence, it will be discussed that the problem of under-



generation will be solved by adding the condition to TCP that only harmonious rules

are to be used.

Abstract of Chapter 3. Tennant(2016) asserts that if all elimination rules are stated in

generalized form, the problem of overgeneration can be solved. However, we claim

that the mere choice of generalized elimination rules fails to solve the problem be-

cause there exist Ekman-type reductions which are stated in generalized form and

produce a non-terminating reduction sequence. Thus, we claim that the real issue is

which set of reductions is proper. In order to find a criterion for a proper reduction,

we shall investigate Schroeder-Heister and Tranchini’s Triviality test and argue that

Triviality test does not block every Ekman-type reduction procedure since it works

relative to a system. At last, we will propose an alternative way to evaluate a proper

reduction, called Translation test.

Abstract of Chapter 4. In order for RND to be a proof-theoretic solution, there are three

things to be explicated: (i) ‘which paradoxes are genuine paradoxes?’, (ii) ‘why

should we accept only a normalizable derivation?’, and (iii) ‘should we consider only

⊥ as an unacceptable conclusion?’ With regard to the first question (i), we will dis-

cuss that Tennant does not have a clear standard for genuine paradoxes. In addition,

with respect to the second question (ii), if proof-theoretic validity implies normaliz-

ability, then RND can be the proof-theoretic solution. However, it will be noted that

the relation should be extended to a general case. Moreover, it will additionally dis-

cussed that if RND could be a proof-theoretic solution, it would be a different type of

solution rather than a reasoning-rejection solution which constrains a particular infer-

ence rule. Lastly, with the third question (iii), we shall consider a normal derivation

of ¬ϕ ∧ϕ which seems to be a paradoxical derivation and argue that if any formula

having the form ¬ϕ ∧ϕ is regarded as an unacceptable conclusion, since RND fails

to block the normal derivation of ¬ϕ ∧ϕ , it cannot be the proof-theoretic solution to

the paradoxes. Hence, it should be explicated why ⊥ should be the only unacceptable

conclusion in proof theory.



More precisely, in chapter 2, we will introduce counterexamples proposed by Roger-

son (2006) which raises the problem of undergeneration. Rogerson’s derivation formalizes

Curry’s paradox that Tennant may regard it as a genuine one but it does not generate a

non-terminating reduction sequence by using the rule for Classical Reductio, i.e. CR−rule.

In other words, in spite of the fact that her derivation formalizes the genuine paradox, it is

not a T-paradox and shows that TCPE undergenerates. Section 2.1 introduces preliminary

notations, rules, and the harmony relation between introduction and elimination rules.

Section 2.2 introduces Tennant’s diagnosis to the problem of undergeneration occurred

by the example of using the rule for classical reductio, CR−rule, and argues that his di-

agnosis is not correct. Perhaps he seems to assume that the CR−rule not only produce a

normal derivation of ⊥, but it also masks the key feature of a paradoxical derivation. He

explains this phenomenon and expresses it as the ‘classical rub.’ Also, in the direction of

avoiding the phenomenon, he presents the Methodological Conjecture that ‘genuine para-

doxes are never classical.’ Even if his methodological conjecture is correct, it needs to

discover the fact that which causes the problem of undergeneration. Tennant may believe

that the CR−rule has the problem of causing a normal derivation of ⊥ and concealing a

non-terminating reduction sequence, i.e. a primary feature of the paradoxes. Section 2.3

provides derivations which cause the problem of undergeneration but do not use CR−rule.

That is, CR−rule is not the culprit of the undergeneration problem. To find a solution to

the problem, Section 2.4 diagnoses what preventing the occurrence of a non-terminating

reduction sequence. With some observations, we propose a possible diagnosis that a non-

terminating reduction sequence does not occur if a derivation in question includes (i) a

major premise which has no reduction process to eliminate it or (ii) a formula having a

principal constant which has no reduction procedure to get rid of it. Then, we suggest an

additional condition to TCP that a derivation formalizing a genuine paradox only uses har-

monious rules. If the suggested condition is acceptable, the condition can solve the problem

of undergeneration.

Chapter 3 will cover the problem of overgeneration. In particular, Ekman’s paradox

presented by Schroeder-Heister and Tranchini (2017) will be introduced. Ekman’s paradox



is not to be considered a genuine paradox because it involves an inadequate reduction pro-

cess, and so it causes the problem of overgeneration because it is a T-paradox with respect

to Tennant’s criterion. To begin with, we will see the response of Tennant (2016) to the

Ekman’s paradox. He argues that if all elimination rules are stated in generalized form,

then the problem of overgeneration will be solved. However, in Section 3.2, we will argue

that Tennant’s response is inappropriate and that the problem of overgeneration will still

occur, even if only generalized elimination rules are used. Furthermore, it will be discussed

that Tennant’s criterion needs to have an additional condition of which reduction procedure

is proper. Section 3.3 introduces Triviality Test of Schroeder-Heister and Tranchini (2017)

for appropriate reduction procedures. We shall argue that their Triviality test appears to be

unsuitable for the evaluation of standard reduction procedures and it is inappropriate to test

a reduction precess independently of a system. Then, Section 3.4 will present Translation

test. According to Translation test, Ekmann-type reduction procedures are not proper be-

cause it is a detour-making process, and Translation test will have the advantage of being

able to test the reduction procedure itself compared to Triviality test.

In Chapter 4, we will examine whether the requirement of a normal derivation(RND)

can be a solution to the paradoxes. To this end, we will consider three questions of (i)

which paradox is a genuine paradox and which formalization is legitimate for the genuine

paradox, (ii) why the only normalizable derivations are acceptable, and (iii) why the only

propositional constant ⊥ for absurdity is an unacceptable conclusion. If RND is the solution

to genuine paradoxes, it needs to be answered what genuine paradox is. Furthermore, even

if RND could prevent paradoxical derivation, RND would not be justified to be a proof-

theoretic solution to the paradoxes, unless we had reason to use only normal derivations.

Also, if there is a derivation of a genuine paradox which is in normal form and leads to an

unacceptable conclusion, RND fails to prevent the derivation. In this case, too, RND would

not be a proof-theoretic solution to the paradoxes.

In Section 4.1, we shall introduce his argument on why Russell’s paradox is not a gen-

uine paradox, and argue that by following his argument, if Russell’s paradox is not a gen-

uine paradox, neither is the Liar paradox. Tennant has no standard for genuine paradoxes.



Our discussion comes into a question of which formalization is legitimate for the genuine

paradox. RND only blocks non-normalizable derivations, such as T-paradoxes. If RND

is regarded as a promising proof-theoretic solution to genuine paradoxes, it should be an-

swered to the first question of which paradoxes are genuine paradoxes.

In Section 4.2, we will explore the second question of why it is desirable only to use

normal derivations. One possibility is that proof-theoretic validity implies normalizabil-

ity. In other words, if a paradoxical derivation is not normalizable, it can be ruled out by

RND because it is not a proof-theoretically valid derivation, RND can be a solution to the

paradoxes. Section 4.2 will establish that in a particular system, proof-theoretic validity

implies normalizability. However, in order for RND to be a proof-theoretic solution, the

result should be extended to a general case. Section 4.3 discusses that the requirement of a

normal derivation is different from the reasoning-rejection solution commonly considered

as a restriction of a particular inference rule. If a reasoning-rejection solution is regarded

as a solution to constrains a certain inference rule, RND will not be the reasoning-rejection

solution because it constrains every derivation in an intended system. Section 4.4 intro-

duces a normal derivation of ¬ϕ ∧ϕ presented by Petrolo and Pistone (2018) and argues

that RND cannot be a proof-theoretic solution if we accept a formula of the form ¬ϕ ∧ϕ

as well as ⊥ as an unacceptable conclusion. All in all, only when proof-theoretic validity

generally implies normalizability and any formula having the form ¬ϕ ∧ϕ is not regarded

as an unacceptable conclusion, RND can be a proof-theoretic solution to the paradoxes.
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Chapter 1

Introduction: A Proof-Theoretic

Criterion of and Solution to the

Paradoxes

In the late 19th and early 20th centuries, a proof of the consistency of mathematics was

the main theme of the foundation of mathematics. A contradiction raised by paradoxes

was a significant issue to the foundations of logic and mathematics. Since the discovery of

the paradoxes, involving fundamental notions and inferences which were considered to be

acceptable, had an effect on the foundations, the paradoxes have acquired a significant role

in contemporary logic.

There are multiple types of paradoxes, but in this dissertation, we will deal with para-

doxes, often called, a ‘self-referential paradox.’ Self-referential paradoxes are related to a

statement that refers to itself or its own referent. Following Frank Ramsey (1925), we di-

vides the paradoxes into two classes: the set-theoretic and the semantic paradoxes. The set-

theoretic paradoxes comprise Russell-Zermelo’s paradox of the set-membership, Cantor’s

paradox of cardinality, Burali-Forti’s paradox of ordinality etc. The semantic paradoxes

are about the semantical concepts, such as the concepts of truth, denotation, predication,
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and so on. The semantic paradoxes comprise the liar, Grelling’s Berry’s etc. Most of our

discussions in this dissertation will use Russell’s and the Liar paradox as major examples,

however, the discussions will not be limited to them.

The traditional responses to the set-theoretic paradoxes are to constrain the notion of

‘set’ by using the separation axiom instead of using the native comprehension axiom, or to

constrain the concept of ‘type’ through the ramified type theory of Bertrand Russell (1908).

In the case of the semantic paradoxes, such as the Liar paradox, following Alfred Tarski

(1936a,b, 1944), it is proposed that the semantic concept ‘ĩs true’ is not expressible in the

object language. Moreover, those who believe that the concept of truth is expressible in the

object language have developed Tarski’s idea and suggested the gap theory which allows

the sentence neither true nor false, or proposed the glut theory which claims that there exists

a sentence both true and false.

Most classical logicians have adapted a way to follow or develop the traditional re-

sponses. On the other hand, it is unclear that intuitionists, sometimes more generally called

constructivists, who claim that some classical inferences, like the Law of Excluded Mid-

dle and the Double Negation Elimination, can satisfy the traditional responses. There are

at least two reasons why constructivists would be reluctant to accept the traditional ap-

proaches. First, the traditional approaches allow the use of non-constructive reasoning,

such as the Law of Excluded Middle and the Double Negation Elimination, and so it is

sometimes claimed that reasoning by the Law of Excluded Middle is an essential part of

the semantic and set-theoretic paradoxes. For instance, Hartry Field (2008) considers that

classical inferences are somehow the key reasoning that generates the paradoxes.

... we ought to seriously consider restricting classical logic to deal with all

these paradoxes. In particular, we should seriously consider restricting the law

of excluded middle. ... I take excluded middle to be clearly suspect only for

certain sentences that have a kind of "inherent circularity" ... (Field, 2008, p.

15).

Second, the traditional responses are basically based on the model-theoretic approaches

which often allow non-constructive methods. So constructivists tend to prefer to use proof-

2



theory to explain the concept of validity of arguments or their theory of meaning. There-

fore, as an alternative to the model-theoretic approaches, a proof-theoretic solution to the

paradoxes can be presented and it would be a promising way for constructivists.

It seems to be that a proof-theoretic solution to the paradoxes relies on how we character-

ize the informal notion of a ‘paradox’ in a proof-theoretic fashion. The present dissertation

aims to investigate a proof-theoretic criterion for and solution to the paradoxes from the

perspectives on the Prawitz-Tennant analysis of the paradoxes, centered on a view from

Neil Tennant (1982, 2015, 2016, 2017). There are two types of counterexamples to the

proof-theoretic criterion for paradoxicality: problems of under- and overgeneration. The

undergeneration problem is raised by the case which shows that the criterion makes a para-

doxical derivation non-paradoxical. The problem of overgeneration is the case which repre-

sents that the criterion includes a non-paradoxical derivation into the realm of paradoxical

derivations. In this chapter, we will introduce Tennant’s early criterion for paradoxicality

introduced by Tennant (1982). Chapter 2 and 3 shall investigate whether Tennant’s criterion

can be a necessary and sufficient condition for genuine paradoxes. That is to say, Chapter 2

deals with the problem of undergeneration and Chapter 3 is about the problem of overgen-

eration. In Chapter 4, we will discuss that there are some difficulties for the requirement of

a normal derivation to be a solution to the paradoxes.

Before we introduce Tennant’s criterion for paradoxicality and its related solution, we

will briefly explore traditional responses to the paradoxes and some critics to those re-

sponses. Section 1.1 introduces traditional approaches to the paradoxes and their problems.

Preliminary notions and rules will be introduced in Section 1.2. Tennant’s criterion for

paradoxicality and the requirement of a normal derivation will be introduced in Section

1.3.

1.1 Traditional Responses to the Paradoxes and Dialetheism

When a doctor finds a patient, he diagnoses what the illness the patient has and pre-

scribes it in accordance with his diagnosis. Likewise, when a logician faces a problematic

3



argument (or proof), he characterizes the problem and solves it on the basis of his char-

acterization. It is often believed that solutions to the paradoxes are closely tied with the

characterization of the paradoxes. For instance, an informal characterization of a paradox

proposed by Richard M. Sainsbury (2009) says, a paradox is generally conceived as ‘an

apparently unacceptable conclusion derived by apparently acceptable reasoning from ap-

parently acceptable premises.’ Since acceptable reasoning hardly draws an unacceptable

conclusion from acceptable premises, there are three ways to solve the paradox. Either the

premise or the reasoning is not actually acceptable, or else the conclusion is acceptable. The

first response is the premise-rejection. The second is the reasoning-rejection, and the last

is the conclusion-acceptance. The last response is often supported by dialetheism which is

the view that there exists a true contradiction.

It would be difficult to consider that the traditional approaches to the paradoxes are prop-

erly distinguished in accordance with Sainsbury’s informal characterization of a ‘paradox.’

For instance, it is uncertain whether the premise-rejection and the reasoning-rejection can

be precisely distinguished. However, it might be the simplest way to understand the infor-

mal notion of a ‘paradox,’ and so we investigate the traditional responses while following

Sainsbury’s characterization.

Traditional responses to the (self-referential) paradoxes seem to embrace the premise-

rejection and the reasoning-rejection. Traditional approaches to the paradoxes can be found

in both the set-theoretic and the semantic paradoxes. For the case of the set-theoretic para-

dox, we will examine Russell’s paradox. The Liar paradox will be used for the semantic

paradox.

1.1.1 Traditional Approaches to Russell’s and the Liar Paradox.

To begin with, Russell’s paradox occurs in naive set theory by considering the set of

all sets not members of themselves. Let us consider that Our language has constants and

quantifiers, ∧, →, ⊥, ¬, ∃, ∀, ∈ for conjunction, implication, absurdity, negation, existen-

tial/universal quantifiers, and a two-place set-membership relation respectively. Additional

expressions can be introduced into the language. Let x, y be any free variables and t be any

4



term not free. ϕ , ψ , σ be any formulas. Then, the naive comprehension principle has the

main role to derive a contradiction from the paradox. It states that there is a set y such that

for any object x, x is an element of y iff the condition expressed by the formula ϕ holds for

x.1 We define ‘ϕ ↔ ψ’ as (ϕ → ψ)∧ (ψ → ϕ). The naive comprehension principle can be

written as follows:

The Naive Comprehension Principle: ∃y∀x(x ∈ y ↔ ϕ)

Russell’s paradox arises by taking ϕ to be the formula: x not in x, i.e. x /∈ x. A contradiction

is a formula having the form ϕ ∧¬ϕ . A contradictory conclusion is easily derived from the

following three steps.

Premise ∃y∀x(x ∈ y ↔ x /∈ x).

(1) a ∈ a ↔ a /∈ a where a is a parameter.

(2) ∃y(y ∈ y∧ y /∈ y).

First, the naive comprehension principle allows to use the concept of the set of all sets not

members of themselves. We have the premise that ∃y∀x(x ∈ y ↔ x /∈ x). By the existential

and universal instantiations, we have (1), and then have (2) by the applications of the Law

of Excluded Middle which states that for any formula ϕ , either ϕ or ¬ϕ is true, and the

existential generation.

A traditional response to Russell’s paradox is to restrict the naive comprehension prin-

ciple and to use the concept of a set in a limited way. It restricts to use the set of all sets not

members of themselves, and rejects the premise ∃y∀x(x ∈ y ↔ x /∈ x). The response seems

to be accepted by claiming that the concept of a set, i.e. a collection of arbitrary objects, is

too vague to count as a mathematical concept and can be constrained. Since the response

prevents to use the premise, it can be the premise-rejection.

The other response to Russell’s paradox is to put a constraint on the use of the Law of

Excluded Middle. It is often believed that classical inference, such as the Law of Excluded

1‘iff’ is an abbreviation of ‘if and only if.’
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Middle has the main role to derive an unacceptable conclusion from the paradoxes. In

particular, Priest (2006, pp. 28–29) proposes a similar argument of deriving a contradiction

from Russell’s paradox above, and considers that classical inferences are somehow the key

reasoning that raises the paradoxes.

The last step [from (1) to (2)] is an application of reductio, or the law of ex-

cluded middle. ... Reasoning by the law of excluded middle is a well en-

trenched part of orthodox set theoretic practice. And if one is tempted by this

line, one can dismiss it quickly. Essentially the same replies can be made of it

as to the corresponding suggestion with the semantic paradoxes.

If the law of excluded middle has the main role to generate the paradoxes, to reject the

application of the law of excluded middle would be a response to Russell’s paradox. Our

examination of Russell’s paradox has used the Law of Excluded Middle in order to derive

(1) ∃y(y ∈ y∧y /∈ y) from (2) ∃y(y ∈ y ↔ y /∈ y). If the rejection of the Excluded Middle can

block the derivation of a contradiction, it can be the reasoning-rejection solution. Therefore,

we may consider that there are two traditional responses to Russell’s paradox: the premise-

and the reasoning-rejection.

Similarly, the Liar paradox has two responses from the traditional perspective. The Liar

paradox is the most well-known paradox among the semantic paradoxes. Alfred Tarski

(1936a,b, 1944) mainly deals with the Liar paradox when he gives a classical characteriza-

tion of the formal concept of truth. Tarski (1936b, p. 401) and Tarski (1944, p. 345) use

the word ‘semantic’ in a narrower sense such that it is a discipline dealing with the relation

between expressions of a given language and their references, i.e. the objects or states of

affairs. His notion of semantic may be suitable for the correspondence theory of truth which

is the view that truth is correspondence to a fact (or broadly any view which embraces the

idea that truth consists in a relation to reality). Tarski (1944, p. 344) thinks that the usage

of the expression, ‘is true,’ is adequate when it satisfies the schematic relation that, for

some formula ϕ and a name ‘ϕ’ for it, ‘ϕ’ is true iff ϕ . Let us use the left and right corner

quotes, ⌜ ⌝. Let the function ⌜−⌝ be any injective mapping from formulas into expressions
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(or coded numerals). So to speak, ⌜−⌝ codes the expressions in a given language.2 For

instance, if ϕ is a given sentence, then ⌜ϕ⌝ refers to ϕ . If ψ(x) is a formula with one free

variable x then ψ(⌜ϕ⌝) is a sentence describing that a sentence ϕ denoted by ⌜ϕ⌝ is ψ .

Then, Tarski’s materially adequate notion of truth satisfies the following T-schema.

T-schema: for any formula ϕ ,

⌜ϕ⌝ is true if and only if ϕ .

The Liar paradox gives rise to a problem to T-schema as a formally correct definition

of truth. We shall roughly say that T (x) is a truth predicate for a given language L if

T (⌜ϕ⌝) is well-formed for any formula ϕ in L. We have a liar sentence Φ by defining a

particular formula Φ as ¬T (⌜Φ⌝). Tarski (1936a, pp. 157–159) and Tarski (1944, pp. 347–

348) introduce the problem of T-schema while examing the Liar paradox. His materially

adequate truth predicate T (x) should satisfy T-schema, so we have the equivalence relation

T (⌜Φ⌝)↔ Φ. By the meaning of the liar sentence Φ, either we have Φ ↔¬T (⌜Φ⌝). Then,

our usual inferential practice derives the sentence T (⌜Φ⌝) ↔ ¬T (⌜Φ⌝) which implies a

contradictory conclusion.

Tarski (1944, pp. 348–349) diagnoses that a semantically closed language causes the

Liar paradox and the rejection of the use of such language can solve the paradox.

If we now analyze the assumptions which lead to the [Liar paradox], we notice

the following.

(I) We have implicitly assumed that the language in which the [paradox]

is constructed contains, in addition to its expressions, also the names of these

expressions, as well as semantic terms such as the term ‘true’ referring to sen-

tences of this language; we have also assumed that all sentences which de-

termine the adequate usage of this term can be asserted in the language. A

language with these properties will be called ‘semantically closed.’

2For coding processes, in this dissertation, we follow Dirk van Dalen (2013, pp. 245-250).
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(II) We have assumed that in this language the ordinary laws of logic hold.

... the assumption (I) and (II) prove essential. Since every language which

satisfies both of these assumptions is inconsistent, we must reject at least one

of them.

Tarski’s ordinary laws of logic were laws in classical logic. His notion of ‘semantically

closed’ is not limited in classical inferences. We will summarize that a language L is

semantically closed if it is such that

(i) for any formula ϕ in L, L has a term ⌜ϕ⌝ which refers to ϕ ,

(ii) L has a semantical concept in question, such as the term ‘true,’ and the term in L

satisfies its adequacy condition. For the example of the concept of truth, any instances

of the concept satisfy T-schema,

Tarski prefers to use classical logic and focuses on formal languages for consistent scien-

tific discourses. Since he did not want to revise classical logic, the rejection of classical

inferences, i.e. the reasoning-rejection, was not his option. In order to solve the problem

raised by the Liar paradox, he claims that the semantically closed language is not to be used

in any consistent discourses. Tarski (1944, p. 349) said,

It would be superfluous to stress here the consequences of rejecting [classical

logic], that is, of changing our logic (supposing this were possible) even in its

more elementary and fundamental parts. We thus consider only the possibility

of rejecting the assumption [(i) and (ii)]. Accordingly, we decide not to use

any language which is semantically closed in the sense given.

As he constructs a formal language for the consistent scientific discourses, he thinks that

in a single formal language the paradox cannot be solved. He distinguishes the language

between the object- and the meta-language. The former is the language which contains

expressions as the subject-matter and the other is the language in which we deal with the

subject-matter. It is assumed that any expressions in the object language can be translated

into the meta-language, but the inverse cannot. From the paradox, he suggests a stricture
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against the semantically closed language that no language can have its own semantic con-

cepts. Let LO be an object-language and LM be a meta-language of LO. LO must not

contain its truth-predicate and the truth-predicate must be found only in LM. Likewise, the

truth-predicate for LM is to be found only in the meta-language of LM. Since LO does

not have its semantic concepts, it fails to satisfy the condition (ii). He concludes that no

language for the consistent scientific discourse can be semantically closed.

Tarski’s stricture against the semantic closure may be the premise-rejection solution to

the Liar paradox. We apply his stricture to T-schema and have the following hierarchical

T-schema by adding the supplementary condition on the object- and the meta-languages.

Hierarchical T-schema : Let LO be an object-language and LM be a meta-language of

LO. (i.e. any expressions in LO is to be (translated) in LM but not vice versa.3) For

any sentence ϕ in LO and its name ⌜ϕ⌝ in LM,

⌜ϕ⌝ is true if and only if ϕ .

Tarski (1944, p. 350) thinks that the hierarchical T-schema and every instance of it should

be formulated in the meta-language, LM. With respect to his stricture against the semanti-

cally closed language, the truth-predicate for the object-language LO is to be found only in

the meta-language LM. Let us consider the liar sentence Φ which is equivalent to ¬T (⌜Φ⌝).

Let us assume that LO has the liar sentence Φ. Then, by the hierarchical T-schema, we have

the relation

⌜Φ⌝ is true if and only if Φ.

Now, in virtue of the meaning of Φ, we have the following

⌜Φ⌝ is true if and only if ⌜Φ⌝ is not true (i.e. ¬T (⌜Φ⌝)).

The above relation says that the object-language LO contains ¬T (⌜Φ⌝). However, by

Tarski’s stricture, any language cannot have its truth-predicate, T (x). Any sentences which

are equivalent to ¬T (⌜Φ⌝) are not to be formulated in LO. There is no liar sentence in LO.

3It we regard a formal language as a set of expressions, LO is a proper subset of LM, so to speak, LO ⊂ LM.
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Furthermore, because any language has no truth-predicate, no liar sentence exist in any

language. Therefore, there is no Liar paradox. Tarski’s stricture against the semantically

closed language may be the premise-rejection solution to the Liar paradox in the sense that

it prevents to use the liar sentence. Of course, Tarski’s stricture may be regarded as the

reasoning-rejection solution to the Liar paradox because his stricture does not allow the

inference from ¬T (⌜ϕ⌝) to ϕ and vice versa in the object language. Hence, his view can

be interpreted as the premise-rejection or the reasoning-rejection solution if his stricture is

the solution to the paradoxes.

As we have seen in this subsection, traditional approaches to Russell’s and the Liar para-

doxes may be considered to be the premise-rejection or the reasoning-rejection or both. In

the next subsection, we will investigate problems of traditional responses to the paradoxes

and dialetheism.

1.1.2 Problems of Traditional Responses and Dialetheism

In this subsection, after we introduce problems of traditional responses to the liar and

Russell’s paradox, we will briefly introduce dialetheism which says that a true contradiction

exists. Dialetheism may be an alternative solution to the paradoxes, however we shall argue

that not every logician should accept it as the primary response to the paradoxes.

With respect to the Liar paradox, Tarski’s stricture, while regarding it as the response to

the Liar paradox, has been subject to some criticisms. The main criticism against Tarski’s

solution is made by Saul Kripke (1975, pp. 690–698) that whether or not a sentence is

paradoxical is dependent not only on formal properties which are intrinsic to the syntax

and semantics of the sentence, but also on empirical facts. In addition, it is not easy to

place non-paradoxical claims within Tarski’s syntactically fixed set of levels.

(a) Everything Kim Jong-un says in his language LK is true.

(b) Everything Donald Trump says in his language LT is true.

For example, we consider that Donald Trump claims (a) in LT and Kim Jong-un claims (b)

in LK . Tarski (1944, p. 350) has noticed that the distinction between the object- and the
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meta-languages is only a relative one. With respect to Trump’s claim (a), his language LT

has to be higher than Kim’s language LK in virtue of Tarski’s stricture. That is, LK is an

object-language and LT is a meta-language of LK because the semantical concept, ‘true,’ is

to be found only on the meta-language LT . On the other hand, with respect to Kim’s claim,

LK is a meta-language of LT since his claim (b) contains the semantical concept, ‘true,’

which is to be found only on LK . Thus, LK and LT are both object- and meta-languages. It

is not easy to apply Tarski’s hierarchical distinction to the Kim-Trump case.

A possible defense to this criticism is that the meanings of ‘true’ in (a) and (b) are

different. (a) has a true-predicate, ‘is trueT ,’ which is expressible in LT but not in LK . (b)

has a truth-predicate, ‘is trueK ,’ expressible in LK but not in LT .

(a’) Everything Kim Jong-un says in LK is trueT .

(b’) Everything Donald Trump says in LT is trueK .

Each has different truth-predicate, so we can distinguish between object- and meta-languages.

However, Kim and Trump may not share the same meaning of the semantical notion of

‘true.’ They cannot communicate with each other. Consequently, Tarski’s hierarchical

T-schema fails to explain a general notion of truth.

Tarski rejects the view that the semantical notion of ‘true’ is expressible in the object

language and pursues the consistency of the object language. On the other hand, Graham

Priest (2006, pp.17–18) wants to use a truth predicate in the object language. Considers

the sentence ‘All the sentences on page 11 of the dissertation entitled On Proof-Theoretic

Approaches to the Paradoxes are true.’ Priest (2006, pp. 18–20) thinks that this sentence is

a perfectly good English sentence but not a sentence of the hierarchy, and so the hierarchy is

not English. He claims that Kripke’s criticism against Tarski’s stricture explicates that any

languages satisfying Tarskian hierarchical stricture are expressively weaker than English

and hence it discusses that it is hard to apply the hierarchical concept of truth to our use of

‘true’ in natural language, especially English.

This illustrates a general criticism of the mooted solution to the semantic para-

doxes made by Kripke (1975) ... Any semantico-syntactic constraint which
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succeeds in ruling out paradoxes will therefore also rule out perfectly ordinary,

non-paradoxical assertions too. In other words, all languages (or hierarchies

thereof) which satisfy these constraints will be expressively weaker than En-

glish.

If these arguments are right, traditional responses to the paradoxes, such as Tarski’s stric-

ture, are unable to be a general solution to the paradoxes.

As Priest accepts T-schema in natural language, the Liar paradox generates a contra-

diction. His view, called ‘dialetheism’, is that some contradictions can be true, and the

set-theoretic and the semantic paradoxes show that there are true contradictions. As we

have said, if a paradox is grasped as an apparently unacceptable conclusion derived by

apparently acceptable reasoning from apparently acceptable premises, dialetheism can be

a plausible response to the paradox because it claims that the seeming unacceptable con-

clusion is actually acceptable. It is the conclusion-acceptance response to the paradoxes.

It seems to be that Priest’s dialetheism is an alternative way to solve the paradoxes if the

premise-rejection and the reasoning-rejection are not a general solution to the paradoxes.

However, dialetheism is not a general solution to the paradoxes either. Especially, an intu-

itionist does not need to be a dialetheist.

To discuss why the intuitionist would not enjoy dialetheism as the solution to the para-

doxes, we give some additional terminologies. In accordance with standard practice, for a

given formal system S with its language L containing ⊥ and ¬, we write ‘S ⊢ ϕ’ to mean

that S derives ϕ and ‘S ⊬ ϕ’ means that S does not derive ϕ . We say that S is complete

if for each formula ϕ in L, either S ⊢ ϕ or S ⊢ ¬ϕ; otherwise incomplete. S is consistent

if S ⊬ ⊥; otherwise inconsistent. S is trivial if for any sentence ϕ in L S ⊢ ϕ; otherwise

non-trivial. A dialetheic system derives a true contradiction, so it is inconsistent. Since

it rejects ex contradictione quodlibet which means that a contradiction implies everything,

the dialetheic system is inconsistent but non-trivial.

Graham Priest (2006, Ch.1 – 3 and 7) argues that true contradictions are derivable from

the semantic paradoxes, the set-theoretic paradoxes, and Gödel’s incompleteness theorem.

In addition, Priest (2006, p. 66) offers a prospect of an intuitionistic dialetheism.
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It would be equally possible to have an "intuitionistic dialetheism", which took

a constructive stance on negation (so that a proof of the impossibility of a proof

of [ϕ] was required for the truth of [¬ϕ]) and the other logical constants. (We

noted ... that the proofs of many logical paradoxes do not require the law of

excluded middle or other intuitionistically invalid principles.)

Intuitionistic (relevant) logic is one of the primary candidate logics for intuitionism. If an

intuitionistic dialetheism is plausible, the intuitionist can accept dialetheism as the solution

to the paradoxes. Unlike the prospect of Priest, an intuitionistic relevant logician, Tennant

(1994, p.110), says that nice (or correct) logic is adequate for uncovering all inconsistencies

and any intuitionistic consequences of any consistent set of axioms. Also, Tennant (2004)

has argued that there is no true contradiction in intuitionistic (relevant) logic. Priest (2006)

replies to Tennant in a footnote 6 at page 286.

In the final section of [Tennant (2004)], Tennant also critici[z]es my account

of the paradoxes of self reference by giving his own. But he does not address

the arguments of the 1st edn that would appear to apply to his account. For

example, he says that the liar sentence is ‘radically truth-valueless’ ... but he

does not address the extended version of the paradox: this sentence is false or

radically truth-valueless. ... Nor does he address the paradoxes that do not use

the [law of excluded middle], such as Berry’s. Similarly, he claims that the

"Gödel Paradox" shows that the notion of navie proof cannot be formali[z]ed.

He does not address the consideration ... as to why this is false or irrelevant.

Tennant did not answer, but the reason why the intuitionist would not accept dialetheism is

enough.

For the issue of Berry’s paradox, Priest (1983) and Priest (2006, pp. 25–27) have at-

tempted to show that the Law of Excluded Middle is unnecessary for the derivation of a

contradiction from Berry’s paradox. First, as Ross Brady (1984) explains how Priest implic-

itly assumes the excluded middle, it is arguable whether the excluded middle is necessary

to derive a contradiction from Berry’s paradox. Although Priest (2006, pp. 25–27) sug-
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gests a different argument from that of Priest (1983) to derive a contradiction from Berry’s

paradox, his proof uses the double negation elimination which is provably equivalent to the

excluded middle. Regardless of the issued of whether classical inferences are essential for

paradoxical arguments, his argument for intuitionistic dialetheism is overly loose.

With regard to Gödel’s incompleteness theorem, Priest (2006, Ch. 3) maintains that any

correct formalization of our naive proof procedure is inconsistent and it is tantamount to

establish that a true contradiction exists. On the other hand, Tennant (2004) asserts that

Gödel’s theorem merely shows that one cannot have the complete characterization of our

naive proof procedure. Tennant’s interpretation may be a consistent counterpart whereas

Priest’s view may presume that our inconsistent linguistic practice leads to an inconsis-

tency of our naive proof procedure. They may have a different conception of our naive

proof procedure. The tension between them is based on their different intuitions of the

naive proof procedure, so it seems to be hard to find any ways to ease the tension. As

Seungrak Choi (2017) notes, however, a contradiction is derivable from Gödel sentence

only in the complete system. The intuitionist does not have to suppose the completeness

of the system unless the principle of bivalence is assumed.4 Likewise, for a given natural

system S that the prooflessness is expressible, Choi (2018) shows that ⊥ is derivable from

the strengthened liar sentence in S only when S is complete. If the completeness assump-

tion of logical systems (or theories) is not necessary for intuitionism, the intuitionist need

not follow the solution of Priest. In this respect, dialetheism will be excluded from the

intuitionist’s solution to the paradox.

In this section, we have examined three types of responses to the paradoxes and dis-

cussed that all three responses have room for criticism. Since these responses are based on

the model-theoretic approaches, some constructivists (or intuitionists) are reluctant to ac-

cept it. Interestingly, a well-known proof of the consistency of mathematics was suggested

in proof-theory but the proof-theoretic criterion of and solution to the paradoxes have not

yet been well investigated. After we will have some requisite notions and rules of proof-

theory in Section 1.2, Section 1.3 shall introduce Tennant’s criterion for paradoxicality and

4The principle of bivalence states that every sentence ϕ is determinately true or false, independently of our
method to know the truth-value of ϕ .
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the requirement of a normal derivation as a plausible solution to the paradoxes. Proof-

theoretic approaches can apply to both the set-theoretic and semantic paradoxes. In other

words, the proof-theoretic approaches opened up the possibility of the uniform solution to

the paradoxes. .

1.2 Preliminaries

As we have discussed in Section 1.1, the naive comprehension axiom has the main role

to derive a contradiction from Russell’s paradox. Since the notion of a ‘set’ in the principle

allows the set of all sets which are not members of themselves, it is often considered that

the application of the notion of a ‘set’ causes a contradiction from Russell’s paradoxes.

Hence, the restriction of the naive comprehension principle may be read as the constraint

on the application of the notion of a ‘set.’

When Gerhard Gentzen (1936) suggests his second proof of the consistency of arith-

metic, he seems to think that an error of Russell’s paradox is not our use of the notion

of a ‘set’ but in the logical inferences involved in. In pursuing his consistency proof, he

first set the analysis of purely logical deduction which was intended to be extended to arith-

metic and analysis. Gentzen (1935, Sec. 2) introduces pairs of introduction and elimination

rules for natural deduction system as the natural method of reasoning in mathematics. He

invented another logical calculus that he called ‘sequent calculus,’ and his two most im-

portant results, a proof of Hauptsatz (cut-elimination theorem) and a consistency proof of

arithmetic, were established in sequent calculus. Although two results were proved in se-

quent calculus, they both were clearly inspired by insights that he got by reflecting on his

natural deduction system. The same result can be established by normalization theorem in

natural deduction system, and a consistency proof can be suggested as a corollary of the

theorem by Prawitz (1965, 1971, 2015).

Prawitz’s normalization theorem is deeply related to the proof-theoretic criterion of and

solution to the paradoxes that we will concern. In this section, we will introduce primary
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notions, rules and results in Prawitz’s natural deduction system.5

Our language has constants and quantifiers, ∧, ∨, →, ⊥, ¬, ∃, ∀ for conjunction, dis-

junction, implication, absurdity, negation, existential universal quantifiers respectively. Ad-

ditional expressions can be introduced into the language. Let x, y be any free variables and t

be any term not free. ϕ , ψ , σ be any formulas. Let D be a derivation of a natural deduction

system, used in the same manner as ‘deduction’ in Prawitz (1965). Following Prawitz, we

shall use the following conventions: if a derivation D ends with a formula ϕ , we shall write

D

ϕ and ϕ is called, an ‘end-formula.’ If it depends on a formula ψ , we shall write

ψ

D

ϕ .

Natural deduction rules have introduction and elimination rules. Also, natural deduction

has two forms of elimination rules: standard and generalized forms. Generalized elimina-

tion rules will be introduced in Chapter 2. In this chapter, we shall have natural deduction

rules stated in the standard form. Now, we have rules in the natural deduction style pro-

posed by Prawitz (1965).

D1

ϕ1

D2

ϕ2
∧I

ϕ1 ∧ϕ2

ϕ1 ∧ϕ2
∧E(i=1,2)

ϕi

[ϕ]1

D1

ψ
→ I,1

ϕ → ψ

ϕ → ψ

D2

ϕ
→ E

ψ

D1

ϕi
∨I(i=1,2)

ϕ1 ∨ϕ2

ϕ1 ∨ϕ2

[ϕ1]
1

D2

ψ

[ϕ2]
2

D3

ψ
∨E,1,2

ψ

[ϕ]1

D1

⊥
¬I,1¬ϕ

¬ϕ

D2

ϕ
¬E⊥

D1

ϕ[y/x]
∀I∀xϕ(x)

∀xϕ(x)
∀E

ϕ[t/x]

D1

ϕ(t)
∃I∃xϕ[x/t]

∃xϕ(x)

[ϕ[y/x]]1

D2

ψ
∃E,1

ψ

5In this dissertation, we only consider a natural deduction system suggested by Prawitz (1965).
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ϕ[x/y] means the substitution of x for y in ϕ . We call the formulas directly above the line

in each rule, ‘premise,’ and the formula directly below the line, ‘conclusion.’ Assumptions

which can be discharged are in the square brackets, e.g. [ϕ]. The open assumptions of a

derivation are the assumptions on which the end-formula depends. A derivation is called

closed if it contains no open assumptions, otherwise it is called open. A major premise of

the elimination rule for a constant is the premise containing the constant in the elimination

rule and all other premises are minor premises. The maximum formula is the conclusion

of an application of an introduction rule and is at the same time the major premise of an

elimination rule. We follow Prawitz (1965) for the standard variable restriction of ∀I− and

∃E−rules: the eigenvariable y must not free in the conclusion of each rule, nor in any as-

sumption that the conclusion depends on, except for the discharged assumption [ϕ[y/x]] in

∃−rule. Let S and S′ be any natural deduction systems. S′ is an extension of S if S′ is S itself

or results from S by adding further rules. We call a natural deduction system containing

the rules given above a (first order) minimal natural deduction system. An intuitionistic

system is an extension of the minimal system plus EFQ−rule. We have a classical system

by adding CR−rule to the intuitionistic system.

⊥
EFQ

ϕ

[¬ϕ]1

D

⊥
CR,1

ϕ

Moreover, we have definitions of ‘immediate subderivation’ and ‘subformula.’

Definition 1.2.1. Let D and D′ be any derivation. A derivation D′ is an immediate sub-

derivation of D iff D′ is an initial part of D ending with a premise of the last inference step

in D.

Definition 1.2.2. (Subformulas) The notion of subformula is defined inductively by (1) ϕ

is a subformula of ϕ , (2) if ψ ◦σ is a subformula of ϕ then so are ψ , σ where ◦ is ∨ or ∧

or →, (3) if ∀xψ or ∃xψ is a subformula of ϕ , then so is ψ[x/t].

When Gentzen (1935) introduces a natural deduction system, he explains the roles of
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introduction and elimination rules as below:

The introductions represent, as it were, the ‘definitions’ of the symbols con-

cerned, and the eliminations are no more, in the final analysis, than the conse-

quences of these definitions. This fact may be expressed as follows: In elim-

inating a symbol, we may use the formula with whose terminal symbol we

are dealing only ‘in the sense afforded it by the introduction of that symbol.’

(Gentzen, 1935, p. 80)

To realize his idea, he thinks that there needs to be a certain requirement.

By making these ideas more precise it should be possible to display the E−inferences

as unique functions of their corresponding I−inferences, on the basis of certain

requirements.(Gentzen, 1935, p. 81)

Gentzen’s idea is often interpreted as the meaning of an operator (or a constant) is ex-

haustively determined by its introduction rule and determines its elimination rule. Prawitz

(1965) borrowed the idea and has developed it in natural deduction system. Prawitz (1965,

p. 32) first suggests sufficient conditions to derive ϕ1 ∧ϕ2, ϕ1 ∨ϕ2, ϕ → ψ , ∃xϕ(x), and

∀xϕ(x).

The Sufficient Conditions for ∧, ∨, →, ∃ and ∀: For any formula ϕ1 and ϕ2, sufficient

conditions to derive

(1) ϕ1 ∧ϕ2 is a pair (D1,D2) of derivations such that
D1

ϕ1 and
D2

ϕ2 ,

(2) ϕ1 ∨ϕ2 is a pair (D1,D2) of derivations such that
D1

ϕ1 or
D2

ϕ2 ,

(3) ϕ → ψ is a derivation D1 such that

ϕ

D

ψ ,

(4) ∃xϕ(x) is a derivation D1 such that
D1

ϕ(t),
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(5) ∀xϕ(x) is a derivation D1 such that
D1

ϕ[y/x]where y is not free in ∀xϕ(x) nor any as-

sumption that ∀xϕ(x) depends on.

Each sufficient condition for an operator ◦ is an immediate subderivation of an introduction

rule for ◦. Prawitz (1965, p. 32) describes that ‘The I-rule for [◦] thus gives a sufficient

condition for [deriving] formulas that have [◦] as principal sign, which is stated in terms of

subformulas of these formulas.’

To realize Gentzen’s idea that an elimination rule is determined by the meaning of the

conclusion of an introduction rule, there must be a certain requirement that fixes the elim-

ination rule as the inverse of the corresponding introduction rule. For such requirement,

Prawitz (1965, p. 33) suggests his inversion principle which states that whatever follows

from a formula must follow from the direct ground for deriving that formula:

Let α be an application of an elimination rule that has ϕ as consequence,

Then, [derivations] that satisfy the sufficient condition ... for deriving the ma-

jor premis[es] of α , when combined with [derivations] of the minor premis[es]

of α (if any), already ‘contain’ a [derivation] of [ϕ]; the [derivation] of [ϕ] is

thus obtainable directly from the given [derivations] without the addition of α .

We summarize his principle as follows:

The Inversion Principle: Let Di be any immediate subderivation of an introduction rule

for deriving the major premise of an elimination rule, Dj be any derivation of minor

premises of the elimination rule, and ϕ be any conclusion of the elimination rule. Di

together with Dj already derives ϕ without the application of the elimination rule.

(i.e. any consequences of the major premise is derivable by Di together with Dj.)

The inversion principle reflects Gentzen’s idea and says that nothing is gained by an

application of an elimination rule when its major premise has been derived by means of

an introduction rule. In order to show that a pair of introduction and elimination rules of

each operator satisfy the inversion principle, Prawitz (1965, pp. 35–38) proposes reduction
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procedures for ∧, ∨, →, ¬, ∀, and ∃. For any derivation D1 and D2 ending with the same

formula. Let D1▷D2 mean that D1 reduces to D2 by applying a single reduction step to

an immediate subderivation D′ of D1. Then, the standard reduction procedures for ∧, ¬,

→, ∨, ∀, and ∃ are as follows:

1. The standard reduction procedure for ∧.

D1

ϕ1

D2

ϕ2
∧I

ϕ1 ∧ϕ2
∧E(i=1,2)

ϕi ▷∧

Di

ϕi

2. The standard reduction procedure for →.

[ϕ]1

D1

ψ
→ I,1

ϕ → ψ

D2

ϕ
→ E

ψ ▷→

D2

ϕ

D1

ψ

3. The standard reduction procedure for ∨

Di

ϕi
∨Ii=1,2

ϕ1 ∨ϕ2

[ϕ1]
1

D3

ψ

[ϕ2]
2

D4

ψ
∨E,1,2

ψ ▷∨

D1

ϕ1

D3

ψ or

D2

ϕ2

D4

ψ

4. The standard reduction procedure for ¬
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[ϕ]1

D1

⊥
¬I,1¬ϕ

D2

ϕ
¬E⊥ ▷¬

D2

ϕ

D1

⊥

5. The standard reduction procedure for ∀

D1

ϕ(y)
∀I∀xϕ[x/y]
∀E

ϕ[t/x] ▷∀

D1

ϕ[t/y]

6. The standard reduction procedure for ∃

D1

ϕ(t)
∃I∃xϕ[x/t]

[ϕ[y/x]]1

D2

ψ
∃E,1

ψ ▷∃

D1

ϕ[y/t]
D2

ψ

These standard reduction procedures are also known as the process of reducing the degree

of a maximum formula. A reduction process which reduces the degree of a maximum

formula in accordance with the inversion principle will be called a standard reduction pro-

cedure. The notions of ‘degree’ and ‘length’ of a derivation are defined as below.

Definition 1.2.3. The degree d(ϕ) of a formula ϕ is defined by d(⊥) = 0, d(α) = 0 for an

atomic formula α , d(ϕ ◦ψ) = d(ϕ)+d(ψ)+1 for binary operators ◦, d(◦ϕ) = d(ϕ)+1

for unary operators ◦. The degree d(D) of a derivation D is defined as the highest degree

of a maximum formula in D; d(D) = 0 if there is no such occurrences. The length of a

derivation D is the number of formula occurrences.

When the derivation has no maximum formula, we say that it is in normal form. Let R be

a set of reduction procedures. Every reduction procedure in R is to be closed under substi-
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tution of derivations for open assumptions, and the notions of ‘normal’ and ‘normalizable’

are defined in the following ways.

Definition 1.2.4. A derivation D immediately reduce to D′ (D▷D′) iff D′ is obtained

from D by replacing a subderivation of D through a single-step reduction procedure for it.

A sequence <D1, ...,Di,Di+1, ... > of derivations is a reduction sequence relative to R iff

Di▷Di+1 relative to R where 1 ⩽ i for any natural number i.6 A derivation D1 is reducible

to Di (D1 ≻Di) relative to R iff there is a sequence <D1,D2, ...,Di > relative to R where

for each j < i, Dj▷Dj+1; D1 is irreducible relative to R iff there is no derivation D′ to

which D1▷D′ relative to R except D1 itself.

Definition 1.2.5. A derivation D is normal (or in normal form) relative to R iff D is irre-

ducible relative to R, i.e. D has no maximum formula. A reduction sequence terminates

iff it has a finite number of derivations and its last derivation is in normal form. A deriva-

tion D is normalizable relative to R iff there is a terminating reduction sequence relative to

R starting from D. D is strongly normalizable relative to R iff every reduction sequence

relative to R that starts from D terminates.7

Definition 1.2.6. A reduction procedure

ϕ1, ...,ϕn

D

ψ ▷

ϕ1, ...,ϕn

D′

ψ in R is closure under substi-

tution iff, for any derivation
D1

ϕ1 , ...,

Dn

ϕn , a reduction procedure

D1

ϕ1 , ...,

Dn

ϕn

D

ψ ▷

D1

ϕ1 , ...,

Dn

ϕn

D′

ψ is in

R as well.

Prawitz (1965, 1971) has proved (weak) normalization theorem for the first order intu-

itionistic logic which says that each derivation in a system for the first order intuitionistic

6For any term x and y, let x ⩽ y mean that x is less than or equal to y.
7When all elimination rules are stated in generalized form, the set R of reduction procedures has additional

reduction procedures, called permutation conversion. Then, an irreducible derivation is the same as the deriva-
tion that all major premises are assumptions or not derived by any rules in a given system. In that case, we
shall use ‘full normal form’ and ‘full normalizable’ rather than ‘normal form’ and ‘normalizable.’ General-
ized elimination rules and related terminologies will be introduced in Chapter 2. In addition, if there is no
misunderstanding, for our convenience sake, we drop the ‘relative to R in the suggested notions.
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logic reduces to be in normal form. The corollary of the result is that every (closed) deriva-

tion in the system can be reduced to one using an introduction rule in the last step. Since no

introduction rule derive an absurdity (⊥) as its conclusion, normalization theorem implies

that there is no derivation of ⊥ in the system, i.e. the consistency of the system. In addition,

he has shown the normalization theorem for the weak first order classical predicate logic

which only contains rules for ⊥, →, ∧, ∀. Prawitz (2015) extends the result to the weak

classical first order arithmetic and proposes the consistency proof of the weak classical

arithmetic.

An interesting point is that the normalization theorem seems to show that any normal

derivation does not derive ⊥. So to speak, any absurdities derived by the paradoxes may

be eliminated by the requirement of a normal derivation that every derivation must be in

normal form. While investigating Russell’s paradox, Prawitz (1965, p. 95) first remarks,

‘the set-theoretic paradoxes are ruled out by the requirement that the [derivations] shall

be in normal.’ His derivation formalizing Russell’s paradox falls into a non-terminating

reduction sequence and so is not reducible to a normal derivation. The requirement of a

normal derivation may be a proof-theoretic solution to the paradoxes.

Neil Tennant (1982, 2017) has a similar perspective of the genuine paradoxes. He has

proposed the proof-theoretic conjecture for genuine paradoxes and believed that the con-

jecture provides a proof-theoretic criterion for paradoxicality.

The original proof-theoretic thesis stands:

Genuine paradoxes are those whose associated proofs of absurdity,

when formalized as natural deductions, cannot be converted into

normal form.

This conjecture provides a proof-theoretic criterion for the identification of

genuine paradoxes ... (Tennant, 2017, p. 288)

Tennant (1982) proposed a proof-theoretic criterion for paradoxicality that a genuine para-

dox is a derivation of an unacceptable conclusion which employs a certain form of id est

inferences and generates an infinite reduction sequence. In the next section, we will see
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Tennant’s criterion for paradoxicality and the requirement of a normal derivation as a plau-

sible solution to the paradoxes.

1.3 Tennant’s Criterion for Paradoxicality (TCP) and the Re-

quirement of a Normal Derivation (RND)

Prawitz (1965) firstly investigates that a derivation of an absurdity from the set-theoretic

paradox falls into a non-terminating reduction sequence. Though he did not explicitly

mention that the non-terminating reduction sequence is the distinguishing feature of the

paradoxes, it is often said that he would do so. For instance, Schroeder-Heister and Tran-

chini (2017, p. 568) said, ‘Prawitz proposed [the non-terminating reduction sequence] to be

the distinguished feature of Russell’s paradox.’ Further to Prawitz, Tennant (1982) suggests

the proof-theoretic criterion for paradoxicality and it has been developed by Tennant (1995,

2016, 2017).

Let us take the natural deduction system SN for the naive set theory in the same manner

of Prawitz (1965, Appendix B) which only contains the rules for ∧, →, ¬, and the following

additional rules:
D

ϕ[t/x]
∈ I

t ∈ {x|ϕ(x)}
t ∈ {x|ϕ(x)}

∈ E
ϕ[t/x]

∈ −rules have the following standard reduction process.

D

ϕ[t/x]
∈ I

t ∈ {x|ϕ(x)}
∈ E

ϕ[t/x] ▷∈

D

ϕ[t/x]

Let us define a parameter a as {x|¬x ∈ x}. Then, an application of ∈ I−rule to ¬a ∈ a

derives a ∈ a and an application of ∈ E−rule to a ∈ a derives ¬a ∈ a. Prawitz (1965, p.

95) investigates that a derivation of ⊥ from Russell’s paradox cannot be transformed into a
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normal derivation because it raises an infinite reduction sequence.

Proposition 1.3.1. Let us define a parameter a as {x|¬x ∈ x}. Then, there is a closed

derivation of ⊥ in SN which generates a non-terminating reduction sequence and so is not

normalizable.

Proof. Two claims justify the result.

Claim 1. there exists a closed derivation D3 of ⊥.

First, there is an open derivation D1 of ⊥ from [a ∈ a].

[a ∈ a]1
···················· de f
a ∈ {x|¬x ∈ x}

∈ E¬a ∈ a [a ∈ a]1
¬E⊥

With the derivation D1, we have a closed derivation D2 of a ∈ a.

[a ∈ a]1

D1

⊥
¬I,1¬a ∈ a

∈ I
a ∈ {x|¬x ∈ x}
···················· de f

a ∈ a

Then, we have a closed derivation D3 of ⊥.

[a ∈ a]1

D1

⊥
¬I,1¬a ∈ a

D2

a ∈ a
¬E⊥

Claim 2. D3 initiates a non-terminating reduction sequence and is not normalizable.
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D3 has a maximum formula ¬a∈ a in the last ¬E−rule and, by applying ▷¬−reduction,

it reduces to the derivation D4 below.

[a ∈ a]1

D1

⊥
¬I,1¬a ∈ a

∈ I
a ∈ {x|¬x ∈ x}

∈ E¬a ∈ a
D2

a ∈ a
¬E⊥

D4 has a maximum formula a ∈ {x|¬x ∈ x}, i.e. a ∈ a by definition, in ∈ E−rule either.

The application of ∈ −reduction provides the same derivation with D3 which we started.

Therefore, the reduction procedures of D3 generates a non-terminating reduction sequence

and D3 is not a normalizable derivation.

The reduction process of D3 ends up oscillating infinitely between ¬− and ∈−reductions.

The reduction process cannot eliminate every maximum formula because it always yields

maximum formulas, such as a ∈ {x|¬x ∈ x} ans ¬a ∈ a. Tennant (1982) describes the

reduction process as falling into a looping reduction sequence.

The derivation D3 allows both inferences from a ∈ a to ¬a ∈ a and ¬a ∈ a to a ∈ a

which are what Tennant (1982, p. 271) calls id est inferences. The id est inferences may be

any inferences having a formula interdeducible with its own negation (or its predication).

The paradoxical inferences seem to have the circularity of the id est inferences. He may

assume that the circularity of the paradoxical inference and the non-terminating reduction

sequence are the same phenomenon. He regards the non-terminating reduction sequence as

the distinguishing feature of all paradoxes.

It is clear that paradoxicality hinges partly on the nature of the inferences from

[a ∈ a] to [¬a ∈ a] and from [¬a ∈ a] to [a ∈ a]. ... But not every paradox need

display this feature so clearly. It is .. of considerable interest to enquire after
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techniques for discerning ... whether something at root similar to this circular-

ity of inference at work in all paradoxes. I wish to maintain that it is indeed

their distinguishing feature. I propose precisely the test of non-terminating

reduction sequence. (Tennant, 1982, p. 271)

If a given derivation of a paradox falls into a reduction loop, it is unable to be reduced

to a normal derivation. It is often said that only a normal derivation represents a (real)

proof of the true statement. Provided that there exists a legitimate requirement that every

derivation representing a proof must be (in principle) reducible to a normal derivation,

the requirement may block the derivation of a paradox which falls into a non-terminating

reduction sequence and so is not normalizable. In Chapter 4, we shall interpret a plausible

requirement from the Prawitz-Tennant analysis of the paradoxes as below.

The Requirement of a (Full) Normal Derivation(RND): For any derivation D in natu-

ral deduction, D is acceptable only if D is (in principle) convertible into a normal

derivation.

If RND is an essential one for the acceptable reasoning, the derivation D3 of Proposition

1.3.1 can be rejected because it cannot be in normal form. RND is likely to be regarded as

a similar solution to the reasoning-rejection. Whereas the reasoning-rejection is to reject a

specific rule, such as the law of excluded middle, to block the derivation of an absurdity,

RND seems to be a stronger constraint on the whole structure of the system in question. It is

too hasty to consider RND to be a reasoning-rejection. The related issues will be discussed

in Section 4.2.

Regarding the non-terminating reduction sequence as the main feature of the paradoxes,

Tennant (1982) proposes the criterion for genuine paradoxes. He admits the lesson of

Kripke (1975) that some paradoxes are relative to the empirical facts, and he put forward to

the criterion with respect to a given model which can contain the empirical facts. Let M be

any model and θ(M) be a set of sentences relative to M. Tennant (1982, p. 283) said,

A set of sentences is paradoxical relative to M iff there is some proof of [⊥]
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from θ(M), involving those sentences in id est inferences, that has a looping

reduction sequence.

His first stipulation of the criterion for paradoxicality is not purely described in proof-

theoretic fashion because he uses the notion of ‘model.’ Since Tennant (1982) admits the

lesson of Saul Kripke (1975) that some paradoxes are relative to the empirical facts, he

proposes the criterion for paradoxicality with respect to a given model of the empirical

facts. Instead of using the notion of ‘model’ and ‘set of sentences,’ we will only use a

‘derivation.’ Tennant (1982) appears to think that some id est inferences are legitimated by

empirical facts and some paradoxical derivations have open assumptions. We will consider

that both open and closed derivations of ⊥ can be paradoxical. Let us summarize the early

version of Tennant’s criterion for paradoxicality, TCPE , as follows:

The Early Version of Tennant’s Criterion for Paradoxicality(TCPE): Let D be any deriva-

tion of a given natural deduction system S. D is a T-paradox if and only if

(i) D is a (closed or open) derivation of ⊥ 8,

(ii) id est inferences (or rules) are used in D,

(iii) a reduction procedure of D generates a non-terminating reduction sequence, such as a

reduction loop.9

While he confines his attention to intuitionistic proofs, Tennant (1982, p. 285) conjectures

that every derivation which formulates a genuine paradox is a T-paradox, by saying,

I undertook at the beginning to confine my attention as much as possible to

intuitionistic proofs. ... It appears to me an open question whether every para-

8⊥ is not the only unacceptable conclusion. We can use a propositional variable p as an unacceptable
conclusion while formulating Curry’s paradox. For the examination of other cases, the reader can consult
Tennant (1982)

9The condition (iii) can include a spiraling reduction sequence. Tennant (1995) extends his criterion for
paradoxicality by embracing the spiraling reduction sequence generated by non-self-referential paradoxes, such
as Yablo’s paradox. As Tennant (1995, p. 207) thinks that a looping reduction sequence is the main feature of
the self-referential paradoxes, we only focus on the self-referential paradoxes. A spiraling reduction sequence
will not be dealt with in this paper.
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doxical set of sentences (relative to a model) can be shown to be paradoxical

by means of an intuitionistic proof within a looping reduction sequence.

He appears to think that TCPE applies to every derivation of a genuine paradox.10 When

he introduces his criterion, Tennant (1982, p. 268) wants to regard the criterion as the

conjecture for genuine paradoxes that for any derivation D, D formalizes a genuine paradox

iff D is a T-paradox. For our convenience sake, we consider Tennant’s criterion as the proof-

theoretic criterion for genuine paradoxes. The problems of TCPE will be discussed in the

next chapter. TCPE might have a counterexample if there exists a derivation which satisfies

TCPE but does not formalize a genuine paradox.

TCPE has faced some counterexamples by Susan Rogerson (2006) and Schroeder-Heister

and Tranchini (2017, 2018). Although Tennant’s criterion for paradoxicality may not be

a necessary and sufficient condition for genuine paradoxes, the revision of the criterion

would provide an interesting proof-theoretic criterion for paradoxicality. This dissertation

will suggest plausible counterexamples to Tennant’s criterion for paradoxicality and pro-

pose additional conditions to revise the criterion to be a necessary and sufficient condition

for genuine paradoxes. Hence, the present dissertation deals with two topics: (i) the proof-

theoretic criterion for paradoxicality and (ii) the proof-theoretic solution to the paradoxes.

In the next chapter, we will introduce counterexamples to TCPE which raise the problem

of undergeneration. Chapter 3 will investigate the overgeneration problem of Tennant’s

criterion and the revised version of the criterion. Chapter 4 shall discuss whether the re-

quirement of a normal derivation can be a solution to the paradoxes.

10In Tennant (1982), he did not use the expression, ‘genuine paradox.’ However, when he suggests the later
version of his criterion for paradoxicality, Tennant (2016) calls the derivation of the Liar paradox satisfying
TCP a genuinely paradoxical derivation. Moreover, in Tennant (2017, p. 288), he said, ‘Genuine paradoxes are
those whose associated proofs of absurdity, when formalized as natural deductions, cannot be converted into
normal form.’ In this way, it is natural to think that his conjecture is about genuine paradox.
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Chapter 2

Classical Reductio and A Problem of

Undergeneration

There are two types of counterexamples to Tennant’s criterion for genuine paradoxes:

the problems of overgeneration and undergeneration. When the criterion overgenerates, it

includes a non-paradoxical derivation into the realm of genuine paradoxes. The undergen-

eration problem gives rise to the opposite phenomenon. The criterion excludes a derivation

formalizing a genuine paradox from the scope of genuine ones.

Under the assumption that Curry’s paradox is a genuine paradox, Rogerson (2006, p.

174) first put forward to a derivation formalizing Curry’s paradox which employs classical

reductio ad absurdum and the derivation does not generate a non-terminating reduction

sequence. Curry sentence uses a propositional variable p for any formula, but we shall

instead apply ⊥ and define a parameter a as a set {x|x ∈ x →⊥}. She said,

So, according to Tennant’s theories and claims, Curry’s paradox is a genuine

paradox as its proof can’t be normalized ... and it is characterized by the sen-

tence [{x|x ∈ x →⊥} ∈ {x|x ∈ x →⊥}] and [{x|x ∈ x →⊥} ∈ {x|x ∈ x →⊥}]

abbreviated to a ∈ a and a ∈ a →⊥ when we let a abbreviate [{x|x ∈ x →⊥}].

However, I do not think Tennant has the answer. Something else has to
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be going on. The Curry sentence can be used to trivialize [the principle of

naive comprehension t ∈ {x|ϕ(x)↔ ϕ(t)}] in a few different ways, at least one

of which does not appear to generate a non-terminating reduction sequence.

(Rogerson, 2006, p. 172)

In order to introduce her derivation of Curry’s paradox, we borrow Prawitz’s system SN

for the naive set theory introduced in Section 1.3 of Chapter 1. We use the following

instances of ∈ −rules and have a natural deduction system SNC by adding the rule for

classical reductio to SN .

a ∈ a →⊥
∈ I

a ∈ {x|x ∈ x →⊥}
a ∈ {x|x ∈ x →⊥}

∈ E
a ∈ a →⊥

[¬ϕ]1

D

⊥
CR,1

ϕ

Let R be a set of reduction procedures. A set R′ is an extension of R (R′ ⊇ R) if R′ results

from R by adding reduction procedures which are closed under substitution in R′. Let S

and S′ be any natural deduction system. S′ is an extension of S iff S′ is S itself or results

from S by adding further rules. Then, SNC is an extension of SN . Also, we have a set RN

of reduction procedures for ∧, →, and ¬. SNC has a set RNC by adding auxiliary reductions

for CR−rule.1 While using CR−rule, auxiliary reduction procedures for the conclusion of

CR−rule are added in the set of reductions. As Prawitz (1965, p. 34) does, the notion of a

maximum formula is redefined as a major premise which is at the same time the conclusion

of I− or CR−rules. A similar version of Rogerson’s example is stated as below.

Proposition 2.0.1. Let us define a parameter a as {x|x ∈ x →⊥}. Then, there is a closed

derivation of ⊥ in SNC with respect to RNC which neither does generate a non-terminating

reduction sequence nor is in normal form.

Proof. Two claims show the result.

Claim 1. There is a closed derivation Σ2 of ⊥ in SNC.

1Auxiliary reduction procedures for CR−rule will be introduced in Section 2.2.
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First, there is an open derivation Σ1 of ⊥ from [¬a ∈ a].

[¬a ∈ a]1

[¬a ∈ a]1 [a ∈ a]2
¬E⊥

→ I,2a ∈ a →⊥
∈ I

a ∈ {x|x ∈ x →⊥}
························ de f

a ∈ a
¬E⊥

With the derivation Σ1, we have a closed derivation Σ2 as follows.

[¬a ∈ a]1

Σ1

⊥
CR,1a ∈ a

························ de f
a ∈ {x|x ∈ x →⊥}

∈ E
a ∈ a →⊥

[¬a ∈ a]3

Σ1

⊥
CR,3a ∈ a
→ E⊥

Claim 2. Σ2 neither does generate a non-terminating reduction sequence nor is in normal

form.

Since there is no reduction procedure in RNC applicable to Σ1 and Σ2, Σ2 does not

initiate a non-terminating reduction sequence. Also, a ∈ {x|x ∈ x →⊥} in ∈ E−rule is a

major premise and a conclusion of CR−rule, and so is a maximum formula. Therefore, Σ2

is not in normal form.

With respect to Tennant’s criterion, TCPE , Proposition 2.0.1 says that Σ2 is not a T-paradox

because Σ2 does not yield a non-terminating reduction sequence. When she deals with a

similar derivation, Rogerson (2006, p. 174) concludes,

No standard reduction steps given by [Prawitz (1965)] straightforwardly apply

in this case as the use of the [∈] operator insulates the formulae from the nor-

malization process. It seems plausible to conclude that this [derivation] does
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not reduce to a normal form and does not generate a non-terminating reduction

sequence in the sense of [Tennant (1982) or Tennant (1995)]. Thus, Tennant’s

criterion for paradoxicality does not apply here. (Rogerson, 2006, p. 174)

We call any derivation of a genuine paradox which employs CR−rule and does not yield a

non-terminating reduction sequence, a Rogerson-type counterexample. The Rogerson-type

counterexample establishes that if Curry’s paradox is a genuine one, there is a derivation

of a genuine paradox which is not a T-paradox. If she is right, there is a derivation of a

genuine paradox which raises the problem of undergeneration.2

Rogerson seems to think that the non-terminating reduction sequence is not the primary

feature of paradoxical derivations. However, as Tennant (2016, p. 2) focusses on, the non-

terminating reduction sequence may be regarded as a proof-theoretic feature of the vicious

circularity in the self-referential paradoxes.

Tennant (1982) proposed a proof-theoretic criterion, or test, for paradoxicality

– that of non-terminating reduction sequences initiated by the ‘proofs of ⊥’

associated with the paradoxes in question (p. 271). In that paper, the subse-

quent focus was on looping reduction sequences. These are the proof-theorist’s

explication of the vicious circularity involved in paradoxes. (Tennant, 2016, p.

2)

It will be a retrogression in the proof-theoretic investigation of the paradoxes that the non-

terminating reduction sequence is simply considered not to be related to any paradoxical

features.

Rather, while we presume that the non-terminating reduction sequence is the main fea-

ture of the self-referential paradoxes, in this chapter, we deal with the problem of under-

generation. Introduction rules in Gentzen-Prawitz’s natural deduction system have two

forms of elimination rules: standard and generalized elimination rules. The counterexam-

ple which shows that TCPE undergenerates can use the generalized elimination rules. As
2Rogerson (2006) only considers standard reduction processes suggested by Prawitz (1965). However,

Schroeder-Heister and Tranchini (2017, pp. 572–573) borrow the reduction proposed by Gunnar Stålmarck
(1991, pp. 131–132) and claim that her example can be further reduced. It will be seen in Proposition 2.4.1 that
the reduced derivation generates a non-terminating reduction sequence.
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a preliminary matter, Section 2.1 introduces generalized elimination rules with their reduc-

tion procedures and the harmony relation between introduction and elimination rules.

For our discussion about CR−rule and the problem of undergeneration, it should be

discussed which paradoxes are genuine paradoxes. However, for our convenience, we pre-

sume in Section 2.2 that Curry and the Liar paradox are genuine paradoxes. Even though

he did not mention Rogerson’s counterexample, Tennant (2015, pp. 588–589) deals with a

Rogerson-type counterexample of the Liar paradox which uses CR−rule and has no non-

terminating reduction sequence. To solve the problem of undergeneration, he seems to

presume that the application of CR−rule has a defect that the rule conceals the main feature

of the paradoxes and proposes the methodological conjecture that genuine paradoxes are

never strictly classical. However, the undergeneration problem is not solved by simply ac-

cusing CR−rule of disguising the feature because there are cases which do not use CR−rule

but show that TCPE undergenerates. Tennant seems not to consider seriously the problem

of undergeneration. Section 2.3 proposes some counterexamples to TCPE which represent

that TCPE undegenerates, however those counterexamples do not employ CR−rule. We

will see that the occurrence of a non-terminating reduction sequence relies on our choice of

reduction procedures. Section 2.4 deals with the question of what makes a non-terminating

reduction sequence stops. With some observations, we propose a possible diagnosis that

a non-terminating reduction sequence does not occur if a derivation in question includes

(i) a major premise which has no reduction process to eliminate it or (ii) a formula having

a principal constant which has no reduction procedure to get rid of it. Then, we suggest

an additional condition to TCPE that a derivation formalizing a genuine paradox only uses

harmonious rules. If the suggested condition is acceptable, the condition can solve the

problem of undergeneration.
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2.1 Preliminaries: Generalized Elimination Rules and Harmony

Relation.

We will see in the next chapter that the later version of Tennant’s criterion for paradoxi-

cality (TCPL) accepts an additional condition that all elimination rules must be stated in the

generalized form.3 In addition, the early version of Tennant’s criterion TCPE does not re-

strict the form of elimination rules. There would be a counterexample to TCPE which uses

the generalized elimination rules. After we will introduce the generalized form of elimina-

tion rules with related terminologies in Section 2.1.1, Section 2.1.2 explains intrinsic and

GE-harmony requirement for a desirable pair of introduction and elimination rules.

2.1.1 Generalized Elimination Rules

An introduction rule in natural deduction has two forms of elimination rules: standard

and generalized forms. Based on the rules suggested in Section 1.2, ∧E−, → E−, ¬E−,

and ∀E−rules have the form of standard elimination rules. ∨− and ∃−rules have the form

of generalized elimination rules.

Generalized elimination rules were first introduced by Schroeder-Heister (1984a). His

purpose was to obtain a general schema for introduction and elimination rules for logical

constants in propositional logic. His work was extended to quantifiers in Schroeder-Heister

(1984b). Tennant (1992, 2002) borrows the generalized elimination rules and suggests the

proof of what he calls ‘ultimate normal form’ for generalized intuitionistic relevant natural

deductions which are isomorphic to cut- and weakening-free sequent calculus. For the

proof, Tennant (1992, p. 47 and p. 50) proposes the requirement that all major premises of

elimination rules stand proud, which means that every major premise does not stand as a

conclusion of any rule. We say that a derivation is in full normal form iff all major premises

are not derived by any rule, i.e. they are assumptions or axioms. Then, the requirement of

3Tennant prefers to say ‘parallelized’ and ‘serial’ rather than ‘generalized’ and ‘standard.’ In the present
dissertation, however, we shall use the later names.
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a full normal derivation is the same as his.4 The main idea of his was that the requirement

prevents the reorder of derivations which can make an additional reduction possible.

Roughly put, Tennant’s proof of ultimate normal form has three steps. At first, Tennant

(2002) shows that any derivation in an intuitionistic relevant system with generalized elim-

ination rules are in normal form. Then, the proof establishes that every normal derivation is

converted into full normal form, and thence into ultimate normal form which satisfies iso-

morphism between natural deduction and sequent calculus. In a similar perspective, Negri

and Von Plato (2001) introduce the generalized forms of elimination rules and an isomor-

phic interpretation procedure between natural deduction and sequent calculus. When we

use generalized elimination rules, we shall use the notion of ‘full normal form’ rather than

‘normal form.’ We adopt the isomorphic interpretation algorithm and the forms of general-

ized elimination rules for ∧, ∨, →, ¬, ∀, ∃ and their reduction procedures from Negri and

Von Plato (2001).

D1

ϕ1

D2

ϕ2
∧I

ϕ1 ∧ϕ2

ϕ1 ∧ϕ2

[ϕ1]
1, [ϕ2]

1

D3

ψ
∧E,1

ψ

[ϕ]1

D1

ψ
→ I,1

ϕ → ψ

ϕ → ψ

D2

ϕ

[ψ]1

D3

χ
→ E,1

χ

D1

ϕi
∨I(i=1,2)

ϕ1 ∨ϕ2

ϕ1 ∨ϕ2

[ϕ1]
1

D2

ψ

[ϕ2]
2

D3

ψ
∨E,1,2

ψ

[ϕ]1

D1

⊥
¬I,1¬ϕ

¬ϕ

D2

ϕ

[⊥]1

D3

ψ
¬E,1

ψ

D1

ϕ[y/x]
∀I∀xϕ(x)

∀xϕ(x)

[ϕ[t/x]]1

D2

ψ
∀E,1

ψ

D1

ϕ(t)
∃I∃xϕ[x/t]

∃xϕ(x)

[ϕ[y/x]]1

D2

ψ
∃E,1

ψ

4Even though the requirement was first suggested by Tennant (1992), it looks as if Negri and Von Plato
(2001) have introduced an explicit notion of full normal form. For our convenience, we shall use their notion
of ‘full normal form’ in the sense that every major premise is an assumption, rather than Tennant’s notion of
‘stand proud.’
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The standard reduction procedures for ∧, →, ∨, ¬, ∀, and ∃ are as below5:

1. The standard reduction procedure for ∧.

D1

ϕ1

D2

ϕ2
∧I

ϕ1 ∧ϕ2

[ϕ1]
1, [ϕ2]

1

D3

ψ
∧E,1

ψ ▷∧

D1 D2

ϕ1 ϕ2

D3

ψ

2. The standard reduction procedure for →.

[ϕ]1

D1

ψ
→ I,1

ϕ → ψ

D2

ϕ

[ψ]2

D3

χ
→ E,2

χ ▷→

D2

ϕ

D1

ψ

D3

χ

3. The standard reduction procedure for ∨

Di

ϕi
∨Ii=1,2

ϕ1 ∨ϕ2

[ϕ1]
1

D3

ψ

[ϕ2]
2

D4

ψ
∨E,1,2

ψ ▷∨

D1

ϕ1

D3

ψ or

D2

ϕ2

D4

ψ

4. The standard reduction procedure for ¬

5The special elimination rules for ∀ and ∃ have additional variable restrictions suggested by Prawitz (1965,
pp. 37-38). For the reduction procedures for generalized elimination rules for ∀ and ∃, we apply the same
restrictions. The all free variables in D1 of both standard reduction procedures for ∀ and ∃ are different from
both y and t. Since there can be no free occurrence of x in ϕ , ϕ[x/y][t/x] is the same as ϕ[t/y]. The assumptions
in D2 of both stadard reduction procedures for ∀ and ∃ that ψ depends do not contain any occurrence of y, and
y does not occur in ψ . For the process for ∀, the assumptions in D1 on which ∀xϕ[x/y] depends do not contain
any occurrence of y.
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[ϕ]1

D1

⊥
¬I,1¬ϕ

D2

ϕ

[⊥]2

D3

ψ
¬E,2

ψ ▷¬

D2

ϕ

D1

⊥
D3

ψ

5. The standard reduction procedure for ∀

D1

ϕ(y)
∀I∀xϕ[x/y]

[ϕ[x/y][t/x]]1

D1

ψ
∀E,1

ψ ▷∀

D1

ϕ[t/y]
D2

ψ

6. The standard reduction procedure for ∃

D1

ϕ(t)
∃I∃xϕ[x/t]

[ϕ[y/x]]1

D2

ψ
∃E,1

ψ ▷∃

D1

ϕ(t)
D2[y/t]

ψ

When all elimination rules are formulated in generalized form, all normal derivations are

not in full normal form. For instance, there is a derivation which has no maximum formula

and so is in normal form, but is not in full normal form. We consider the following two

derivations.

[ϕ ∧ (ψ ∧σ)]
∧E

ϕ ∧ψ
∧E

σ

[ϕ ∧ (ψ ∧σ)] [ψ ∧σ ]1

∧E,1
ψ ∧σ [σ ]2

∧E,2
σ

The elimination rules for ∧ in the left side derivation are stated in standard form. On the

other hand, the right side derivation consists of generalized elimination rules for ∧. The

right side derivation is in normal form but is not in full normal form. To reduce the degree
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of the major premise in the last ∧E−rule, we need to apply permutation conversion to the

derivation and have the following derivation.6

[ϕ ∧ (ψ ∧σ)]

[ϕ ∧ψ]1 [ψ]2

∧E,2
σ

∧E,1
σ

Hence, when we use generalized elimination rules, we will use the notion of ‘full normal

form’ rather than ‘normal form.’ Moreover, permutation conversion is the essential pro-

cesses to eliminate the major premise which is derived by an elimination rule. It will be an

additional auxiliary reduction procedure.

General elimination rules will be used in Section 2.3 and in Chapter 3. It is often en-

couraged to use harmonious introduction and elimination rules. The next subsection will

introduce intrinsic and GE-harmony relations between introduction and elimination rules.

2.1.2 An Intrinsic and a GE-Harmony Relation Between Introduction and

Elimination rules.

Gentzen first proposed introduction and elimination rules for natural deduction. Prawitz

(1965, 1971) has proved the normalization theorem for (weak) classical and intuitionistic

natural deduction systems that every derivation is reducible to a normal derivation. The

normalization theorem is proved based on Gentzen’s idea that the meaning of an princi-

pal operator (or a principal constant) is exhaustively determined by introduction rules and

determines corresponding elimination rules. Prawitz’s inversion principle reflects the idea.

The Inversion Principle: Let Di be any immediate subderivation of an introduction rule

for deriving the major premise of an elimination rule, Dj be any derivation of minor

premises of the elimination rule, and ϕ be any conclusion of the elimination rule. Di

together with Dj already derives ϕ without the application of the elimination rule.

(i.e. any consequences of the major premise is derivable by Di together with Dj.)
6The permutation conversion was found by Gentzen (2008) and Prawitz (1965) for ∨− and ∃E−rules. It

is an essential process to reduce the degree of the major premise derived by an elimination rule. Particular
instances of permutation conversions are introduced in Appendix 2.B.
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The inversion principle says that nothing is gained by deriving a formula from a major

premise of an elimination rule when the major premise is a conclusion of an introduction

rule. When any pair of introduction and elimination rules satisfies the inversion principle,

they have a method to eliminate a major premise of the elimination rules given by the

introduction rules. Based on his theory of meaning, Michael Dummett (1991, p. 250) treats

‘the eliminability of [major premises] as a criterion for intrinsic harmony.’ Dummett’s

intrinsic harmony requirement can be explained via the inversion principle.

Definition 2.1.1. (Intrinsic Harmony) Let ◦ be an operator (or a constant). Introduction

and elimination rules for ◦ are intrinsically harmonious iff every pair consisting of an ◦I−

and ◦E−rules satisfies the inversion principle.

Not all pairs of introduction and elimination rules satisfy intrinsic harmony. Intrinsic har-

mony requirement should demand that every pair of introduction and elimination rules

satisfy the inversion principle. Let us consider a well-known example of tonk−rules in-

troduced by Arthur Prior (1960) with some variation.

Di

ϕi
tonkIi(i = 1,2)

ϕ1 tonk ϕ2

ϕ1 tonk ϕ2
tonkEi(i = 1,2)

ϕi

tonkI−rules have the same form of ∨I−rules, but tonkE−rules have the standard form of

∧E−rules. tonk−rules derive any formulas and are problematic. For instance,

D1

ϕ1
tonkI1

ϕ1 tonk ϕ2
tonkE2

ϕ2

From the derivation D1 of ϕ1, tonkI1− and tonkE2−rules can have any consequences. If the

intrinsic harmony requirement only demands a pair of introduction and elimination rules

satisfying the inversion principle, tonk−rules have a reduction process between tonkI1−

and tonkE1−rules and are not problematic.
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D1

ϕ1
tonkI1

ϕ1 tonk ϕ2
tonkE1

ϕ1 ▷

D1

ϕ1

However, no reduction procedure exists between tonkI1− and tonkE2−rules (also between

tonkI2− and tonkE1−rules). Therefore, in order to block tonk−rules, we will request any

pair of introduction and elimination rules satisfies the inversion principle.

Dummett (1991, p. 287) considers that intrinsic harmony may be too weak requirement.

Roughly, intrinsic harmony prevents elimination rules to be stronger than the corresponding

introduction rules whereas it does not restrict elimination rules which is weaker than the

corresponding introduction rules. For example, we consider the following form of rules for

▲.

D1

ϕ

D2

ψ
▲I

ϕ▲ψ

ϕ▲ψ
▲E

ϕ

▲−rules are intrinsically harmonious, but yet ▲E−rule does not fully infer any conse-

quences of the meaning of ϕ▲ψ conferred by ▲I−rule. So to speak, elimination rules

should be neither stronger nor weaker than the corresponding introduction rules. For such

demand, he proposes the stability requirement.

A little reflection shows that [intrinsic] harmony is an excessively modest de-

mand. ... The fact that the consequences we conventionally draw from [a

formula] are in harmony with these acknowledged grounds shows only that we

draw no consequences its meaning does not entitle us to draw. It does not show

that we fully exploit that meaning, that we are accustomed to draw all those

consequences we should be entitled to draw. ... Such a balance is surely desir-

able ... . The demand that such a condition be met goes beyond the requirement

of harmony: we may call it ‘stability’ (Dummett, 1991, p. 287)
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Even though Dummett (1991, Ch. 13) dedicates one chapter of the Logical Basis of Meta-

physics to stability, it is far from clear how the rigorous account of stability is to be filled

in.

There are two accounts of harmony to realize the idea of stability: Tennant’s account of

harmony as deductive equilibrium and generalized elimination account of harmony. Florian

Steinberger (2009) suggests a counterexample to Tennant’s account that it sanctions as

harmonious obviously invalid rules for existential quantifier, i.e. an existential elimination

rules which lack the usual variable restriction on the parameter. Tennant (2010) responses

to the counterexample by the requirement of a proof of admissibility that the employment

of structural rules, such as Cut, has to be legitimated by a proof of their admissibility.7

Steinberger (2011) rebuts again that once the requirement of admissibility is introduced,

Tennant’s account of harmony as deductive equilibrium no longer has any role to play in

the realization of stability. Moreover, he said,

It follows that harmony should be understood as a relational property of pairs

of inference rules (and by extension of the logical constants governed by them)

and not as a property of deductive systems. Consequently, the admissibility of

CUT, a property of deductive system, is not a candidate for formalizing the

intuitive notion of harmony. (Steinberger, 2011, p. 278)

Tennant did not yet respond to Steinberger’s objection. If Steinberger is right, Tennant’s

account of harmony as deductive equilibrium has a serious defect to realize the idea of

stability.

The other candidate account is the generalized elimination harmony (GE-harmony for

short). Unlike intrinsic harmony, GE-harmony delivers a method for generating GE-harmonious

rules. Recently, the application of generalized elimination rules and the notion of GE-

harmony has been developed by Dyckhoff and Francez (2012) and Negri and Von Plato

(2001). Especially, Negri and Von Plato (2001, p. 6) suggest the generalized version of

7Let S be a system of rules. A rule with the premises ϕ1, ...,ϕn and the conclusion ψ is admissible in S if,
whenever the premises ϕ1, ...,ϕn are derivable in S, the corresponding conclusion ψ is derivable in S.
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inversion principle that whatever follows from the direct grounds for deriving a formula

must follow from that formula. We call it the Generalized Inversion Principle:

The Generalized Inversion Principle: Let Di be any immediate subderivation of an in-

troduction rule for deriving a major premise of an elimination rule, Dj be any deriva-

tion of minor premises of the elimination rule. Whatever is derivable by Di together

with Dj is a consequence of the major premise.

The principle is standardly taken to be formally represented by Dyckhoff and Francez

(2012). They have proposed the general form of introduction and generalized elimination

rules which satisfy the generalized inversion principle. The general forms of introduction

and generalized elimination rules with their standard reduction procedures are called the

GE-schema. All rules and their standard reductions introduced in Section 2.1.1 are in-

stances of the GE-schema. GE-harmony relation is defined in terms of the GE-schema

such that a pair of introduction and elimination rules is GE-harmonious iff an elimination

rule has been induced from the introduction rule by means of the GE-schema.

The intrinsic harmony and the GE-harmony have been considered to be the main con-

temporary accounts of harmony. It is encouraged to use intrinsically harmonious rules (or

GE-harmonious rules if generalized elimination rules are employed). It is still an open

question of whether we should only use harmonious rules or not. Although it is desirable

to use harmonious rules, it seems to be a too strong requirement that only harmonious rules

are acceptable.

For our purpose of investigating the problem of undergeneration, the next three sections

will argue that applications of axioms having a principal operator (or a principal constant)

that no I-rule introduces or of rules without having its corresponding harmonious rules can

block the occurrence of a non-terminating reduction sequence.
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2.2 The Methodological Conjecture and the Problem of Under-

generation

Tennant (2016, Sec. 4) claims that the Liar paradox is a genuine paradox by suggesting

the same result with Proposition 2.A.1 in Appendix 2.A. On the other hand, it is easily

seen that there exists a Rogerson-type counterexample formalizing the Liar paradox which

represents that TCPE undergenerates, i.e. TCPE excludes a derivation of the Liar para-

dox from the realm of genuine paradoxes. Tennant (2015, pp. 588–589) recognizes that a

derivation of the Liar paradox employing classical inferences, such as CR−rule, gives rise

to problems that it appears to be a normal derivation of ⊥ and it does not initiate a non-

terminating reduction sequence. For the answer to the problems, he proposes the method-

ological conjecture that genuine paradoxes are never strictly classical. When he introduces

the methodological conjecture, he claims, ‘The use of classical reductio has masked the real

defect that lies at the heart of paradoxical reasoning’(Tennant, 2015, p. 589). He thinks that

the application of CR−rule disguises the main feature of genuine paradoxes, i.e. the non-

terminating reduction sequence. In this section, we introduce his formulation of the Liar

paradox and his methodological conjecture as the answer against the Rogerson-type coun-

terexample. Since the conjecture explicates that classical inferences do not need to be used

in derivations of genuine paradoxes and he thinks that the applications of classical infer-

ences cause to stop generating the main feature of genuine paradoxes, we understand in this

section that his answer to the problem of undergeneration is that classical inferences, such

as CR−rule must not be used in derivations of genuine paradoxes.

When he suggests his example of the Liar paradox, Tennant (2015, pp. 588–589) uses

the rules for the unary truth-predicate, T (x) which states that x is true.

ϕ
T I

T (⌜ϕ⌝)

T (⌜ϕ⌝)
T E

ϕ

In addition, he employs similar rules for the reflexity of identity and the substitutivity of

identity introduced in Per Martin-Löf (1971, p. 190). Tennant (2007, p. 1061) accepts the
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following rules for identity.

ϕ(t)
= I

t = t
t = u ψ(t, t)

= E
ψ(t,u)

where t and u are any terms and ϕ(t) is an atomic formula. On Martin-Löf’s account of

= E−rule, given the major premise t = u, ψ defines any reflexive (binary) relation and

= E−rule binds a term t in the conclusion ψ(t,u) such that t bears any (binary) relation ψ

to u. By using either →−rules or ∧−rules, the rule of substitutivity of identity is readily

derivable from = E−rule. (Cf. Martin-Löf (1971, p. 190) and Tennant (2007, p. 1062)) So

we shall take reflexivity and substitutivity, respectively, as the introduction and elimination

rules for identity:

ϕ(t)
= I

t = t
t = u σ(t)

= E
σ(u)

Let SE be a natural deduction system containing ¬−, T−, and =−rules. SE has a set RE of

reduction procedures for ¬ and the following standard reduction and the auxiliary reduction

processes.

1. The standard reduction procedure for T (x)

D

ϕ
T I

T (⌜ϕ⌝)
T E

ϕ ▷T (x)

D

ϕ

2. The auxiliary reduction procedure for the substitutivity of identity.

t2 = t1

t1 = t2

D

ϕ(t1)
= E

ϕ(t2)
= E

ϕ(t1) ⊵Sub

D

ϕ(t1)
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The role of the standard reduction procedures is to eliminate the degree of a maximum

formula and satisfies the inversion principle whereas the auxiliary reduction procedures

are often proposed independently of the inversion principle. For example, ⊵Sub−reduction

above is just lowering the length of a derivation and its role does not seem to pursue the

inversion principle. Also, the following reductions are different from the standard reduc-

tions.

3. The auxiliary reduction procedure for CR−rule with regard to ¬−rules.

[¬¬ϕ]1

D

⊥
CR,1¬ϕ ⊵CR(¬)

[¬⊥]3
[¬ϕ]1 [ϕ]2

¬E⊥
¬E⊥

¬I,1¬¬ϕ

D

⊥
CR,3⊥
¬I,2¬ϕ

4. The auxiliary reduction procedure for CR−rule with regard to T−rules.

[¬T (⌜ϕ⌝)]1

D

⊥
CR,1T (⌜ϕ⌝) ⊵CR(T (x))

[¬ϕ]2
[T (⌜ϕ⌝)]1

T E
ϕ

¬E⊥
¬I,1¬T (⌜ϕ⌝)

D

⊥
CR,2

ϕ
T I

T (⌜ϕ⌝)

⊵CR(¬)− and ⊵CR(T (x))−reductions neither do eliminate a maximum formula nor lower the

length of a derivation, but they lower the degree of the conclusion of CR−rule.

Tennant (2015, pp. 585–588) proposes a derivation of the Liar paradox which does not

employ CR−rule and does generate a looping reduction sequence. We will use a natural
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deduction system SE which has ¬−, T−, =−rules. A set RE of reductions contains ▷¬−,

▷T (x)−, and ⊵Sub. Then, we have the result in SE with respect to RE .

Proposition 2.2.1. Suppose that, for some formula Φ, ⌜Φ⌝ = ⌜¬T (⌜Φ⌝)⌝ is an axiom of

SE . SE relative to RE has a closed derivation of ⊥ which generates a non-terminating

reduction sequence, so is not normalizable.

Proof. The result consists of two claims

Claim 1. there is a closed derivation ∆3 of ⊥ in SE

We begin with an open derivation ∆1 of ⊥ from [T (⌜Φ⌝)].

Ax1⌜Φ⌝= ⌜¬T (⌜Φ⌝)⌝ [T (⌜Φ⌝)]1
= E

T (⌜¬T (⌜Φ⌝)⌝)
T E¬T (⌜Φ⌝) [T (⌜Φ⌝)]1

¬E⊥

With the open derivation ∆1, we have the closed derivation ∆2 of T (⌜φ⌝).

Ax2⌜¬T (⌜Φ⌝)⌝= ⌜Φ⌝

[T (⌜Φ⌝)]1

∆1

⊥
¬I,1¬T (⌜Φ⌝)

T I
T (⌜¬T (⌜Φ⌝)⌝)

= E
T (⌜Φ⌝)

Then, we have the closed derivation ∆3 of ⊥.

[T (⌜Φ⌝)]1

∆1

⊥
¬I,1¬T (⌜Φ⌝)

∆2

T (⌜Φ⌝)
¬E⊥
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Claim 2. ∆3 generates a non-terminating reduction sequence, and so is not normalizable.

∆3 is not in normal form since it has a maximum formula ¬T (⌜Φ⌝). By applying ▷¬ to

∆3, we have the following derivation ∆4.

Ax1⌜Φ⌝= ⌜¬T (⌜Φ⌝)⌝

Ax2⌜¬T (⌜Φ⌝)⌝= ⌜Φ⌝

[T (⌜Φ⌝)]1

∆1

⊥
¬I,1¬T (⌜Φ⌝)

T I
T (⌜¬T (⌜Φ⌝)⌝)

= E
T (⌜Φ⌝)

= E
T (⌜¬T (⌜Φ⌝)⌝)

T E¬T (⌜Φ⌝)

∆2

T (⌜Φ⌝)
¬E⊥

The application of ⊵Sub and ▷T (x) yield the same derivation with ∆3. Hence, the reduction

procedure generates non-terminating reduction sequences and so it is not normalizable.

According to TCPE , ∆3 is a T-paradox. If the Liar paradox is a genuine paradox and the non-

terminating reduction sequence is the main feature of the genuine paradox, ∆3 supports the

view that TCPE is an appropriate proof-theoretic criterion for genuine paradoxes. However,

by employing CR−rule, we have a Rogerson-type counterexample to TCPE .

We have a system SCE by adding CR−rule to SE , i.e. SCE is an extension of SE . SCE

has a set RCE of reduction procedures which is an extension of RE by adding ⊵CR(¬) and

⊵CR(T (x)). Then, SCE has Tennant’s derivation of the Liar paradox using CR−rule. As

Tennant (2015, p. 588) does, we suppose that, for some formula Φ, ⌜Φ⌝= ⌜¬T (⌜Φ⌝)⌝ is

an axiom of SCE and have the result. Since his result in Tennant (2015, pp. 588–589) can be

further reduced by the application of ⊵CR(T (x))−reduction, we provide a reduced derivation

of ⊥.

Proposition 2.2.2. Suppose that, for some formula Φ, ⌜Φ⌝ = ⌜¬T (⌜Φ⌝)⌝ is an axiom of

SCE . Then, there is a closed derivation of ⊥ in SCE .
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Proof. First, we have an open derivation ∆5 of ⊥ from [¬Φ].

[¬Φ]1

Ax2⌜¬T (⌜Φ⌝)⌝= ⌜Φ⌝

[¬Φ]1
[T (⌜Φ⌝)]2

T E
Φ

¬E⊥
¬I,2¬T (⌜Φ⌝)

T I
T (⌜¬T (⌜Φ⌝)⌝)

= E
T (⌜Φ⌝)

T E
Φ

¬E⊥

With the derivation ∆5, there is a closed derivation ∆6 of ⊥.

Ax1⌜Φ⌝= ⌜¬T (⌜Φ⌝)⌝

[¬Φ]1

∆5

⊥
CR,1

Φ
T I

T (⌜Φ⌝)
= E

T (⌜¬T (⌜Φ⌝)⌝)
T E¬T (⌜Φ⌝)

[¬Φ]3

∆5

⊥
CR,3

Φ
T I

T (⌜Φ⌝)
¬E⊥

There is no reduction process in RCE that we can apply to ∆6. ∆6 does not generate a

non-terminating reduction sequence. If the Liar paradox is a genuine paradox, ∆6 is a

counterexample to TCPE which raises the problem of undergeneration. It is the derivation

of the genuine paradox but does not satisfy TCPE . Hence, TCPE fails to be a necessary

condition to be the test of the genuine paradoxes. Tennant considers that the classical

inference makes a trouble in the derivation of the Liar paradox.

In his derivation of the Liar paradox employing CR−rule which does not apply ⊵CR(T (x))-

reduction, Tennant (2015, p. 289) describes a similar phenomenon as the classical rub.

Now here’s the classical rub: this proof appears to be in normal form. The
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use of classical reductio has masked the real defect that lies at the heart of

paradoxical reasoning (according to my account) – the abnormality that makes

itself evident only when one hews to a constructivist line ... .

He thinks that a classical inference causes the trouble that a constructive reasoning does not

make. Of course, there is a significant issue of whether the constructivist can accept the

classical reductio and many constructivists do not agree that the reductio is a constructive

reasoning. However, here the trouble that Tennant points out is not the issue on whether the

classical reductio is constructive or not. His issue is that CR−rule makes a trouble when

we investigate the proof-theoretic structure of the paradoxes. He considers that at least two

things are troublesome. First, the derivation of the Liar paradox using CR−rule, such as

∆6 does not produce the heart of paradoxical reasoning, i.e. the non-terminating reduction

sequence. Second, it appears to be a normal derivation.8 He proposes the methodological

conjecture as the answer to the trouble, instead of arguing that the trouble only happens

when using classical inferences.

Paradoxes are never strictly classical. The kind of conceptual trouble that a

paradox reveals will afflict the intuitionist just as seriously as it does the classi-

cist. Therefore, attempted solutions to the paradoxes, if they are to be genuine

solutions, must be available to the intuitionist. Nothing about an attempted

solution to a paradox should imply that the trouble it reveals lies with strictly

clssical moves of reasoning. (Tennant, 2015, p. 589)

It is true that we do not need CR−rule to formulate many of (self-referential) paradoxes

in natural deduction. His methodological conjecture seems to be true. However, inde-

pendently of his methodological conjecture, there is room for discussion on whether only

classical inferences cause the trouble that he mentions. Furthermore, he does not seriously

8With respect to the derivation ∆6 of Proposition 2.2.2, ∆6 appears to be in normal form but whether it is in
normal form is dependent on how we deal with the axiom ⌜Φ⌝ = ⌜¬T (⌜Φ⌝)⌝. If the axiom were derived by
the application of = I−rule, ⌜Φ⌝= ⌜¬T (⌜Φ⌝)⌝ in = E−rule would be a maximum formula. Then, ∆6 would
be a non-normal derivation. If we deal with the axiom in the same manner of assumptions, ⌜Φ⌝= ⌜¬T (⌜Φ⌝)⌝
would not be a maximum formula, and so it would be in normal form. For Tennant said that his derivation
appears to be in normal form, we regard ∆6 as a seeming normal derivation.
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consider the problem of undegeneration. His expected answer against the undergeneration

problem is the rejection of the use of CR−rule. However, we will see in the next section

that there are cases generating the problem of undergeneration without the application of

CR−rule.

2.3 The Undergeneration Problem without CR−Rule.

At the beginning of this chapter, the non-normal derivation Σ2 of Curry’s paradox using

CR−rule is proposed and it fails to generate a looping reduction sequence. Also, in the last

section, we have the seeming normal derivation ∆6 of the Liar paradox without generating

an infinite reduction sequence. It is the Rogerson-type counterexample to TCPE because it

raises the problem of undergeneration. As we have seen in the last section, Tennant thinks

that the derivation has two problems: (i) the derivation appears to be in normal form, i.e.

a normal derivation of ⊥ exists, (ii) the derivation does not generate a non-terminating

reduction sequence in spite of the fact that it formalizes a genuine paradox, such as the

Liar paradox. He believes that these problems are only caused by the classical inference.

From the observation that it is not necessary to use classical inferences to formalizes gen-

uine paradoxes in natural deduction, he put forward to the methodological conjecture that

genuine paradoxes are never strictly classical. Although he did not seriously consider the

problem of undergeneration, from his view, we can think that his solution to the under-

generation problem is not to use any classical inferences. However, it is too hasty to think

so.

When we take the problem of undergeneration more seriously, we can see that the prob-

lem is not solely caused by the application of classical inferences. We shall argue in this

section that the problem of undergeneration is not solved by simply accusing classical in-

ferences, especially CR−rule, of two troubles above, due to the fact that there are coun-

terexamples to TCPE which does not use any classical inference but does raise the under-

generation problem.

At first, Tennant ignores the fact that a non-terminating reduction sequence can be oc-
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curred by an auxiliary reduction procedure. In the next chapter, we will see Ekman’s para-

dox which shows that TCPE overgenerates in the sense that TCPE makes a non-paradoxical

derivation paradoxical. Ekman’s paradox uses a special auxiliary reduction procedure

called Ekman reduction procedure which has the main role to generate a non-terminating

reduction sequence.

[ψ → ϕ]

[ϕ → ψ]

D

ϕ
→ E

ψ
→ E

ϕ ⊵E

D

ϕ

Ekman reduction ⊵E is an auxiliary reduction procedure and it has a similar form with the

auxiliary reduction procedure for the substitutivity of identity.

t2 = t1

t1 = t2

D

ϕ(t1)
= E

ϕ(t2)
= E

ϕ(t1) ⊵Sub

D

ϕ(t1)

Similar to Ekman’s paradox, the derivation of the Liar paradox in Tennant (2015, pp. 585–

588), i.e. Proposition 2.2.1, should use ⊵Sub−reduction. If ⊵Sub−reduction is not available,

∆4 in Proposition 2.2.1 does not reduce to the same derivation with ∆3 and so ∆3 does not

generate a looping reduction sequence. As for the view of Tennant (2015, p. 589), the

derivation ∆6 in Proposition 2.2.2 of the Liar paradox which uses CR−rule appears to be in

normal form. Likewise, ∆4 appears to be a closed normal derivation of ⊥ and it does not

initiate the non-terminating reduction sequence. These are the same phenomena of what

he calls ‘the classical rub.’ However, ∆4 without the application of ⊵Sub−reduction does

not use any classical inferences but raises the problem of undergeneration. Therefore, with

the assumption that the Liar paradox is a genuine one, if ⊵Sub−reduction is not proper, ∆4

can be the counterexample to TCPE which shows that TCPE undegenerates. That is, the

rejection of the application of classical inferences or CR−rule is unable to be a solution to

the problem of undergeneration.
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Of course, Tennant may disallow the view that ⊵Sub−reduction is not proper. To claim

that ⊵Sub−reduction is proper, he should explain which reduction process is proper and

which process is not, but he has never explained about it.9 Moreover, even without taking

issue with ⊵Sub−reduction procedure, a counterexample to TCPE can be presented that

causes the problem of undergeneration.

Tennant (2017, pp. 109–110) has preferred to use generalized elimination rules for four

reasons: the uniform presentation, the efficiency of proof search, making shorter formal

proofs, and affording a solution to the problem of overgeneration. The fourth reason is

related to our topic.

Fourth, ... using Elimination rules in [generalized] form affords a solution to

certain problems that would otherwise arise for the proof-theoretic criterion of

paradoxicality ... . (Tennant, 2017, p. 110)

When Tennant (2016) and Tennant (2017, Ch. 11) deal with the problem of overgeneration

occurred by Ekman’s paradox, instead of accusing Ekman reduction ⊵E of the problem, he

provides a solution that all elimination rules are stated in generalized form.10 Though he

believes that the choice of the form of generalized elimination rules can solve the overgen-

eration problem, it also provides a case that causes the undergeneration problem.

We now consider the second case that raises the problem of undergeneration without

classical inferences. When we use generalized form of elimination rules with permutation

conversions, there is a closed full normal derivation of ⊥ which formalizes the Liar paradox.

For the example, we have the generalized elimination rules for the truth-predicate T (x) and

its standard reduction process.

D1

ϕ
T I

T (⌜ϕ⌝)

T (⌜ϕ⌝)

[ϕ]1

D2

ψ
T E,1

ψ

9With respect to the problem of overgeneration, the issue with tests of a proper reduction will be discussed
in Chapter 3.

10The assessment of his solution will be discussed in the next chapter.
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The reduction procedure for T (x)

D1

ϕ
T I

T (⌜ϕ⌝)

[ϕ]1

D2

ψ
T E,1

ψ ▷T (x)

D1

ϕ

D2

ψ

Also, we take = E−rule having the form of the generalized elimination rule.

t1 = t2

D1

ϕ(t1)

[ϕ(t2)]
1

D2

ψ
= E,1

ψ

Then, Proposition 2.3.1 shows that there exists a full normal derivation of ⊥ from the Liar

paradox.

Proposition 2.3.1. Let SR be a system containing T−, ¬−, =−rules with their generalized

form of elimination rules. SR has a set RR of reduction procedures for T (x) and ¬, and ⊵Sub

with permutation conversion. Suppose that, for some formula Φ, ⌜Φ⌝= ⌜¬T (⌜Φ⌝)⌝ is an

axiom of SR. There exists a closed full normal derivation ∆9 of ⊥ in SR relative to RR.

Proof. Two claims prove the result.

Claim 1. there is a closed derivation ∆9 of ⊥.

To begin with, we have an open derivation ∆7 of ⊥ from [T (⌜Φ⌝)].

Ax1⌜Φ⌝= ⌜¬T (⌜Φ⌝)⌝ [T (⌜Φ⌝)]1
[T (⌜¬T (⌜Φ⌝)⌝)]2

[¬T (⌜Φ⌝)]3 [T (⌜Φ⌝)]1 [⊥]4

¬E,4⊥
T E,3⊥

= E,2⊥
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Then, there is a closed derivation ∆8 of ⊥.

Ax2⌜¬T (⌜Φ⌝)⌝= ⌜Φ⌝

[T (⌜Φ⌝)]1

∆7

⊥
¬I,1¬T (⌜Φ⌝)

T I
T (⌜¬T (⌜Φ⌝)⌝)

[T (⌜Φ⌝)]5

∆7

⊥
= E,5⊥

Claim 2. ∆8 is in full normal form.

All major premises in ∆8 are assumptions or axioms. Hence, we have the result.

The derivation ∆8 is in full normal form. So to speak, it does not generate a non-terminating

reduction sequence. For ∆8 is not a T-paradox, it shows that TCPE undergenerates if the

Liar paradox is a genuine paradox. Tennant (2016, pp. 12–16) suggests the same result with

Proposition 2.A.1 in Appendix 2.A and believes that the result shows that the Liar paradox

is a genuine one. In addition, Tennant (2017, p. 110) says that he prefers to use generalized

elimination rules due to the fact that the use of them affords a solution to problems that arise

for the proof-theoretic criterion of paradoxicality. Unfortunately, Proposition 2.3.1 shows

that the use of generalized elimination rules rather causes the problem of undergeneration.

Furthermore, since no classical inference is used in ∆8, the rejection of the use of classical

inferences fails to solve the undergeneration problem.

The first and second cases seem to show that our choices of reduction procedures and

forms of elimination rules cause the problem of undergeneration. There is another factor

that causes the undergeneration problem: the use of axioms in natural deduction. Our

derivations of the Liar paradox regards the formula ⌜¬T (⌜Φ⌝)⌝= ⌜Φ⌝ as an axiom. When

⌜¬T (⌜Φ⌝)⌝ = ⌜Φ⌝ is a major premise of = E−rule, it is neither an assumption nor a

formula derived by any rules. So, the derivation ∆8 of ⊥ in Proposition 2.3.1 is in (full)

normal form and does not generate a non-terminating reduction sequence. We can have a

similar case of Curry’s paradox by using a formula, ¬a ∈ a ↔ a ∈ {x|x ∈ x → ⊥} as an

axiom.
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As we have seen at the beginning of this chapter, the formalization of Curry’s paradox

needs to use ∈ −rules. Let us consider a derivation of Curry’s paradox which does not

employ ∈−rule. Our natural deduction system has introduction and (standard) elimination

rules for ∧, →, and ¬. We define a parameter a as a set {x|x ∈ x →⊥} and instead of using

∈−rules we regard (a ∈ a →⊥)↔ a ∈ {x|x ∈ x →⊥} as an axiom of our system. For our

convenience sake, we use the following abbreviations:

D

a ∈ a →⊥
SetI

a ∈ {x|x ∈ x →⊥}

is an abbreviation for

Ax
(a ∈ a →⊥)↔ a ∈ {x|x ∈ x →⊥}

······························································································ de f
((a ∈ a →⊥)→ a ∈ {x|x ∈ x →⊥})∧ (a ∈ {x|x ∈ x →⊥}→ (a ∈ a →⊥))

∧E
(a ∈ a →⊥)→ a ∈ {x|x ∈ x →⊥}

D

a ∈ a →⊥
→ E

a ∈ {x|x ∈ x →⊥}

Also,
D

a ∈ {x|x ∈ x →⊥}
SetE

a ∈ a →⊥

is an abbreviation for

Ax
(a ∈ a →⊥)↔ a ∈ {x|x ∈ x →⊥}

······························································································ de f
((a ∈ a →⊥)→ a ∈ {x|x ∈ x →⊥})∧ (a ∈ {x|x ∈ x →⊥}→ (a ∈ a →⊥))

∧E
a ∈ {x|x ∈ x →⊥}→ (a ∈ a →⊥)

D

a ∈ {x|x ∈ x →⊥}
→ E

a ∈ a →⊥
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Then, there is an open derivation ∆9 of ⊥ from [a ∈ a]

[a ∈ a]1
························ de f
a ∈ {x|x ∈ x →⊥}

SetE
a ∈ a →⊥ [a ∈ a]1

→ E⊥

With the derivation ∆9, we have a closed derivation ∆10 of a ∈ a.

[a ∈ a]1

∆9

⊥
→ I,1a ∈ a →⊥

SetI
a ∈ {x|x ∈ x →⊥}
························ de f

a ∈ a

Now, we have a closed derivation ∆11 of ⊥.

[a ∈ a]1

∆9

⊥
→ I,1a ∈ a →⊥

∆10

a ∈ a
→ E⊥

∆11 has a maximum formula a ∈ a → ⊥ in the last → E−rule. We apply the reduction

procedure ▷→ to ∆11 and then have the derivation ∆12 below.

[a ∈ a]1

∆9

⊥
→ I,1a ∈ a →⊥

SetI
a ∈ {x|x ∈ x →⊥}

SetE
a ∈ a →⊥

∆10

a ∈ a
→ E⊥
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∆12 looks as if it is reducible, but it appears to be in normal form. SetI− and SetE−inferences

are not rules for ∈, and they are abbreviations of derivations consisting of ∧E− and →

E−rules. Since the constant ∈ is not introduced by ∈ I−rule, the reduction procedure ▷∈

for ∈ cannot apply to ∆12. In addition, a ∈ a →⊥ in SetI−inference is a minor premise of

→ E−rule. a ∈ a →⊥ in the last → E−rule is the conclusion of → E−rule, and so it is not

a maximum formula. Hence, ∆12 is in normal form.

The derivation ∆12 of Curry’s paradox is a closed normal derivation of ⊥ and it does not

generate a non-terminating reduction sequence. These are similar features of what Tennant

(2015, p. 589) calls, ‘the clssical rub,’ however any classical inferences are not involved

in ∆12. If Curry’s paradox is a genuine paradox, ∆12 is a counterexample to TCPE which

represents that TCPE undergenerates. Hence, the rejection of using classical inferences is

unable to be a solution to the undergeneration problem.

In this section, we have seen two derivations of the Liar paradox and one derivation of

Curry’s paradox. All derivations do not use any classical inference but yield the problem

of undergeneration. The next section will diagnose what the culprit of the problem is and

seek to find a plausible solution.

2.4 Diagnosis

Section 2.3 put forward to three counterexamples to TCPE which cause the undergener-

ation problem but does not use any classical inference. The first case explicates that when

⊵Sub−reduction is unavailable, the derivation ∆4 of the Liar paradox in Proposition 2.2.1

does not generate a non-terminating reduction sequence. The second case, i.e. Proposition

2.3.1, shows that when all elimination rules are stated in generalized form, there is a deriva-

tion of the Liar paradox, such as ∆8, which has no reduction loop. The last case represents

that when we use axioms in natural deduction, there is a derivation of Curry’s paradox, e.g.

∆12, which does not enter into loops.

Three cases appear to show that the occurrence of a looping reduction sequence is rel-

ative to our choice of reduction procedures, forms of elimination rules, and applications
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of axioms. Unlike the other two cases, the use of generalized elimination rules does not

seem to effect on generating a non-terminating reduction sequence. If we adopt the follow-

ing reduction procedure, ⊵GEg′ , proposed by Schroeder-Heister and Tranchini (2018), the

derivation ∆8 of Proposition 2.3.1 enters into loops.

t1 = t2

D1

ϕ(t1)
t2 = t1 [ϕ(t2)]

1

[ϕ(t2)]
1, [ϕ(t1)]

2

D2

ρ
= E,2

ρ
= E,1

ρ ⊵GEg′

t1 = t2

D1

ϕ(t1)

[ϕ(t2)]
1,

D1

ϕ(t1)
D2

ρ
= E,1

ρ

Our choice of generalized elimination rules is independent of the occurrence of a looping

reduction sequence but is dependent on our choice of reduction procedures. Thus, we only

consider the first and the second cases in this section.

To begin with, in order to find a solution to the problem of undergeneration, it is neces-

sary to diagnose what the culprit of the problem is. As Tennant (2015, p. 589) said, ‘The

use of classical reductio has masked the real defect that lies at the heart of paradoxical rea-

soning.’ He believes that CR−rule disguises the non-terminating reduction sequence. He

does not seem to consider seriously the undergeneration problem. The use of CR−rule does

not always block the occurrence of the non-terminating reduction sequence. So to speak,

CR−rule is not the only culprit of the problem of undergeneration. For instance, in the

beginning of this chapter, we see the derivation Σ2 of Curry’s paradox in Proposition 2.0.1

suggested by Rogerson (2006). Σ2 uses CR−rule and does not initiate a non-terminating

reduction sequence. Proposition 2.0.1 seems to establish that CR−rule masks the non-

terminating reduction sequence, but it is not.

Rogerson (2006) only considered standard reduction processes suggested by Prawitz

(1965). However, Schroeder-Heister and Tranchini (2017, pp. 572–573) borrow the reduc-

tion proposed by Gunnar Stålmarck (1991, pp. 131–132) and claim that her example can

be further reduced. With regard to our example, Σ2 in Proposition 2.0.1, their reduction
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denoted by ⊵CR(◦,⋆) may be depicted schematically as follows:

[¬ϕ]1

D1

⊥
CR,1

ϕ
◦E

ψ

D2

σ
⋆E

ρ ⊵CR(◦,⋆)

[¬ρ]2

[ϕ]1

◦E
ψ

D2

σ
⋆E

ρ
¬E⊥

¬I,1¬ϕ

D1

⊥
CR,2

ρ

where ◦E− and ⋆E−rules are elimination rules for some operators ◦ and ⋆ respectively.

Then, by the application of ⊵CR(◦,⋆), Σ2 reduces to the derivation Σ3 below.

[¬⊥]5

[a ∈ a]4
························ de f
a ∈ {x|x ∈ x →⊥}

∈ E
a ∈ a →⊥

[¬a ∈ a]3

Σ1

⊥
CR,3a ∈ a
→ E⊥

¬E⊥
¬I,4¬a ∈ a

Σ1

⊥
CR,5⊥

Interestingly, when we add ⊵CR(◦,⋆) to the set RNC of reductions for SNC and have R′
NC,

the derivation Σ2 in Proposition 2.0.1 generates a non-terminating reduction sequence.

Proposition 2.4.1. Let us define a parameter a as {x|x ∈ x →⊥}. Then, there is a closed

derivation of ⊥ in SNC with respect to R′
NC which generates a non-terminating reduction

sequence and so is not normalizable.

Proof. We borrow the derivation Σ1 in Proposition 2.0.1 and have the following derivation
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∆ of ⊥ from [a ∈ a].

[a ∈ a]5
························ de f
a ∈ {x|x ∈ x →⊥}

∈ E
a ∈ a →⊥

[¬a ∈ a]3

Σ1

⊥
CR,3a ∈ a
→ E⊥

Then, the following form of derivation is the same derivation with Σ2.

[¬a ∈ a]1

Σ1

⊥
CR,1a ∈ a

∆

⊥

Also, the derivation Σ3 reduced from Σ2 is restated as below.

[¬⊥]6

[a ∈ a]5

∆

⊥
¬E⊥

¬I,5¬a ∈ a

[¬⊥]6

[a ∈ a]7

∆

⊥
¬E⊥

¬I,7¬a ∈ a [a ∈ a]2
¬E⊥

→ I,2a ∈ a →⊥
∈ I

a ∈ {x|x ∈ x →⊥}
························ de f

a ∈ a
¬E⊥

Since Σ3 has a maximum formula ¬a ∈ a in ¬E−rule, the application of ¬−reduction
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provides the derivation Σ4 below.

[¬⊥]6

[¬⊥]6

[a ∈ a]2

∆

⊥
¬E⊥
¬I,2a ∈ a →⊥

∈ I
a ∈ {x|x ∈ x →⊥}

∈ E
a ∈ a →⊥

[¬a ∈ a]3

Σ1

⊥
CR,3a ∈ a
→ E⊥

¬E⊥
CR,6⊥

Σ4 still has maximum formulas, and so is reduced to Σ5 below by ▷∈− and ▷¬−reductions.

[¬⊥]6
[¬⊥]6

[¬a ∈ a]3

Σ1

⊥
CR,3a ∈ a

∆

⊥
¬E⊥

¬E⊥
CR,6⊥

Σ5 includes the same derivation with Σ2. Again, Σ2 can be further reduced. Then, we have
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the following infinite reduction sequence.

[¬⊥]6
[¬⊥]6

[¬⊥]8
[¬⊥]8

[¬⊥]i
[¬⊥]i

...
⊥

¬E⊥
¬E⊥

CR,i⊥
...
⊥

¬E⊥
¬E⊥

CR,8⊥
¬E⊥

¬E⊥
CR,6⊥

where i = 2 j + 4( j > 0). Therefore, Σ2 generates a non-terminating reduction sequence.

Having the auxiliary reduction procedure ⊵CR(◦,⋆), Σ2 initiates a non-terminating reduc-

tion sequence which is not so much a looping reduction as what Tennant (2016) calls, a

‘spiral reduction.’11 Proposition 2.4.1 supports the view that not every case employing

CR−rule disguises the occurrence of a non-terminating reduction sequence. Even though

there is a derivation of a given paradox employing CR−rule which does not produce a non-

terminating reduction sequence. It means that the application of CR−rule is not the only

reason to disguise the non-terminating reduction sequence. On comparing Proposition 2.0.1

and 2.4.1, the two results establish that, independent of using CR−rule, the occurrence of a

non-terminating reduction sequence is relative to our choice of reduction procedures.

11Tennant (1995) examines Yablo’s paradox in natural deduction and considers that a derivation of Yablo’s
paradox produces a non-terminating reduction sequence but the sequence is different from a looping reduction.
He conjectures that if a reduction procedure of a given derivation does not enter into a loop, a self-referential
expression is not involved in the derivation. However, Σ2 formalizes the Liar paradox which is a self-referential
paradox but it generates a spiral reduction. Therefore, it is unconvincing that his conjecture suggested in Tennant
(1995) is true.
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Our choice of reduction procedure causes to produce a non-terminating reduction se-

quence. However, it does not mean that the application of CR−rule can never be one of

the elements to disguise the non-terminating reduction sequence. When the conclusion of

CR−rule is a major premise of an elimination rule, i.e. a maximum formula, the auxil-

iary reduction procedure for CR−rule does not eliminate the maximum formula but only

reduces the degree of the maximum formula. When the conclusion becomes an atomic for-

mula, the reduction procedure can no longer be applied. The reason why the derivation Σ2

of Proposition 2.0.1 fails to generate a non-terminating reduction sequence appears to be

that CR−rule does not have any reduction process to eliminate its conclusion as a maximum

formula. Then, what if CR−rule can eliminate its conclusion when it is a major premise of

an elimination rule?

The CR−rule of classical reductio is often regarded as an elimination rule because it

eliminates the negations in a formula of the assumption. For instance, CR−rule is some-

times regarded as the abbreviation of ¬I−rule and the double negation elimination rule

(DNE).
[¬ϕ]1

D

⊥
¬I,1¬¬ϕ
DNE

ϕ

On the other hand, Peter Milne (1994, p. 58) interprets CR−rule as a rule for introducing

a formula ϕ , that is, the derivation of ⊥ from the assumption [¬ϕ] introduces a formula ϕ .

Then, we have the following pair of rules.

[¬ϕ]1

D1

⊥
CR,1

ϕ

ϕ

D2

¬ϕ
CRE⊥
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The standard reduction procedure for CR− and CRE−rules is below.

[¬ϕ]1

D1

⊥
CR,1

ϕ

D2

¬ϕ
CRE⊥ ▷CRE

D2

¬ϕ

D1

⊥

CR− and CRE−rules are intrinsically harmonious. Let SNCE be a natural deduction system

which contains → −, ∈ −, CR−, and CRE−rules. SNCE has a set RNCE of reductions

having ▷→, ▷∈, ▷CRE , and the following auxiliary reduction procedure ⊵∈.

D

t ∈ {x|ϕ(x)}
∈ E

ϕ[t/x]
∈ I

t ∈ {x|ϕ(x)} ⊵∈

D

t ∈ {x|ϕ(x)}

While the derivation D′ includes a subderivation D that has the same conclusion of D′, it

is often desirable to reduce the length of the derivation D′. The auxiliary reduction ⊵∈ has

such role of lessening the length of derivation. Moreover, instead of using ¬−rules, we

define ¬ϕ as ϕ →⊥. Then, we have the following result.

Proposition 2.4.2. Let us define a parameter a as {x|x ∈ x →⊥}. Then, there is a closed

derivation of ⊥ in SNCE with respect to RNCE which generates a non-terminating reduction

sequence and so is not normalizable.

Proof. Two claims verify the result.

Claim 1. There is a closed derivation Π3 of ⊥ in SNCE .
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First, there is an open derivation Π1 of ⊥ from [¬a ∈ a].

[¬a ∈ a]1
·············· de f
a ∈ a →⊥

∈ I
a ∈ {x|x ∈ x →⊥}
························ de f

a ∈ a [¬a ∈ a]1
CRE⊥

With the derivation Π1, we have a closed derivation Π2 of ¬a ∈ a.

[¬a ∈ a]1

Π1

⊥
CR,1a ∈ a

························ de f
a ∈ {x|x ∈ x →⊥}

∈ E
a ∈ a →⊥
·············· de f
¬a ∈ a

Then, we have a closed derivation Π3 of ⊥.

[¬a ∈ a]1

Π1

⊥
CR,1a ∈ a

Π2

¬a ∈ a
CRE⊥

Claim 2. Π3 initiates a non-terminating reduction sequence and so is not normalizable.

Since Π3 has a maximum formula a ∈ a, the application of the standard reduction ▷CRE
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to Π3 produces to the following derivation Π4.

[¬a ∈ a]1

Π1

⊥
CR,1a ∈ a

························ de f
a ∈ {x|x ∈ x →⊥}

∈ E
a ∈ a →⊥

∈ I
a ∈ {x|x ∈ x →⊥}
························ de f

a ∈ a
Π2

¬a ∈ a
CRE⊥

Π4 still has a maximum formula a ∈ a in ∈ E−rule and, by applying ⊵∈ to Π4, we have

the same derivation with Π3. Hence, Π3 raises a non-terminating reduction sequence and

so is not normalizable.

A similar result can be given by using Tennant’s style formalization of the Liar paradox

proposed in Tennant (2015, pp. 585–590).12 Let SCRE be a natural deduction system con-

taining ¬−, T−, =−, CR−, and CRE−rules which is an extension of SCE used in Section

2.2. We have a set RCRE of standard reduction procedures having ▷¬, ▷T (x), ▷=, ▷CRE ,

and the following auxiliary reduction ⊵T (x).

D

T (⌜ϕ⌝)
T E

ϕ
T I

T (⌜ϕ⌝) ⊵T (x)

D

T (⌜ϕ⌝)

Then, we have the following result.

Proposition 2.4.3. Suppose that, for some formula Φ, ⌜Φ⌝ = ⌜¬T (⌜Φ⌝)⌝ is an axiom of

12While Tennant (2016, pp. 12–16) claims that the Liar paradox is a genuine paradox, he employs the id est
rules for the liar sentence Ψ. By using his id est rules and a derivation of the Liar paradox, we have similar
results. Appendix 2.A shows that there are three closed derivations of ⊥ which formalize the Liar paradox: (i)
a T-paradox which use neither CR− nor CRE−rules, (ii) a T-paradox using both CR−and CRE−rules, and (iii)
a derivation of ⊥ which only uses CR−rule and is not a T-paradox.
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SCRE . SCRE relative to RCRE has a closed derivation of ⊥ which initiates a non-terminating

reduction sequence, so is not normalizable.

Proof. Two claims verify the result.

Claim 1. There is a closed derivation Π7 of ⊥ in SCRE .

We start with an open derivation Π5 of ⊥ from [¬T (⌜Φ⌝)].

Ax2⌜¬T (⌜Φ⌝)⌝= ⌜Φ⌝

[¬T (⌜Φ⌝)]1
T I

T (⌜¬T (⌜Φ⌝)⌝)
= E

T (⌜Φ⌝) [¬T (⌜Φ⌝)]1
CRE⊥

With the derivation Π5, we have a closed derivation Π6 of ¬T (⌜Φ⌝).

Ax1⌜Φ⌝= ⌜¬T (⌜Φ⌝)⌝

[¬T (⌜Φ⌝)]2

Π5

⊥
CR,2T (⌜Φ⌝)
= E

T (⌜¬T (⌜Φ⌝)⌝)
T E¬T (⌜Φ⌝)

Then, we have a closed derivation Π7 of ⊥.

[¬T (⌜Φ⌝)]1

Π5

⊥
CR,1T (⌜Φ⌝)

Π6

¬T (⌜Φ⌝)
CRE⊥

Claim 2. Π7 initiate a non-terminating reduction sequence, and so is not normalizable.

Since Π7 has a maximum formula T (⌜Φ⌝) in the last CRE−rule, by applying ▷CRE to
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Π7, we have a derivation Π8 below.

Ax2⌜¬T (⌜Φ⌝)⌝= ⌜Φ⌝

Ax1⌜Φ⌝= ⌜¬T (⌜Φ⌝)⌝

[¬T (⌜Φ⌝)]2

Π5

⊥
CR,2T (⌜Φ⌝)
= E

T (⌜¬T (⌜Φ⌝)⌝)
T E¬T (⌜Φ⌝)
T I

T (⌜¬T (⌜Φ⌝)⌝)
= E

T (⌜Φ⌝)

Π6

¬T (⌜Φ⌝)
CRE⊥

There are auxiliary reduction procedures ⊵T (x) and ⊵Sub that we can apply to Π8. We first

apply ⊵T (x) and then ⊵Sub to Π8. The same derivation with Π7 will be given. Hence, Π7

generates an infinite reduction sequence and is not normalizable.

Of course, it is not natural to regard CR−rule as an introduction rule. It should be argued

whether CR−rule as an introduction is proper.13 However, it is not our purpose whether

CR−rule regarded as an introduction is acceptable. We aim to diagnose why looping or

spiral reductions stop when CR−rule is involved. Unlike derivations in Proposition 2.4.1

and 2.4.2, the derivation Σ2 in Proposition 2.0.1 does not generate a non-terminating re-

duction sequence. As Proposition 2.4.1 establishes, with the additional auxiliary reduction

13According to the meaning-theoretic perspective on natural deduction that the meaning of a principal con-
stant (or an operator) is exhaustively determined by its introduction rule and determines its elimination rule,
there are more than two objections to the view that CR−rule is a meaning-conferring introduction rule. The
first is that CR−rule as an introduction does not confer a meaning of the conclusion ϕ introduced. Second,
even if CR−rule determines the meaning of ϕ , it raises the circularity problem. In order to confer a meaning
of ϕ via CR−rule, the rule needs to have an assumption ¬ϕ . If every introduction rule exhaustively determines
the meaning of a principal constant, the meaning of ¬ϕ is conferred by ¬I−rule from a derivation of ⊥ from
the assumption ϕ . To have the derivation, however, we should know the meaning of ϕ which is determined by
CR−rule. Therefore, the circularity problem arises.

Milne (1994, pp. 59–64) argues that there is no clear proof-theoretic ground that every introduction rule
should exhaustively determine the meaning of a principal constant. So to speak, some are not obliged to confer
a meaning on the formula introduced. Also, he has claimed that it is impossible for ¬I−rule to determine the
meaning of ¬ without circularity. It should be depply argued whether CR−rule could be a meaning-conferring
introduction rule. However, since our purpose is not to argue whether it could be but to discuss whether the
non-terminating reduction sequence stops whenever a classical inference, such as CR−rule, is used. We set
aside the issue in this chapter.
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procedure ⊵CR(◦,⋆), it initiates an infinite reduction sequence, such as a spiral reduction. In

addition, Proposition 2.4.2 applies CR− and CRE−rules with the standard reduction ▷CRE

and shows that the derivation Π3 enters into a looping reduction sequence. It is obvious that

CR−rule is not always the culprit of disguising a looping or a spiral reduction procedure.

Let us diagnose whence the non-terminating reduction sequence stops. In Proposition

2.0.1, there is no process to eliminate the maximum formula, a ∈ a, which is a conclusion

of CR−rule and simultaneously a major premise of ∈ E−rule. On the other hand, both in

Proposition 2.4.1 and 2.4.2 have reduction procedures ⊵CR(◦,⋆) and ▷CRE which eliminate

the maximum formula a ∈ a. That is, the absence of a reduction procedure to remove

the maximum formula a ∈ a derived by CR−rule can be considered to have prevented

a non-terminating reduction sequence. For instance, the auxiliary reduction ⊵CR(◦,⋆) in

Proposition 2.4.1 has a such role and the standard reduction ▷CRE in Proposition 2.4.2 has

it. In the case of Proposition 2.0.1, as auxiliary reductions only reduce the degree of the

maximum formula, the derivation Σ2 cannot be further reduced and fails to fall into loops.

Yet, the maximum formula in Σ2 is eliminated by ⊵CR(◦,⋆) in Proposition 2.4.1, and Σ2 is

further reduced. Then, Σ2 generates a non-terminating reduction sequence by yielding new

maximum formulas. It is ironic that in order to have a non-terminating reduction sequence

a maximum formula should have a reduction process to get rid of the maximum formula,

but it appears to be that the necessary condition to generate a non-terminating reduction

sequence is that every maximum formula has to have a reduction process to remove itself.

Proposition 2.4.3 has a different aspect that when ⊵Sub−reduction is not applicable,

Tennant-style derivation of the Liar paradox using the axiom ⌜¬T (⌜Φ⌝)⌝ = ⌜Φ⌝ neither

reduce the length of the derivation nor eliminate the major premise ⌜¬T (⌜Φ⌝)⌝ = ⌜Φ⌝.

Then, a reduction loop stops but ▷CRE−reduction makes the path that ⊵Sub−reduction is

applicable. It is unclear whether an axiom in natural deduction can be a maximum formula.

If it is, the use of axioms in natural deduction appears to prevent a non-terminating reduc-

tion sequence. As we have discussed in Section 2.3, without ⊵Sub−reduction, Tennant’s

derivation of the Liar paradox does not generate a non-terminating reduction sequence.

Though the derivation ∆3 of Proposition 2.2.1 does not use CR−rule, if ⊵Sub−reduction
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is unacceptable, ∆3 has no way to be further reduced by lessening the length of it and

eliminating the major premise ⌜¬T (⌜Φ⌝)⌝= ⌜Φ⌝.

Moreover, we have examined in Section 2.3 that while ¬a ∈ a ↔ a ∈ {x|x ∈ x → ⊥}

is used as an axiom, we have a normal derivation ∆12 of ⊥ from Curry’s paradox which

does not generate a non-terminating reduction sequence. ∆12 applies two abbreviated infer-

ences, SetI− and SetE−inferences, which use the formula ¬a ∈ a ↔ a ∈ {x|x ∈ x →⊥} by

the axiom and, consequently, a principal constant ∈ is introduced without ∈ I−rule. Since

SetI− and SetE−inferences are not rules for ∈, there is no reduction procedure to elimi-

nate a formula including ∈. If we use ∈ −rules instead of SetI− and SetE−inferences, we

readily have a derivation of Curry’s paradox which generates a non-terminating reduction

sequence. The use of axioms may cause to prevent the occurrence of a non-terminating

reduction sequence. That is to say, an application of an axiom, which can lead to a for-

mula that has a principal constant but has no reduction process to remove the formula, can

disguise a non-terminating reduction sequence.

Similar to the case of Curry’s paradox, Tennant-style derivation ∆3 of the Liar paradox

in Proposition 2.2.1 can produce a looping reduction without ⊵Sub−reduction when there is

a standard reduction process to eliminate the formula ⌜¬T (⌜Φ⌝)⌝= ⌜Φ⌝. Let us consider

the following rules for an equation between coded numerals.14

[ϕ]1

D1

ψ

[ψ]2

D2

ϕ
⌜⌝I,1,2⌜ϕ⌝= ⌜ψ⌝

⌜ϕ⌝= ⌜ψ⌝

D3

ϕ
⌜⌝E1

ψ

⌜ϕ⌝= ⌜ψ⌝

D4

ψ
⌜⌝E2

ϕ

14⌜⌝E−rules are what Tennant (1982, p. 289) calls ‘Leibniz disquatational rule.’
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Standard reductions for ⌜⌝−rules are described as below.

[ϕ]1

D1

ψ

[ψ]2

D2

ϕ
⌜⌝I,1,2⌜ϕ⌝= ⌜ψ⌝

D3

ϕ
⌜⌝E1

ψ ▷⌜⌝1

D3

ϕ

D1

ψ

[ϕ]1

D1

ψ

[ψ]2

D2

ϕ
⌜⌝I,1,2⌜ϕ⌝= ⌜ψ⌝

D4

ψ
⌜⌝E2

ϕ ▷⌜⌝2

D4

ψ

D2

ϕ

When we presume that a liar sentence Φ which is defined by ¬T (⌜Φ⌝) is expressible in our

language, there is a derivation of the Liar paradox using the formula ⌜¬T (⌜Φ⌝)⌝ = ⌜Φ⌝

which raises a non-terminating reduction sequence.

Proposition 2.4.4. Let SL be a system containing T−, ¬−, and ⌜⌝−rules. SL has a set

RL of standard reduction procedures for T (x), ¬, and ⌜⌝. Let us define a formula Φ as

¬T (⌜Φ⌝). Then, there exists a closed derivation Π11 of ⊥ in SL with respect to RL which

generates a non-terminating reduction sequence, and so is not normalizable.

Proof. Two claims establish the result.

Claim 1. There is a closed derivation Π11 of ⊥ in SL with respect to RL.

First, there is an open derivation Π9 of ⊥ from T (⌜Φ⌝).

[Φ]1

············· de f
¬T (⌜Φ⌝)

[¬T (⌜Φ⌝)]2
················ de f

Φ
⌜⌝I,1,2⌜Φ⌝= ⌜¬T (⌜Φ⌝)⌝

[T (⌜Φ⌝)]3
T E

Φ
⌜⌝E1¬T (⌜Φ⌝) [T (⌜Φ⌝)]3

¬E⊥
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With the derivation Π9, we have a closed derivation Π10 of T (⌜Φ⌝).

[Φ]4

············· de f
¬T (⌜Φ⌝)

[¬T (⌜Φ⌝)]5
················ de f

Φ
⌜⌝I,4,5⌜Φ⌝= ⌜¬T (⌜Φ⌝)⌝

[T (⌜Φ⌝)]6

Π9

⊥
¬I,6¬T (⌜Φ⌝)
⌜⌝E2

Φ
T I

T (⌜Φ⌝)

Having derivations Π9 and Π10, there is a closed derivation Π11 of ⊥.

[T (⌜Φ⌝)]3

Π9

⊥
¬I,3¬T (⌜Φ⌝)

Π10

T (⌜Φ⌝)
¬E⊥

Claim 2. Π11 initiates a non-terminating reduction sequence and is not normalizable.

For simplicity, we first apply standard reduction procedures ▷⌜⌝1 and ▷⌜⌝2 to Π9 and

Π10 respectively. By applying ▷⌜⌝1 to Π9, we have the derivation Π′
9 below.

[T (⌜Φ⌝)]3
T E

Φ
············· de f
¬T (⌜Φ⌝) [T (⌜Φ⌝)]3

¬E⊥

74



With the derivation Π′
9, an application of ▷⌜⌝ to Π10 yields the derivation Π′

10.

[T (⌜Φ⌝)]6

Π
′
9

⊥
¬I,6¬T (⌜Φ⌝)

············· de f
Φ

T I
T (⌜Φ⌝)

Then, we have a closed derivation Π′
11, i.e. Π11 reduces to Π′

11.

[T (⌜Φ⌝)]3

Π
′
9

⊥
Π

′
10

T (⌜Φ⌝)
¬E⊥

By applying, ▷¬ to Π′
11, we have a derivation Π12 as follows.

[T (⌜Φ⌝)]6

Π
′
9

⊥
¬I,6¬T (⌜Φ⌝)

············· de f
Φ

T I
T (⌜Φ⌝)

T E
Φ

············· de f
¬T (⌜Φ⌝)

Π
′
10

T (⌜Φ⌝)
¬E⊥

An application of ▷T (x)−reduction to Π12 produces the same derivation with Π′
11. Hence,

Π11 initiates a non-terminating reduction sequence and so is not normalizable.

In order for the derivation ∆3 using the major premise ⌜¬T (⌜Φ⌝)⌝= ⌜Φ⌝ in Proposition

2.2.1 to produce a non-terminating reduction sequence, it needs to apply ⊵Sub−reduction.
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Proposition 2.4.4 establishes that, without ⊵Sub−reduction, the derivation Π11 of the Liar

paradox employing the major premise ⌜¬T (⌜Φ⌝)⌝= ⌜Φ⌝ can generate a looping reduction

if there is a standard reduction procedure to eliminate the major premise. These results

represent that every major premise in a derivation should have a reduction procedure to

remove it (or to remove subderivations including it) in order for the derivation to have an

infinite reduction sequence.

Our question in this section is what prevents the occurrence of a non-terminating re-

duction sequence. Proposition 2.4.1, 2.4.2, and 2.4.3 explicate that CR−rule does not al-

ways disguise a non-terminating reduction sequence. Our possible diagnosis is that the

use of a major premise in a derivation which has no reduction process to get rid of it

stops a non-terminating reduction sequence. Moreover, from the case using the axiom

¬a ∈ a ↔ a ∈ {x|x ∈ x →⊥} in Section 2.3, our use of a formula having a principal con-

stant which has no reduction process to eliminate it prevents a non-terminating reduction

sequence. Hence, we may summarize our diagnosis in the following way.

A Possible Diagnosis: A derivation formalizing a genuine paradox generates a non-terminating

reduction sequence only if (i) every major premise in the derivation has a reduction

procedure to eliminate it, or (ii) every formula including a principal constant (or op-

erator) has a reduction procedure to eliminate it.

The derivations in Proposition 2.0.1, 2.2.2, and 2.3.1 include a major premise which has

no reduction procedure to get rid of the major premise. The derivation ∆12 of Curry’s

paradox using the axiom ¬a ∈ a ↔ a ∈ {x|x ∈ x → ⊥} includes a formula containing a

principal constant ∈ which has no reduction process to remove the formula. In order to

have a clearer diagnosis beyond our possible diagnosis, the general condition for a non-

terminating reduction sequence should be given.

From our diagnosis, we suggest a plausible solution to the problem of undergeneration.

Provided that Proposition 2.0.1, 2.2.2, and 2.3.1 which raise the undergeneration problem

are inappropriate counterexamples to TCPE , we have an additional condition that a deriva-

tion only uses harmonious rules. CR−rule in Proposition 2.0.1 and 2.2.2 has no its corre-

sponding harmonious rule. Although the use of the axiom ⌜¬T (⌜Φ⌝)⌝ = ⌜Φ⌝ is regarded
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as an application of = I−rule, we cannot say that the use of the axiom ⌜¬T (⌜Φ⌝)⌝= ⌜Φ⌝

and = E−rule has a harmonious relation.

An Additional Condition: A derivation formalizing a genuine paradox only uses harmo-

nious rules.

Harmonious I− and E−rules automatically have a standard reduction procedure which

eliminates a maximum formula. If the suggested condition is acceptable, the condition can

solve the problem of undergeneration.

2.5 Conclusion

In this chapter, we have investigated derivations of Curry’s and the Liar paradox which

generate the problem of undergeneration. Under the assumption that Curry’s and the Liar

paradox are genuine paradoxes, at the beginning of this chapter, we introduce the Rogerson-

type derivation of Curry’s paradox employing CR−rule which does not generate a non-

terminating reduction sequence. Section 2.2 introduces the Togerson-type derivation of the

Liar paradox proposed by Tennant (2015, pp. 585–590). Some Rogerson-type derivations

can be a counterexample to TCPE which raises the problem of undergeneration that TCPE

excludes Curry’s and the Liar paradox in the realm of genuine paradoxes. As we have

argued in Section 2.2 and 2.3, Tennant thinks that CR−rule is the culprit of the problem.

However, Section 2.3 discusses that not every case causing the undergeneration problem is

related to CR−rule. Section 2.4 argues that the occurrence of a non-terminating reduction

sequence relies on our choice of reduction procedures and diagnoses what the culprit of the

problem of undergeneration. We have seen that the use of CR−rule does not always cause

the problem, and so the rejection of the use of CR−rule is unable to be a solution. This is

because, with respect to TCPE , there are four types of closed derivations which formalize

Curry’s and the Liar paradox: (i) a T-paradox which does not use CR−rule, e.g. Proposition

2.2.1 and 2.A.1, (ii) a T-paradox using CR−rule, e.g. Proposition 2.4.1, 2.4.2, 2.4.3, and

2.A.3, (iii) a derivation of ⊥ which uses CR−rule and is not a T-paradox, e.g. Proposition
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2.0.1, 2.2.2, and 2.A.2, and (iv) a derivation of ⊥ which neither use CR−rule nor is a T-

paradox, e.g. Proposition 2.3.1 and the derivation ∆12 of Curry’s paradox in Section 2.3.

The occurrence of a non-terminating reduction sequence is not always dependent on the

use of CR−rule.

We have considered that to have an infinite reduction sequence, every major premise

should have a reduction procedure to eliminate it. Derivations employing CR−rule and

axioms which has no infinite reduction sequence lacks the processes to eliminate a major

premise which is a conclusion of CR−rule or an axiom. Hence, we propose a possible

diagnosis that a derivation formalizing a genuine paradox generates a non-terminating re-

duction sequence only if every major premise in the derivation has a reduction procedure

to eliminate it, or every formula including a principal constant (or operator) has a reduction

procedure to eliminate it. From the possible diagnosis, we have proposed an additional con-

dition to TCPE as a plausible solution to the problem of undergeneration that a derivation

formalizing a genuine paradox only uses harmonious rules.

Of course, it should be discussed why a paradoxical derivation should only use harmo-

nious rules. However, it is rather natural to say that the use of harmonious rules is desirable

in natural deduction since it is the main slogan fo Gentzen who is the founder of natural

deduction that an introduction rule exhaustively defines the meaning of a principal con-

stant (or operator) and a corresponding elimination rule is exhaustively determined by the

meaning. Harmony requirement is the way to satisfy his slogan.

Furthermore, though we set aside the question of why the non-terminating reduction

sequence is the main feature of genuine paradoxes, since the non-terminating reduction is

dependent on a set of reduction procedures, it should be discussed how a proper reduc-

tion can be suitably evaluated. While we deal with the problem of overgeneration raised

by Ekman’s paradox in Chapter 3, we shall investigate tests to assess a proper reduction

process.

The other remained issue is that which paradox is a genuine one. In this chapter, we

presume that Curry’s and the Liar paradox are genuine paradoxes. TCPE is the proof-

theoretic criterion for genuine paradoxes, but the term ‘genuine paradox’ is an informal one.
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Also, even though Tennant believes that the Liar paradox is genuine, there are derivations of

the Liar which do not satisfy TCPE , e.g. Proposition 2.3.1. In Chapter 4, we will accept the

different formalization of the Liar suggested by Tennant (1982) and provide the case that

may represent that the Liar paradox is not a genuine paradox. We shall argue that it should

be explained which paradox is a genuine paradox and which formalization is legitimate for

the genuine paradox.

2.A Appendix 2.A: Tennant’s id est Rules for a Liar Sentence

and a T-Paradox Using CR−rule

In this appendix, we will investigate three closed derivations of ⊥ which formalize the

Liar paradox: (i) a T-paradox which use neither CR− nor CRE−rules, (ii) a T-paradox us-

ing both CR− and CRE−rules, and (iii) a derivation of ⊥ which only uses CR− rule and

is not a T-paradox. The purpose of this appendix is to show that there is a T-paradox which

the CR−rule is applied. Although the use of CR−rule is not necessary to formulate Liar

paradox in natural deduction, it does not mean that the application of it makes a trouble that

disguises the main feature of paradoxical derivations, i.e. the non-terminating reduction

sequence. Our examples will show that our use of CR−rule does not always hide the oc-

currence of a non-terminating reduction sequence. Rather, we conclude that the occurrence

of a non-terminating reduction sequence is related to a set of reduction procedures.

We already have Proposition 2.2.1, 2.2.2, and 2.4.3. However, those results are based

on the formalizations of Tennant (2015) which are not stated in generalized form. TCPE

does not restrict the form of elimination rules. For our convenience, we will use in this

appendix, TCPE rather than Tennant’s later criterion. As we will see in Chapter 3, the latest

criterion for paradoxicality introduced by Tennant (2016) has an additional condition that

all elimination rules are stated in generalized form. Moreover, while Tennant (2016, pp.

12–16) asserts that Liar paradox is a genuine paradox, he proposes the id est rules for the

liar sentence Ψ.
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[T (⌜Ψ⌝)]1

D1

⊥
ΨI,1

Ψ

Ψ

[¬T (⌜Ψ⌝)]1

D2

ϕ
ΨE,1

ϕ

Tennant (2016, p. 12) calls Ψ−rules the id est rules and said,

[ΨI− and ΨE−rules] are the ‘id est’ rules for the Liar (so-called because of the

familiar transitions ‘[Ψ], i.e. [¬T (⌜Ψ⌝)]’). The rules [ΨI− and ΨE−rules]

ensure that the sentence called [Ψ] is interdeducible with [¬T (⌜Ψ⌝)] - cer-

tainly a necessary (even if not sufficient) condition for the former to be the

latter.

Ψ−rules have several peculiar points. First, ΨI−rule introduces a seeming atomic sen-

tence Ψ and the atomic sentence Ψ becomes a major premise in ΨE−rule. Since most of

introduction rules introduce a constant to formulas and make a complex formula as its con-

clusion, a major premise is often regarded as a complex formula. Second, ΨI−rule already

has Ψ in the square quote of the premise which is introduced by the rule. Lastly, as Tennant

(2016, p. 13) suggests, the reduction procedure for Ψ uses ¬I−rule.15

[T (⌜Ψ⌝)]1

D1

⊥
ΨI,1

Ψ

[¬T (⌜Ψ⌝)]2

D2

ϕ
ΨE2

ϕ ▷Ψ

[T (⌜Ψ⌝)]1

D1

⊥
¬I,1¬T (⌜Ψ⌝)

D2

ϕ

Though his Ψ−rules have special features, because of the specificity of paradoxical deriva-

tions, he may accept Ψ−rules as id est rules for the liar sentence Ψ.

15He actually applies a particular graphical form of the reduction procedure for Ψ which fits to the proof
of cut-elimination for his Core Logic suggested in Tennant (2012, 2015). However, our discussion of the
paradoxes formalized in natural deduction is not confined to his Core Logic. We do not use his graphical forms
of reduction processes.
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Let SΨ be a natural deduction system containing ¬−, T−, and Ψ−rules. The set RΨ of

reduction procedures have reductions for ¬, T (x), and Ψ. We have a system SΨC by adding

CR−rule to SΨ and have SΨCE by adding CRE−rule to SΨC. Also, RΨC is an extension of

RΨ having ▷CRT . RΨCE is given by supplementing ▷CRE with RΨC. Tennant (2016, pp.

14–16) suggests the following result and claims that Liar paradox is a genuine paradox.

Proposition 2.A.1. There is a closed derivation of ⊥ in SΨ relative to RΨ, which initiates

a non-terminating reduction sequence and so is not fully normalizable.

Proof. We begin with the proof of ⊥ and show that it fails to reduce a full normal derivation.

Claim 1. there is a closed derivation Σ3 of ⊥.

First, there is an open derivation Σ1 of ⊥ from [T (⌜Ψ⌝)].

[T (⌜Ψ⌝)]2
[Ψ]4

[¬T (⌜Ψ⌝)]1 [T (⌜Ψ⌝)]2 [⊥]3

¬E,3⊥
ΨE,1⊥

T E,4⊥

With Σ1, we have a closed derivation Σ2 of T (⌜Ψ⌝).

[T (⌜Ψ⌝)]2

Σ1

⊥
ΨI,2

Ψ
T I

T (⌜Ψ⌝)

Then, we have a closed derivation Σ3 of ⊥.

[T (⌜Ψ⌝)]2

Σ1

⊥
¬I,2¬T (⌜Ψ⌝)

Σ2

T (⌜Ψ⌝) [⊥]5

¬E,5⊥
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Claim 2. Σ3 generates a non-terminating reduction sequence and so is not fully normaliz-

able.

¬T (⌜Ψ⌝) in the last ¬E−rule of Σ3 is not an assumption. Σ3 reduces to the derivation

Σ4 below.
[T (⌜Ψ⌝)]2

Σ1

⊥
ΨI,2

Ψ
T I

T (⌜Ψ⌝)

[Ψ]4
[¬T (⌜Ψ⌝)]1

Σ2

T (⌜Ψ⌝) [⊥]3

¬E,3⊥
ΨE,1⊥

T E,4⊥

By applying ▷T (x) and ▷Ψ to Σ4, we have the same derivation with Σ3. Σ3 generates a

non-terminating reduction sequence and thus it is not fully normalizable.

The derivation Σ3 above satisfies TCP and so is a T-paradox. From the result of Proposition

2.A.1, Tennant claims that Liar paradox is a genuine paradox.

Unlike Proposition 2.A.1, the application of CR−rule can provide a closed derivation of

⊥ which does not satisfy TCP and so is not a T-paradox.

Proposition 2.A.2. There is a closed non-full normal derivation Σ6 of ⊥ in SΨC relative to

RΨC, and Σ6 does not generate a non-terminating reduction sequence.

Proof. Two claims verify the result.

Claim 1. there is a closed derivation Σ6 of ⊥ in SΨC.

We first have an open derivation Σ5 of ⊥ from [¬Ψ].

[¬Ψ]1

[T (⌜Ψ⌝)]4
[¬Ψ]1 [Ψ]2 [⊥]3

¬E,3⊥
T E,2⊥

ΨI,4
Ψ [⊥]5

¬E,5⊥
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Then, we have a closed derivation Σ6 of ⊥.

[¬Ψ]8

Σ5

⊥
CR8

Ψ

[¬T (⌜Ψ⌝)]6

[¬Ψ]1

Σ5

⊥
CR,1

Ψ
T I

T (⌜Ψ⌝) [⊥]7

¬E,7⊥
ΨE,6⊥

Claim 2. Neither Σ6 is in full normal form nor does generate a non-terminating reduction

sequence.

The formula Ψ in ΨE−rule of Σ6 is the major premise which is not an assumption. Σ6 is

not in full normal form. Moreover, Ψ derived by CR−rule is an atomic formula. We cannot

apply ⊵CR(T (x)) to Σ6. Hence, since there is no reduction process that we can apply to it, Σ6

does not produce a non-terminating reduction sequence.

The derivation Σ6 generates the problem of undergeneration. To avoid the case that raises

the problem, Tennant believes that CR−rule has a defect to disguise the occurrence of a

non-terminating reduction sequence. Unfortunately, with his Ψ−rules, when we regard

CR−rule as an introduction rule and CRE−rule as its corresponding elimination rule, there

is a derivation of the Liar paradox employing CR−rule.

Proposition 2.A.3. There is a closed derivation Σ9 of ⊥ in SΨCE relative to RΨCE , which

generates a non-terminating reduction sequence and so is not fully normalizable.

Proof. Two claims establish the result.

Claim 1. There is a closed derivation Σ9 of ⊥.
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First, we have an open derivation Σ7 of ⊥ from [¬Ψ].

[¬Ψ]2

[T (⌜Ψ⌝)]4
[Ψ]1 [¬Ψ]2 [⊥]3

CRE,3⊥
T E,1⊥

ΨI,4
Ψ [⊥]5

¬E,5⊥

With Σ7, there is a derivation Σ8 of ⊥ from [Ψ].

[Ψ]9
[¬T (⌜Ψ⌝)]6

[¬Ψ]2

Σ7

⊥
CR,2

Ψ
T I

T (⌜Ψ⌝) [⊥]10

¬E,10⊥
ΨE,6⊥

Then, we have a closed derivation Σ9 of ⊥.

[¬Ψ]2

Σ7

⊥
CR,2

Ψ

[Ψ]9

Σ8

⊥
¬I,9¬Ψ [⊥]11

CRE,11⊥

Claim 2. Σ9 initiates a non-terminating reduction sequence and so is not fully normalizable.

Since Ψ in CRE−rule of Σ9 is the major premise which is not an assumption, we apply
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▷CRE to Σ9 and have a derivation below.

[Ψ]12

Σ8

⊥
¬I,12¬Ψ

[T (⌜Ψ⌝)]4
[Ψ]1

[Ψ]9

Σ8

⊥
¬I,9¬Ψ [⊥]3

CRE,3⊥
T E,1⊥

ΨI,4
Ψ [⊥]5

¬E,5⊥

It still has a major premise ¬Ψ derived by ¬I−rule. By applying ▷¬ and ▷Ψ, the following

derivation is achieved.

[T (⌜Ψ⌝)]4
[Ψ]1

[Ψ]9

Σ8

⊥
¬I,9¬Ψ [⊥]3

CRE,3⊥
T E,1⊥

¬I,4¬T (⌜Ψ⌝)

[¬Ψ]2

Σ7

⊥
CR,2

Ψ
T I

T (⌜Ψ⌝) [⊥]10

¬E,10⊥

Then, the applications of ▷¬ and ▷T (x) produce the same derivation with Σ9. Therefore, Σ9

generates a non-terminating reduction sequence and so is not fully normalizable.

Σ9 satisfies TCPE and is a T-paradox. If Liar paradox is a genuine paradox, Σ9 is a T-

paradox using CR−rule.

Tennant thinks that the application of CR−rule disguises the occurrence of a non-terminating

reduction sequence. However, the derivation Σ9 shows that it is not. Σ6 of Proposition

2.A.2 does not generate an infinite reduction sequence. The difference between Σ6 and Σ9

is whether they have a standard reduction procedure for CR−rule or not. It is possible to

interpret that the difference between Σ6 and Σ9 is whether they apply a legitimate pair of
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introduction and elimination rules. Hence, one may say that the main reason why Σ6 does

not yield a non-terminating reduction sequence is that Σ6 uses a rule which lacks its cor-

responding introduction rule. Therefore, the matter may not be the application of classical

reasoning but the absence of an introduction rule.

2.B Appendix 2.B: Forms of Permutation Conversions in Natu-

ral Deduction

In this appendix, we provide forms of permutation conversion for each elimination rule.

Let ϕ , ψ , σ , χ , and Φ be any formulas. Let Σ, Π, and Ω be any derivations. We use ◦

for any expression given by an introduction rule. Suppose that Φ has a form of ◦ϕ or of

ϕ1 ◦ϕ2. For instance, Φ may be a complex formula having the form of ∀xϕ or of ϕ1 ∧ϕ2.

Then the permutation conversion for ◦ has the following form:

Φ

Σ1

ϕ1 ...

Σi

ϕi

[ψ1]
1

Π1

σ ...

[ψ j]
j

Π j

σ
◦E,1,..., j

σ Ω

χ ⊵per

Φ

Σ1

ϕ1 ...

Σi

ϕi

[ψ1]
1

Π1

σ Ω

χ ...

[ψ j]
j

Π j

σ Ω

χ
◦E,1,..., j

χ

where i, j are any natural numbers. The following is particular instances of permutation

conversions.

1. The case of ∧−rule.

ϕ1 ∧ϕ2

[ϕ1]
1, [ϕ2]

1

D

ψ
∧E,1

ψ Σ

σ ⊵per(∧)

ϕ1 ∧ϕ2

[ϕ1]
1, [ϕ2]

1

D

ψ Σ

σ
∧E,1

σ
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(i) When ψ has a form Ψ1 ∧Ψ2,

ϕ1 ∧ϕ2

[ϕ1]
1, [ϕ2]

1

D1

ψ1 ∧ψ2
∧E,1

ψ1 ∧ψ2

[ψ1]
2, [ψ2]

2

D2

σ
∧E,2

σ ⊵per(∧∧)

ϕ1 ∧ϕ2

[ϕ1]
1, [ϕ2]

1

D1

ψ1 ∧ψ2

[ψ1]
2, [ψ2]

2

D2

σ
∧E,2

σ
∧E,1

σ

(ii) When ψ has a form Ψ1 ∨Ψ2,

ϕ1 ∧ϕ2

[ϕ1]
1, [ϕ2]

1

D1

ψ1 ∨ψ2
∧E,1

ψ1 ∨ψ2

[ψ1]
2

D2

σ

[ψ2]
3

D3

σ
∨E,2,3

σ ⊵per(∧∨)

ϕ1 ∧ϕ2

[ϕ1]
1, [ϕ2]

1

D1

ψ1 ∨ψ2

[ψ1]
2

D2

σ

[ψ2]
3

D3

σ
∨E,2,3

σ
∧E,1

σ

(iii) When ψ has a form Ψ1 → Ψ2,

ϕ1 ∧ϕ2

[ϕ1]
1, [ϕ2]

1

D1

ψ1 → ψ2
∧E,1

ψ1 → ψ2

D2

ψ1

[ψ2]
2

D3

σ
→ E,2

σ ⊵per(∧→)

ϕ1 ∧ϕ2

[ϕ1]
1, [ϕ2]

1

D1

ψ1 → ψ2

D2

ψ1

[ψ2]
2

D3

σ
→ E,2

σ
∧E,1

σ

(iv) When ψ has a form ¬ψ1,

ϕ1 ∧ϕ2

[ϕ1]
1, [ϕ2]

1

D1

¬ψ1
∧E,1¬ψ1

D2

ψ1

[⊥]2

D3

σ
¬E,2

σ ⊵per(∧¬)

ϕ1 ∧ϕ2

[ϕ1]
1, [ϕ2]

1

D1

¬ψ1

D2

ψ1

[⊥]2

D3

σ
¬E,2

σ
∧E,1

σ
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(v) When ψ has a form ∀xψ1(x),

ϕ1 ∧ϕ2

[ϕ1]
1, [ϕ2]

1

D1

∀xψ1(x)
∧E,1∀xψ1(x)

[ψ1(t)]
2

D2

σ
∀E,2

σ ⊵per(∧∀)

ϕ1 ∧ϕ2

[ϕ1]
1, [ϕ2]

1

D1

∀xψ1(x)

[ψ1(t)]
2

D2

σ
∀E,2

σ
∧E,1

σ

(vi) When ψ has a form ∃xψ1(x),

ϕ1 ∧ϕ2

[ϕ1]
1, [ϕ2]

1

D1

∃xψ1(x)
∧E,1∃xψ1(x)

[ψ1(y)]
2

D2

σ
∃E,2

σ ⊵per(∧∃)

ϕ1 ∧ϕ2

[ϕ1]
1, [ϕ2]

1

D1

∃xψ1(x)

[ψ1(y)]
2

D2

σ
∃E,2

σ
∧E,1

σ

2. The case of ∨−rule.

ϕ1 ∨ϕ2

[ϕ1]
1

D1

ψ

[ϕ2]
2

D2

ψ
∨E,1,2

ψ Σ

σ ⊵per(∨)

ϕ1 ∨ϕ2

[ϕ1]
1

D1

ψ Σ

σ

[ϕ2]
2

D2

ψ Σ

σ
∨E,1,2

σ

The subcases of ⊵per(∨) are similar to the subcases of ⊵per(∧).

3. The case of →−rule.

ϕ1 → ϕ2

D1

ϕ1

[ϕ2]
1

D2

ψ
→ E,1

ψ Σ

σ ⊵per(→)

ϕ1 → ϕ2

D1

ϕ1

[ϕ2]
1

D2

ψ Σ

σ
→ E,1

σ

The subcases of ⊵per(→) are similar to the subcases of ⊵per(∧).
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4. The case of ¬−rule.

¬ϕ

D1

ϕ

[⊥]1

D2

ψ
¬E,1

ψ Σ

σ ⊵per(¬)

¬ϕ

D1

ϕ

[⊥]1

D2

ψ Σ

σ
¬E,1

σ

The subcases of ⊵per(¬) are similar to the subcases of ⊵per(∧).

5. The case of ∀−rule.

∀xϕ(x)

[ϕ[t/x]]1

D

ψ
∀E,1

ψ Σ

σ ⊵per(∀)

∀xϕ(x)

[ϕ[t/x]]1

D

ψ Σ

σ
∀E,1

σ

The subcases of ⊵per(∀) are similar to the subcases of ⊵per(∧).

6. The case of ∃−rule.

∃xϕ(x)

[ϕ[y/x]]1

D

ψ
∃E,1

ψ Σ

σ ⊵per(∃)

∃xϕ(x)

[ϕ[y/x]]1

D

ψ Σ

σ
∃E,1

σ

The subcases of ⊵per(∃) are similar to the subcases of ⊵per(∧).
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Chapter 3

A Problem of Overgeneration:

Ekman and Crabbé Cases

In Section 1.3 of Chapter 1, we introduce the early version of Tennant’s criterion for

paradoxicality, TCEE . Chapter 2 deals with the problem of undergeneration and suggests an

additional condition to TCPE that a derivation formalizing a genuine paradox only employs

harmonious rules. Also, we have seen that our choice of reduction procedures can raise

the problem. In this chapter, we will consider the problem of overgeneration occurred by

Ekman and Crabbé cases. If there is a derivation which satisfies TCPE but is not about any

genuine paradoxes, the derivation shows that TCPE overgenerates in the sense that TCPE

makes intuitively non-paradoxical derivation paradoxical.

Tennant (1982) sets his criterion for paradoxicality, TCPE , that genuine paradoxes are

distinguished by having non-terminating reduction sequences of the derivation of ⊥ in-

volved. His early version of the criterion has a criticism from Schroeder-Heister and Tran-

chini (2017) that it is a too coarse criterion for paradoxicality. They suggest a counterexam-

ple to Tennant’s early version of the criterion taken from Jan Ekman (1998), called Ekman’s

paradox. The case shows that Tennant’s criterion overgenerates in the sense that there ex-

ists a derivation which is intuitively non-paradoxical but satisfies the criterion. To solve the
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problem of overgeneration, Tennant (2016, 2017) has refined his criterion and proposed an

additional condition that all elimination rules stated in generalized form should always have

their major premises standing proud, with no non-trivial proof work above them. On the

other hand, Schroeder-Heister and Tranchini (2017) diagnose that Ekman’s paradox uses

too loose reduction procedure, called Ekman reduction, and suggest Triviality test to block

Ekman reduction process. The present chapter aims to observe whether their solution is

satisfactory

After introducing Ekman’s paradox in Section 3.1, we will see Tennant’s solution in

Section 3.2 that the choice of generalized elimination rules can block the derivation ⊥

from Ekman’s paradox. Then, we will propose Ekman-type reductions stated in general-

ized form, including the cases suggested by Schroeder-Heister and Tranchini (2018), and

argue that Tennant’s solution is not successful. Ekman-type cases show that even Tennant’s

later version of the criterion overgenerates. A promising solution should restrict the use

of Ekman-type reduction procedures. Section 3.3 and 3.4 deal with Ekman-type reduc-

tions and methods to evaluate them: Triviality and Translation tests. Section 3.3 introduces

Schroeder-Heister and Tranchini’s Triviality test for a proper reduction and discusses that

their notion of a proper reduction would be relative to a based natural deduction system.

Moreover, Schroeder-Heister and Tranchini (2018) introduce Crabbé’s case which is un-

affected by Triviality test and raises the problem of overgeneration. In Section 3.4, as an

observation method for evaluating a proper reduction, we propose Translation test to detect

errors in both Ekman-type and Crabbé’s cases. We will suggest the requirement of a proper

reduction that a proper reduction procedure must not introduce any unnecessary premise

or detour. Translation test will be useful to assess a proper reduction with regard to the

requirements.

3.1 Ekman’s Paradox

Let us suppose that there is a derivation satisfying TCPE which does not formalize a gen-

uine paradox. Then, TCPE overgenerates the scope of genuine paradoxes and the derivation
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can be a counterexample to TCPE . In this section, we will see Ekman’s paradox which

causes the problem of overgeneration.

Schroeder-Heister and Tranchini (2017) put forward a counterexample to TCPE taken

from Ekman (1998) in order to show that TCPE is a too coarse criterion for a (genuine)

paradox. Ekman (1998) observes the following form of derivation and its reduction.

[ψ → ϕ]

[ϕ → ψ]

D

ϕ
→ E

ψ
→ E

ϕ ⊵E

D

ϕ

We will call ψ in → E−rule an Ekman maximum formula, and this reduction will be called

Ekman reduction process.

Schroeder-Heister and Tranchini (2017) think that Ekman reduction is a too loose re-

duction procedure and TCPE has no restriction to use it. If there is a derivation of ⊥ from

[ϕ →¬ϕ] and [¬ϕ → ϕ] and the application of Ekman reduction to the derivation generates

a looping reduction, TCPE says that the derivation is a T-paradox. TCPE overgenerates the

scope of genuine paradoxes because it makes the non-paradoxical derivation a T-paradox.

The following result is their counterexample to TCPE .

Proposition 3.1.1. Let SE be a natural deduction system consisting of →− and ¬−rules.

If the set of reductions of SE includes Ekman reduction process, SE has an open derivation

of ⊥ from [ϕ →¬ϕ] and [¬ϕ → ϕ] which generates a non-terminating reduction sequence,

and is not normalizable.

Proof. Two claims prove the result.

Claim 1. There is an open derivation of ⊥ from [ϕ →¬ϕ] and [¬ϕ → ϕ] in SE .

First, we have an open derivation D1 of ⊥ from [ϕ →¬ϕ] and [ϕ].

[ϕ →¬ϕ]1 [ϕ]2

→ E¬ϕ [ϕ]2

¬E⊥
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With the derivation D1, we have an open derivation D2 of ϕ from [ϕ →¬ϕ] and [¬ϕ → ϕ].

[¬ϕ → ϕ]3

[ϕ →¬ϕ]1, [ϕ]2

D1

⊥
¬I,2¬ϕ
¬E

ϕ

Now, we have the following open derivation Π1 of ⊥ from [ϕ →¬ϕ] and [¬ϕ → ϕ].

[ϕ →¬ϕ]1, [ϕ]2

D1

⊥
¬I,2¬ϕ

[ϕ →¬ϕ]1, [¬ϕ → ϕ]3

D2

ϕ
¬E⊥

Claim 2. If an Ekman reduction process is used for Π1, then Π1 generates a non-terminating

reduction sequence and is not normalizable.

Π1 has a maximum formula ¬ϕ in ¬E−rule. By applying ¬−reduction, we have the

following derivation Π2.

[ϕ →¬ϕ]1
[¬ϕ → ϕ]3

[ϕ →¬ϕ]1, [ϕ]2

D1

⊥
¬I,2¬ϕ
→ E

ϕ
→ E¬ϕ

[ϕ →¬ϕ]1, [¬ϕ → ϕ]3

D2

ϕ
¬E⊥

The derivation Π2 has no maximum formula but it has an Ekman maximum formula. By

applying Ekman reduction, we obtain the same derivation with Π1 which we started. There-

fore, if the set of reductions of SE includes Ekman reduction, Π1 initiates a non-terminating

reduction sequence and so is not normalizable.
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We call the result of Proposition 3.1.1 Ekman’s paradox. Schroeder-Heister and Tranchini

(2017, pp. 570-571) appear to think that the derivation Π1 uses id est inference since Π1

has inferences from ϕ to ¬ϕ and ¬ϕ to ϕ . Also, Π1 is a derivation of ⊥ and generates a

reduction loop. Hence, according to TCPE , Π1 is a T-paradox. Thus, Ekman’s paradox can

be a counterexample to TCPE . Schroeder-Heister and Tranchini (2017, p. 571) diagnose

the phenomenon, by saying,

... we take Ekman’s paradox to push the question of when a certain reduction

counts as acceptable: whether a derivation is normal depends on the collection

of reductions adopted, and hence Tennant’s criterion requires particular atten-

tion in what should be taken to be a good reduction. In particular, Ekman’s

phenomenon shows that on a too loose notion of reduction, one obtains a too

coarse criterion of paradoxicality.

According to their diagnosis, the occurrence of a looping reduction is relative to which set

of reduction procedures we accept. A wrong reduction process does not have to generate

any feature of paradoxicality, such as a non-terminating reduction process. Since TCPE

has no constraint on illegitimate reduction procedures, it needs to be revised in order not to

overgenerate the scope of genuine paradoxes.

3.2 The Later Version of Tennant’s Criterion for Paradoxicality

Tennant (2016, 2017) proposes an additional condition to solve the problem of over-

generation: all elimination rules must be stated in the generalized form. We will see

Tennant’s solution to the overgeneration raised by Ekman’s paradox and his later crite-

rion for paradoxicality (TCPL) in Section 3.2.1. Section 3.2.2 claims that the choice of

generalized elimination rules offers no remedy to the overgeneration problem. The claim

is already suggested by Schroeder-Heister and Tranchini (2018). However, they did not

distinguish between Tennant’s examination of Ekman’s paradox and von Plato’s. Their

proposed Ekman-type reduction, which we will call ‘GEkmang reduction,’ cannot apply to
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Tennant’s derivation. Therefore, Section 3.2.2 reinforces the claim that the mere adoption

of generalized elimination rules is not a solution to the problem of overgeneration.

3.2.1 Tennant’s Solution to the Overgeneration

As noted in Section 3.1, Ekman’s paradox can be a counterexample to TCPE since it

raises the overgeneration problem. Although the phenomenon of Ekman’s paradox shows

that an incorrect reduction procedure produces a non-terminating reduction sequence, TCPE

does not explicitly restrict the application of a wrong reduction process. In order to solve

the problem, Tennant (2016, 2017) supplements the condition to TCPE that all elimination

rules must be formulated in the generalized form.

Tennant (2016, 2017) seems to borrow von Plato’s solution to Ekman’s paradox. Von

Plato (2000) notes that the problem of normal form from Ekman’s paradox is the choice of

standard elimination rules in a natural deduction system.

Let SEG be a natural deduction system containing ∧I−, → I−, ¬I−rules with the gen-

eralized form of elimination rules. Plus, we define ϕ ↔ ¬ϕ as (ϕ → ¬ϕ)∧ (¬ϕ → ϕ).

Proposition 3.2.1 is the answer of Tennant (2016, 2017) against Ekman’s paradox. His so-

lution says that a non-terminating reduction sequence does not arise if one insists on the

application of the generalized form of elimination rules.

Proposition 3.2.1. There is an open full normal derivation of ⊥ from [ϕ →¬ϕ] and [¬ϕ →

ϕ] in SEG.

Proof. The result consists of two claims.

Claim 1. There is an open derivation D3 of ⊥ from ϕ →¬ϕ and ¬ϕ → ϕ .

First, there is an open derivation D1 of ⊥ from [ϕ →¬ϕ] and [ϕ].

[ϕ →¬ϕ]4 [ϕ]2
[¬ϕ]1 [ϕ]2 [⊥]3

→ E,3⊥
→ E,1⊥
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Then, we have an open derivation D2 of ϕ from [ϕ →¬ϕ] and [¬ϕ → ϕ].

[¬ϕ → ϕ]4

[ϕ]2, [ϕ →¬ϕ]4

D1

⊥
¬I,2¬ϕ [ϕ]5

→ E,5
ϕ

Now, we have an open derivation D3 of ⊥ from [ϕ →¬ϕ] and [¬ϕ → ϕ].

[ϕ →¬ϕ]4
[¬ϕ → ϕ]4

[ϕ]2, [ϕ →¬ϕ]4

D1

⊥
¬I,2¬ϕ [ϕ]5

→ E,5
ϕ

[¬ϕ]7

[ϕ →¬ϕ]4, [¬ϕ → ϕ]4

D2

ϕ [⊥]6

¬E,6⊥
→ E,7⊥

Claim 2. D3 is in full normal form.

Since all major premises in D3 are assumptions, D3 is in full normal form.

Ekman reduction process is stated in the form of standard elimination rules. We cannot

apply it to D3, and thus D3 is in full normal form. D3 does not satisfy TCPE and so is not

a T-paradox. Furthermore, we readily have the following result from the derivation D3 of

Proposition 3.2.1.

Proposition 3.2.2. There is a closed full normal derivation D4 of ¬(ϕ ↔¬ϕ) in SEG.

Proof. Two claims verify the result.

Claim 1. there is a closed derivation D4 of ¬(ϕ ↔¬ϕ).

From the proof of Proposition 3.2.1, SEG has an open derivation D3 of ⊥ from [ϕ →¬ϕ]
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and [¬ϕ → ϕ]. Then, we have a closed derivation D4 of ¬(ϕ ↔¬ϕ).

[(ϕ →¬ϕ)∧ (¬ϕ → ϕ)]8

[ϕ →¬ϕ]4, [¬ϕ → ϕ]4

D3

⊥
∧E,4⊥

¬I,8¬((ϕ →¬ϕ)∧ (¬ϕ → ϕ))
·································· de f

¬(ϕ ↔¬ϕ)

Claim 2. D4 is in full normal form.

D3 is a full normal derivation and every major premise in D4 is an assumption. There-

fore, D4 is in full normal form.

Proposition 3.2.2 seems to show that Ekman’s paradox is not anymore a paradox. Tennant

(2016, p. 6) explicates the result of Proposition 3.2.1 as below:

This proof ... is in [full] normal form. ... Hence, Ekman’s so called ‘paradox’ is

no paradox at all. The inconsistency of [ϕ →¬ϕ and ¬ϕ → ϕ] has a perfectly

straightforward proof in [full] normal form ... With the [generalized] form of

→ −Elimination, as we have just seen, there is no looping in the resulting

proof of Ekman’s example. This is because it is already in [full] normal form,

so there is no reduction sequence to be embarked on.

That it might have been thought otherwise (i.e., that Ekman’s example would

resist any [full] normal-form proof) is an artefact of the mistaken presump-

tion that a system of natural deduction ought to use the [standard] form of

→−Elimination ... rather than the [generalized] form used above.

He thinks that our use of the generalized elimination rules solves the problem of Ekman’s

paradox. Therefore, his criterion for paradoxicality has an additional condition that every

elimination rule in a given derivation is to be stated in generalized form. We have the later

version of Tennant’s criterion for paradoxicality, TCPL, by adding the following condition

to TCPE .
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(iv) all elimination rules in D are stated in generalized form.

As TCPL uses the forms of generalized elimination rules, we will use the notion of ‘full

normal form’ rather than ‘normal form’ if our discourse is on TCPL. According to TCPL,

Ekman’s paradox is not a T-paradox at all. Unfortunately, Tennant overlooks the point

that we can provide a generalized form of Ekman-type reduction which is fitted to the

generalized elimination rule for →. In the next subsection, we will see the problem of

Tennant’s solution.

3.2.2 A Problem of Tennant’s Solution

The main reason why Ekman reduction cannot apply to the derivation D3 of Proposition

3.2.1 is that → E−rule in Ekman reduction is stated in standard form. We state Ekman-type

reduction procedure with respect to the generalized elimination rule for → as follows:

[σ → ϕ]

[ϕ → ψ]

D′
1

ϕ

[ψ]1

D‘2
σ

→ E,1
σ

[ϕ]2

D′
3

ρ
→ E,2

ρ ⊵GE

D′
1

ϕ

D′
2

σ

We call the process GEkman reduction process and the minor premise ψ in the last →

E−rule a GEkman-maximum formula. Then, D3 of Proposition 3.2.1 has a GEkman-

maximum formula, ϕ , in the last → E−rule. We apply GEkman reduction to D3 and

have the result below.

Proposition 3.2.3. If GEkman reduction is in the set of reduction procedures of SEG,

SEG has an open derivation of ⊥ from [ϕ → ¬ϕ] and [¬ϕ → ϕ] which generates a non-

terminating reduction sequence and so is not fully normalizable.

Proof. We apply GEkman reduction to D3 of Proposition 3.2.1. Then, D3 yields the deriva-
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tion D5 below.

[ϕ →¬ϕ]4 [ϕ]2
[¬ϕ]1 [ϕ]2 [⊥]3

¬E,3⊥
→ E,1⊥

¬I,2¬ϕ

[ϕ →¬ϕ]4, [¬ϕ → ϕ]4

D2

ϕ [⊥]6

¬E,6⊥

Since the major premise ¬ϕ of ¬E−rule is derived by → I−rule and so is not an assump-

tion, ¬−reduction process produces the same derivation of D3. Therefore, D5 generates a

non-terminating reduction sequence which is not normalizable.

We call the result of Proposition 3.2.3 GEkman paradox. Then, GEkman paradox shows

that TCPL overgenerates the scope of genuine paradoxes if GEkman reduction is allowed.

Again, TCPL has a counterexample.

Likewise, if GEkman reduction is accepted, the derivation D4 of ¬(ϕ ↔¬ϕ) in Propo-

sition 3.2.2 cannot be converted into a full normal derivation. Tennant does not seem to

take GEkman reduction into account. As long as GEkman reduction is used, there is an

open derivation of ⊥ from [ϕ →¬ϕ] and [¬ϕ → ϕ] and a closed derivation of ¬(ϕ ↔¬ϕ)

in SEG which raise infinite reduction sequences. Therefore, our mere choice of generalized

forms of elimination rules does not solve the problem of Ekman’s paradox because a loop-

ing reduction is relative to the set of reduction procedures we accepted. The real issue is to

be which set of proper reductions we choose and Tennant did not consider it.

Tennant may answer to the problem of GEkman paradox that if we apply permuta-

tion conversion, found by Gentzen (2008) and Prawitz (1965) for ∨E− and ∃E−rules,

before using GEkman reduction, we would have an open full normal derivation of ⊥ from

[ϕ →¬ϕ] and [¬ϕ → ϕ] because GEkman reduction is not applicable. Permutation con-

version is an essential process to eliminate the major premise derived by an elimination

rule. Permutation conversion for the case of →−rule has the following process. Let Σ be

an arbitrary derivation and ⋆ be any constant.
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ϕ1 → ϕ2

D1

ϕ1

[ϕ2]
1

D2

ψ
→ E,1

ψ Σ
⋆E

ρ ⊵per(→)

ϕ1 → ϕ2

D1

ϕ1

[ϕ2]
1

D2

ψ Σ
⋆E

ρ
→ E,1

ρ

Then, by applying ⊵per(→) to Tennant’s derivation D3 of Proposition 3.2.1, we have the

derivation D6 below.

[¬ϕ → ϕ]4

[ϕ]2, [ϕ →¬ϕ]4

D1

⊥
¬I,2¬ϕ

[ϕ →¬ϕ]4 [ϕ]5
[¬ϕ]7

[ϕ →¬ϕ]4, [¬ϕ → ϕ]4

D2

ϕ [⊥]6

¬E,6⊥
→ E,7⊥

→ E,5⊥

GEkman reduction ⊵GE cannot apply to D6 and D6 is in full normal form. However, if

permutation conversions were allowed, the permuted form of GEkman reduction would

also be allowed.

[ϕ → ψ]

D′
1

ϕ

[ψ → ϕ] [ψ]1

[ϕ]2

D′
2

ρ
→ E,2

ρ
→ E,1

ρ ⊵GE(per)

D′
1

ϕ

D′
2

ρ

Although it is odd that the assumption [ψ] in → E−rule becomes a GEkman maximum for-

mula of the permuted form of GEkman reduction, ⊵GE(per), it shares the same conclusion

from the same premises with GEkman reduction ⊵GE . There seems no reason to reject the

permuted form of GEkman reduction if we accept the permutation conversion and GEk-

man reduction. The application of ⊵GE(per) to D6 produces the same derivation with D5 of

Proposition 3.2.3 and it initiates an infinite reduction sequence.
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The other possible solution to the GEkman problem is that, instead of using Tennant’s

derivation D3 of Proposition 3.2.1, we use the derivation D7 of ⊥ from [ϕ → ¬ϕ] and

[¬ϕ → ϕ] suggested by Von Plato (2000) below.

[¬ϕ → ϕ]4

[ϕ]2, [ϕ →¬ϕ]4

D1

⊥
¬I,2¬ϕ

[ϕ →¬ϕ]4 [ϕ]5
[¬ϕ]7 [ϕ]5 [⊥]6

¬E,6⊥
→ E,7⊥

→ E,5⊥

The application of ⊵GE(per) to D7 does not generate a non-terminating reduction sequence

and it is an open full normal derivation. Von Plato (2000, p. 123) proposes a closed full

normal derivation of ¬(ϕ ↔¬ϕ) below as a solution to the problem Ekman’s paradox and

it may also be the solution to the problem of GEkman paradox.

[(ϕ →¬ϕ)∧ (¬ϕ → ϕ)]8

[ϕ →¬ϕ]4, [¬ϕ → ϕ]4

D7

⊥
∧E,4⊥

¬I,8¬((ϕ →¬ϕ)∧ (¬ϕ → ϕ))
·································· de f

¬(ϕ ↔¬ϕ)

However, von Plato’s solution is still unsatisfactory. As we have devised GEkman reduc-

tions, ⊵GE and ⊵GE(per), to Tennant’s derivation D3 and D6, we can invent an Ekman-type

reduction applicable to von Plato’s derivation D7. Schroeder-Heister and Tranchini (2018)

propose the following form of reduction process:
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[ϕ → ψ]

D′′
1

ϕ

[ψ → ϕ] [ψ]1

[ψ]1, [ϕ]2

D′′
2

ρ
→ E,2

ρ
→ E,1

ρ ⊵GEg

[ϕ → ψ]

D′′
1

ϕ

[ψ]1,

D′′
1

ϕ

D′′
2

ρ
→ E,1

ρ

The application of ⊵GEg to D7 generates a looping reduction sequence. Hence, the correct

solution against the problem of overgeneration should explain why Ekman-type reductions,

such as ⊵GE , ⊵GE(per) , and ⊵GEg , are not proper.

Though Tennant (2016) and Von Plato (2000) think that our choice of generalized form

of elimination rules can be a solution to the problem raised by Ekman-type reductions, the

real issue is to be which reduction procedures are proper.

Schroeder-Heister and Tranchini (2017) have proposed a derivation of Ekman’s paradox

stated in standard form as a counterexample to TCPE . Tennant’s answer is to have an addi-

tional condition (iv) that all elimination rules are formulated in generalized form. We have

discussed in Section 3.2.2 that, for a successful answer to the problems caused by Ekman-

type reductions, the condition (iv) is not enough and Tennant needs to focus on which

reduction procedures are proper. As Schroeder-Heister and Tranchini (2017, p. 571) note,

whether a derivation is in (full) normal form relies on the choice of reduction procedures.

They attempt to show that Ekman reduction makes two derivations which represent distinct

proofs belonging to the same equivalence class and so it is a wrong process. Tennant (2016,

2017) may not wish to follow their line of thought and does believe that our mere choice

of generalized elimination rules would be a more modest solution than theirs. We already

have seen that Tennant’s solution is not successful. A successful solution should provide a

relevant criterion for a proper reduction process which can restrict illegitimate reductions,

such as Ekman-type reduction procedures. In the next two sections, we shall investigate

plausible tests to block the illegitimate reductions.
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3.3 Schroeder-Heister and Tranchini’s Triviality Test

As we have seen in Section 3.2.2, GEkman paradox shows that TCPL overgenerates.

If GEkman reduction is not proper, GEkman paradox is not a suitable counterexample to

Tennant’s criterion for paradoxicality. The main issue is to be which reduction process is

a proper one. For instance, Schroeder-Heister and Tranchini (2017, Sec. 5) pay attention

to finding a criterion for the proper reduction process. So, instead of considering Tennant’s

condition (iv) of TCPL, we have the revised version of Tennant’s criterion for paradoxical-

ity:

The Revised Version of Tennant’s Criterion for Paradoxicality(RTCP): Let S be a nat-

ural deduction system relative to a set R of reduction procedures. D be any derivation

in S. D is a T-paradox if and only if

(i) D is a (closed or open) derivation of ⊥,

(ii) id est inferences (or rules) are used in D,

(iii) a reduction procedure of D generates a non-terminating reduction sequence, such as a

reduction loop,

(iv) any reduction procedure in R is proper.

With regard to RTCP, it should be asked how we find the criterion for a set of proper re-

duction procedures. Schroeder-Heister and Tranchini (2017, p. 575) propose a requirement

of a new reduction process that the reduction must not trivialize the identity of proofs in

the sense that it should be possible to show that different derivations belong to dintinct

equivalence classes. They claim that Ekman reduction trivializes the identity of proofs and

so is not a proper reduction. In Section 3.3.1, we shall investigate Schroeder-Heister and

Tranchini’s notion of ‘trivialize the identity of proofs’ and introduce Triviality test to re-

strict the application of Ekman reduction process. First, they accept Prawitz’s thesis that a

proper reduction should not affect the identity of proofs represented by derivations in the

same equivalence class. Then, they attempt to show that when Ekman reduction is used,

104



two derivations representing different proofs belong to the same equivalence class and any

derivation of the same formula represents the same proof. That is, Ekman reduction trivial-

izes the identity of proofs. Section 3.3.2 argues that Triviality test may not be suitable for

evaluating all standard reduction procedures and it fails to block every Ekman-type reduc-

tion. Their proper reductions evaluated by Triviality test is relative to a natural deduction

system.

3.3.1 Triviality Test

Prawitz (1971, p. 257) first suggests the idea that a proper reduction may not effect

the identity of proofs. He conjectures that two derivations represent the same proof if and

only if they are equivalent. The equivalent relation between derivations with the same

assumptions and the same conclusion is the reflexive, transitive, and symmetric closure of

the immediate reducibility relation.

Prawitz’s equivalence relation ∼ is defined via the reducibility relation ≻ introduced

in Definition 1.2.4. We borrow the notion of the equivalence relation between derivations

from Prawitz (1971, p. 255). Let R be any set of reduction procedures.1

Definition 3.3.1. A derivation D1 is equivalent to Di (D1 ∼Di) relative to R iff D1 ≻Di or

Di≻D1 where 1⩽ i for any natural number i; otherwise, they are not equivalent (D1≁Di).

Let S be any natural deduction system. The equivalence class of D1 under ∼ in S, denoted

by JD1K, is defined as JD1K = {Di ∈ S|D1 ∼Di}.

Then, the relation ∼ is clearly reflexive, symmetric, and transitive. Prawitz’s conjecture is

summarized as below.

The Conjecture for the Identity of Proofs: for any derivation D1 and D2, D1 and D2

represent the same proof iff D1 ∼D2.

When it comes to the conjecture for the identity of proofs, Prawitz (1971, p. 257) mentions

two things: a proper reduction and the identity of proofs.
1Although Prawitz (1971) considers a set of standard reduction procedures for rules of first order intuition-

istic and classical logic, since we focus on the test of a proper reduction procedure, we consider arbitrary set of
reduction procedures.
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The two equivalent derivations represent the same proof seems to be a

reasonable thesis. It seems evident from our discussion ... of the inversion

principle that a proper reduction does not effect the identity of the proof rep-

resented. ... It should be noted that the strong normalization theorem gives a

certain coherence to the conjecture. It implies that two derivations are equiv-

alent only if the normal derivations to which they reduce are identical, and

hence, that two different normal derivations are never equivalent.

His thesis says that a proper reduction does not affect the identity of proofs represented

by derivations in the same equivalence class. So to speak, when two derivations represent

different proofs, they are not equivalent. His conjecture is related with the strong normal-

ization theorem. The strong normalization theorem proposed in Prawitz (1971, p. 256)

states that every derivation is reducible to a unique normal derivation regardless of the or-

der in which reductions are applied. He proposed a result that the strong normalization

theorem holds in a first order minimal, an intuitionistic, and a classical natural deduction

system.

Theorem 3.3.2. (Prawitz 1971) Every derivation D in a (first order) minimal, an intuition-

istic, or a classical natural deduction system is reducible to a unique normal derivation D′

and every reduction sequence starting from D terminates in D′.

Let us consider two derivations D1 and D2 in a natural deduction system S which the

strong normalization theorem is proved. By the strong normalization theorem, D1 and D2

have their unique normal derivations. If D1 and D2 are equivalent, then they have the same

normal derivation. Hence, when the conjecture for the identity of proofs is true, a proof

represented by derivations in the same equivalence class has a unique normal derivation.

In other words, derivations in the same equivalence class have the same normal derivation.

In this sense, Prawitz (1971, p. 256) says, ‘two different normal derivations are never

equivalent.’ Therefore, if a reduction process is proper, it does not affect the identity of

proofs. We summarize his thesis in the following way.

Prawitz’s thesis A proper reduction does not affect the identity of proofs represented by
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derivations in the same equivalence class. (i.e. derivations representing different

proofs are not equivalent.)

Schroeder-Heister and Tranchini (2017, pp. 574-575) take the conjecture for the identity

of proofs and Prawitz’s thesis. Especially, they suggest Triviality test to evaluate whether a

newly added reduction makes derivations representing different proofs belonging an equiv-

alent class. For instance, let us consider the following two derivations with the same as-

sumptions and the same conclusion but the assumptions are discharged at different places.

[ϕ]1

→I,1
ϕ → ϕ

→ I, /0
ϕ → (ϕ → ϕ)

D

ϕ
→ E

ϕ → ϕ

[ϕ]1

→ I, /0
ϕ → ϕ

→ I,1
ϕ → (ϕ → ϕ)

D

ϕ
→ E

ϕ → ϕ

For their view, the two derivations above belong to two different equivalence classes in

the sense of Prawitz’ equivalent relation. In the case of the empty discharge, the reduction

process for → has the following form.

D1

ψ
→ I, /0

ϕ → ψ

D2

ϕ
→ E

ψ ▷→( /0)

D1

ψ

▷→( /0)−reduction is an instance of ▷→. Then, the reduced derivations below are obtained

by ▷→ respectively.

[ϕ]1

→ I,1
ϕ → ϕ

D

ϕ
→ I, /0

ϕ → ϕ

The two normal derivations are different. Provided that the equivalent derivations represent-

ing the same proof must have the same normal derivation, if two derivations are equivalent,

they should have the same normal derivation, but they do not.

Let ⊵ be a reduction procedure not in a set R of reductions and R′ be an extension of

R by adding ⊵. We use an abbreviation ‘S(R)’ for a natural deduction system S relative to
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R. Let us assume that the strong normalization theorem is provable for S(R) and consider

the case that there is a derivation Π in S such that Π has a unique normal derivation in S(R)

but has two normal derivations in S(R′). Since, by Prawitz’s thesis, a proper reduction

does not affect the identity of proofs and, by strong normalization theorem, a derivation

representing the same proof has a unique normal derivation, we may conclude that ⊵ is

not a proper reduction procedure. From this perspective, Schroeder-Heister and Tranchini

(2017, p. 575) propose Triviality test for a proper reduction process that a newly added

reduction procedure should not trivialize the identity of proofs.

A natural requirement of the addition of a new reduction could be that of not

trivializing identity of proof, in the sense that it should always be possible

to exhibit two derivations of the same conclusion belonging to two distinct

equivalence classes. (Schroeder-Heister and Tranchini, 2017, p. 575)

We say that, for any derivations D1 and D2 which represent different proofs, i.e. D1 ≁D2,

in S(R), a reduction process ⊵ trivializes the identity of proofs in S iff it is not possible to

show in S(R′) that D1 ≁ D2; otherwise, ⊵ does not trivialize the identity of proofs in S.

Then, their Triviality test can be summarized as below:

Triviality Test: Let S be any natural deduction system. Let ⊵ be a newly added reduction

procedure not in R and R′ be an extension of R by adding ⊵. ⊵ is a proper reduction

procedure for S iff ⊵ does not trivialize the identity of proofs in S.

In order to show that Ekman reduction fails to pass Triviality test, Schroeder-Heister

and Tranchini (2017, pp. 575-577) provide an example that Ekman reduction trivializes the

identity of proofs. Let ST be a natural deduction system containing ∧− and →−rules with

their standard elimination rules. ST has a set RT of standard reductions for ∧ and →. We

say that R′
T is an extension of RT by adding Ekman reduction ⊵E . If Ekman reduction

⊵E is a proper reduction, it does not trivialize the identity of proofs. Schroeder-Heister and

Tranchini’s example shows that it is not possible to show that two reduced derivations from

Π1 in ST (R′
T ) which represent different proofs are not equivalent.
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Suppose that, for any two derivations D1 and D2 of ϕ in ST , there is a derivation of

ϕ ∧ϕ below:

D1

ϕ

D2

ϕ
∧I

ϕ ∧ϕ

Schroeder-Heister and Tranchini’s derivation Π1 of ϕ ∧ϕ is as follows.

[ϕ]1 [ϕ]1

∧I
ϕ ∧ϕ

→ I,1
ϕ → (ϕ ∧ϕ)

[ϕ ∧ϕ]2

∧E1
ϕ

→ I,2(ϕ ∧ϕ)→ ϕ

D1

ϕ

D2

ϕ
∧I

ϕ ∧ϕ
→ E

ϕ
→ E

ϕ ∧ϕ

ST (RT ) has a derivation Π2 of Π1 by applying ▷→ and ▷∧ with regard to ∧E1−rule.

D1

ϕ

D1

ϕ
∧I

ϕ ∧ϕ

On the other hand, ST (R′
T ) has not only Π2 but also Π3 through the application of ⊵E .

D1

ϕ

D2

ϕ
∧I

ϕ ∧ϕ

A proof represented by derivations in JΠ1K should represent the same proof. By Definition

3.3.1, Π2 and Π3 are equivalent to Π1. So Π2 and Π3 must represent the same proof. It

means that any two derivations of ϕ are equivalent in ST (R′
T ) and, by the conjecture for

the identity of proofs, they represent the same proof. Since not every derivation of ϕ in ST

represent the same proof, there are two distinct derivations D1 and D2 such that D1 ≁D2 in

ST (RT ). However, because every derivation of ϕ in ST (R′
T ) is equivalent, it is not possible
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to show in ST (R′
T ) that any two derivations representing different proofs are not equivalent,

i.e. D1 ≁D2. Therefore, ⊵E trivializes the identity of proofs in ST , and so Triviality test

says that it is not a proper reduction for ST .

As we have noted, Triviality test presumes the conjecture for the identity of proofs and

Prawitz’s thesis. If these theses are requisite for a correct natural deduction system, Triv-

iality test can be a proper-reduction-checker. The condition (iv) of RTCP can be claimed

through Triviality test. In the next subsection, after we shall discuss that Triviality test may

not evaluate the legitimacy of every type of GEkman reduction procedures because it is

relative to a given system.

3.3.2 Problems of Triviality Test

Triviality test fails to block every Ekman-type reduction procedures because it works

relative to a natural deduction system. Schroeder-Heister and Tranchini’s derivation Π1 is

proposed in a natural deduction system with the standard elimination rules. As we have dis-

cussed in Section 3.2.2, there is an Ekman-type reduction with the generalized elimination

rule for →, such as GEkman reduction procedure. Let ST G be a natural deduction system

containing ∧− and →−rules with their generalized elimination rules. A set RT G of reduc-

tions only has the standard reduction processes for ∧ and → with generalized elimination

rules for ∧ and →. R′
T G is an extension of RT G by adding GEkman reduction procedure.

Then ST G has a similar derivation with Π1 formulated in the generalized form.

[ϕ]1[ϕ]1

∧I
ϕ ∧ϕ

→ I,1
ϕ → (ϕ ∧ϕ)

[ϕ ∧ϕ]2[ϕ]3

∧E,3
ϕ

→ I,2(ϕ ∧ϕ)→ ϕ

D1

ϕ

D2

ϕ
∧I

ϕ ∧ϕ [ϕ]4

→ E,4
ϕ [ϕ ∧ϕ]5

→ E,5
ϕ ∧ϕ

We call the above derivation Σ1. The minor premise ϕ in the last → E−rule is a GEkman

maximum formula. The application of GEkman reduction provides the following derivation
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Σ2.
D1

ϕ

D2

ϕ
∧I

ϕ ∧ϕ

Moreover, we apply →−reduction to Σ1 twice and have the derivation below:

D1

ϕ

D2

ϕ
∧I

ϕ ∧ϕ [ϕ]3

∧E,3
ϕ

D1

ϕ

D2

ϕ
∧I

ϕ ∧ϕ [ϕ]4

∧E,4
ϕ

∧I
ϕ ∧ϕ

∧I−rule has only one generalized elimination rule for ∧ and its reduction procedure uses

both derivations of two conjuncts. By applying ∧−reduction again, we take the derivation

Σ3 below:
D1

ϕ

D2

ϕ
∧I

ϕ ∧ϕ

Unlike Schroeder-Heister and Tranchini’s case, since Σ2 is the same derivation with Σ3,

the result does not lead to a conclusion that GEkman reduction trivializes the identity of

proofs in ST G. Though Σ1 is a similar version of Π1, it cannot be the clue to block GEkman

reduction process.2

There are two standard elimination rules for ∧I−rule and so are two reduction pro-

cedures for ∧. As the derivation Π1 uses the standard ∧E1−rule but does not have any

application of ∧E2−rule, only the left conjunct ϕ and its derivation D1 are picked by the

reduction for ∧. On the other hand, ∧I−rule has only one generalized elimination rule

and its reduction procedure uses both derivations of two conjuncts. Hence, the applica-

tion of the reduction process of Σ1 uses both derivations D1 and D2 of ϕ and provides the

same derivation with Σ2. So to speak, Schroeder-Heister and Tranchini’s example stated in

generalized form does not show that GEkman reduction trivializes the identity of proofs.

2For the permuted derivation of Σ1, we have the same result by applying ▷GE(per).
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Whether a new reduction passes Triviality test is dependent on a choice of the form of

elimination rules, and so on a given system.

One may say that we can freely choose one of both derivations when we use ▷∧−reduction

in generalized form. However, then, regardless of GEkman reduction process, we can read-

ily show that ▷∧−reduction trivializes the identity of proofs because by such free choice

of derivations we have the following three different derivations from Σ1.

D1

ϕ

D1

ϕ
∧I

ϕ ∧ϕ

D1

ϕ

D2

ϕ
∧I

ϕ ∧ϕ

D2

ϕ

D2

ϕ
∧I

ϕ ∧ϕ

Thus, if the free choice of derivations in ▷∧−reduction is acceptable, according to Triv-

iality test, ▷∧−reduction is not a proper reduction. However, Schroeder-Heister and Tran-

chini will not want this unwelcome conclusion.

It is not a good answer to the above approach that we take two generalized elimination

rules for ∧.

ϕ ∧ψ

[ϕ]1

D1

σ
∧E1,1

σ

ϕ ∧ψ

[ψ]1

D2

σ
∧E2,1

σ

∧I−rule with the two generalized elimination rules above may have two distinct reduction

procedures for left and right conjuncts. If ∧I−rule has the two generalized elimination

rules, we readily have a similar derivation with Π1 which GEkman reduction trivializes

the identity of proofs. However, there may not be a good reason why ∧I−rule should

have the two different generalized elimination rules. Plus, it is often said that the choice

of generalized elimination rules has the advantage of having a direct translation between a

natural deduction system and a sequent calculus. For example, Negri and Von Plato (2001,

Ch.1 and Ch. 8) investigate that each generalized elimination rule for a logical constant in

natural deduction corresponds to the left rule for the constant of sequent calculus. Since

most sequent calculus systems have a single left rule for each constant, it is better to use

a single generalized elimination rule for ∧ in order to have a direct translation between a
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natural deduction and a sequent calculus.

One may rebut again that, as Gentzen (1935, p. 84) does, a sequent calculus can have

two left rules for ∧, and is able to be isomorphic to a certain natural deduction system. (Cf.

Von Plato (2011)) Even in our choice of the two left rules, it does not change the situation

that Schroeder-Heister and Tranchini’s criterion for a proper reduction relies on the choice

of elimination rules.

In the footnote 8 of Schroeder-Heister and Tranchini (2017), there is another example

using the formulas ϕ → (ϕ → ψ) and ϕ → ψ to show that Ekman reduction is not a proper

one. → I−rule has only one elimination rule in both standard and generalized forms. It

can be the primary reason to establish that (G)Ekman reduction trivializes the identity of

proofs. Their promising example seems to be the following.

[ϕ → ψ]1 [ϕ]2

→ E
ψ

→ I,2
ϕ → ψ

→ I, /0
ϕ → (ϕ → ψ)

→ I,1(ϕ → ψ)→ (ϕ → (ϕ → ψ))

[ϕ → (ϕ → ψ)]3 [ϕ]4

→ E
ϕ → ψ [ϕ]4

→ E
ψ

→ I,4
ϕ → ψ

→ I,3(ϕ → (ϕ → ψ))→ (ϕ → ψ)

[ϕ]5, [ϕ]6

D∗

ψ
→ I,5

ϕ → ψ
→ I,6

ϕ → (ϕ → ψ)
→ E

ϕ → ψ
→ E

ϕ → (ϕ → ψ)

The above example has a derivation D∗ of ψ from assumptions [ϕ]5 and [ϕ]6. Two assump-

tions of D∗ have different indices and so are discharged at different places. The application

of Ekman reduction ▷E to the example provides the derivation on the left-side below and

the application on ▷→ gives the derivation on the right-side.

[ϕ]5, [ϕ]6

D∗

ψ
→ I,5

ϕ → ψ
→ I,6

ϕ → (ϕ → ψ)

[ϕ]2, [ϕ]2

D∗

ψ
→ I,2

ϕ → ψ
→ I, /0

ϕ → (ϕ → ψ)

Similar to the process proposed by Schroeder-Heister and Tranchini (2017, pp. 575-577),
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we consider that two derivations above are equivalent relative to R′
T and represent the same

proof. Then, for any two derivations D1 and D2 of ϕ , two derivations can be extended by

the applications of → E−rule as below.

[ϕ]5, [ϕ]6

D∗

ψ
→ I,5

ϕ → ψ
→ I,6

ϕ → (ϕ → ψ)

D1

ϕ
→ E

ϕ → ψ

D2

ϕ
→ E

ψ

[ϕ]2, [ϕ]2

D∗

ψ
→ I,2

ϕ → ψ
→ I, /0

ϕ → (ϕ → ψ)

D1

ϕ
→ E

ϕ → ψ

D2

ϕ
→ E

ψ

Two derivations are extended by the same application of → E−rule. They must be equiv-

alent relative to R′
T . Then, two derivations are reduced to the following derivations by

▷→−reduction.

D1

ϕ

D2

ϕ

D∗

ψ

D2

ϕ

D2

ϕ

D∗

ψ

It means that any two derivations D1 and D2 of ϕ are equivalent and represent the same

proof. However, since not every derivation of ϕ represent the same proof, the result shows

that it is not possible to show in ST (R′
T ) that any two derivations representing different

proofs are not equivalent. Therefore, Ekman reduction trivializes the identity of proofs in

ST and so is not a proper reduction.

The result establishes that even when we use generalized elimination rules, Triviality

test can restrict the use of GEkman reduction. The example may be a reason to reject that

(G)Ekman reduction is proper. Unfortunately, it is undeniable that Triviality test relies on

the choice of rules and a system.

The example applies empty (or vacuous) and multiple discharges which correspond to
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the applications of weakening and contraction in sequent calculus. (Cf. Negri and Von

Plato (2001, p. 98).) As a weakening- and contraction-free system has been examined, one

may apply the structural restriction to a natural deduction system and use it without empty

and multiple discharges. Then, in such system, the suggested derivation using the formulas

ϕ → (ϕ → ψ) and ϕ → ψ is not to be the main reason to show that (G)Ekman reduction

trivializes the identity of proofs since it needs to apply empty and multiple discharges.

As we have argued in this subsection, Schroeder-Heister and Tranchini’s notion of a

proper reduction with respect to Triviality test is relative to a system. Of course, it is not

to say that their Triviality test is wrong. If there is a base system for a proper reduction

procedure, a proper reduction can be assessed by Triviality test. However, we do not yet

have a base system.

In sum, since the assessment of a proper reduction via Triviality test is relative to a (base)

system, a properness of a reduction is relative to the system. Furthermore, the assessment

using Triviality test only shows that there exists an example which a reduction in question

trivializes the identity of proofs but does not explicate what parts of the reduction affect the

identity of proofs.

In the next section, while we use generalized elimination rules and regard standard elim-

ination rules as the special cases of the generalized eliminations, we introduce Translation

test as an observation method to find substantial reasons why (G)Ekman reduction affects

the identity of proofs and why it is a wrong reduction process.

3.4 Translation Test and Crabbé’s case

There are two types of reduction procedures introduced by Prawitz (1965, 1971): stan-

dard and auxiliary reduction procedures. A standard reduction eliminates a maximum for-

mula in accordance with the inversion principle. On the other hand, an auxiliary reduction

process does not satisfy the inversion principle because its role is not to eliminate a max-

imum formula which is the conclusion of an introduction and at the same time the major

premise of an elimination rule. There are at least three sorts of auxiliary reductions which
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(i) lessens the degree of a major premise or (ii) lessens the length of a derivation, or (iii)

changes the order of subderivations of a derivation. Standard reductions are introduced in

Section 1.2 and 2.1. The examples of (i) are reductions for CR−rule introduced in Section

2.2 and in Prawitz (1965, p. 40). The examples of (ii) are reductions for the substitutivity

of identity proposed in Section 2.2 and (G)Ekman reductions.3 Moreover, Prawitz (1971,

p. 254) introduces the following process and calls it an ‘immediate simplification.’

[¬ϕ]1
D

ϕ
¬E⊥

D′

⊥
CR,1

ϕ reduces to
D

ϕ

where no assumption in D is closed in D′. The examples of (iii) are permutation con-

versions introduced in Appendix 2.B and in Prawitz (1971, p. 254). The target of these

reductions (i), (ii), and (iii) are not to eliminate a maximum formula. Hence, standard

reductions and auxiliary reductions are distinguished.

While we differentiate between standard and auxiliary reductions, the inversion prin-

ciple is not the only requirement for a proper reduction, due to the fact that auxiliary re-

ductions do not fit to the inversion principle. Although it is not clear that every standard

reduction satisfying the inversion principle does not affect the identity of proofs, Prawitz’s

thesis for a proper reduction reflects the significant role of reduction procedures. In this

way, a proper reduction has at least two roles that it should (i) preserve the identity of proofs

represented by derivations in the same equivalence class and (ii) eliminate an unnecessary

detour in accordance with the (generalized) inversion principle.

Schroeder-Heister and Tranchini’s Triviality test examines whether a reduction affects

3(G)Ekman maximum formula is not a maximum formula in the standard sense because it is neither a
conclusion of an introduction rule nor a major premise of an elimination rule. Plus, (G)Ekman reduction
process is not a reduction which fits to the inversion principle since the principle states that applications of
an immediate subderivation of an introduction rule for deriving the major premise of an elimination rule and
derivations of minor premises of the same elimination rule. Therefore, we do not regard (G)Ekman maximum
formula as a maximum formula in the standard sense and do consider (G)Ekman reduction to be a process to
reduce the length of a derivation.
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the identity of proofs. As we have discussed in Section 3.3, their notion of a ‘proper re-

duction’ with respect to Triviality test is relative to a given natural deduction system. A

simpler way to test the identity of proofs represented by the same equivalence class is to

check whether a reduction makes a closed derivation open or an open derivation closed. It

is obvious that open and closed derivations are not able to represent the same proof though

they have the same conclusion. Hence, including the second role of a reduction that elim-

inates an unnecessary detour with respect to the inversion principle, a proper reduction

should satisfy the following requirements.

The Requirements of a Proper Reduction: (T1) A proper reduction should neither make

an open derivation closed nor a closed derivation open in order to preserve the identity

of proofs, and (T2) it should not introduce any unnecessary detour which causes to

violate the (generalized) inversion principle.

The graphical forms of reduction procedures in natural deduction is not always suitable

for evaluating a reduction through the requirements above. Rules and reductions formu-

lated in natural deduction often have hidden assumptions of the closure under substitution

for derivations and the applications of empty and multiple discharges. Unlike, natural de-

duction, these hidden assumptions revealed by the corresponding applications of weakening

and contraction in sequent calculus. In this section, we will introduce Translation test as

an observation method to examine a reduction procedure with regard to the requirement of

a proper reduction process. Translation test is not a regulation of a proper reduction but a

way to observe whether a reduction procedure neither affect the identity of proofs nor vio-

late the (generalized) inversion principle by translating a reduction in natural deduction to

a one in sequent calculus. Even though it does not suggest an explicit criterion for a proper

reduction, when generalized elimination rules are used, Translation test can help to find the

reason why (G)Ekman reduction affects the identity of proofs and violates the (generalized)

inversion principle.

Section 3.4.1 argues that GEkman reductions do not satisfy the requirements The over-

generation problem occurred by GEkman’s paradox will be solved. Furthermore, Schroeder-

Heister and Tranchini (2018) provide Crabbé’s case which raises the problem of overgen-
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eration and say that it is unaffected by their Triviality test on a proper reduction. We shall

argue in Section 3.4.2 that the overgeneration problem may not be caused by Crabbé re-

duction ▷∈Z but by ∈Z I−rule. If Crabbé reduction is the real matter, then, by Translation

test, we apply the requirements of a proper reduction to Crabbé reduction and solve the

problem.

3.4.1 An Ekman-Type Reduction as a Detour-Making Process

Now, we attempt to devise an alternative method for evaluating a proper reduction with

regard to Prawitz’s perspectives on the identity of proofs and the inversion principle. The

requirements of a proper reduction propose two conditions that (T1) a proper reduction

should neither make an open derivation closed nor a closed derivation open, and (T2) it

should not introduce any unnecessary detour. (T1) is grounded on Prawitz’s thesis for the

identity of proofs and (T2) is on his inversion principle. For our purpose, we first explain

what an ‘unnecessary detour’ in (T2) means. We consider that an ‘unnecessary detour’

refers to an application of an elimination rule having a maximum formula. As Prawitz

(1965, 1971) introduces two types of reduction procedures, such as a standard reduction

and an auxiliary reduction, there seems to be more than one kind of detours. Prawitz (1971,

p. 258) says that a normal derivation has no detour and it represents a direct proof.

With Gentzen, we may say that the proof represented by a normal derivation

makes no detour ... ; or, having formulated the normal form for natural deduc-

tions, we may say somewhat more pregnantly: the proof is direct in the sense

that it proceeds from the assumptions to the conclusions by first only using the

meaning of the assumptions by breaking them down in their components ...,

and then only ver[i]fying the meaning of the conclusions by building them up

from the[ir] components ... .

His idea of a direct proof represented by normal derivations is connected to Gentzen’s idea

that introduction rules determine the meaning of an operator and elimination rules are no

more than consequences of the meaning. Prawitz has proposed the inversion principle to
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realize the idea of Gentzen. The principle says that nothing is gained by deriving a formula

from a maximum formula, but what is gained is only from the introduction rules. A stan-

dard reduction procedure describes the process which satisfies the principle by composing

derivations of introduction and elimination rules. So to speak, it is the process to eliminate a

maximum formula. Any derivations containing maximum formulas are not in normal form

and does not represent a direct proof. Such derivations have a detour reasoning. Therefore,

we say that a derivation has a detour reasoning if it has an application of an elimination

rule with its maximum formula.

On the other hand, it is not easy to characterize a ‘detour’ in terms of the length of a

derivation. There are cases that the length of a normal derivation is longer than the length

of an original derivation. It cannot be said that a derivation of a longer length has a detour

and a derivation with a shorter length has no detour. Thus, we only use a ‘detour reasoning’

as defined through a maximum formula. Then, (T2) means that a proper reduction should

neither introduce an application of an elimination rule containing a maximum formula nor

increase the degree of maximum formulas.

To check (T2), it is useful to translate a reduction in natural deduction to a one in sequent

calculus. It is often claimed that a natural deduction system is isomorphic to a sequent

calculus system if the generalized eliminations are used. (Cf. Tennant (2002), Negri and

Von Plato (2001) and Von Plato (2011)). Especially, Negri and Von Plato (2001, Ch.1 and

Ch. 8) propose an inductive definition of the translation algorithm between an intuitionistic

natural deduction system with generalized elimination rules and an intuitionistic sequent

calculus system with independent contexts. Let Γ, ∆, Θ be a finite multiset, i.e. a list with

multiplicity but no order, of assumptions in sequent calculus. We use a binary derivation

symbol ⇒ and ‘Γ ⇒ ϕ’ means that the antecedent Γ derives the succedent ϕ . A sequent

calculus has the following left and right rules for → and structural rules, such as cut-,

weakening, and contraction rules.

Γ ⇒ ϕ ψ,∆ ⇒ σ
L →

ϕ → ψ,Γ,∆ ⇒ σ

ϕ,Γ ⇒ ψ
R →

Γ ⇒ ϕ → ψ
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Γ ⇒ ϕ ϕ,∆ ⇒ Ψ
Cut

Γ,∆ ⇒ Ψ

Γ ⇒ Ψ
Wk

ϕ,Γ ⇒ ψ

ϕ,ϕ,Γ ⇒ Ψ
Ctr

ϕ,Γ ⇒ Ψ

ϕ in Cut−rule is called a cut-formula. Let us remind the reduction process for → in the

style of generalized elimination rule.

[ϕ]1

D1

ψ
→ I,1

ϕ → ψ

D2

ϕ

[ψ]1

D3

σ
→ E

σ ▷→

D2

ϕ

D1

ψ

D3

σ

The reduction process for →, ▷→, in natural deduction is translated as below by Negri and

von Plato’s algorithm.

D′
1

ϕ,Γ ⇒ ψ
R →

Γ ⇒ ϕ → ψ

D′
2

∆1 ⇒ ϕ

D′
3

ψ,∆2 ⇒ σ
L →

ϕ → ψ,∆1,∆2 ⇒ σ
Cut

Γ,∆1,∆2 ⇒ σ reduces to

D′
2

∆1 ⇒ ϕ

D′
1

ϕ,Γ ⇒ ψ
Cut

Γ,∆1 ⇒ ψ

D′
3

ψ,∆2 ⇒ σ
Cut

Γ,∆1,∆2 ⇒ σ

As the maximum formula ϕ → ψ is eliminated by ▷→ in the derivation having a detour,

the cut-formula in the translated derivation is removed by the above reduction. If a natural

deduction with generalized elimination rules has an isomorphic translation to a sequent

calculus, the isomorphic translation of full normal derivations preserves the order of rules

such that an introduction rule turns into corresponding right rule and an elimination rule

into a left rule. The isomorphic translation guarantees the correspondence between full

normal and cut-free derivations. In this sense, it appears to say that one of the main roles of

reduction procedures is to eliminate the cut-formula or to lessen the degree of it. Likewise,

if there is an isomorphic translation between sequent calculus and natural deduction, to

lessen the degree of the maximum formula or to eliminate it can be one of the main roles

for reduction procedures. We call the test to check whether a reduction process satisfies

the requirements of a proper reduction by translating the reduction in natural deduction to
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a corresponding one in sequent calculus, Translation test.

Ekman-type reductions may have a problematic assumption that, for any formulas ϕ

and ψ , if a derivation of ϕ (or of ψ) includes inferences ϕ → ψ and ψ → ϕ and it has

a subderivation of the same conclusion, it always can be substituted for the subderivation.

It is natural to think that when an open derivation reduces to a closed derivation or vice

versa, the original and reduced derivation do not represent the same proof. For instance,

it is the case that if every conjecture has a proof, then Goldbach conjecture has a proof.

However, as Goldbach conjecture has not yet been proven, it is not the case that it has a

proof. That is, an open derivation of Goldbach conjecture from the assumption that every

conjecture has a proof is different from a closed derivation of Goldbach conjecture. So, it

is not a proper reduction process from the open derivation to the closed derivation. Thus.

for Translation test, we will examine whether a reduction makes an open derivation closed

or a closed derivation open.

Translation test can discover two problems of Ekman-type reduction procedures. The

one is that it makes an open (or a closed) derivation closed (or open). The other is that

in the case which allows open assumptions it generates an unnecessary detour. It will be

established by Translation test that Ekman-type reductions do not satisfy both requirements

(T1) and (T2).

First, for Translation test, we assume that GEkman reduction is closed under substitution

of derivations for open assumptions. Standard reductions introduced in Section 1.2 and 2.1

allow open derivations and they do not make any open derivation closed or vice versa. In

addition to Ekman reduction, GEkman reduction allows an open derivation. We consider a

special case of GEkman reduction as below.

[ψ → ϕ]

[ϕ → ψ]

D

ϕ [ψ]1

→ E,1
ψ [ϕ]2

→ E,2
ϕ ⊵GE

D

ϕ

Suppose that the derivation D of ϕ is a closed derivation. GEkman reduction makes an

open derivation closed by eliminating assumptions [ϕ → ψ] and [ψ → ϕ]. The translation
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of the above derivation also shows the phenomenon clearly.

D′

Γ ⇒ ϕ ψ ⇒ ψ
L →

Γ,ϕ → ψ ⇒ ψ ϕ ⇒ ϕ
L →

ϕ → ψ,ψ → ϕ,Γ ⇒ ϕ reduces to
D′

Γ ⇒ ϕ

⊵GE−reduction yields the closed derivation D of ϕ from the open derivation by getting rid

of the assumptions [ϕ → ψ] and [ψ → ϕ]. The original derivation on the left-side says that

if ϕ → ψ and ψ → ϕ are true, then ϕ is true. On the other hand, the reduced derivation

on the right says that ϕ is a theorem. Of course, one may claim that the application of

Wk−rule to the right results in ϕ → ψ,ψ → ϕ,Γ ⇒ ϕ . However, then, ⊵GE−reduction

should provide an open derivation of ϕ by supplementing the assumption [ϕ → ψ] and

[ψ → ϕ].

Again, in the case of the permuted version of ⊵GE−reduction, ⊵GE(per)−reduction can

make a closed derivation open. For instance, we consider the following case.

D′
4

ϕ → ψ

D′
1

ϕ

D′
3

ψ → ϕ [ψ]1

[ψ]1, [ϕ]2

D′
2

ρ
→ E,2

ρ
→ E,1

ρ ⊵GE(per)

[ψ],

D′
1

ϕ

D′
2

ρ

The above case shows that ⊵GE(per)−reduction produces the open derivation from the

closed derivation. Therefore, ⊵GE− and ⊵GE(per)−reductions violate (T1) of the require-

ments of a proper reduction.

Second, GEkman reduction is not a process to reduce unnecessary detour reasoning, but

is a detour-making-process. Let us consider the following case with open assumptions.

[ψ → ϕ]

[ϕ → ψ]

D1

ϕ [ψ]1

→ E,1
ψ

[ϕ]2

D2

σ
→ E,2

σ ▷GE

D1

ϕ

D2

σ
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The derivation has no maximum formula, but GEkman maximum formula ψ . It is translated

as below.

D′
1

Γ ⇒ ϕ ψ ⇒ ψ
L →

Γ,ϕ → ψ ⇒ ψ

D′
2

ϕ,∆ ⇒ σ
L →

ϕ → ψ,ψ → ϕ,Γ,∆ ⇒ σ reduces to

D′
1

Γ ⇒ ϕ

D′
2

ϕ,∆ ⇒ σ
Cut

Γ,∆ ⇒ σ

GEkman maximum formula ψ has no corresponding cut-formula. The translated version

of GEkman reduction does not remove any cut-formula, and so neither it eliminates an

unnecessary detour in the standard sense. The more serious problem is that the translated

version shows that GEkman reduction creates an unnecessary detour though it eliminates

a GEkman maximum formula ψ . The derivation on the left side has no cut-formula but

after applying the reduction process the cut-formula ϕ appears on the right side derivation.

It means that GEkman reduction fails to satisfy the requirements of a proper reduction via

Translation test, because of (T2).4 If any proper reduction must not generate new cut-(or

maximum) formula, GEkman reduction is not a proper reduction procedure because it is a

detour-making process.

3.4.2 Does Crabbé Reduction Overgenerate?

Schroeder-Heister and Tranchini (2018) introduce an example first observed by Marcel

Crabbé which arises the problem of overgeneration and says that their Triviality test cannot

block the reduction used in Crabbé’s case. The case has rules for Zermelo’s separation

axiom. For our discussions include an evaluation of Crabbé’s case via Translation test, we

propose the rules for Zermelo’s separation axiom in generalized form.

D1

t ∈ s
D2

ϕ[t/x]
∈Z I

t ∈ {x ∈ s|ϕ(x)}
t ∈ {x ∈ s|ϕ(x)}

[t ∈ s]1, [ϕ[t/x]]1

D3

ψ
∈Z E,1

ψ

4It is readily seen that ▷GEg−reduction fails to pass Translation test because of (T2).
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The reduction procedure ▷∈Z for ∈Z I− and ∈Z E−rules are as below:

D1

t ∈ s
D2

ϕ[t/x]
∈Z I

t ∈ {x ∈ s|ϕ(x)}

[t ∈ s]1, [ϕ[t/x]]1

D3

ψ
∈Z E,1

ψ ▷∈Z

D1

t ∈ s
D2

ϕ[t/x]
D3

ψ

We all ▷∈Z−reduction, ‘Crabbé reduction.’ We shall claim in this subsection that since

Triviality test is not suitable for evaluating standard reductions, it does not apply to Crabbé’s

case. Also, it will be discussed that the culprit of the overgeneration occurred by Crabbé’s

case may not be Crabbé reduction but be the form of ∈Z I−rule. If Crabbé reduction is the

culprit, then the requirements of a proper reduction through Translation test can solve the

problem of overgeneration.

Let us investigate Crabbé’s case. For any set b, we define Zb as a set {x ∈ b|¬x ∈ x}.

We take ¬x ∈ x for ϕ in ∈Z I− and ∈Z E−rules and for terms t and s we take Zb and b

respectively. Then, the following rules are the instances of ∈Z I− and ∈Z E−rules.

D1

Zb ∈ b
D2

¬Zb ∈ Zb ∈Z I
Zb ∈ {x ∈ b|¬x ∈ x}

Zb ∈ {x ∈ b|¬x ∈ x}

[Zb ∈ b]1, [¬Zb ∈ Zb]
1

D3

ψ
∈Z E,1

ψ

Moreover, the instances of the reduction procedure ▷∈Z for ∈Z I− and ∈Z E−rules is as

below:

D1

Zb ∈ b
D2

¬Zb ∈ Zb ∈Z I
Zb ∈ {x ∈ b|¬x ∈ x}

[Zb ∈ b]1, [¬Zb ∈ Zb]
1

D3

ψ
∈Z E,1

ψ ▷∈Z

D1

Zb ∈ b,
D2

¬Zb ∈ Zb

D3

ψ
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Let S∈Z be a system having ∈Z − and ¬−rules. R∈Z be a set of reductions including ▷¬

and ▷∈Z . Then, we have the result below.

Proposition 3.4.1. There is an open derivation of ⊥ from Zb ∈ b in S∈Z relative to R ∈Z

which generates a non-terminating reduction sequence, and so is not fully normalizable.

Proof. two claims verify the result.

Claim 1. there is an open derivation Σ2 of ⊥ from the assumption [Zb ∈ b].

We begin with an open derivation Σ1 of ⊥ from [Zb ∈ Zb].

[Zb ∈ Zb]
1

·························· de f
Zb ∈ {x ∈ b|¬x ∈ x}

[¬Zb ∈ Zb]
2

[Zb ∈ b]2 [¬Zb ∈ Zb]
2

∈Z I
Zb ∈ {x ∈ b|¬x ∈ x}
·························· de f

Zb ∈ Zb [⊥]3

¬E,3⊥
∈Z E,2⊥

Then, there is an open derivation Σ2 of Zb ∈ Zb from [Zb ∈ b].

[Zb ∈ b]4

[Zb ∈ Zb]
1

Σ1

⊥
¬I,1¬Zb ∈ Zb ∈Z I

Zb ∈ {x ∈ b|¬x ∈ x}
·························· de f

Zb ∈ Zb

Now, we have an open derivation Σ3 of ⊥ from [Zb ∈ b].

[Zb ∈ Zb]
5

Σ1

⊥
¬I,5¬Zb ∈ Zb

[Zb ∈ b]4

Σ2

Zb ∈ Zb [⊥]6

¬E,6⊥

Claim 2. Σ3 initiates a non-terminating reduction sequence and so is not fully normalizable.
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By applying ▷¬ to Σ3, we have the derivation Σ4 below.

[Zb ∈ b]4

[Zb ∈ Zb]
1

Σ1

⊥
¬I,1¬Zb ∈ Zb ∈Z I

Zb ∈ {x ∈ b|¬x ∈ x}
[¬Zb ∈ Zb]

2

[Zb ∈ b]2 [¬Zb ∈ Zb]
2

∈Z I
Zb ∈ {x ∈ b|¬x ∈ x}
·························· de f

Zb ∈ Zb [⊥]3

¬E,3⊥
∈Z E,2⊥

Since Zb ∈ {x ∈ b|¬x ∈ x} in ∈Z E−rule is not an assumption, the application of ▷∈Z−

reduction produces the same derivation with Σ3. Therefore, Σ3 generates a non-terminating

reduction sequence and so is not fully normalizable.

We call the result of Proposition 3.4.1 Crabbé’s case. Furthermore, from the derivation Σ3,

we readily obtain a closed derivation Σ5 of ¬∃y(Zy ∈ y) as follows.

[∃y(Zy ∈ y)]7

[Zb ∈ b]4

Σ3

⊥
∃E,4⊥

¬I,7¬∃y(Zy ∈ y)

The result states that no set contains its own Rusell subset and is an acceptable conclusion

in a consistent Zermelo’s set theory. The result, i.e. Σ5, does not represent a proof of

Russell-Zermelo’s paradox, however, Σ5 contains a subderivation Σ3 which satisfies TCPL

and so is a T-paradox. As Σ5 does not formulate a paradox, it should neither be a genuine

paradox nor a T-paradox. Thus, Crabbé’s case shows that TCPL overgenerates.

Schroeder-Heister and Tranchini (2018, Sec. 8) say that Triviality test cannot solve the

problem of overgeneration caused by Crabbé’s case, as they said,

As remarked, the phenomenon observed by Crabbé is however unaffected by

our proposed constraint on reductions, thus showing that further work is re-

quired for a thorough analysis of paradoxes along the lines of the Prawitz-
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Tennant analysis.

It looks as if Crabbé reduction causes a non-terminating reduction sequence, the form of

Crabbé reduction, ▷∈Z , relies on the form of ∈Z I−rule. Since ∈Z I−rule has the premise

¬Zb ∈ Zb whose degree is greater than that of the conclusion Zb ∈ {x ∈ b|¬x ∈ x}, the

reduced derivation has the formula ¬Zb ∈ Zb by eliminating the maximum formula Zb ∈

{x ∈ b|¬x ∈ x}. Therefore, the real problem may not be Crabbé reduction itself but be the

form of ∈Z I−rule.

Even if Crabbé reduction is the real matter, we can solve the problem of overgeneration

by applying Translation test with the requirements of a proper reduction. The translated

forms of ∈Z I− and ∈Z E−rules are as follows.

D′
1

Γ ⇒ t ∈ s
D′

2

∆ ⇒ ϕ[t/x]
∈Z R

Γ,∆ ⇒ t ∈ {x ∈ s|ϕ(x)}

D′
3

t ∈ s,ϕ[t/x],Σ ⇒ ψ
∈Z L

t ∈ {x ∈ s|ϕ(x)},Σ ⇒ ψ

Moreover, the translated form of the instance of ▷∈Z−reduction is as below.

D′
1

Γ ⇒ Zb ∈ b
D′

2

∆ ⇒¬Zb ∈ Zb ∈Z R
Γ,∆ ⇒ Zb ∈ {x ∈ b|¬x ∈ x}

D′
3

Zb ∈ b,¬Zb ∈ Zb,Σ ⇒ ψ
∈Z L

Zb ∈ {x ∈ b|¬x ∈ x},Σ ⇒ ψ
Cut

Γ,∆,Σ ⇒ ψ

reduces to

D′
2

∆ ⇒¬Zb ∈ Zb

D′
1

Γ ⇒ Zb ∈ b

D′
3

Zb ∈ b,¬Zb ∈ Zb,Σ ⇒ ψ
Cut¬Zb ∈ Zb,Γ,Σ ⇒ ψ

Cut
Γ,∆,Σ ⇒ ψ

Though the translated reduction process does not eliminate necessary premises, it increases

the degree of a cut-formula. The cut-formula Zb ∈ {x ∈ b|¬x ∈ x} is an atomic formula,

but ¬Zb ∈ Zb in the reduced derivation is not. The degree of the cut formula, also that of

the maximum formula, is increased. ▷∈Z−reduction does not satisfy the condition (T2),

and so is not a proper reduction. Therefore, since ▷∈Z−reduction is not proper, RTCP with

respect to the requirements of a proper reduction says that Crabbé’s case is not a T-paradox.
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3.5 Conclusion.

Tennant (2017, pp. 109-110) proposes four reasons why he prefers to use generalized

elimination rules: the uniform presentation, the efficiency of proof search, having shorter

formal proofs, and giving a solution to the problem of overgeneration. As we have dis-

cussed in the present chapter, the last reason might be wrong. The mere choice of gen-

eralized elimination rules does not solve the problem. However, Tennant (2002) already

claims that a natural deduction system with generalized elimination rules is isomorphic to

a sequent calculus. The idea is melted in his Core Logic introduced in Tennant (2017). For

his, Translation test can be a promising solution to the overgeneration.

Schroeder-Heister and Tranchini (2018) uses von Plato’s derivation on Ekman’s paradox

and attacks Tennant’s solution to the overgeneration problem. Also, they seem to reject

Tennant’s view on Russell’s paradox that it is not a genuine paradox. Since they examined

a derivation fitted to their Ekman=g − reduction, Section 4.1 argues that if an Ekman-type

reduction for set-abstraction is adopted, Russell’s paradox formalized in a system SF for the

free logic of sets becomes a T-paradox. Fortunately, Translation test is not only applicable

to GEkman reduction but also other Ekman-type reductions. We introduce rules for a set-

forming operator {} and Ekman-type reduction for {}. {}I− and {}E−rules have the

corresponding L{}i and R{}−rules where i = 1,2.

D′
1

Γ,ϕ[a/x],∃!a ⇒ a ∈ t
D′

2

∆ ⇒∃!t

D′
3

Θ,a ∈ t ⇒ ϕ[a/x]
R{}

Γ,∆,Θ ⇒ t = {x|ϕ(x)}

D′
4

Γ ⇒ ϕ[u/x]

D′
5

∆ ⇒∃!u
D′

6

Θ,u ∈ t ⇒ ψ
L{}1t = {x|ϕ(x)},Γ,∆,Θ ⇒ ψ

D′
7

Γ ⇒ u ∈ t
D′

8

ϕ[u/x]⇒ ψ
L{}2t = {x|ϕ(x)},Γ,∆ ⇒ ψ

Also, Ekman-type reduction for Ekman-type maximum formula u ∈ t is translated as fol-
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lows.

D′
4

Γ ⇒ ϕ[x/u]

D′
5

∆ ⇒∃!u
D′

6

Θ,u ∈ t ⇒ u ∈ t
L{}1t = {x|ϕ(x)},Γ,∆,Θ ⇒ u ∈ t

D′
8

∆,ϕ[x/u]⇒ ψ
L{}2t = {x|ϕ(x)}, t = {x|ϕ(x)},Γ,∆,Θ ⇒ ψ

reduces to

D′
4

Γ ⇒ ϕ[x/u]
D′

8

∆,ϕ[x/u]⇒ ψ
Cut

Γ,∆ ⇒ ψ

As the translated GEkman reduction does, an Ekman-type reduction for u ∈ t generates a

cut-formula ϕ[x/u]. So it is a detour-making reduction process. The Ekman-type reduction

for set-abstraction is canceled by the requirements of a proper reduction via Translation test.

If Tennant accepts RTCP with respect to the requirements, Russell’s paradox formulated in

SF is still not a genuine paradox.

Although Translation test is not a regulation of a proper reduction but an observational

method to assess a proper reduction, it has some advantages over Triviality test. Trivi-

ality test does not restrict every Ekman-type reduction due to the fact that it is relative

to our choice of the form of rules and a system. While we regard standard elimination

rules as special cases of generalized elimination rules, Translation test will be considered

to be a relatively system-independent method to inspect a reduction procedure. Moreover,

Schroeder-Heister and Tranchini (2018) say that Triviality test is unable to solve the prob-

lem generated by Crabbé’s case. If Crabbé reduction causes the problem, Translation test

restricts the application of ▷∈Z -reduction and solves the problem.

In sum, we have argued that the problem of overgeneration caused by (G)Ekman’s para-

dox and Crabbé’s case reminds us that there must be a method to evaluate which reduction

procedures are proper. Two tests are introduced: Triviality test and Translation test. Trivi-

ality test only can restrict Ekman-type reductions depending on a base system and is not a

remedy for the problem raised by Crabbé’s case. Then, Translation test can help to solve

those problems with the same perspectives of Prawitz’s thesis and the inversion princi-

ple.
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Chapter 4

Can the Requirement of a Normal

Derivation be a Solution to the

Paradoxes?

When a doctor finds a sick person, he diagnoses what the illness the person has and

prescribes it in accordance with his diagnosis. Likewise, when a logician faces a problem-

atic argument (or proof), (s)he characterizes the problem and solves it on the basis of her

characterization. Paradoxes which raise a contradiction have been a significant issue to the

foundations of logic and mathematics. It is often believed that solutions to the paradoxes

are closely tied with the characterization of the paradoxes. For instance, an informal char-

acterization of a paradox proposed by Sainsbury (2009, p. 1) says that it is an unacceptable

conclusion elicited from the acceptable premises via acceptable reasoning. A diagnosis of

the paradoxes through the characterization can be that it is a trouble that acceptability leads

to unacceptability. Thus, from the diagnosis with the characterization, three responses to

the paradoxes can be proposed such that either the premises or the reasoning is not in fact

acceptable, or else the conclusion is acceptable. As noted in Section 1.1, we shall call

the first response the premise-rejection, the second the reasoning-rejection, and the last the
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conclusion-acceptance.

It is not to say that every solution to the paradoxes is understood as one of three solu-

tions, but it is the case that Sainsbury’s characterization is the simplest way to grasp the

informal notion of a ‘paradox.’

Sainsbury regards a sentence (or a formula) with special characteristics a paradox. How-

ever, Tennant’s criterion for paradoxicality TCP understands a paradox as a derivation (or

an argument) which might have an unacceptable conclusion from the acceptable premises

by the acceptable inference rules. As Sainsbury’s characterization of a paradox is con-

nected to three solutions, we may have a proof-theoretic solution to the paradoxes on the

perspectives of TCP. Tennant (1982) proposes TCP as a criterion for genuine paradoxes

and regards it as a conjecture namely that for any derivation D, D formalizes a genuine

paradox iff D is a T-paradox. Focussing on normalizability, Tennant (2017, pp. 286–287)

suggests a similar conjecture which is linked to his criterion for paradoxicality.

How ... are we to solve the paradoxes? It is not from this study to venture any

new suggestions beyond those of Tennant (1982) and Tennant (1995). Those

works provided ... proofs, formalized as natural deductions, for all the major

paradoxes ... . They showed that all these ... proofs ... cannot be converted into

normal form. The original proof-theoretic thesis stands:

Genuine paradoxes are those whose associated proofs of absurdity,

when formalized as natural deductions, cannot be converted into

normal form.

This conjecture provides a proof-theoretic criterion for the identification of

genuine paradoxes ... .

The conjectures can be his diagnoses of genuine paradoxes. If the conjectures are true,

every derivation of genuine paradoxes, such as T-paradoxes, generates a non-terminating

reduction sequence and so is not normalizable. His diagnoses, if true, provide a proof-

theoretic solution to the paradoxes.
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As an anti-realist and a constructivist, Tennant (2015, p. 578) believes that ‘every truth is

knowable, and its truth consists in the existence of a(n in principle) surveyable truthmaker,

also called a (canonical) proof.’ Moreover, he thinks that a (constructive) proof must be con-

vertible into normal form, and so he suggests the proof-theoretic principle for constructive

mathematics.

The following principle is a cornerstone of proof-theoretic foundations for con-

structive mathematics:

For every proof Π that we may provide for a mathematical theorem ϕ , it must

be possible, in principle, to transform Π, via a finite sequence of applicable

reduction procedures, into a canonical proof of ϕ , that is, a proof of ϕ that

is in normal form, so that none of the reduction procedure is applicable to it.

(Tennant, 2015, p. 579)

Though he proposes the proof-theoretic principle for constructive mathematics, the princi-

ple can be extended to a general case. He appears to think that any derivation representing a

proof of the true statement must be, in principle, able to be brought into (full) normal form.

Also, when Tennant (1982) proposes his earlier criterion, TCPE , he stresses the importance

of normalizability as below:

The general loss of normalizability, confined as it is according to [TCPE] to

just the paradoxical part of the semantically closed language, is a small price

to pay for the protection it gives against paradox itself. Logic plays its role

as an instrument of knowledge only insofar as it keeps proofs in sharp focus,

through the lens of normality. Normali[z]ability, in the context of semantically

closed languages, is not to be pressed as a general pre-condition for the very

possibility of talking sense; rather, normality of proof is to be pressed as a

general pre-condition for the very possibility of telling the truth. (Tennant,

1982, p. 284)

Provided that there is a requirement that every derivation representing a proof of the true

statement should be, in principle, reducible to a (full) normal derivation, the requirement
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can block T-paradoxes and be a proof-theoretic solution to the paradoxes. Even though

Tennant did not explicitly propose the requirement as the proof-theoretic solution, from

TCP, we may interpret the following principle as a plausible proof-theoretic solution to the

paradoxes.

The Requirement of a (Full) Normal Derivation(RND): For any derivation D in natu-

ral deduction, D is acceptable only if D is (in principle) convertible into a normal

derivation.

Furthermore, while he compares his natural deduction system for naive set-theory and

Fitch’s, Prawitz (1965, p. 95) introduces a similar requirement with RND by saying, ‘the

set-theoretical paradoxes ruled out by the requirement that the [derivations] shall be nor-

mal.’ Prawitz (1965, p. 96) also claims that his requirement is less ad hoc than Fitch’s

simple/special restrictions introduced by Fitch (1952, Sec. 18 and 20). Even though both

Prawitz and Tennant did not explicitly claim that RND (or a similar requirement) could be

a solution to the paradoxes, it is possible from their views that they would have in mind that

RND could be the solution. Hence, our question is whether RND can really be a solution

to the paradoxes.

In order for RND to be the proof-theoretic solution, three things must be answered: (i)

which paradox is a genuine paradox and which formalization is legitimate for the genuine

paradox, (ii) why the only normalizable derivations are acceptable, and (iii) why the only

propositional constant ⊥ for absurdity is an unacceptable conclusion. This chapter aims to

discuss that there are some obstacles to claim that RND is the proof-theoretic solution to

the paradoxes.

For the first question (i), since RND is proposed on the perspectives on TCP, the fol-

lowing conjecture for genuine paradoxes should be true.

Tennant’s Conjecture for Genuine Paradoxes: For any derivation D in natural deduc-

tion, D formalizes a genuine paradox iff D is a T-paradox with respect to TCP.

As we have noted, TCP itself assumes the conjecture for genuine paradoxes. However,

since the notion of a ‘genuine paradox’ is informal, it is unclear what kinds of paradoxes are
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genuine paradoxes. Tennant has claimed that Russell’s paradox is not a genuine paradox,

whereas the Liar paradox is a genuine one. In Section 4.1, we shall introduce his argument

on why Russell’s paradox is not a genuine paradox, and argue that by following his argu-

ment, if Russell’s paradox is not a genuine paradox, neither is the Liar paradox. Tennant

has no standard for genuine paradoxes. Our discussion comes into a question of which

formalization is legitimate for the genuine paradox. RND only blocks non-normalizable

derivations, such as T-paradoxes. If RND is regarded as a promising proof-theoretic solu-

tion to genuine paradoxes, it should be answered to the first question of which paradoxes

are genuine paradox.

The second question asks, even though Tennant’s conjecture for genuine paradoxes

is true and RND can restrict the use of T-paradoxes, why should we consider that RND

is convincing? A plausible answer is that every non-normalizable derivation is (proof-

theoretically) invalid. For the second question, we shall consider a relation between proof-

theoretic validity and normalizability in Section 4.2. If non-normalizable derivations were

proof-theoretically invalid, paradoxical derivations which generate a non-terminating re-

duction sequence would be invalid. It will be discussed that in a restricted system proof-

theoretic validity implies normalizability. However, it is not clear that the relation would

be extended to a general case. Therefore, it should be established that proof-theoretic va-

lidity generally implies (strong) normalizability, or another answer to the second question

(ii) should be proposed.

Apart from our three questions for RND as a proof-theoretic solution to the paradoxes,

Section 4.3 deals with the question of whether RND is a reasoning-reduction solution which

restricts the use of inference rules. Under the assumption that proof-theoretic validity im-

plies (full) normalizability, we introduce Prawitz’s definition of valid inferences via his

notion of proof-theoretic validity and find invalid rules in paradoxical derivations. The re-

striction of an application of invalid rules would be the reasoning-rejection solution to the

paradoxes. However, we will argue that to limit the application of inference rules through

Prawitz’s definition of valid inferences can be used independently of RND. Thus, it does

not support the view that RND is a reasoning-rejection solution in the sense that it restricts
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the application of a single inference rule.

With regard to the last question (iii), Section 4.4 shall consider a case of a normal deriva-

tion of a formula having the form ϕ ∧¬ϕ , suggested by Petrolo and Pistone (2018). Acon-

tradiction is often regarded as a formula of the form ϕ ∧¬ϕ . If a contradiction, separated

from absurdity (⊥), can be an unacceptable conclusion of a paradoxical derivation, RND

neither block the paradoxical derivation nor be a proof-theoretic solution to the paradoxes.

Thus, the third question (iii) must be answered in order to assess whether RND can be a

proof-theoretic solution to the paradoxes.

4.1 Which Paradoxes Are Genuine Paradoxes?

Tennant (1982, 1995, 2015, 2017) suggests TCP as a criterion for genuine paradoxes

and TCP implicitly assumes his conjecture for genuine paradoxes.

Tennant’s Conjecture for Genuine Paradoxes: For any derivation D in natural deduc-

tion, D formalizes a genuine paradox iff D is a T-paradox with respect to TCP.

Although we only consider Russell’s (or Curry’s) and the Liar paradox in this dissertation,

there are more than one formalization of each paradox. For instance, as we have seen in

Chapter 2, eight derivations of the Liar paradox and not every derivation is a T-paradox.

Proposition Is It a T-Paradox Proposition Is It a T-Paradox?

2.2.1 Yes 2.4.4 Yes

2.2.2 No 2.A.1 Yes

2.3.1 No 2.A.2 No

2.4.3 Yes 2.A.3 Yes

Table 4.1: Derivations Formalizing the Liar Paradox in Chapter 2

If it is not assumed that the Liar paradox is a genuine paradox, we cannot evaluate whether

TCP is a correct criterion for genuine paradoxes from the different formalizations of the

Liar paradox and neither can RND be a promising proof-theoretic solution to the genuine
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paradoxes. Therefore, it should be answered to the question of which paradoxes are genuine

paradoxes.

The First Question (i): Which paradoxes are genuine paradoxes?

In this section, we argue that Tennant did not have any clear answer to the question.

Tennant (2016, pp. 12–16) proposes the same result with Proposition 2.A.1 in Appendix

2.A and believes that the result shows that the Liar paradox is a genuine paradox. In 2016

year paper, he may believe that every T-paradox is a genuine paradox. Unlike the Liar

paradox, Tennant (2016, pp. 8–12) asserts that Russell’s paradox is not a genuine one. The

derivation of ⊥ from Russell’s paradox begins with the assumption that there is a set of

all sets not members of themselves. He proves in his natural deduction system for the free

logic of sets that there is a closed full normal derivation of the rejection of the assumption,

i.e. there is no such set which contains all sets not members of themselves. He uses the

result in order to support his view that Russell’s paradox is not a genuine paradox.

We first see the derivation in his free logic of sets which supports the view that Russell’s

paradox is not a genuine paradox. We show that, by the adoption of Ekman-type reductions

introduced in Chapter 3, the derivation enters into loops and satisfies TCPE and TCPL.

If every T-paradox is a genuine paradox, Russell’s paradox becomes a genuine paradox.

Furthermore, similar to his argument that Russell’s paradox is not genuine, we use his early

formalization of the Liar paradox in Tennant (1982, p. 271) with generalized elimination

rules and put forward a derivation which represents that the Liar paradox is not a genuine

paradox.

Tennant (2016, Sec. 3) and Tennant (2017, pp. 294-298) show in his natural deduc-

tion system SF for the free logic of sets that there is a full normal closed derivation of

¬∃y(y = {x|¬x ∈ x}). His result will be introduced in Proposition 4.1.1. The derivation Σ3

of ¬∃y(y = {x|¬x ∈ x}) in Proposition 4.1.1 does not generate a looping reduction, and so

is not a T-paradox. Since he believes that every genuine paradox is a T-paradox, he claims

that Russell’s paradox is not a genuine paradox.

Tennant’s natural deduction system SF differs from the system SN for the naive set theory
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discussed in Section 1.3 of Chapter 1.1 Free logic is one whose quantifiers are interpreted

in the usual way, but whose singular terms may denote objects outside of a domain or fail

to denote at all. Therefore, unlike other logics, it has the rule of denotation. We abbreviate

∃x(x = t) as ∃!t which means that t exists. Let t and u be closed terms and a be a parameter.

A natural deduction system SF for the free logic of sets has the following rules for a set-

forming operator and the rule of denotation (RD) with ¬− and ∃−rules stated in generalized

form.

[ϕ[a/x],∃!a]1

D1

a ∈ t
D2

∃!t

[a ∈ t]1

D3

ϕ[a/t]
{}I,1t = {x|ϕ(x)}

where a does not occur in t = {x|ϕ(x)} nor in any undischarged assumptions of the subor-

dinate derivations other than those of the form of rules displayed

t = {x|ϕ(x)}
D4

ϕ[u/x]

D5

∃!u

[u ∈ t]1

D6

ψ
{}E1,1

ψ

t = {x|ϕ(x)}
D7

u ∈ t

[ϕ[u/x]]1

D8

ψ
{}E2,1

ψ

Also, RD is stated as follows

ϕ(... t ...)
RD∃!t

where ϕ is atomic. For our result of the derivation of ⊥ from [a = {x|¬x ∈ x}], we take

¬x ∈ x for ϕ in {}E1− and {}E2−rules, and for both terms t and u we take the parameter

a. Then the following rules are the instances of {}E1− and {}E2−rules.

1For the detailed introduction of his system for the free logic of sets, the reader can consult Section 7.10 of
Tennant (1978).
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a = {x|¬x ∈ x}
D4

¬a ∈ a

D5

∃!a

[a ∈ a]1

D6

ψ
{}E1,1

ψ

a = {x|¬x ∈ x}
D7

a ∈ a

[¬a ∈ a]1

D8

ψ
{}E2,1

ψ

Then, we have a closed full normal derivation of ¬∃y(y = {x|¬x ∈ x}).

Proposition 4.1.1. SF has a closed full normal derivation of ¬∃y(y = {x|¬x ∈ x})

Proof. We start to have a closed derivation Σ3 of ¬∃y(y = {x|¬x ∈ x}), and show that Σ3 is

in full normal form.

Claim 1. there is a closed derivation Σ3 of ¬∃y(y = {x|¬x ∈ x}).

There is an open derivation Σ1 of ⊥ from [a = {x|¬x ∈ x}] and [a ∈ a].

[a = {x|¬x ∈ x}]1 [a ∈ a]5
[a = {x|¬x ∈ x}]1 [¬a ∈ a]2

[a = {x|¬x ∈ x}]1
RD∃!a

[¬a ∈ a]2 [a ∈ a]3 [⊥]4

¬E,4⊥
{}E1,3⊥

{}E2,2⊥

With the open derivation Σ1, we have an open derivation Σ2 of ⊥ from [a = {x|¬x ∈ x}].

[a = {x|¬x ∈ x}]1

[a = {x|¬x ∈ x}]1, [a ∈ a]5

Σ1

⊥
¬I,5¬a ∈ a

[a = {x|¬x ∈ x}]1
RD∃!a

[a = {x|¬x ∈ x}]1, [a ∈ a]6

Σ1

⊥
{}E1,6⊥

Now, we have a closed derivation Σ3 of ¬∃y(y = {x|¬x ∈ x}).

[∃y(y = {x|¬x ∈ x})]7

[a = {x|¬x ∈ x}]1

Σ2

⊥
∃E,1⊥

¬I,7¬∃y(y = {x|¬x ∈ x})
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Claim 2. Σ3 is in full normal form.

Since all major premises in Σ1, Σ9, and Σ3 are assumptions, Σ3 is in full normal form.

The derivation Σ3 of ¬∃y(y = {x|¬x ∈ x}) in Proposition 4.1.1 is in full normal form.

However, if we accept an Ekman-type reduction introduced in Section 3.1 of Chapter 3,

SF has an open non-full normal derivation of ⊥ from [a = {x|¬x ∈ x}] which generates a

looping reduction. When the derivation employs the id est inference from a ∈ a to ¬a ∈ a

and ¬a ∈ a to a ∈ a, by TCPE and TCPL, the derivation in question would be a T-paradox.

If every T-paradox is a genuine paradox, Russell’s paradox becomes a genuine paradox.

We state an Ekman-type reduction process in generalized form for set-abstraction below:

D1

t = {x|ϕ(x)}

D1

t = {x|ϕ(x)}
D2

ϕ[x/u]

D3

∃!u [u ∈ t]1
{}E1,1u ∈ t

[ϕ[x/u]]2

D4

ψ
{}E2,2

ψ ⊵GEF

D2

ϕ[x/u]
D4

ψ

We call the minor premise u ∈ t of {}E2−rule a GEkmanF maximum formula. Then, we

have the following result.

Proposition 4.1.2. If the set of reductions of SF includes an Ekman-type reduction pro-

cess in generalized form for set-abstraction, ⊵GEF , SF has an open derivation of ⊥ from

[a = {x|¬x ∈ x}] which generates a non-terminating reduction sequence and is not fully

normalizable.

Proof. Two claims justify the result.

Claim 1. there is an open derivation Σ6 of ⊥ from [a = {x|¬x ∈ x}] in SF .

We begin with the open derivation Σ4 of ⊥ from [a ∈ a] and [a = {x|¬x ∈ x}].

[a = {x|¬x ∈ x}]1 [a ∈ a]2
[¬a ∈ a]3 [a ∈ a]2 [⊥]4

¬E,4⊥
{}E2,3⊥
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With the derivation Σ4, we have an open derivation Σ5 of a ∈ a from [a = {x|¬x ∈ x}].

[a = {x|¬x ∈ x}]1

[a = {x|¬x ∈ x}]1, [a ∈ a]2

Σ4

⊥
¬I,2¬a ∈ a

[a = {x|¬x ∈ x}]1
RD∃!a [a ∈ a]5

{}E1,5a ∈ a

Then, we have an open derivation Σ6 of ⊥ from [a = {x|¬x ∈ x}].

[a = {x|¬x ∈ x}]1, [a ∈ a]2

Σ4

⊥
¬I,2¬a ∈ a

[a = {x|¬x ∈ x}]1

Σ5

a ∈ a [⊥]6

¬E,6⊥

Claim 2. if an Ekman-type reduction, ▷GEF , applies to Σ6, then Σ6 generates a non-

terminating reduction sequence and so is not fully normalizable.

Since Σ6 has a major premise ¬a ∈ a which is not an assumption, it reduces to the

following derivation Σ7.

[a = {x|¬x ∈ x}]1
[a = {x|¬x ∈ x}]1

[a = {x|¬x ∈ x}]1, [a ∈ a]2

Σ4

⊥
¬I,2¬a ∈ a

...
∃!a [a ∈ a]5

{}E1,5a ∈ a
[¬a ∈ a]3

...
Σ5

a ∈ a [⊥]4

¬E,4⊥
{}E2,3⊥

The minor premise a ∈ a in {}E2−rule is a GEkmanF maximum formula. By applying

▷GEF to Σ7, we have the same derivation with Σ6. Therefore, Σ6 initiates a non-terminating

reduction sequence and cannot be reduced to full normal form.

If Σ6 employs the id est inferences, then, by TCPE and TCPL, Σ6 is a T-paradox. Therefore,

unlike Tennant’s view, Russell’s paradox becomes a genuine paradox if ⊵GEF is accept-

able. As we have discussed in Section 3.2.2, ⊵GEF does not apply to a derivation given by
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permutation conversion. However, we readily give a permuted version of ⊵GEF and have a

looping reduction.2

On the other hand, by following Tennant’s argument that Russell’s paradox is not a

genuine paradox, we can propose a derivation which represents that the Liar paradox is not

a genuine paradox.

Let SL be a system having the rules for ∧, →, ¬, and T (x). The set RL of reduction

procedures for ∧, →, ¬, and T (x) are given. We define ϕ ↔ ψ as (ϕ → ψ)∧ (ψ → ϕ).

Then, the liar sentence Φ satisfies the relation Φ ↔¬T (⌜Φ⌝). Proposition 4.1.3 supports

the view that Liar paradox is not a genuine paradox.

Proposition 4.1.3. SL relative to RL has a closed full normal derivation of ¬(Φ↔¬T (⌜Φ⌝)).

Proof. We start to show the closed derivation Σ9 of ¬(Φ ↔¬T (⌜Φ⌝)) and to establish that

Σ9 is in full normal form.

Claim 1. there is a closed derivation Σ9 of ¬(Φ ↔¬T (⌜Φ⌝)).

We first have an open derivation Σ7 of ⊥ from [T (⌜Φ⌝)] and [Φ ↔¬T (⌜Φ⌝)]

[Φ ↔¬T (⌜Φ⌝)]6
·············································· de f
(Φ →¬T (⌜Φ⌝))∧ (¬T (⌜Φ⌝)→ Φ)

[Φ →¬T (⌜Φ⌝)]5
[T (⌜Φ⌝)]1 [Φ]2

T E,2
Φ

[¬T (⌜Φ⌝)]3 [T (⌜Φ⌝)]1 [⊥]4

¬E,4⊥
→ E,3⊥

∧E,5⊥

2With regard to the problem of overgeneration in Chapter 3, the result shows that the adoption of Ekman-
type reduction affects Tennant’s view that Russell’s paradox is not a genuine paradox. In his 1982 paper,
“Proof and Paradox,” Tennant used the standard form of the elimination rule for set-abstraction. Tennant (1982,
p. 276) claimed that the derivation of ⊥ from the assumption ∃!a where a = {x|¬x ∈ x} enters a looping
reduction and said, ‘Russell’s [paradox] remains an intrinsically troublesome case of paradox.’ Later, from the
result of Proposition 4.1.1, Tennant (2016, Sec. 3) claims that Russell’s is not a genuine paradox because the
derivation in question does not enter into loops. He diagnoses that the standard form of the elimination rule for
set-abstraction creates an artefact feature of the looping reduction sequence. Unfortunately, as we have seen
in Σ6 of Proposition 4.1.2, the generalized form of the elimination rule either creates a reduction loop. The
real issue is not which form of elimination rules we choose, but which set of reduction procedures we accept.
Moreover, even when we use standard elimination rules, it is readily proved that there is a normal derivation of
¬∃y(y = {x|¬x ∈ x}). His assessment of the genuineness of Russell’s paradox was wrong in the first place.
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Then, we have an open derivation Σ8 of Φ from [Φ ↔¬T (⌜Φ⌝)].

[Φ ↔¬T (⌜Φ⌝)]6
·············································· de f
(Φ →¬T (⌜Φ⌝))∧ (¬T (⌜Φ⌝)→ Φ)

[¬T (⌜Φ⌝→ Φ)]5

[T (⌜Φ⌝)]1

D13

⊥
¬I,1¬T (⌜Φ⌝) [Φ]7

→ E,7
Φ

∧E,5
Φ

With Σ7 and Σ8, we finally have a closed derivation �9 of ¬(Φ ↔¬T (⌜Φ⌝)).

[Φ ↔¬T (⌜Φ⌝)]6
·············································· de f
(Φ →¬T (⌜Φ⌝))∧ (¬T (⌜Φ⌝)→ Φ)

[Φ →¬T (⌜Φ⌝)]7

[Φ ↔¬T (⌜Φ⌝)]6

Σ7

Φ

[¬T (⌜Φ⌝)]8

[Φ ↔¬T (⌜Φ⌝)]6

Σ7

Φ
T I

T (⌜Φ⌝) [⊥]10

¬E,10⊥
→ E,8⊥

∧E,7⊥
¬I,6¬(Φ ↔¬T (⌜Φ⌝))

Claim 2. Σ9 is in full normal form.

Since all major premises in Σ7, Σ8, Σ9 are assumptions, Σ9 is in full normal form.

As Tennant claims that Russell’s paradox is not a genuine paradox with the full normal

derivation of the formula that there is no set of all sets not members of themselves, the full

normal derivation of Σ9 of ¬(Φ ↔¬T (⌜Φ⌝)) supports that Liar paradox is not a genuine

one.

Including Proposition 4.1.3, there are nine derivations formalizing the Liar paradox.

Among nine derivations, Tennant only considers that the derivation Σ3 of Proposition 2.A.1

is a ground to make the Liar paradox genuine. However, he does not have a good reason to

repudiate that the derivation Σ9 of Proposition 4.1.3 supports the view that the Liar paradox

is not a genuine paradox. In a similar vein, if we choose Prawitz’s derivation D4 of Russell’s

paradox in Proposition 1.3.1 (or the derivation Σ6 of Proposition 4.1.2), then D4 becomes a

ground for claiming that Russell’s paradox is a genuine paradox. Since Tennant has never

spoken about the ground for genuine paradoxes in the perspectives on proof-theory, in order
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to evaluate TCP and RND, it should be explained which paradoxes are genuine paradoxes

and which derivation is a legitimate one for genuine paradoxes.

Even if these questions are answered, it is not enough to claim that RND is a proper

proof-theoretic solution to genuine paradoxes. In the next section, we move on to the

second question on why RND is a convincing requirement and claim that a clear answer is

not yet given.

4.2 Why Should We Accept Only a Normalizable Derivation?

Our proof-theoretic analysis of the paradoxes uses a natural deduction system devel-

oped by Prawitz (1965, 1971) but first introduced by Gentzen (1935, 2008). When Gentzen

(1936) attempted to show the consistency of arithmetic, he believed that if there was a fault

in the paradoxes, it must be sought in the logical reasoning employed. One of the main

purposes of the proof-theoretic analysis of the paradoxes is to find any errors in the rea-

soning. It appears to be convincing that a suitable proof-theoretic solution to the paradoxes

can be the reasoning-rejection solution. RND may be the reasoning-rejection solution in

a broad sense. However, as our second question asks, it should be explained why a non-

normalizable derivation is unacceptable.

The Second Question (ii): Why should we accept only a normalizable derivation?

A promising answer is that a non-normalizable derivation would not be proof-theoretically

valid. In this section, we will briefly investigate Prawitz’s idea of proof-theoretic validity

and the relation between proof-theoretic validity and normalizability. If proof-theoretic

validity implies (full) normalizability, then paradoxical derivations, i.e. T-paradoxes which

are not (fully) normalizable, are not proof-theoretically valid. Then, since there is no non-

normalizable derivation which is proof-theoretically valid, it can be explained why any

non-normalizable derivations are unacceptable.

The name ‘proof theory’ was originally coined by David Hilbert. The aim of his proof

theory is to obtain a reduction of mathematics to some more elementary part of it, such
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as finitistic or constructive mathematics, by analyzing the proofs of mathematical theories.

Prawitz (1971, 1973) thinks that Hilbert’s proof theory is only a tool to obtain the reduction

because it does not aim at studying the very proofs. He calls it reductive proof theory. He

suggests general proof theory as the study of the notion of proof.

The subject matter of general proof theory is thus proofs considered as a pro-

cess by which we get to know the theorems of a theory or the validity of an

argument, and this process is studied here in its own right. (Prawitz, 1971, p.

237)

In general proof theory, we are ... interested in understanding the very proofs

themselves, i.e., in understanding not only what deductive connections hold

but also how they are established, ... (Prawitz, 1973, p. 225)

One of the main topics of general proof theory is the validity of an argument.

In this section, we briefly introduce Prawitz’s notion of ‘proof-theoretic validity’ and

consider a possible answer to the second question that every non-normalizable derivation is

not proof-theoretically valid. If proof-theoretic validity implies normalizability then RND

can be a promising proof-theoretic solution to the paradoxes. So to speak, if every para-

doxical derivation, i.e. a T-paradox, generates a non-terminating reduction sequence and so

is not normalizable, it cannot be a proof-theoretically valid derivation. Hence, we do not

need to accept non-normalizable derivation. However, we shall argue that although it can

be shown that in a particular system proof-theoretic validity implies normalizability, there

should be a further research to extend the result in a general case.

Prawitz (1971, Appendix A) introduces a programme of defining a general notion of

‘validity’ based on Gentzen’s idea that an introduction rule determines the meaning of a

logical constant in terms of which an elimination rule is determined. That is, a derivation

(or an argument) is valid if it can be built up by introduction rules. Since the programme

generalizes the result of normalization theorem. He considers that proof-theoretic validity

is not only a property of formal derivations in a particular system but also of more arbitrary

natural deduction system. To prove the theorem, we first distinguish certain individual
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rules and then compose derivations from the rules. On the other hand, Prawitz’s proof-

theoretic validity deals with derivations (or arguments) in the first place and regards rules

as steps which preserve the validity of derivations. So to speak, the investigation of the

relation between Prawitz’s notion of proof-theoretic validity and normalizability does not

seem appropriate. However, when we restrict our concern on the proof-theoretic validity

as a property of formal derivations in a particular system, we can consider an expected

result that every proof-theoretically valid derivation in a specific system is normalizable.

Most of our examples of paradoxical derivations use standard rules for minimal logic. If

proof-theoretic validity implies normalizability in a minimal natural deduction system, at

least in restricted sense, one might see the possibility that RND would be a method to single

out proof-theoretically invalid derivations. Since we shall regard in this chapter a normal

derivation as a formal one in a natural deduction system, we restrict our concern on the

proof-theoretic validity as a property of formal derivations in the system. We will borrow

Prawitz’s notion of proof-theoretic validity introduced in Prawitz (1971, 1973, 1974, 2006),

and it will be applied to formal derivations relative to a set of reduction procedures but not

to his notion of an argument.

Prawitz (1965) shows that by iterated application of reduction processes, every deriva-

tion in an intuitionistic natural deduction system can be converted into a normal derivation.

It has a corollary that every closed derivation in the system can be restated to one using an

introduction rule in the last step. Prawitz (1971, 1973, 1974, 2006) interprets the collorary

as the requirement of a valid inference that a valid closed derivation is able to be reduced

to one using an introduction rule in the last step.

The results are connected to Prawitz’s proof-theoretic validity through his inversion

principle that whatever follows from a formula must follow from the direct ground for

deriving that formula. As we have seen in Section 1.2, standard reduction procedures for

∧, ∨, →, ¬, ∀, and ∃ show that a pair of introduction and elimination rules of each con-

stant satisfy the inversion principle. The inversion principle reflects Gentzen’s idea that

the meaning of an operator (or a constant) is determined by an introduction rule and deter-

mines an elimination rule. The idea gives a semantic interpretation of an introduction rule
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that nothing is gained by an application of an elimination rule when its major premise has

been derived by means of an introduction rule which confers a meaning of a constant.

With the semantic role of an introduction rule, Prawitz (1971, 1973, 1974, 2006) intro-

duces his definitions of proof-theoretic validity based on introduction rules.3 The main idea

is that introduction rules preserve proof-theoretic validity and elimination rules are justified

by (standard) reduction procedures. Simply put, a derivation is proof-theoretically valid if

either it reduces to a derivation of an atomic formula, or it reduces to a derivation whose

last step is an introduction rule and whose immediate subderivations are proof-theoretically

valid.

To introduce Prawitz’s definition of proof-theoretic validity more precisely, we borrow

some terminologies from Schroeder-Heister (2006). Let D1, ...,Dn be derivations where n

is a natural number, P be a set of production rules which derives an atomic formula from

one or more other atomic formulas, and R be a set of reduction procedures. We say that a

derivation D is canonical (or in canonical form) if it uses an introduction rule in the last

step. Prawitz’s proof-theoretic validity of a given derivation D depends not only on the

set P of production rules but also on the set R of reduction procedures. For our purpose

of investigating the relation between proof-theoretic validity and normalizability, we only

consider standard reduction procedures. Every extension of R will consist of standard

reductions. We provide his definition of proof-theoretic validity of D relative to P and R in

the following way.

Definition 4.2.1. (Inductive Definition of P−Validity) Let P be a set of production rules

and R be a set of reduction procedures.

(1) Every closed derivation in P is P−valid relative to R (for every R).

(2) A closed canonical derivation D is P−valid relative to R iff all immediate subderiva-

tions of D are P−valid relative to R.

3Prawitz (1971, 2007) either suggests proof-theoretic validity starting with elimination rules. However, for
our purpose to propose a perspective of proof-theoretic solution, we only consider proof-theoretic validity based
on introduction rules.
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(3) A closed non-canonical derivation D is P−valid relative to R iff D reduces to a P−valid

canonical derivation relative to R.

(4) An open derivation

ϕ1, ...,ϕn

D

ψ , where all open assumptions of D are among ϕ1, ...,ϕn,

is P−valid relative to R iff for every P′ ⊇ P and R′ ⊇ R, and for every list of closed

derivation
Di

ϕi (1 ⩽ i ⩽ n), which are P′−valid relative to R′,

D1

ϕ1 , ...,

Dn

ϕn

D

ψ is P′−valid

relative to R′.4

Proof-theoretic validity is proposed by Prawitz’s interpretation of normalization results

through the inversion principle. It is thus natural to think that proof-theoretic validity im-

plies normalizability in a particular system. We consider a system that its language only

has constants ∧, ∨, →, ∀, and ∃. The system does not use any formula including ⊥ and ¬.

Then, by induction on the degree of the end formula of a given derivation, we obtain the

desired result in the system.

Theorem 4.2.2. Let L be a language which has constants ∧, ∨, →, ∀, and ∃, but does not

have ¬ and ⊥. Let S be a natural deduction system in L which has rules for ∧, ∨, →, ∀,

and ∃. Let P be a set of production rules for S which only consists of closed derivations,

and R be a set of reduction procedures for ∧, ∨, →, ∀, and ∃. For every derivation D in S,

if D is P−valid relative to R, D is normalizable relative to R.

Proof. Let D be any derivation in S and ϕ be any end-formula of D. Suppose that D is

P−valid relative to R. The proof is by induction over the degree of ϕ . Since Definition

4.2.1 has four conditions, there are four cases that we should consider: (1) D is a closed

derivation in P, (2) D is a closed canonical derivation, (3) D is a closed non-canonical

derivation, and (4) D is an open derivation.
4Although Prawitz (1973, p. 236; 1974, p. 73; 2006, p. 515) does not consider extensions of R, we follow

Schroeder-Heister (2006, 2015) and consider both extensions of R and P. Extensions of P and R are required
because when the open derivation contain any expressions and inference rules that are not already given by P
and R, we need to add the expressions and to assign reductions to the inference rules substituted for the open
assumption of the derivation.

148



Induction basis: if d(ϕ) = 0, then ϕ is ⊥ or ϕ is α for an atomic formula α . It means that

D is a closed derivation in P.

Case (1) if D is a closed derivation in P, then it is in normal form. Hence, by

Definition 1.2.5, D is normalizable relative to R.

Induction hypothesis: let D′ be any immediate subderivation of D and ϕ ′ is an end-

formula of D′. Suppose that D′ is normalizable relative to R with d(ϕ ′) ⩽ n. We

have to show that D is normalizable relative to R with d(ϕ)⩽ n+1.

Case (2) if D is a closed canonical derivation, since D′ is normalizable, trivially D

is normalizable relative to R.

Case (3) if D is a closed non-canonical derivation, then, by Definition 4.2.1, D re-

duces to a P−valid canonical derivation relative to R. By the case (2), D is normal-

izable relative to R.

Case (4) if D is an open derivation, then, by Definition 4.2.1, for any P′ ⊇ P and

R′ ⊇R, a closed derivation

D1

ϕ1 , ...,

Dn

ϕn

D

ψ is P′−valid relative to R′. By the cases (1), (2),

and (3), since every list of closed derivation
Di

ϕi (1 ⩽ i ⩽ n) is normalizable relative

to R′, D is normalizable relative to R.

The result shows that at least in a particular system containing rules for ∧, ∨, →, ∀, and

∃, proof-theoretic validity implies normalizability. There is a further strengthened concept,

strong-P−validity, which implies strong normalizability.

Definition 4.2.3. (Inductive Definition of Stong P−Validity) Let P be a set of production

rules and R be a set of reduction procedures.

(1) Every closed derivation in P is strongly P−valid relative to R (for every R).
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(2) A closed canonical derivation D is strongly P−valid relative to R iff all immediate

subderivations of D are strongly P−valid relative to R.

(3) A closed non-canonical derivation D is strongly P−valid relative to R iff every D′,

such that D▷D′, is strongly P−valid relative to R.

(4) An open derivation

ϕ1, ...,ϕn

D

ψ , where all open assumptions of D are among ϕ1, ...,ϕn,

is strongly P−valid relative to R iff for every P′ ⊇ P and R′ ⊇ R, and for every

list of closed derivation
Di

ϕi (1 ⩽ i ⩽ n), which are strongly P′−valid relative to R′,
D1

ϕ1 , ...,

Dn

ϕn

D

ψ is strongly P′−valid relative to R′.

Theorem 4.2.4. Let S be a natural deduction system having rules for ∧, ∨, →, ∀, and ∃.

Let P be a set of production rules for S which only consists of closed derivations and has no

closed derivation of ⊥ and R be a set of reduction procedures for ∧, ∨, →, ∀, and ∃. For

every derivation D in S, if D is strongly P−valid relative to R, D is strongly normalizable

relative to R.

In analogy with the proof of Theorem 4.2.2, by induction over the degree of the end-

formula, Theorem 4.2.4 can be proved.

It is obvious in a particular system that strong P−validity implies P−validity and strong

normalizability implies normalizability. In addition, the results may be extended to some

systems which have legitimate pairs of introduction and elimination rules for an operator.

There seems to be a good reason to believe that proof-theoretic validity implies normaliz-

ability. Then, if a paradoxical derivation generates a non-terminating reduction sequence

and so is not normalizable, by applying modus tollens, it is not a proof-theoretically valid

derivation. In this sense, RND may rule out non-normalizable derivations and be a promis-

ing proof-theoretic solution to the paradoxes.

Of course, it must be argued whether the results can be extended to a system having
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additional rules and their reductions. Especially, if a system includes formulas containing

a propositional constant ⊥, there exists a case which is proof-theoretically valid but not

normalizable. Schroeder-Heister (2006, p. 547) argues that when we regard ⊥ as the only

open assumption,
⊥
D is vacuously P−valid for any D, even if D is not normalizable. So he

adds an additional condition for open derivations to Prawitz’s definition of P−validity that

an open reducible derivation is P−valid, if it reduces to a P−valid derivation. He calls it

strictP−validity and proposes the result in implicational logic that proof-theoretic validity

implies (strong) normalizability. However, since his investigation does not include the case

that allows open derivations in general, it is still arguable whether the results can extend to a

general case. The purpose of the present section is to investigate how RND can be a proof-

theoretic solution to the paradoxes. To be the solution, it should at least be established that

proof-theoretic validity generally implies (strong) normalizability.

RND appears to be a stronger restriction than other reasoning-rejection solutions be-

cause a usual reasoning-rejection restricts the use of a specific inference rule but RND

restricts every derivation in a natural deduction system. In the next section, we shall intro-

duce Prawitz’s definition of a P−valid inference rule and see which rules are not P−valid in

a paradoxical derivation. Moreover, we shall discuss that if a reasoning-rejection solution

to the paradoxes is a restriction of an inference rule, RND cannot be a reasoning-rejection

solution.

4.3 Is RND a Reasoning-Rejection Solution?

RND demands every derivation in an intended system to be a normalizable derivation

and it is not a restriction of a particular inference rule. Let us remind a closed derivation of

Russell’s paradox in Proposition 1.3.1 of Section 1.3
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[a ∈ a]1
···················· de f
a ∈ {x|¬x ∈ x}

∈ E¬a ∈ a [a ∈ a]1
¬E⊥

¬I,1¬a ∈ a

[a ∈ a]2
···················· de f
a ∈ {x|¬x ∈ x}

∈ E¬a ∈ a [a ∈ a]2
¬E⊥

¬I,2¬a ∈ a
∈ I

a ∈ {x|¬x ∈ x}
···················· de f

a ∈ a
¬E⊥

We call the immediate subderivation of the major premise ¬a ∈ a, Σ10, the immediate

subderivation of the minor premise a ∈ a, Σ11, and the whole derivation Σ12. Then, the

derivation Σ3 is abbreviated as

Σ10

¬a ∈ a
Σ11

a ∈ a
¬E⊥

¬− and ∈ −rules used in Σ12, i.e. D3 in Proposition 1.3.1, are intrinsically harmonious

but, as Proposition 1.3.1 shows, Σ12 is not normalizable. RND requests the weak normal-

ization that every derivation in a natural deduction system can be reduced to a normalizable

derivation. Stephen Read (2010, p. 574) already notes that the intrinsic harmony require-

ment does not guarantee the weak normalization result. Similarly, it is not to say that any

system which only contains intrinsically harmonious rules satisfies RND. The intrinsic

harmony is the requirement for a pair of rules but RND is not. If the intrinsic harmony

is a requirement for a legitimate pair of rules, RND cannot be a requirement for a proof-

theoreically valid inference rule. Moreover, though RND can block the derivation Σ3 of

⊥, it does not single out a rule that is invalid in Σ3. If a reasoning-rejection solution to

the paradoxes is a constraint on a specific rule in a paradoxical derivation, RND is not a

reasoning-rejection but a structural restriction of all derivations in an intended system. Our

question in this section is how RND can single out an inference rule which makes a deriva-

tion non-normalizable. If it cannot, then it will be regarded as a different kind of solution
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than a reasoning-rejection in a usual sense.

Interestingly, when Prawitz (1965, p. 95) mentions that the set-theoretical paradoxes

are ruled out by the requirement that the derivations should be in normal form, he seems to

request that the application of → E−rule, in our case ¬E−rule, has to be restricted. While

defining ¬ϕ as ϕ →⊥, the derivation Σ12 is restated as the following derivation Σ′
12.

Σ
′
10

¬a ∈ a
Σ
′
11

a ∈ a
→ E⊥

With the derivation Σ′
12 in his natural deduction system for the naive set theory, he remarked

on the application of the last → E−rule in Σ′
12.

... the system [for the naive set theory] has serious disadvantages. Thus, al-

though [→ E−rule] is a rule of the system, one cannot in general infer that [ψ]

is provable given that [ϕ] and [ϕ → ψ] are provable, since there may be only

a [derivation] of ψ [but not a normal derivation of ψ]. This renders investiga-

tions of the system rather difficult as it is not sufficient to derive the axioms of

an ordinary mathematical theory in the system in order to conclude that also

its theorems are provable in the system. (Prawitz, 1965, p. 95)

Immediate subderivations Σ′
10 and Σ′

11 are in normal form, but Σ′
12 is not. Since Σ′

10 and

Σ′
11 are canonical derivations, by Definition 4.2.1 of P−validity, they are P−valid but Σ′

12

is not. Therefore, he may think that ¬E−rule (or in his case → E−rule) is problematic.

However, Definition 4.2.1 is not about the proof-theoretic validity of an inference rule but

about that of a derivation. We cannot yet claim that ¬E−rule is not P−valid.

Prawitz (1974) has developed an idea of logical consequence via the notion of proof-

theoretic validity. Unlike the Tarskian notion of logical consequence understood as truth-

preservation relation, Prawitz (1974, 1985) has proposed the notion of logical consequence

as the preservation of proof-theoretic validity of arguments. A validity of an inference rule

is defined in a similar way.
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An inference rule may be said to be valid when each application of it preserves

validity of arguments. An introduction rule is then trivially valid ... , which is as

it should be, if they are thought of as producing canonical forms of arguments.

An elimination rule R is valid depending on whether there exists a justifying

operation φ such that if D is any argument whose last inference is R and whose

immediate subarguments are valid with respect to the justifying procedure J,

then D is also valid with respect to J∪{φ}. If φ is independent of the system

of canonical arguments for atomic formulas, R may be said to be logically

valid. (Prawitz, 1985, p. 165)

He defines an argument as a pair (D,J) of a derivation D and a justifying operation J.

‘(D,J) is valid’ is read as ‘D is valid with respect to J.’ As we restrict our concern on the

proof-theoretic validity as a property of (formal) derivations in a natural deduction system,

we will consider Prawitz’s notion of logical consequence to be the preservation of proof-

theoretic validity of derivations. Prawitz’s justifying operation is a reduction procedure in

our terminology. Instead of the justifying procedure J, we will use a set P of reduction

procedures and define a proof-theoretic validity of an inference as below.

Definition 4.3.1. Let P be a set of production rules and R be a set of reduction procedures.

Let D be any derivation whose immediate subderivations are P−valid relative to R and F

be a last inference rule of D. F is P−valid relative to R iff either (i) F is an introduction

rule, or (ii) F is an elimination rule and D is P−valid relative to R. F is logically valid iff,

for every P′ ⊇ P and R′ ⊇ R, F is P′−valid relative to R′.

Let SN be a natural deduction system for the naive set theory which only contains the rules

for ∧, →, ¬, and ∈. SN has a set R of standard reductions for ∧, →, ¬, and ∈, and its set

P of production rules. Then, SN has the derivation Σ12 (or Σ′
12) of Russell’s paradox. With

respect to Definition 4.3.1, since Σ10 and Σ11 are P−valid relative to R but Σ12 is not, the

last inference rule, i.e. ¬E−rule, is not P−valid relative to R.

Tranchini (2016) accepts Prawitz’s definition of P−validity of an inference rule as the

correctness of the rule and argues that the correctness of the rule is different from the

validity of it. He examines a similar phenomenon and says,
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It is not [¬E−rule] to be blamed for not preserving validity. The source of

the problem should rather be identified with the presence of [the parameter a

defined as a ∈ {x|¬x ∈ x}]. How can this intuition be spelled out?

... the availability of reduction procedures usually suffices to warrant the cor-

rectness of the elimination rule to which they are associated. It should now be

clear that, when the language contains [the parameter a which raises paradox-

ical derivations], this is no more the case. To repeat, while in standard cases

the existence of reduction procedures associated to the rule is enough to show

that the rule preserves validity, this is not so in general. (Tranchini, 2016, pp.

505–506)

Though he thinks that ¬E−rule is correct, when the parameter a as a ∈ {x|¬x ∈ x} is

associated, he agrees that ¬E−rule is not P−valid relative to R. Prawitz (1965, p. 95) al-

ready has considered the similar phenomenon. So, we conclude that in the case of Russell’s

paradox, ¬E−rule fails to preserve validity of derivations. If the application of ¬E−rule is

restricted when the parameter a as a ∈ {x|¬x ∈ x} is involved in the language of the system

SN for the naive set theory, the restriction can block the derivation Σ12 of Russell’s para-

dox. From Prawitz’s perspectives on P−validity, the restriction can be a reasoning-rejection

solution which restricts a particular rule but not a system.

Unfortunately, in this section, we attempt to find a way to prevent a particular rule

through RND with the assumption that proof-theoretic validity implies normalizability. The

restriction of ¬E−rule via Definition 4.3.1 is executed by the requirement of a P−valid

inference that only P−valid inferences are to be used, but not by RND. The requirement

of a P−valid inference can be requested independently of RND. Therefore, if a reasoning-

rejection solution is a constraint on a particular inference rule, RND is not a reasoning-

rejection solution.
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4.4 Should We Consider Only ⊥ as an Unacceptable Conclu-

sion?

In this section, by examining Petrolo and Pistone’s case of a (full) normal derivation of a

contradiction, we shall deal with the last question of this chapter, ‘should we consider only

⊥ as an unacceptable conclusion?’

The Third Question (iii): Should we consider only ⊥ as an unacceptable conclusion?

As we have examined in the last section 4.3, a derivation of ⊥ formalizing Russell’s paradox

consists of two normal derivations Σ10 and Σ11.

Σ10

¬a ∈ a
Σ11

a ∈ a
¬E⊥

Instead of applying ¬E−rule, we can apply ∧I−rule and have

Σ10

¬a ∈ a
Σ11

a ∈ a
∧I¬a ∈ a∧a ∈ a

Since Σ10 and Σ11 are normal derivations, either the above derivation is in normal form.

One of interesting points is that we often call the formula ¬a ∈ a∧ a ∈ a a contradiction.

Let us distinguish between a contradiction and an absurdity. For any formula having the

form ¬ϕ ∧ϕ a contradiction. A contradiction is often regarded as an unacceptable conclu-

sion. Then, it seems convincing that the above derivation is paradoxical because it derives

an unacceptable conclusion through acceptable reasoning with acceptable premises. RND

imposes a constraint on the application of non-normalizable derivations. If there is a para-

doxical derivation which is a (closed) full normal derivation of an unacceptable conclusion,

such as ¬ϕ ∧ϕ , then RND cannot be the proof-theoretic solution to the paradoxes. Petrolo

and Pistone (2018) have considered the very case.
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Under the distinction between a contradiction and an absurdity, Petrolo and Pistone

(2018) consider the possibility of a normal derivation of the paradoxes. Unlike Tennant

(1982, 2016, 2017), they call a derivation D in a given system S a normal paradox (N-

paradox) iff (i) D is closed, (ii) D is involved in id est rules, (iii) D is in full normal

form, and (iv) if a formula ϕ is the conclusion of D, then either ϕ → ⊥ or ¬ϕ can be

derived in S. Similar to Sainsbury’s notion of a paradox, one may regard a paradox as a

derivation of the unacceptable conclusion from the acceptable premises by the acceptable

reasoning. Petrolo and Pistone (2018) regard both a contradiction and an absurdity as

unacceptable conclusions and suggest a closed normal derivation of a contradiction from

Russell’s paradox. We borrow from Prawitz (1965, Appendix B) the natural deduction

system SN for the naive se theory which contains the rules for ∧, →, ¬, and ∈. Then, we

have a closed normal derivation of a ∈ a∧¬a ∈ a.

Proposition 4.4.1. Let us define a parameter a as {x|¬x ∈ x}. Then, there is a closed

normal derivation of ¬a ∈ a∧a ∈ a in SN .

Proof. Two claims verify the result.

Claim 1. there is a closed derivation Σ15 of ¬a ∈ a∧a ∈ a.

First, we have a closed derivation Σ13 of ¬a ∈ a.

[a ∈ a]1
···················· de f
a ∈ {x|¬x ∈ x}

∈ E¬a ∈ a [a ∈ a]1
¬E⊥

¬I,1¬a ∈ a

With the derivation Σ13, we have a closed derivation Σ14 of a ∈ a.

Σ13

¬a ∈ a
∈ I

a ∈ {x|¬x ∈ x}
···················· de f

a ∈ a
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Then, we have a closed derivation Σ15 of ¬a ∈ a∧a ∈ a.

Σ13

¬a ∈ a
Σ14

a ∈ a
∧I¬a ∈ a∧a ∈ a

Claim 2. Σ15 is in normal form.

Since Σ15 has no maximum formula, Σ15 is in normal form.

According to Petrolo and Pistone (2018), the derivation Σ15 of Proposition 4.4.1 is an N-

paradox. As they do, if a contradiction, ¬a ∈ a∧a ∈ a, is an unacceptable conclusion, there

is a normal derivation of a contradiction. Then, RND fails to put a constraint on paradoxical

derivations. That is, it cannot be a proof-theoretic solution to the paradoxes.

Then, should any form of ¬ϕ ∧ϕ be proof-theoretically unacceptable?

While we use natural deduction, the answer may not be always ‘yes.’ ⊥ is a propo-

sitional constant for absurdity (or falsity) and is often regarded as the only constant not

derived by an introduction rule. One of the main roles of the normalization theorem is to

show the consistency of a given system. In accordance with standard practice, we write

‘S ⊢ ϕ’ to mean that a given system S derives ϕ and ‘S ⊬ ϕ’ means that S does not derive

ϕ . Then S is consistent iff S ⊬ ⊥; otherwise, inconsistent. Prawitz (1965, Ch. 4) shows

that every derivation in an intuitionistic natural deduction system can be converted into a

normal derivation. One fundamental corollary of the result is that every derivation in the

intuitionistic system can be reduced to one using an introduction rule in the last step.5 Since

there is no introduction rule for ⊥, from the fundamental corollary, we soon have the con-

sistent result of the intuitionistic system. On the other hand, any form of ¬ϕ ∧ϕ , i.e. a

contradiction, can be derived by ∧I−rule if there are derivations of ϕ and ¬ϕ . In the sense

of normalization result, it might not be a special case that ¬ϕ ∧ϕ is derived by ∧I−rule

when there are normal derivations of ϕ and ¬ϕ .

Unlike the derivation of ¬ϕ ∧ϕ , any derivation of ⊥ is considered to be an unacceptable

5His weak normalization result is Theorem 1 of Chapter 4 of Prawitz (1965) and the suggested corollary is
Theorem 2 of the same chapter.
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conclusion. Prawitz’s inversion principle is the main principle to develop natural deduction

system and the principle is based on Gentzen’s idea that the meaning of an operator (or a

constant) is determined by an introduction rule and determines an elimination rule. Nor-

malization theorem and its fundamental corollary may support the idea that an introduction

rule is the meaning-conferring inference. In this perspective, since it is naturally acceptable

that there is no introduction rule for ⊥, it is unacceptable that there exists a closed (full)

normal derivation of ⊥, whereas a closed (full) normal derivation of ¬ϕ ∧ϕ from normal

derivations of ϕ and ¬ϕ via ∧I−rule is not so proof-theoretically unacceptable.

The second reason why one may accept ¬ϕ ∧ ϕ as an acceptable conclusion is that

in some natural deduction system ¬ϕ ∧ϕ is not logically equivalent to an absurdity, ⊥.

Petrolo and Pistone (2018, Sec. 4) think that a contradiction, ¬ϕ ∧ϕ is logically equivalent

to ⊥. As is shown in Proposition 1.3.1 in Chapter 1, SN has a closed derivation of ⊥ which

generates a non-terminating reduction sequence and is a T-paradox with respect to TCPE .

They say that the structure of the T-paradox and their N-paradox, e.g. Σ15 of Proposition

4.4.1, looks morally the same.

... it might seem that if [the T-paradox] is regarded as a paradox, then the [N-

paradox] should be regarded as a paradox as well: first, the structure of [the

T-paradox and the N-paradox] looks "morally" the same, second, even if the

[N-paradox] does not correspond to a closed derivation of the absurdity, it still

corresponds to a closed derivation of a contradiction. (Petrolo and Pistone,

2018, Sec. 4)

However, two structures are definitely different. Especially, the main feature of the T-

paradox is the non-terminating reduction sequence but their N-paradox does not produce

the feature. Also, it is a nonsensical claim that a non-normalizable derivation and a normal

derivation are structurally the same.

At last, their argument presumes that a contradiction is logically equivalent to an ab-

surdity. With the rules for ∧ and ¬, it is easily seen that every contradiction implies an

absurdity but not vice versa. To derive the equivalence between them, there must be a
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rule for Ex Falso Quodlibet (EFQ) which means in this case that an absurdity (or falsity)

implies every formula.

⊥
EFQ

ϕ

(ϕ ∧¬ϕ)↔⊥ is readily derived by ∧−, ¬−, and EFQ−rules.

[ϕ ∧¬ϕ]1
[¬ϕ]3

[ϕ ∧¬ϕ]1 [ϕ]2

∧E,2
ϕ [⊥]4

¬E,4⊥
∧E,3⊥

→ I,1(ϕ ∧¬ϕ)→⊥

[⊥]5

EFQ
ϕ ∧¬ϕ

→ I,5⊥→ (ϕ ∧¬ϕ)
∧I

((ϕ ∧¬ϕ)→⊥)∧ (⊥→ (ϕ ∧¬ϕ))
············································· de f

(ϕ ∧¬ϕ)↔⊥

However, the equivalence holds only if EGQ−rule is applied. Their examination of Rus-

sell’s paradox, e.g. Proposition 4.4.1, does not apply EFQ−rule. On formalizing Russell’s

paradox, it is not necessary that a contradiction is logically equivalent to an absurdity.

Therefore, it is not to say that ¬ϕ ∧ϕ must be proof-theoretically unacceptable conclusion.

We do not claim that ¬ϕ ∧ϕ has to be a proof-theoretically acceptable conclusion. It

may rely on our choice of the definition of inconsistency. We may allow the definition of

consistency that, for any ϕ , S is consistent iff S ⊬ ¬ϕ ∧ϕ; otherwise, inconsistent. If any

formula which renders a system inconsistent were proof-theoretically unacceptable, ¬ϕ∧ϕ

would be an unaccpetable conclusion. However, the investigation of the proof-theoretic cri-

terion for paradoxicality is directly related to the proof-theoretic solution to the paradoxes,

such as our plausible solution RND. It is unclear how Petrolo and Pistone’s criterion of N-

paradox is relative to the proof-theoretic solution. For exploring the proof-theoretic struc-

ture of paradoxicality, their N-paradox overlooks the fact that the non-terminating reduction

sequences are the key features of the structure. Tennant (2016) has allegedly described the

feature that ‘these are the proof-theorist’s explication of the vicious circularity involved

in paradoxes.’ The vicious circularity is often considered to be the primary characteristic
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of the self-referential paradoxes. It should not be ignored when investigating the proof-

theoretic structure of the paradoxes. Petrolo and Pistone’s criterion of N-paradox loses this

point.

Nevertheless, as Petrolo and Pistone (2018) claim, any formula with the form ¬ϕ ∧

ϕ can be a proof-theoretically acceptable conclusion. If it is, RND fails to be a proof-

theoretic solution to the paradoxes. In order for evaluating whether RND can be a legitimate

proof-theoretic solution to the paradoxes, the three questions in this chapter still need to be

resolved.

4.5 Summary

In this chapter, under the assumption that the non-terminating reduction sequence is the

proof-theoretic feature of the paradoxes, we have dealt with three questions: (i) ‘Which

paradoxes are genuine paradoxes’, (ii) ‘Why should we accept only a normalizable deriva-

tion?’, and (iii) ‘Should we consider only ⊥ as an unacceptable conclusion?’ In order for

RND to be a proof-theoretic solution to the paradoxes, at least three questions must be

explicated.

Section 4.1 deals with the first question and argues that Tennant has no clear ground for

genuine paradoxes. Although Tennant believes that the Liar paradox is a genuine paradox

but Russell’s paradox is not, the similar argument of him suggests the opposite results that

Russell’s paradox is a genuine one but the Liar is not.

Since he ignores the fact that a non-terminating reduction sequence is relative to our

choice of reduction procedure, we have shown in Proposition 4.1.2 that his derivation of

Russell’s paradox generates a looping reduction sequence by applying the Ekman-type re-

duction ⊵GEF . There are two points of Tennant’s argument. First, his derivation of Rus-

sell’s paradox does not satisfy TCPL (or TCPE). Second, as Proposition 4.1.1 shows, there

is a closed full normal derivation of ¬∃y(y = {x|¬x ∈ x}) which states the rejection of the

formula that there is a set a such that a = {x|¬x ∈ x}. Since a = {x|¬x ∈ x} is often con-

sidered to be the main reason that generates Russell’s paradox, he believes that Proposition
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4.1.1 can be the ground for claiming that Russell’s paradox is not a genuine paradox. In

a similar way, we have shown in Proposition 4.1.3 that there is a full normal derivation of

¬(Φ ↔¬T (⌜Φ⌝)). If the full normal derivation of ¬∃y({x|¬x ∈ x}) supports the view that

Russell’s paradox is not genuine, either Proposition 4.1.3 supports the view that the Liar

is not. These results establish that Tennant has no clear ground for genuine paradoxes. If

TCP and RND are about genuine paradoxes, it should be explained which paradoxes are

genuine paradoxes.

For the second question, Section 4.2 considers a possible explanation that when proof-

theoretic validity implies normalizability, RND can be a proof-theoretic solution to the

paradoxes. Since a paradoxical derivation, such as T-paradox, initiates a non-terminating

reduction sequence and is not normalizable, it is not proof-theoretically valid. Hence, RND

can block the proof-theoretically invalid derivation and so it can be a solution to the para-

doxes. To support this view, we have suggested Theorem 4.2.2 and 4.2.4 that in a partic-

ular system, proof-theoretic validity implies (strong) normalizability. However, it must be

shown that the result is able to be extended to a general case.

If RND is a plausible proof-theoretic solution to the paradoxes, it may be regarded as

a reasoning-rejection solution. Section 4.3 argues that RND is a stronger restriction than

other reasoning-rejection solutions due to the fact that it does not restrict a specific inference

rule but restricts every derivation in an intended system.

With regard to the third question, Section 4.4 investigates a posibility that there exists a

normal derivation of an unacceptable conclusion and argues that it a contradiction, ¬ϕ ∧ϕ ,

is regarded as a proof-theoretically unacceptable conclusion, then RND cannot be a general

solution to the paradoxes.
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Chapter 5

Conclusion

In this dissertation, we have investigated a proof-theoretic criterion for and solution to

the paradoxes. After having preliminary notations and natural deduction rules, Chapter 1

introduces the early version of Tennant’s criterion for paradoxicality TCP and the require-

ment of a normal derivation RND. As a doctor treats the disease in accordance with her

diagnosis, a logician solves the paradoxes on the basis of her characterization of the para-

doxes. When TCP is regarded as a proof-theoretic criterion for paradoxicality, RND can be

a possible proof-theoretic solution to the paradoxes.

The Early Version of Tennant’s Criterion for Paradoxicality(TCPE): Let D be any deriva-

tion of a given natural deduction system S. D is a T-paradox if and only if

(i) D is a (closed or open) derivation of ⊥,

(ii) id est inferences (or rules) are used in D,

(iii) a reduction procedure of D generates a non-terminating reduction sequence, such as a

reduction loop.

The Requirement of a (Full) Normal Derivation(RND): For any derivation D in natu-

ral deduction, D is acceptable only if D is (in principle) convertible into a normal

derivation.
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There are two types of counterexamples to TCP. The one generates the problem of un-

dergeneration in the sense that TCP makes a paradoxical derivation non-paradoxical. The

other counterexample causes the overgeneration problem that TCP includes non-paradoxical

derivations in the realm of paradoxical derivations. Chapter 2 and 3 deal with the problems

of under- and overgeneration.

In Chapter 2, we have focuses on Rogerson-type counterexample which employs the

rule for Classical Reductio, such as CR−rule, and does not generate a non-terminating

reduction sequence. Rogerson-type counterexamples raise the problem of undergeneration.

In order to solve the undergeneration problem, Tennant (2015) thinks that the application

of CR−rule has a defect that it conceals the primary feature of the paradoxes, i.e. a non-

terminating reduction sequence. However, as we have argued in Section 2.2, CR−rule is

not the only culprit of the defect. We have seen in 2.3 that there exist cases which do not

use CR−rule but raise the problem of undergeneration. Furthermore, we have suggested

examples employing CR−rule which generate a non-terminating reduction sequence. From

our observations in Section 2.3 and 2.4, our diagnosis says that a non-terminating reduction

sequence does not occur if a derivation in question includes (i) a major premise which has

no reduction process to eliminate it or (ii) a formula having a principal constant which

has no reduction procedure to get rid of it. We have suggested an additional condition to

TCPE that a derivation formalizing a genuine paradox only uses harmonious rules. With the

additional condition, any counterexample in Section 2.2 and 2.3 which causes the problem

of undergeneration can be singled out.

In Chapter 3, we have focused on the problem of overgeneration and examined (G)Ekman’s

paradox. Tennant (2016) claims that the overgeneration problem raised by Ekman’s para-

dox is solved by using generalized elimination rules. However, we have argued that even

when we use generalized elimination rules, there is a (G)Ekman’s paradox which shows

that TCPL overgenerates. He overlooks the fact that an application of an auxiliary reduc-

tion sometimes raises a non-terminating reduction sequence. So we have explored methods

to evaluate a proper reduction process, such as Triviality and Translation tests. An assess-

ment of a proper reduction via Triviality test is relative to our choice of rules and a system.
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Since the properness of Ekman reduction through Triviality test can be dependent on our

choice of natural deduction systems, Triviality test does not block every Ekman-type re-

duction process. For a system-independent method to evaluate a proper reduction, we have

proposed Translation test. While Ekman-type reductions in natural deduction can be trans-

lated to one in sequent calculus, the test diagnoses that they are detour-making processes

and so is not proper. Eventually, from our discussions in Chapter 2 and 3, we have the

following criterion for paradoxicality.

The Revised Version of Proof-Theoretic Criterion for Paradoxicality: Let S be a natu-

ral deduction system relative to a set R of reduction procedures. D be any derivation

in S. D is a T-paradox if and only if

(i) D is a (closed or open) derivation of ⊥,

(ii) id est inferences (or rules) are used in D,

(iii) a reduction procedure of D generates a non-terminating reduction sequence, such as a

reduction loop,

(iv) any reduction procedure in R is proper,

(v) only harmonious rules are applied in D.

Chapter 4 centers on the question, ‘Can the requirement of a normal derivation be a

proof-theoretic solution to the paradoxes?’ There are three questions which should be ex-

plicated in order for RND to be a proof-theoretic solution to the paradoxes: (i) which para-

dox is a genuine paradox and which formalization is legitimate for the genuine paradox,

(ii) why the only normalizable derivation is acceptable, and (iii) why the only propositional

constant ⊥ for absurdity is a proof-theoretically unacceptable conclusion.

For the first question, we have claimed that Tennant has no clear ground for genuine

paradoxes. We have attempted to find an answer to the second question that if proof-

theoretic validity generally implies normalizability, RND can be a plausible proof-theoretic

solution to the paradoxes. With regard to the third question, we have investigated a closed
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(full) normal derivation of ¬ϕ ∧ϕ . If any formula having the form ¬ϕ ∧ϕ is considered to

be a proof-theoretically unacceptable conclusion, RND cannot be a general solution to the

paradoxes.

When exploring proof-theoretic criterion for and solution to the paradoxes, there are two

important questions that are not discussed in this paper. Why should the non-terminating

reduction sequence be the main feature of the paradoxes? What is a legitimate formaliza-

tion of genuine paradoxes? We have proposed four formalizations of Russell’s paradox,

four formalizations of Curry’s paradox, nine formalizations about the Liar paradox, four

formalizations of Ekman’s paradox, and one formalization of Crabbé’s case. Table 5.1, 5.2

5.3 summarize the characteristics of derivations of the Liar, Curry’s, and Russell’s paradox.

Proposition Derivation (Conclusion) Loop CR−rule Aux. Reduction

2.2.1 Non-normalizable (⊥) Occurred · Used

2.2.2 Normal (⊥) · Used Used

2.3.1 Full normal (⊥) · · ·
2.4.3 Non-normalizable (⊥) Occurred Used Used

2.4.4 Non-normalizable (⊥) Occurred · ·
4.1.3 Full normal (¬(Φ ↔¬T (⌜Φ⌝))) · · ·
2.A.1 Non-fully normalizable (⊥) Occurred · ·
2.A.2 Non-full normal (⊥) · Used ·
2.A.3 Non-fully normalizable (⊥) Occurred Used ·

Table 5.1: Derivations Formalizing the Liar Paradox

Proposition Derivation (Conclusion) Loop CR−rule Aux. Reduction

1.3.1 Non-normalizable (⊥) Occurred · ·
4.1.1 Full normal (¬∃y(y = {x¬x ∈ x})) · · ·
4.1.2 Non-fully normalizable (⊥) Occurred · Used

4.4.1 Normal (¬a ∈ a∧a ∈ a) · · ·

Table 5.2: Derivations Formalizing Russell’s Paradox
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Proposition Derivation (Conclusion) Loop CR−rule Aux. Reduction

2.0.1 Non-normal (⊥) · Used ·
pp. 60–62 Normal (⊥) · · ·

2.4.1 Non-normalizable (⊥) Occurred Used Used

2.4.2 Non-normalizable (⊥) Occurred Used Used

Table 5.3: Derivations Formalizing Curry’s Paradox

Three tables do not show which feature yields a looping reduction sequence since the

reduction loop occurs independently of the application of CR−rule and auxiliary reduction

procedures. An application of auxiliary reductions sometimes generates a non-terminating

reduction sequence, but it is not always the case. As the self-referential paradoxes has a

characteristic of vicious circularity, some forms of formalization of the paradoxes in natu-

ral deduction may have such characteristics and causes the non-terminating reduction se-

quence.

Moreover, even though Tennant believes that the Liar paradox is a genuine one but Rus-

sell’s is not, each can be both genuine and ingenuine. Proposition 2.A.2 and 1.3.1 make

them genuine paradoxes. Proposition 4.1.1 and 4.1.3 make them ingenuine. No one, in-

cluding Tennant, explains which way of formalization is legitimate for genuine paradoxes.

In order to have a fruitful investigation of the proof-theoretic criterion for and solution to

the paradoxes, including three things in Chapter 4, these things should be explained. A

thorough investigation of these issues must be left for another occasion.
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역설에대한증명론적접근: 프라위츠-테넌트분석에서
과소생성그리고과잉생성문제를중심으로

이름: 최승락

학과: 철학과

지도교수: 정인교

아픈환자를발견했을때, 의사는환자의병이무엇인지를진단하고그진단에따라

처방을한다. 유사한방향에서어떤종류의논변이문제가있다고여겨질때,그문제를

어떻게 규정하느냐에 따라서 그에 대한 해결책이 달라질 수 있다. 역설의 해결책도

‘역설’을어떻게규정하느냐에따라달라질수있다.

Richard M. Sainsbury (2009)는 ‘역설’을명백히수용할수있는전제와추론으로부터

도출된 명백히 수용할 수 없는 결론이라고 정의한다. 명백히 수용할 수 있는 것들이

명백히수용할수없는것을도출하기에이를 ’역설’이라고부른것이다. 이러한역설에

대한 정의를 따를 때, 우리는 세 가지 방향의 역설에 대한 해결책을 지닐 수 있다. 첫

째는 전제가 명백히 수용가능한 것이 아니라고 주장하는 것이고 둘째는 추론 규칙이

명백히수용가능하지않다고주장하는것이다. 마지막으로결론이명백히수용가능하지

않음을 부정함으로써 역설에 대한 해결책이 제시될 수 있다. 첫 번째 해결책을 우리는

‘전제-부정’의해결책이라고부를것이며두번째는 ‘추론-부정’,마지막으로세번째는

‘결론-수용’의해결책이라고부를것이다. 물론,역설에대한규정이나전통적인해결책

이 Sainsbury의 정의에 완전히 부합한다고는 할 수 없을 것이다. 하지만 그의 비형식적

정의는 ‘역설’과역설의해결책을가장쉽게이해할수있는방향이기도하다. 그렇기에

이 글에서 우리는 ‘역설’에 대한 전통적인이해가 Sainsbury의 정의에 상당히 부합함을

전제할것이다.

이논문은역설에대한증명론적기준과해결책에대한것이다. 역설에대한증명론적

해결책은 ‘역설’을증명론에서어떻게규정하는가에의존해있다고볼수있다. 그런점

에서역설에대한증명론적기준과해결책은 Sainsbury의정의와는차이가있을수있다.



먼저 우리는 19세기 후반에서 20세기 초반 수학기초론을 중심으로 논의되었던 집합론

적/의미론적역설로주로다룰것이다. 다시말해,주로 ‘자기지시적역설’(self-referential

paradoxes)이라 불리는 역설들을 대상으로 할 것이다. 이 글은 모두 5개의 장으로 구성

되어있으며 1장에서는역설에대한전통적인입장을집합론적역설과의미론적역설의

경우로나누어요약할것이다. 그리고이러한전통적인입장은앞서언급한역설에대한

세가지해결책,다시말해,전제-부정,추론-부정,그리고결론-긍정의방식으로고려될

수 있음을 언급할 것이다. 이러한 전통적인 입장은 모형론적인 방식을 차용하고 구성

적이지 않은 (고전적) 규칙을 사용하는 경우가 있기 때문에 구성주의자들의 입장에서

수용하기어려운부분이있다. 역설에대한증명론적탐구는구성주의의정신에부합할

뿐만 아니라 집합론적/의미론적 역설을 한꺼번에 해결하는 단일한 해결책을 제시할

가능성을열어준다는측면에서연구의가치가있을것이다.

1장의말미인 1.3절에서는 Dag Prawitz와 Neil Tennant의역설에대한증명론적분석

소개할것이다. Prawitz (1965, Appendix B)는자연연역에서집합론의역설을탐구하며

(모든)도출이정형화되어야한다는요구가역설을막을수있는지를고려했다. 정형도

출의요구는다음과같이요약된다.

정형도출의요구(the Requirement of a Normal Derivation, RND): 자연연역에서의임

의의도출D에대해, D가수용가능하다는것은오직D가 (원리상으로라도)정형

도출로전환가능할경우이다.

그는 집합론의 역설을 자연연역에서 형식화하며 정형 도출만을 사용하는 것이 역설적

도출로 부터 모순이 도출되는 것을 막을 수 있는가를 탐구했는데 그에 따르면 이러한

도출을 정형도출로 환원하려고 하면 끊이지 않는 환원열(the non-terminating reduction

sequence)에 빠지게 된다고 말한다. Tennant (1982, 1995, 2016, 2017)는 이러한 입장을

받아들여 다음과 같은 역설에 대한 증명론적 기준(Tennant’s Proof-Theoretic Criterion

for Paradoxicality, TCP)을제시한다.

테넌트의역설에대한증명론적기준(TCP): D를 자연연역체계에서의 임의의 도출이

라고하자. D가 T-역설이라는것은만약에그리고오직그경우에

(i) D가모순에대한 (닫힌혹은열린)도출이다,



(ii) D는바꿔말하기(id est)추론(혹은규칙)을사용한다,

(iii) D의환원절차는끊이지않은환원열을일으킨다.

Tennant (1982)가 처음 TCP를 제안할 때, 그는 이 기준이 모든 진정한 역설(genuine

paradoxes)에 적용된다고 여겼으며 이를 일종의 가설로 고려했다. 다시 말해, 임의의

도출 D에 대해, D가 진정한 역설을 형식화한다는 것은 만약에 그리고 오직 그 경우에

D가 T-역설이다라는 관계가 성립한다고 여긴 것이다. 만약 가설이 참이라면 진정한

역설은 T-역설일것이고 T-역설은정형식(normal form)으로환원될수없기때문에정형

도출의요구가역설을막을수있을것이다.

이 글의 목적은 RND가 증명론적 해결책이 될 수 있는지 그리고 이러한 입장에 기

초하여 제시된 TCP가 (진정한) 역설의 기준으로서 적절한지에 대해 탐구하는 것이다.

TCP는 두 가지 방향에서 반례가 제시될 수 있는데 하나는 과잉생성(overgeneration)의

문제를야기하는것이며다른하나는과소생성(undergeneration)의문제를야기하는것

이다. 과잉생성의문제는역설이아닌것같은도출을 TCP가 T-역설로만드는것이다.

반면 과소생성의 문제는 (진정한) 역설로 보이는 도출을 TCP가 T-역설이 아닌 것으로

만드는것이다. 2장과 3장은 TCP가진정한역설에대한기준이될수있는가를다루며

2장에서는과소생성문제를그리고 3장에서는과잉생성문제를다룬다. 과소생성문제

를 다루는 2장에서는 과소생성 문제를 야기하는 고전적 귀류법(Classical Reduction)이

사용된 예시에 대한 Tennant의 진단이 옳지 않음을 논하고 과소생성 문제의 해결책을

제시한다. 또한 3장에서도 과잉생성 문제를 야기하는 예시에 대한 Tennant의 진단이

옳지 않음을 논하고 이에 대한 해결책 역시 제시할 것이다. 마지막으로 4장은 RND가

역설에대한증명론적해결책이되기위해서설명되어야할바에대해다룬다. 그래서 2

– 4장의내용은다음과같이요약될수있다.

2장요약. Tennant (2015)는고전적귀류법에관한규칙인 CR−규칙이사용된거짓말쟁

이역설의도출을고려하며CR−규칙이사용될경우,끊이지않는환원열인 ‘환원

고리’(reduction loop)가생성이되지않으며⊥에관한정형도출(normal derivation)

이제시되는것으로보인다고말한다. 그리고자연연역에서역설적도출을형식화

함에있어CR−규칙이꼭사용될필요는없음을들어진정한역설은엄밀히고전적

일수없다는방법론적가설(the methodological conjecture)을제시한다. 테넌트는



아마도과소생성문제를심각하게고려하지않은것같으며그의입장에서유추할

수있는해결책은CR−규칙을사용하지않는것이다. 2장에서는CR−규칙을사용

하지않는것이과소생성의문제를해결할수없음을주장하고환원고리가어떠한

경우에 멈추게 되는지를 진단한후 가능한 해결책을 제시할 것이다. 먼저 우리는

환원고리의 생성유무가 CR−규칙의 사용에 독립적임을 보이기 위해 CR−규칙

이사용되었음에도환원고리가생성되는거짓말쟁이역설의예시와 CR−규칙을

사용하지 않음에도 환원 고리가 생성되지 않는 예시를 제시할 것이다. 그리고

환원고리가 생성되지 않는 이유를 진단한 후 진정한 역설을 형식화하는 도출은

오직 조화로운 규칙만을 사용해야 한다는 조건을 역설에 대한 증명론적 기준에

추가할경우과소생성문제가해결됨을논할것이다.

3장요약. Tennant는 에크만 사례(Ekman’s case)를 그의 역설에 대한 초기 기준의 반

례로여기고이에대한해결책으로역설적도출이일반화된제거규칙(generalized

elimination rule)을사용해야할것을요구한다. 다시말해,에크만사례가야기하는

과잉생성문제의해결책으로일반화된제거규칙의사용을요구한것이다. 하지만

3장에서는일반화된제거규칙의사용이에크만사례가야기하는과잉생성문제를

해결하지는못하며그의기준이진정한역설에대한기준이되기위해서는최소한

적합한환원절차에대한기준이추가되어야함을주장할것이다. 적절한환원절차

에대한기준으로우리는 Schroeder-Heister와 Tranchini의사소성테스트(Triviality

test)를 살펴 볼 것이고 이것이 체계에 상대적이라 모든 종류의 에크만-유형 환원

절차를 막지는 못함을 주장할 것이다. 그리고 대안으로 번역 테스트(Translation

test)를제안할것이다.

4장요약. 4장에서는정형도출의요구(RND)가역설에대한증명론적해결책이되기위

해서는 (i) ‘어떠한역설이진정한역설인가?’, (ii) ‘왜정형화가능한도출만을받아

들여야하는가?’,그리고 (iii) ‘왜 ⊥만이수용가능하지않은결론이어야하는가?’

에 대한 대답이 제시되어야 할 것임을 논할 것이다. 첫 번째 질문 (i)과 관련하여

우리는 Tennant가진정한역설에대한분명한기준을지니지않음을논할것이다.

또한 (ii)와 관련하여 만약 증명론적 타당성 개념이 정형화가능성을 함축한다면

RND가증명론적해결책이될수있겠지만이함축관계가보편적으로성립해야

함을 논할 것이다. 그리고 RND가 증명론적 해결책이 된다면 특정 추론규칙을



제약하는 일반적인 추론-부정 해결책과는 다른 종류의 해결책이 될 것임을 논할

것이다. 마지막으로 (iii)과관련하여 ⊥이외에도 ¬ϕ ∧ϕ를결론으로가지는정형

도출을고려하고이경우에는 RND가이도출을막을수없기때문에증명론적으

로받아들일수없는결론이무엇인지에대한설명이필요함을논할것이다.

보다 세부적으로 2장에서는 Tennant의 기준과 관련해 Rogerson (2006)의 반례를 소

개할것이다. Rogerson의예시는 Tennant가진정한역설로고려하는커리의역설(Curry

paradox)을 형식화 함에도 고전적 규칙을 사용함으로써 끊임없는 환원열을 야기하지

않는다. 다시 말해, 진정한 역설임에도 Tennant의 기준에 따르면 T-역설이 되지 않는

과소생성의문제가발생하는것이다. 2장 1절에서는 Tennant의기준(Tennant’s Criterion

for Paradoxicality, TCP)에 대한 반례로 일반화된 제거규칙을 사용하는 사례도 있을 것

이기때문에예비적으로이에대한규칙을먼저소개할것이다. 그리고논의를위해도

입규칙과제거규칙간의조화로운관계(harmony relation)가어떠한관계인지를소개할

것이다.

2장 2절에서는 고전적 귀류법(classical reductio)에 관한 규칙인 CR−규칙을 사용한

과소생성의문제를야기하는예시에대한 Tennant의대응에대해소개하고그의진단이

옳지않음을논할것이다. 아마도그는CR−규칙이모순(⊥)에관한정형도출을양산하는

것으로보일뿐만아니라역설적도출이지닌주요한특징을감춘다고전제하는듯하다.

그리고그는이를 ‘고전적문제’(the classical rub)라고소개한다. 그리고이러한도출을

피하는방향에서 ‘진정한역설은고전적일수없다’는방법론적인가설(Methodolodical

Conjecture)을제시한다. 방법론적가설이옳은가에대한문제를차치하더라도 Tennant

가고려하는과소생성문제에대한해결책은고전적추론규칙을사용하지말아야한다는

것으로이해될수있다.

2장 3절에서는 고전적 귀류법의 규칙인 CR−규칙이 사용되지 않더라도 과소생성

문제가발생함을보이고고전적추론규칙을사용하지않는것이과소생성문제의해결

책이될수없음을논할것이다. 2장 4절에서는과소생성문제의해결책을제시하기위해

무엇이환원고리를멈추는가에대한진단을시작할것이다. 그리고끊이지않는무한한

환원의 연속은 어떠한 환원 절차를 차용하느냐에 의존적임을 보이고 과소생성 문제를

야기하는예시들이두가지특징이있음을살펴볼것이다. 말하자면,끊임없는환원의

연속을 멈추는 예시들은 주전제를 제거하는 환원 절차가 없거나 주요 상항(a principal



constant)을포함하는식을제거하는환원절차가없을경우들임을살펴볼것이다. 그리

고이러한사례들을통해다음과같은가능한진단을제시할것이다.

가능한진단: 진정한 역설을 형식화하는 도출이 끊임 없는 환원의 연속을 야기한다는

것은오직 (i)그도출에서의각주전제를제거하는환원절차가존재할경우혹은

(ii)주요한상항을포함하는각식을제거하는환원절차가존재할경우이다.

그리고이러한진단을통해다음과같은조건을 TCP에추가할경우 2장에서살펴보았던

과소생성문제는일어나지않을것임을주장할것이다.

추가조건: 진정한역설을형식화하는도출은오직조화로운규칙만을사용한다.

3장에서는 Tennant의 기준에 대한 과잉생성에 대해 다룰 것이다. 특히 Schroeder-

Heister and Tranchini (2017)가 제시한 에크만의 역설(Ekman’s paradox)를 소개할 것이

다. 에크만의 역설은 옳지 않은 환원절차를 포함하기에 진정한 역설로 고려되어서는

안되나 Tennant의 기준에 따르면 T-역설이 되기 때문에 과잉생성의 문제를 야기하는

것으로 여겨진다. 먼저 우리는 Tennant (2016)의 에크만 역설에 대한 대응을 살펴 볼

것이다. 그는도출의모든제거규칙을일반화된제거규칙(generalized elimination rule)로

제시할경우과잉생성의문제는일어나지않을것이라고주장한다. 하지만 3장 2절에서

는 Tennant의대응이적절하지않으며일반화된제거규칙만을사용하더라도과잉생성의

문제는여전히일어날것임을논할것이다. 그리고 Tennant의기준에는적절한환원절차

가무엇인가에대한논의가필요함을주장할것이다. 3장 3절에서는적절한환원절차에

대한 Schroeder-Heister and Tranchini (2017)의사소성테스트(Triviality Test)를소개하고

그들의사소성테스트는체계에의존적이기때문에적절한환원절차자체를테스트하

기에는무리가있음을논할것이다. 이어서 3장 4절에는필자의번역테스트(Translation

Test)를 제시할 것이다. 번역 테스트에 따르면 에크만 유형의 환원절차는 우회를 만들

어내는 환원절차이기에 적절하지 않으며 번역 테스트는 사소성 테스트에 비해서 환원

절차그자체를테스트할수있는장점이있음을논할것이다.

4장에서는정형도출의요구(RND)가역설에대한해결책이될수있는지에대해살펴

볼것이다. 이를위해서우리는세가지물음을고려할것이다. (i) ‘어떠한역설이진정한

역설인가?’, (ii) ‘왜정형화가능한도출만을받아들여야하는가?’,그리고 (iii) ‘왜 ⊥만이



수용가능하지않은결론이어야하는가?’ RND가진정한역설에대한해결책이라면무

엇이진정한역설인지에대한설명이필요하다. 그리고 RND가역설적도출을막는다고

하더라도왜정형화가능한도출만을받아들여야하는지가설명이되지않는다면 RND는

역설에대한증명론적해결책으로채택될수없을것이다. 마지막으로 ⊥이외의문장이

받아들일수없는결론이될수있고그러한결론을지닌역설적도출이정형도출이라면

RND는그러한역설적도출을막지못하니역설에대한해결책이될수없을것이다.

4.1절에서는첫번째물음에대한논의를진행한다. Tennant는러셀의역설은진정한

역설이 아니나 거짓말쟁이 역설은 진정한 역설이라고 주장한다. 먼저 우리는 러셀의

역설이진정한역설이아니라는그의논변을살펴보고같은논리로거짓말쟁이역설도

진정한역설이아니게됨을논할것이다. 그리고이러한논의를통해 Tennant는진정한

역설에대한명확한기준을지니지는못했음을논할것이다.

4.2절에서는두번째질문인정형도출만을사용해야하는이유에대해탐구할것이

다. 가능성있는한가지는증명론적타당성이정형화가능성을함축한다는것이다. 다시

말해,역설적도출이정형화가능하지않다면이는증명론적으로타당하지않은도출이

되기때문에이를배제할수있고 RND는역설에대한해결책이될수있다. 4.2절에서는

특정체계에서증명론적타당성이정형화가능성을함축함을보일것이다. 하지만 RND

가증명론적해결책이되기위해서는위의결과가일반적인사례에까지확장되어야할

것이다. 4.3절에서는 정형도출의 요구가 통상적으로 말하는 역설에 대한 추론-부정의

해결책과는 다름을 논할 것이다. 그리고 만약 추론-부정의 해결책이 특정 추론규칙을

제약함으로써역설을해결하는것이라면 RND는모든도출을제약하는것이기때문에

추론-부정의 해결책이 아님을 논할 것이다. 4.4절에서는 Petrolo and Pistone (2018)가

제시한 ¬ϕ ∧ϕ에 대한 정형도출을 소개하고 ⊥ 뿐만 아니라 ¬ϕ ∧ϕ 형식의 문장도 받

아들일수없는결론(unacceptable conclusion)으로여길경우 RND는역설에대한증명

론적 해결책이 될 수 없음을 논할 것이다. 결론적으로 증명론적 타당성이 보편적으로

정형화가능성을함축하며 ¬ϕ ∧ϕ와같은식이증명론적으로받아들일수없는결론이

되지않을때, RND는역설에대한증명론적해결책이될수있을것이다.
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수님,양은석교수님,김신교수님,김명석교수님,김준걸교수님,이진희교수님,박일호

교수님, 정재민교수님께감사드립니다. 그리고학회일을함께하며도움을많이주신

강수연 선생님, 백송이 선생님, 신소혜 선생님께도 감사드립니다. 수업이나 세미나를

통해많은가르침을주신김병한교수님,하종호교수님,선우환교수님,손병석교수님,

김창래교수님,성창원교수님께도감사드립니다. 2014년부터한국연구재단에서지원해

주는글로벌박사펠로우십에참석하게되면서연세대학교송도국제캠퍼스의교수님들

과 미네소타 대학 및 오하이오 주립대 교수님들께도 많은 도움을 받았었습니다. 특히

Geoffrey Hellman 교수님, Stewart Shapiro 교수님, Roy Cook 교수님, Nikolaj Pedersen

교수님, Colin Caret 교수님, 그리고 Jeremy Wyatt 교수님께 감사드립니다. 또한 Asian

Logic Conference, Pluralism Week 그리고 미네소타 과학철학 연구소에서 발표를 하며

연구와관련도움을받았던 Teresa Kouri교수님, Stella Moon선생님,김동우선생님께도

감사드립니다. 박사학위논문의주제인역설에대한증명론적탐구를하는데있어심사

를통해많은조언을주신이종권교수님,최재웅교수님,최진영교수님,그리고이계식

교수님께도 감사드리며 이메일을 통해 조언을 받을 수 있었던 Neil Tennant 교수님과

영어교정에도움을주신김지원선생님그리고틈틈이증명론적의미론과추론주의에

관해의견을교환해주신이종현선생님께도감사드립니다.

마지막으로항상끊임없는격려로저를더나은사람이될수있게도와주신조수지



작가님께감사드립니다. 그리고지난 11년간많이모자랐던저를끝까지격려해주시고

지도해 주신 정인교 교수님과 꾸준히 하면 안 될 것이 없다는 것을 삶으로써 보여주신

부모님께도감사드립니다. 이제산을등정하기위한베이스캠프에도달한만큼앞으로

더열심히연구해서더나은학자가되도록노력하겠습니다. 감사합니다.

2019년 6월 27일

안암동중앙광장에서

최승락.






