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Which Paradox is Genuine in Accordance with 
the Proof-Theoretic Criterion for Paradoxicality?*
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【Abstract】Neil Tennant was the first to propose a proof-theoretic criterion 
for paradoxicality, a framework in which a paradox, formalized through natural 
deduction, is derived from an unacceptable conclusion that employs a certain 
form of id est inferences and generates an infinite reduction sequence. Tennant 
hypothesized that any derivation in natural deduction that formalizes a genuine 
paradox would meet this criterion, and he argued that while the liar paradox is 
genuine, Russell's paradox is not.

The present paper delves into Tennant's conjecture for genuine paradoxes 
and suggests that to validate the conjecture, one of two issues must be 
addressed. The first issue is the need for a philosophical consensus on the 
identification of a genuine paradox in an informal sense. The second issue is 
the requirement for a uniform approach to formalize paradoxes in natural 
deduction. If either of these issues is addressed, the conjecture could be 
validated, or at the very least, it could hold philosophical importance in 
delineating the proof-theoretic features of paradoxicality.
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1 Introduction

What distinguishes a genuine paradox? Numerous derivations of an
absurdity (⊥) exist within natural deduction, but not all derivations
of ⊥ earn the label of a “paradox.” In Appendix B of Prawitz (1965),
it was examined how a derivation of ⊥ from the set-theoretic para-
dox results in an infinite reduction sequence. While Prawitz did not
openly identify the infinite reduction sequence as the distinguishing
feature of paradoxes, it is often assumed that he intended to do so.
For example, Schroeder-Heister and Tranchini (2017, p. 568) stated,
“Prawitz proposed [the infinite reduction sequence] to be the dis-
tinguished feature of Russell’s paradox.” Following Prawitz’s work,
Tennant (1982) introduced the proof-theoretic criterion for paradox-
icality, which has been further developed by Tennant (1995, 2015a,
2016, 2017). The infinite reduction sequence is thereby recognized
as the key inferential feature separating a simple inconsistency from
a paradox.

Tennant (1982, p. 283) initially proposed the proof-theoretic cri-
terion for paradoxicality: a paradoxical derivation, utilizing a cer-
tain form of id est inferences, yields ⊥ (or an unacceptable con-
clusion) and initiates an infinite reduction sequence. Tennant (2016,
Sec. 1) suggested that the infinite reduction sequences are the proof-
theorist’s explanations of the vicious circularity (or vicious helical-
ity) embedded in paradoxes. The criterion is perceived as a measure
of the infinite reduction sequences generated by the derivation of ⊥
linked with the paradoxes in question. Tennant (2017, p. 287) con-
jectured that “Genuine paradoxes are those whose associated proofs
of absurdity, when formalized as natural deductions, cannot be con-
verted into normal form” due to its inherently vicious circular nature,
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namely, the infinite reduction sequence.

Interestingly, Tennant (2016, 2017) claimed that the liar paradox
qualifies as a genuine paradox, while Russell’s paradox does not. The
present paper will put forth an argument that one of two issues must
be addressed to substantiate Tennant’s conjecture for paradoxicality.
The first problem is the establishment of a philosophical consensus
on the definition of a genuine paradox in an informal sense. The sec-
ond problem involves the need for a uniform method to formalize
paradoxes in natural deduction. Following the introduction of prelim-
inary notations, the proof-theoretic criterion for paradoxicality, and
Tennant’s perspective on genuine paradoxes in Section 2, Section 3
will explore examples that render Russell’s paradox genuine and the
liar paradox non-genuine. Section 4 contends that for the validation
of the conjecture, addressing either the distinction of a genuine para-
dox in an informal context or the demand for a uniform method to
formalize paradoxes in natural deduction is crucial.

2 Tennant’s Completeness Conjecture for Genuine
Paradoxes

With preliminary notions and rules detailed in Section 2.1, Section
2.2 presents the proof-theoretic criterion for paradoxicality (PCP),
chiefly examined by Tennant (1982, 1995, 2015a, 2016, 2017), Schroeder-
Heister and Tranchini (2017, 2018), and Choi (2019, 2021) along
with the conjecture pertaining to genuine paradoxes.
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2.1 Preliminaries: Some terminologies and natural deduc-
tion rules

The language under consideration incorporates the constant ¬ and ⊥
to represent negation and absurdity, respectively. An equality sym-
bol = and a unary truth predicate T (x) may be selectively employed
for a specific natural deduction system. x and y are utilized as free
variables, while s and t are used as closed terms. ϕ , ψ , and σ are
designated for arbitrary formulae. A derivation of a natural deduc-
tion system is employed in the same context as “deduction” as per
Prawitz (1965) and Tennant (2017). Furthermore, this article adheres
to the following conventions: if a derivation D concludes with a for-
mula ϕ , it is represented as shown on the left below, and ϕ is referred
to as an “end-formula.” If it relies on the formula ψ , it is depicted as
shown on the right.

D

ϕ

ψ

D

ϕ

In the natural deduction, there are rules for ∧, →, ¬, and T (x) that
take the form of general elimination rules.1

1 While Tennant (2015b,c, 2016, 2017, 2021) favored the term “parallelized” over
“general,” the present paper opts for “general” as general elimination rules were
initially introduced by Schroeder-Heister (1984a,b) to derive a general schema for
introduction and elimination rules of principal operators. Furthermore, Tennant
(2015b,c, 2017) utilized standard (or serial) forms of the ¬E−rule based on his
core logic. In this context, the general ¬E−rule will be employed to minimize
unnecessary disputes. The results can be substantiated using his core logic. Lastly,
the left and right corner quotes, ⌜⌝, are commonly used in the truth predicate T (x)
to encode formulae into coded expressions. For instance, if ϕ is a given formula,
⌜ϕ⌝ refers to ϕ . If ψ(x) is a formula with one free variable x, then ψ(⌜ϕ⌝) is a
formula describing that ϕ denoted by ⌜ϕ⌝ is ψ .
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D1

ϕ1

D2

ϕ2 ∧I
ϕ1 ∧ϕ2

ϕ1 ∧ϕ2

[ϕ1]
1, [ϕ2]

1

D3

ψ
∧E,1

ψ

[ϕ]1

D1

ψ
→ I,1

ϕ → ψ

ϕ → ψ

D2

ϕ

[ψ]1

D3

σ
→ E,1

σ

[ϕ]1

D1

⊥
¬I,1¬ϕ

¬ϕ

D2

ϕ

[⊥]1

D3

ψ
¬E,1⊥

D1

ϕ
T I

T (⌜ϕ⌝)

T (⌜ϕ⌝)

[ϕ]1

D2

ψ
T E,1

ψ

The formulas positioned directly above the line in each rule are termed
the “premise,” while the formula situated directly below the line is the
“conclusion.” Assumptions that are subject to discharge are enclosed
in square brackets, such as [ϕ]. In line with Tennant’s limitations
on core logic, the application of the ¬I−rule prohibits vacuous dis-
charge. (Cf. Tennant (2015b,c, 2016, 2017, 2021, 2022)). The open
assumptions of a derivation are those assumptions upon which the
end formula is dependent. A derivation is classified as closed if it
does not contain any open assumptions, and is termed open other-
wise. A major premise of the elimination rule for an operator is the
premise that incorporates the operator in the elimination rule. For
clarity, the major premise of the E−rule is positioned on the far left
side of the premises of elimination rules, while all other premises are
designated as minor premises. The term maximum formula occur-
rence refers to the conclusion of an introduction rule concurrently
serving as the major premise of an elimination rule. Standard reduc-
tion procedures for ∧, →, ¬ and T (x) are recognized and accepted.2

2 The permutation conversion, as put forth by Prawitz (1965), is also accepted as a
means to eliminate the major premises derived by general elimination rules.
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1. The standard reduction procedure for ∧ and →.

D1

ϕ1

D2

ϕ2 ∧I
ϕ1 ∧ϕ2

[ϕ1]
1, [ϕ2]

1

D3

ψ
∧E,1

ψ ▷∧

D1 D2

ϕ1 ϕ2

D3

ψ

[ϕ]1

D1

⊥
¬I,1¬ϕ

D2

ϕ

[⊥]2

D3

ψ
¬E,2⊥ ▷¬

D2

ϕ

D1

⊥
D3

ψ

2. The standard reduction procedure for ¬ and T (x).

[ϕ]1

D1

ψ
→ I,1

ϕ → ψ

D2

ϕ

[ψ]2

D3

σ
→ E,2

χ ▷→

D2

ϕ

D1

ψ

D3

σ

D1

ϕ
T I

T (⌜ϕ⌝)

[ϕ]1

D2

ψ
T E,1

ψ ▷T (x)

D1

ϕ

D2

ψ

Take into account the following two derivations that possess the
same end formula: Da and Db. An immediate sub-derivation of Da

is an initial portion of Da that terminates with the premise of the last
inference rule in Da. A sub-derivation is the reflexive and transitive
closure of an immediate sub-derivation. Furthermore, Da▷Db indi-
cates that Da reduces to Db by applying a single reduction procedure
to a sub-derivation of Da, for example, when the left-side deriva-
tion of the reduction procedure ▷T (x) is named Da and the right-side
derivation is named Db. The last inference rule in Da is the T E−rule.
The immediate sub-derivations of Da are as follows:

D1

ϕ
T I

T⌜ϕ⌝

[ϕ]1

D2

ψ .

Then, ‘Da▷T (x)Db’ means that Da reduces to Db. Now, the follow-
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ing definitions are used in the article.3

Definition 2.1. A sequence < D1, ...,Di,Di+1, ... > is a reduction
sequence relative to R iff Di▷Di+1 relative to R, where 1 ⩽ i for
any natural number i. A derivation D1 is reducible to Di (D1 ≻Di)

relative to R iff there is a sequence <D1,D2, ...,Di > relative to R
where for each j < i, Dj▷Dj+1; D1 is irreducible relative to R iff
there is no derivation D′ to which D1▷D′ relative to R except D1

itself.

Definition 2.2. The derivation D is normal (or in normal form) rel-
ative to R iff D has no maximum formula occurrence and is irre-
ducible to R. A reduction sequence terminates iff it has a finite num-
ber of derivations and its last derivation is in normal form. A deriva-
tion D is normalizable relative to R iff there is a terminating reduc-
tion sequence relative to R starting from D.

It is important to clarify that irreducible derivations and derivations
without a maximum formula occurrence are not always synonymous.
Consequently, these two categories of derivations necessitate sepa-
rate discussions.4 For any given derivation D, D generates an infinite
reduction sequence iff there exists a derivation D′ such that D≻D′,
but its reduction sequence does not terminate. It is evident that, in
3 In Definition 2.1, for any term x and y, let x ≤ y mean that x is less than or equal

to y. For Definition 2.2, the expression “relative to R” is dropped for the sake of
convenience if there is no misunderstanding in the abridged descriptions.

4 In the course of defining a normal derivation as an irreducible derivation alone,
Tranchini (2015) deliberated on a derivation employing tonk-rules that, while be-
ing irreducible, contained a maximum formula occurrence. Additionally, it is pos-
sible to have a reducible derivation without a maximum formula occurrence. For
instance, in the derivation E ′g as outlined by Schroeder-Heister and Tranchini
(2018), there is no maximum formula occurrence when “A ⊃ ¬A” and “¬A ⊂ A”
in E ′g are treated as assumptions or axioms. In the event of the Ekmang-reduction
procedure being accepted, then E ′g would be reducible.
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the case of D generating an infinite reduction sequence, D will have
a non-terminating reduction sequence and will not be normalizable.

The subsequent subsections will introduce the proof-theoretic cri-
terion for paradoxicality, as delineated in Tennant (1982, 1995, 2015a,
2016, 2017). Additionally, the conjecture of Tennant regarding gen-
uine paradoxes, as presented in Tennant (2016, 2017), will be exam-
ined.

2.2 The Completeness Conjecture for Genuine Paradoxes

With the aim of explicating the proof-theoretic criterion for paradox-
icality (PCP) and Tennant’s conjecture regarding genuine paradoxes,
Tennant’s stipulations for the liar sentence Φ—as recommended in
Tennant (2017, pp. 298 – 302)—are employed. It is within this sec-
tion that the adjustment of said rules is examined to further the initi-
ation of the PCP.

Let SL be a natural deduction system with rules for ¬, T (x), and
the following Tennant’s rules for the liar sentence Φ.

[T (⌜Φ⌝)]1

D1

⊥
ΦI,1

Φ

Φ

[¬T (⌜Φ⌝)]1

D2

ϕ
ΦE,1

ϕ

As presented by Tennant (2017, p. 299), the reduction strategy for Φ
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is as follows.5

[T (⌜Φ⌝)]1

D1

⊥
ΦI,1

Φ

[¬T (⌜Φ⌝)]2

D2

ϕ
ΦE,2

ϕ ▷Φ

[T (⌜Φ⌝)]1

D1

⊥
¬I,1¬T (⌜Φ⌝)

D2

ϕ

SL also incorporates a set RL of reduction procedures, which in-
volve reductions for ¬, T (x), and Φ. Thus, the ensuing conclusion
is reached:

Proposition 2.3. There is a closed derivation of ⊥ in SL relative
to RL that generates an infinite reduction sequence and thus is not
normalizable.

Proof. Upon achieving a closed derivation of ⊥, it becomes evident
that the derivation is irreducible to a normal derivation.

Claim 1. There is a closed derivation D3 of ⊥.

Initially, an open derivation D1 of ⊥ from [T (⌜Φ⌝)] is observed
below toward the left. Accompanying D1, a closed derivation D2 of
T (⌜Φ⌝) can be found below toward the right.

[T (⌜Φ⌝)]1
[Φ]2

[¬T (⌜Φ⌝)]3 [T (⌜Φ⌝)]1[⊥]4

¬E,4⊥
ΦE,3⊥

T E,2⊥

[T (⌜Φ⌝)]1

D1

⊥
ΨI,1

Φ
T I

T (⌜Φ⌝)

5 The reduction procedure for T (x) is depicted graphically in a separate manner by
Tennant (2017, p. 299). The fundamental notion that underlies this reduction, how-
ever, stays in line with the ongoing discussion, upholding a compatible perspective
on the matter.
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Following that, there exists a closed derivation D3 of ⊥.

[T (⌜Φ⌝)]1

D1

⊥
¬I,1¬T (⌜Φ⌝)

D2

T (⌜Φ⌝) [⊥]5

¬E,5⊥

Claim 2. D3 generates an infinite reduction sequence and thus is
not normalizable.

Within the final ¬E−rule of D3, ¬T (⌜Φ⌝) serves as the maxi-
mum formula. The reduction of D3 yields the derivation D4 as dis-
played below.

[T (⌜Φ⌝)]1

D1

⊥
ΦI,1

Φ
T I

T (⌜Φ⌝)

[Φ]2
[¬T (⌜Φ⌝)]3

D2

T (⌜Φ⌝) [⊥]4

¬E,4⊥
ΦE,3⊥

T E,2⊥

By applying ▷T (x) followed by ▷Φ, the reduction of D4 to D3 oc-
curs. As D3 generates an infinite reduction sequence, it remains non-
normalizable.

The process of reducing D3 continually alternates among the fol-
lowing three reductions: ▷¬, ▷T (x), and ▷Φ. As this procedure re-
sults in maximum formulae, including ¬T (⌜Φ⌝), T (⌜Φ⌝), and Φ,
it is incapable of removing every maximum formula. This endless
oscillation has been characterized by Tennant (1982, pp. 270–271)
as a falling into a looping reduction sequence, and the completeness
conjecture on paradoxicality was put forth as the proof-theoretic cri-
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terion for identifying paradoxical derivations.

The completeness conjecture is then that [a] set of sentences
is paradoxical ... iff there is some proof of [⊥] ... , involving
those sentences in id est inferences that [have] a looping re-
duction sequence. (Tennant, 1982, p. 283)

The term id est inferences has been applied to instances where a
formula can be interdeduced with its own negation (or its predica-
tion). Serving as the id est rules for the liar sentence Φ are the ΦI−
and ΦE−rules. The infinite reduction sequence was also deemed the
defining aspect of paradoxes. Tennant (2016) outlined the criterion
for paradoxicality accordingly.6:

Tennant (1982) proposed a proof-theoretic criterion, or test,
for paradoxicality—that of [an infinite] reduction sequence
initiated by the “proofs of ⊥” associated with the paradoxes
in question (p. 271).

The initial criterion offered declares that a derivation is charac-
terized as paradoxical provided it succeeds in deriving ⊥, relies on
id est inferences, and leads to an infinite reduction sequence. A sum-
mary of the proof-theoretic criterion for paradoxicality presents itself
thus:

The Proof-Theoretic Criterion for Paradoxicality(PCP): Let D be
any derivation of a natural deduction system S and R be a set
of reduction procedures of S. D is paradoxical iff

(i) D is a (open/closed) derivation of ⊥,

6 The term “non-terminating reduction sequence” utilized by Tennant (1982, 1995,
2015a, 2016, 2017) corresponds to the infinite reduction sequence in the present
context. Both looping and spiral reduction sequences exemplify not merely non-
terminating reduction sequences, but also infinite reduction sequences.
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(ii) id est inferences (or rules) are used in D,

(iii) D generates an infinite reduction sequence.

Some aspects necessitate philosophical deliberation. Regarding
condition (i), ⊥ does not represent the exclusive conclusion derived
from paradoxical derivations. A propositional variable p could be
employed during the formalization of Curry’s paradox. (See Tennant
(1982)).

Pertaining to condition (ii), infinite reduction sequences can be
classified into two categories: loops and spirals. Tennant (1995, p.
207) postulated that the primary characteristic of self-referential para-
doxes is a looping reduction sequence, while non-self-referential para-
doxes predominantly exhibit a spiraling reduction sequence.7 The
analysis within the present paper remains confined to self-referential
paradoxes.

The criterion, as suggested by Tennant (1982, p. 285), reflects the
completeness conjecture for genuine paradoxes, prompting a summa-
rization in the ensuing manner.

The Completeness Conjecture for Genuine Paradoxes: For any deriva-
tion D in a natural deduction, D formalizes a genuine paradox
iff D is paradoxical.

While the expression “genuine paradox” was not utilized in Tennant
(1982), Tennant (2016), in a later exploration of the criterion for para-
doxicality, designates the Liar paradox derivation in compliance with
PCP as genuinely paradoxical. Additionally, in Tennant (2017, p.
288), it is mentioned, “Genuine paradoxes are those whose associated

7 For additional discourse surrounding Tennant’s conjecture on self-referential para-
doxes, refer to Choi (2021).
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proofs of absurdity, when formalized as natural deductions, cannot be
converted into normal form.” Consequently, it naturally follows that
the completeness conjecture pertains to genuine paradox.

Notably, Tennant (2016) maintained that the Liar paradox is gen-
uine while Russell’s paradox is not. In the ensuing two sections, an
examination of this perspective will be conducted, and two cases will
be presented, suggesting that Russell’s paradox can be considered a
genuine paradox and the Liar paradox a non-genuine one, based on
the same rationale employed by Tennant (2016, 2017).

3 The Problem of the Completeness Conjecture

The contention in this section is that Tennant falls short of providing
a definitive response to the matter of identifying genuine paradoxes
in line with PCP. In presenting a result concurrent with Proposition
2.3 in Section 2.2, Tennant (2016, pp. 12–16) posits that the Liar
paradox is indeed genuine while Russell’s paradox does not merit
the distinction of being a genuine paradox. As Tennant (2016, Ch. 5)
said,

We find also that Russell’s Paradox enjoys a proof in nor-
mal form, so that it is not genuinely paradoxical. . . . [The
logico-semantical paradoxes such as the Liar] call for a proof-
theoretic clarification of the vicious circles and helices within
them—which is what I am seeking to provide. . . . In the latter
case (for example, the Liar Paradox) we cannot have normal-
ity of (dis)proof. In the former case (for example, Russell’s
Paradox) we can; and we thereby obtain important negative
existentials.

In order to arrive at ⊥ from Russell’s paradox, an assumption
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must be entertained that there exists a set of all sets not members
of themselves. Tennant ascertains within the natural deduction sys-
tem for the free logic of sets, that a closed normal derivation aims to
disprove the initial assumption, establishing that no such set exists.
This outcome buttresses the argument that Russell’s paradox is not
a genuine paradox. However, Section 3.1 argues that his derivation
can generate an infinite reduction sequence, by adding a special form
of a reduction procedure, which makes the derivation non-normal.
In addition, it shall be contended that, should the derivation be veri-
fied to encompass an id est inference, the derivation fulfills the PCP
criterion and may be deemed a genuine paradox.

3.1 Is Russell’s Paradox Not a Genuine Paradox?

The analysis commences by scrutinizing the derivation within the
free logic of sets, which bolsters the stance that Russell’s paradox
does not constitute a genuine paradox. His derivation states that there
is no set of all and only those sets that do not contain themselves.
Unfortunately, the introduction of a new reduction technique, known
as Ekman reduction, initially offered by Ekman (1998) and later ex-
amined by Schroeder-Heister and Tranchini (2017, 2018) and Choi
(2019), causes the derivation to be characterized as non-normal by
generating an infinite reduction sequence. Furthermore, the deriva-
tion features an id est inference that moves from a ∈ a to ¬a ∈ a and
from ¬a ∈ a to a ∈ a. Should all paradoxical derivations indeed be
genuine paradoxes, then Russell’s paradox could be recognized as a
genuine paradox.

Tennant (2016, Sec. 3) and Tennant (2017, pp. 294-298) lay out
the groundwork for a normal closed derivation of ¬∃y(y = {x|¬x ∈
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x}) in the natural deduction system SF for free logic of sets, to be
detailed further in Proposition 3.1. It is made clear that the deriva-
tion Σ3 of ¬∃y(y = {x|¬x ∈ x}) in Proposition 3.1 does not generate
an infinite reduction sequence, indicating absence of paradoxicality.
Russell’s paradox does not fit the mold of a genuine paradox, as it
does not meet PCP.

The natural deduction system SF conceived by Tennant bears dis-
tinctions from a natural deduction system purposed for naive set the-
ory, as examined in Prawitz (1965, Appendix B).8 Let {x|ϕ(x)} be a
set of objects that satisfies ϕ(x) for some ϕ . ∈ be a two-place relation
for set membership. In free logic, the singular terms can denote enti-
ties outside a domain or can fail to denote at all, even while the quan-
tifiers retain conventional interpretation, thus introducing the rule of
denotation. Here, ∃x(x = t) is denoted as ∃!t, indicating that t ex-
ists. Given that t and u are closed terms and a represents a parameter,
the natural deduction system SF for the free logic of sets prescribes
the rules for a set-forming operator and the rule of denotation (RD),
complete with ¬− and ∃−rules stated in generalized form.

[ϕ[a/x]]1, [∃!a]1

D1

a ∈ t
D2

∃!t

[a ∈ t]1

D3

ϕ[a/x]
{}I,1t = {x|ϕ(x)}

where a does not occur in t = {x|ϕ(x)} nor in any undischarged as-
sumptions of the subderivations other than those of the form of rules
displayed.

8 For a detailed understanding of the system for the free logic of sets, it is recom-
mended to consult Section 7.10 of Tennant (1978).
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t = {x|ϕ(x)}
D4

ϕ[u/x]

D5

∃!u

[u ∈ t]1

D6

ψ
{}E1,1

ψ

t = {x|ϕ(x)}
D7

u ∈ t

[ϕ[u/x]]1

D8

ψ
{}E2,1

ψ

where both {}E-rules prohibit vacuous discharge. In addition, RD is
articulated in the following manner:

ϕ(... t ...)
RD

∃!t

where ϕ is atomic. SF has a set RF of reduction procedures for ¬, ∃,
{}. The reduction procedures for {} are as follows:

[ϕ[a/x]]1, [∃!a]1

D1

a ∈ t
D2

∃!t

[a ∈ t]1

D3

ϕ[a/x]
{}I,1t = {x|ϕ(x)}

D4

ϕ[u/x]
D5

∃!u

[u ∈ t]2

D6

ψ
{}E1,2

ψ ▷{}1

D4

ϕ[u/x][a/u]
D5

∃!u[a/u]
D1

a ∈ t[u/a]
D6

ψ

[ϕ[a/x]]1, [∃!a]1

D1

a ∈ t
D2

∃!t

[a ∈ t]1

D3

ϕ[a/x]
{}I,1t = {x|ϕ(x)}

D7

u ∈ t

[ϕ[u/x]]2

D8

ψ
{}E2,2

ψ ▷{}2

D7

u ∈ t[a/u]
D3

ϕ[a/x][u/a]
D8

ψ

In pursuit of a derivation of ⊥ from [a = {x|¬x ∈ x}], ¬x ∈ x is ap-
propriated for ϕ in the E1− and E2−rules, and the parameter a is
employed for both terms t and u. The rules that follow, therefore,
are instances of E1− and E2−rules. Consequently, a closed normal
derivation of ¬∃y(y = {x|¬x ∈ x}) is attained.
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a = {x|¬x ∈ x}
D4

¬a ∈ a

D5

∃!a

[a ∈ a]1

D6

ψ
{}E1,1

ψ

a = {x|¬x ∈ x}
D7

a ∈ a

[¬a ∈ a]1

D8

ψ
{}E2,1

ψ

Proposition 3.1. SF has a closed normal derivation of ¬∃y(y =

{x|¬x ∈ x}) relative to RF .

Proof. The beginning point involves establishing a closed derivation
Σ4 of ¬∃y(y = {x|¬x ∈ x}), and demonstrating that Σ4 is in normal
form.

Claim 1. there is a closed derivation Σ4 of ¬∃y(y = {x|¬x ∈ x}).

There is an open derivation Σ1 of ⊥ from [a∈ a] and [a= {x|¬x∈
x}].

[a = {x|¬x ∈ x}]1 [a ∈ a]2
[¬a ∈ a]3 [a ∈ a]2 [⊥]4

¬E,4⊥
{}E2,2⊥

Utilizing derivation Σ1 results in the emergence of an open deriva-
tion Σ2 of a ∈ a from [a = {x|¬x ∈ x}].

[a = {x|¬x ∈ x}]1

[a = {x|¬x ∈ x}]1, [a ∈ a]2

Σ1

⊥
¬I,2¬a ∈ a

[a = {x|¬x ∈ x}]1
RD

∃!a [a ∈ a]5
{}E1,5a ∈ a

Given the open derivation Σ2, an open derivation Σ3 of ⊥ from [a =
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{x|¬x ∈ x}] is procured.

[a = {x|¬x ∈ x}]1
[a = {x|¬x ∈ x}]1

[a = {x|¬x ∈ x}]1, [a ∈ a]2

Σ1

⊥
¬I,2¬a ∈ a

...
∃!a [a ∈ a]5

{}E1,5a ∈ a
[¬a ∈ a]3

...
Σ2

a ∈ a [⊥]4

¬E,4⊥
{}E2,3⊥

As it stands, a closed derivation Σ4 of ¬∃y(y = {x|¬x ∈ x}) is in
possession.

[∃y(y = {x|¬x ∈ x})]6

[a = {x|¬x ∈ x}]1

Σ3

⊥
∃E,1⊥

¬I,6¬∃y(y = {x|¬x ∈ x})

Claim 2. Σ4 is in normal form.

Considering all major premises in Σ1, Σ2, Σ3 and Σ4 are assump-
tions, and no reduction procedure in RF is applicable to Σ4, Σ4 has
been established in normal form.

The derivation Σ4 of ¬∃y(y= {x|¬x∈ x}) in Proposition 3.1 is in nor-
mal form. Nevertheless, when acknowledging an Ekman-type reduc-
tion, as presented in Ekman (1998), SF furnishes an open non-normal
derivation of ⊥ from [a = x|¬x ∈ x] that generates an infinite reduc-
tion sequence. Although Tennant (2016) considered that Proposition
3.1 is Russell’s paradox made unparadoxical, the following Ekman-
type reduction procedure in generalized form for set-abstraction dev-
astates his view.
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D1

t = {x|ϕ(x)}

D1

t = {x|ϕ(x)}
D2

ϕ[x/u]

D3

∃!u [u ∈ t]1
{}E1,1u ∈ t

[ϕ[x/u]]2

D4

ψ
{}E2,2

ψ ⊵EF

D2

ϕ[x/u]
D4

ψ

The term Ekman maximum formula is used to refer to the minor
premise u∈ t of E2−rule. Subsequently, the following outcome emerges:

Proposition 3.2. If the set RF of reductions of SF includes an Ekman-
type reduction process in generalized form for set-abstraction, ⊵EF ,
SF has an open derivation of ⊥ from [a = {x|¬x ∈ x}] which gener-
ates an infinite reduction sequence and is not normalizable.

Proof. Employing open derivations Σ1, Σ2, and Σ3 as presented in
Proposition 3.1, the minor premise a ∈ a of the E2−rule within Σ3 is
an Ekman maximum formula. Through the application of ▷EF on Σ3,
the resulting open derivation Σ5 of ⊥ is derived from [a = x|¬x ∈ x].

[a = {x|¬x ∈ x}]1, [a ∈ a]2

Σ1

⊥
¬I,2¬a ∈ a

[a = {x|¬x ∈ x}]1

Σ2

a ∈ a [⊥]7

¬E,7⊥

Seeing that Σ5 involves a major premise ¬a∈ a, the application of ▷¬

to Σ5 produces an identical derivation to Σ5. Consequently, Σ5 em-
barks on an enduring reduction sequence and resists being reduced
to a normal form.

Proposition 3.2 poses significant challenges to Tennant’s stance
that Russell’s paradox lacks genuineness. Should Σ5 incorporate id
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est inferences from a ∈ a to ¬a ∈ a and from ¬a ∈ a to a ∈ a, PCP
then establishes Σ5 as paradoxical. Consequently, contrary to Ten-
nant’s view, the acceptance of ⊵EF brings Russell’s paradox into the
realm of genuine paradoxes.9

3.2 Is the Liar Pradox Genuine?

Tennant (2016, 2017) claimed that Russell’s paradox lacks genuine-
ness due to the normal derivation of ¬∃y(y = x|¬x ∈ x) in SF relative
to RF . Contrarily, the Liar paradox is considered a genuine para-
dox with an equivalent outcome to Proposition 2.3. Analogous to the
method questioning the genuineness of Russell’s paradox, an analy-
sis of the Liar paradox is performed, applying generalized elimina-
tion rules in an attempt to present a derivation intimating the Liar
paradox is not a genuine paradox.

With the aim of establishing non-genuineness of the Liar, the
rules for second-order existential quantification ∃2 is borrowed from
Prawitz (1965, Ch.5). Let Xn, Y n be n-ary predicate variables, and
ϕn, ψn, σn be n-ary predicate formulas. x1, ...,xn (or t1, ..., tn) is ab-

9 In Tennant (1982), the standard form of the set-abstraction elimination rule was
employed. Tennant (1982, p. 276) stated that the derivation of ⊥ from the assump-
tion ∃!a, where a = {x|¬x ∈ x} generates an infinite reduction sequence and said,
“Russell’s [paradox] remains an intrinsically troublesome case of paradox.” Later,
based on the findings of Proposition 3.1, Tennant (2016, Sec. 3) asserted that Rus-
sell’s paradox is not genuinely paradoxical, given that the examined derivation
does not generate an infinite reduction sequence. He diagnosed that the standard
form of the elimination rule for set-abstraction creates an artifact feature of the
infinite reduction sequence. Unfortunately, as demonstrated in Σ5 of Proposition
3.2, the generalized form of the elimination rule either creates an infinite reduction
sequence. The crux of the matter lies not in the choice of elimination rules, but
rather in the adoption of reduction procedures. Additionally, even with the stan-
dard elimination rules in place, a normal derivation of ¬∃y(y = {x|¬x ∈ x}) can be
readily established. (See Appendix A for details.)
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breviated as −→xn (or −→tn ). ∃2I− and ∃2E−rules are of the following
form.

ϕ[ψn[
−→tn /−→xn ]/Xn]

∃2I
∃2Xn

ϕ

∃2Xn
ϕ

[ϕ[Y n/Xn]]1

D

σ
∃2E,1

σ

where ϕ[ψn[
−→tn /−→xn ]/Xn] is obtained from ϕ by replacing each occur-

rence of a subformula Xn(
−→tn ) in ϕ by ψn[

−→tn /−→xn ]; in ∃2E, Y n does
not occur free in any undischarged assumptions on which σ depends
except ϕ[Y n/Xn], nor does Y n occur free in σ .10 The reduction pro-
cedure for ∃2 is as below:

ϕ[ψn[
−→tn /−→xn ]/Xn]

∃2I
∃2Xn

ϕ

[ϕ[Y n/Xn]]1

D

σ
∃2E,1

σ ▷∃2

D1

ϕ[ψn[
−→tn /−→xn ]/Xn][Y n/ψ

n[
−→tn /−→xn ]]

D2

σ

Let SL2 be a natural deduction system consisting of rules for ∧,
→, ¬, T (x), and ∃2. The set RL2 of reduction procedures for ∧, →, ¬,
T (x), and ∃2 are given. ϕ ↔ψ is defined as (ϕ →ψ)∧(ψ →ϕ). As a
consequence, the liar sentence Φ holds the relation Φ↔¬T (⌜Φ⌝). In
light of Proposition 3.3, the Liar paradox is not regarded as a genuine
paradox.

Proposition 3.3. SL2 relative to RL2 has a closed normal derivation
of ¬∃2X(X ↔¬T (⌜X⌝)).

Proof. Initiation begins with demonstrating the closed derivation Π4

of ¬∃2X(X ↔¬T (⌜X⌝)) and verifying that Π4 is in normal form.

10Note that the notion of subformula is defined inductively by (1) ϕ is a subformula
of ϕ , (2) if ψ ◦σ is a subformula of ϕ then so are ψ , σ where ◦ is ∨ or ∧ or →,
(3) if ∀xψ or ∃xψ is a subformula of ϕ , then so is ψ[t/x].
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Claim 1. There is a closed derivation Π4 of ¬∃2X(X ↔¬T (⌜X⌝)).

The proof begins with producing an open derivation Π1 of ⊥
sourced from [T (⌜Y⌝)] and [Y ↔¬T (⌜Y⌝)]

[Y ↔¬T (⌜Y⌝)]7
············································ de f
(Y →¬T (⌜Y⌝))∧ (¬T (⌜Y⌝)→ Y )

[Y →¬T (⌜Y⌝)]5
[T (⌜Y⌝)]1 [Y ]2

T E,2Y
[¬T (⌜Y⌝)]3 [T (⌜Y⌝)]1 [⊥]4

¬E,4⊥
→ E,3⊥

∧E,5⊥

Then, an open derivation Π2 of Y from [Y ↔¬T (⌜Y⌝)] is achieved.

[Y ↔¬T (⌜Y⌝)]7
············································ de f
(Y →¬T (⌜Y⌝))∧ (¬T (⌜Y⌝)→ Y )

[¬T (⌜Y⌝→ Y )]5

[T (⌜Y⌝)]1

Π1

⊥
¬I,1¬T (⌜Y⌝) [Y ]6

→ E,6Y
∧E,5Y

In the presence of Π1 and Π2, an open derivation Π3 of ⊥ from [Y ↔
¬T (⌜Y⌝)] is established.

[Y ↔¬T (⌜Y⌝)]7
············································ de f
(Y →¬T (⌜Y⌝))∧ (¬T (⌜Y⌝)→ Y )

[Y →¬T (⌜Y⌝)]6

[Y ↔¬T (⌜Y⌝)]7

Π2

Y
[¬T (⌜Y⌝)]8

[Y ↔¬T (⌜Y⌝)]7

Π2

Y
T I

T (⌜Y⌝) [⊥]9

¬E,9⊥
→ E,8⊥

∧E,6⊥

Finally, the closed derivation Π4 of ¬∃2X(X ↔¬T (⌜X⌝)) is given.

[
∃2X(X ↔¬T (⌜X⌝))

]10

[Y ↔¬T (⌜Y⌝)]7

Π3

⊥
∃2E,7⊥

¬I,10
¬∃2X(X ↔¬T (⌜X⌝))
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Claim 2. Π4 is in normal form.

Considering that every major premise in Π1, Π2, Π3, and Π4 con-
sists of assumptions and no reduction procedure in RL2 is applicable,
it follows that Π4 is in normal form.

As demonstrated by Proposition 3.3, no formula X within SL2 up-
holds the relation X ↔¬T (⌜X⌝). Considering that the liar sentence
Φ forms the relation Φ ↔ ¬T (⌜Φ⌝), the conclusion drawn from
Proposition 3.3 is that no derivation of the Liar paradox in conformity
with PCP is attainable. In light of Tennant’s viewpoint that Russell’s
paradox is not a genuine paradox due to the normal derivation of the
formula excluding the set of all sets not members of themselves, the
normal derivation of Π4 of ¬∃2X(X ↔¬T (⌜X⌝)) lends credence to
the notion that the Liar paradox is similarly not genuine.

4 Which Paradox is Genuine?

An examination has been conducted on two derivations pertaining to
the Liar paradox, notably Proposition 2.3 and 3.3. Additionally, two
derivations associated with Russell’s paradox have been scrutinized,
as found in Proposition 3.1 and 3.2. As pointed out, Tennant (2016)
argued that Proposition 3.1 serves as evidence that Russell’s paradox
is not a genuine paradox, whereas the Liar paradox retains its genuine
status on the basis of Proposition 2.3. Drawing on a similar method
to the one disputing genuineness of Russell’s paradox, Proposition
3.3 indicates that the Liar paradox is not a genuine paradox in SL2 .
Analogously, Proposition 3.2 has the potential to endorse the belief
that Russell’s paradox is indeed a genuine paradox. Furthermore, if a
derivation ∆3 of Russell’s paradox within a natural deduction system
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for native set theory in Appendix B, as initially introduced by Prawitz
(1965, Appendix B), is selected, this could serve as the basis for as-
serting Russell’s paradox as a genuine paradox.These occurrences
necessitate addressing the inquiry, “Which paradox is genuine?”

The completeness conjecture for genuine paradoxes is bifurcated
into two facets: for any derivation D in a natural deduction, (a) if D
formalizes a genuine paradox, then D is paradoxical, and (b) if D
is paradoxical, then D formalizes a genuine paradox. Interestingly,
Tennant (2016) harnessed (a) to argue against the genuineness of
Russell’s paradox, whereas he drew on (b) to corroborate the gen-
uineness of the Liar paradox. Tennant’s dual arguments pertaining to
genuine and non-genuine paradoxes can be concisely depicted in the
following manner.

The Argument for the Non-Genuineness of Russell’s Paradox

Premise 1. (By Proposition 3.1) No derivation of Russell’s paradox in SF

is paradoxical.

Premise 2. (By (a)) and the premise 1) No derivation of Russell’s para-
dox in SF formalizes a genuine paradox.

Conclusion. Russell’s paradox (depicted in SF ) is not a genuine paradox.

The Argument for the Genuineness of the Liar Paradox

Premise 1. (By Proposition 2.3) The derivation D3 of the Liar paradox in
SL is paradoxical.

Premise 2. (By (b) and the premise 2) D3 in SL formalizes a genuine para-
dox.

Conclusion. The Liar paradox (formulated in SL) is a genuine paradox.

Suppose there exists solely one derivation encapsulating Russell’s (or
the Liar) paradox; in such a scenario, Tennant’s independent appli-
cation of conditions (a) and (b) would pose no issues. Nonetheless,
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an alternate derivation pertaining to Russell’s and the Liar paradox
is present. Employing the outcome of Proposition 3.3 in conjunction
with condition (a) allows for the assertion of the Liar paradox’s non-
genuineness. Furthermore, utilizing the result of Proposition 3.2 or
Prawitz’s derivation ∆3 of Russell’s paradox within a native set the-
ory system (refer to Appendix B) enables claims of Russell’s para-
dox being genuine, based on condition (b). Due to the divergent out-
comes concerning Russell’s and the Liar paradox, determining the
genuinely paradoxical status remains a challenge.

The completeness conjecture’s predicament concerning genuine
paradoxes arises due to the insufficiently elucidated concept of a
‘genuine paradox’ and the numerous possibilities for formalizing para-
doxes. Supposing an understanding of genuine paradox is achieved
and the determination has been made that the Liar paradox is gen-
uine, while Russell’s is not, then any derivation formalizing the Liar
paradox should, according to (a), be paradoxical. Proposition 2.3
supports relation (a) and Proposition 3.3 conflicts with the suppo-
sition that the Liar paradox is genuine. Should the supposition be
maintained, there may be faults in the formalization methodology of
the Liar paradox found within Proposition 3.3.

Correspondingly, by utilizing (b) alongside Russell’s paradox,
Proposition 3.1 substantiates the stance that Russell’s paradox fails to
qualify as genuine, and Proposition 3.2 opposes this stance. Identify-
ing the inaccuracies in the proof of Proposition 3.2 may be achieved,
for instance, by examining the implementation of Ekman-type reduc-
tion. Thus, if the types of genuine paradoxes are determined, meth-
ods to formalize paradoxes, such as rule applications and reduction
processes, can be adequately explicated.

On the other hand, by identifying a singular way to formalize
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paradoxes using natural deduction, discerning the genuineness of a
paradox can be achieved. Assume the most appropriate method for
formalizing Russell’s paradox incorporates the natural deduction sys-
tem SF for free logic of sets, and that applying Ekman-type reduction
is improper. Even if Σ3 from Proposition 3.2 fulfills PCP and gener-
ates an infinite reduction sequence, it may be surmised that Σ3 is an
unsuitable formalization for Russell’s paradox and that the employ-
ment of Ekman-type reduction is impermissible. According to (a),
the classification of Russell’s paradox as genuine can be resolved.
Moreover, should the ideal method for formalizing the Liar paradox
involve applying rules and reduction procedures in SL relative to RL,
the determination of the Liar paradox’s genuineness can be made
through (b). Such a unification of the formalization process yields
definitive answers regarding the genuineness of paradoxes.

In sum, to assess the completeness conjecture pertaining to gen-
uine paradoxes, there are two aspects requiring thorough elucidation.
The first aspect entails the identification of the class of genuine para-
doxes. The second aspect involves the unique formalization method
of paradoxes, which encompasses the application of rules and reduc-
tion procedures.

5 Conclusion

The philosophical inquiry at hand has delved into two derivations
of the Liar paradox and another two concerning Russell’s paradox.
Tennant’s stance, which maintains that the Liar paradox is a genuine
paradox while Russell’s paradox is not, is contested by the findings
in Sections 3 and 4. These sections present an opposing conclusion,
asserting that it is Russell’s paradox that embodies genuine paradox-
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icality, while the Liar paradox does not reach this threshold, as cor-
roborated by Proposition 3.2 and Proposition 3.3.

The analysis conducted by Tennant (2016, 2017) was limited to
the consideration of D3 from Proposition 2.3 for the genuineness of
the Liar and Σ4 of Proposition 3.1 for the non-genuineness of Rus-
sell’s. There has been no persuasive case made to dismiss the idea
that Π4 of Proposition 3.3 bolsters the viewpoint that the Liar para-
dox does not qualify as a genuine paradox.

Tennant (2016, 2017) only considered D3 of Proposition 2.3 for
the genuineness of the Liar and Σ4 of Proposition 3.1 for the non-
genuineness of Russell’s. He has not yet had a good reason to repudi-
ate that Π4 of Proposition 3.3 supports the view that the Liar paradox
is not a genuine paradox. In a similar vein, when Prawitz’s derivation
∆3 of Proposition 5.2 is considered, it serves as a basis for asserting
that Russell’s paradox is a genuine paradox. Given that Tennant has
not discussed grounds for genuine paradoxes from a proof-theoretic
viewpoint, a comprehensive evaluation of the completeness conjec-
ture for genuine paradoxes necessitates clarification regarding which
paradoxes are genuine and which formalization method is appropri-
ate for them. Addressing either of these matters could potentially val-
idate the conjecture or, at a minimum, contribute to a philosophically
significant understanding of proof-theoretic aspects of paradoxical-
ity.11

11The anonymous reviewer suggests that the results of the present work establish
“there is no right or wrong judgement of paradoxicality per se,” given that such
judgements are contingent upon one’s choice of fundamental principles. While
conferring considerable weight to this view, it is asserted that the infinite reduction
sequence harbors deeper philosophical import, and that Tennant’s completeness
conjecture may be framed within his intuitionistic relevant system, also known
as core logic. Recognition is offered to the anonymous reviewer for the valuable
commentary rendered.
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Appendix A. The Proof of ¬∃y(y = {x|¬x ∈ x}) in a
Natural Deduction System for Free Logic of Sets with

Standard Forms of Rules

A natural deduction system SF ′ for the free logic of sets has the fol-
lowing rules for a set-forming operator and the rule of denotation
(RD) with ¬− and ∃−rules stated in standard form. SF ′ has a set RF ′

of reduction procedures for ¬, ∃, and {}.

[ϕ[a/x]]1, [∃!a]1

D1

a ∈ t
D2

∃!t

[a ∈ t]1

D3

ϕ[x/a]
{ }I,1t = {x|ϕ(x)}

where a does not occur in t = {x|ϕ(x)} nor in any undischarged as-
sumptions of the subderivations other than those of the form of rules
displayed. Furthermore, a rule of denotation, RD, is present in SF ′ ,
characterized by a form akin to the one in SF .

t = {x|ϕ(x)}
D4

ϕ[u/x]

D5

∃!u
{ }E1u ∈ t

t = {x|ϕ(x)}
D6

u ∈ t
{ }E2

ϕ[u/t]

where ϕ is atomic. To prove that a closed normal derivation of ¬∃y(y=
{x|¬x ∈ x}) is obtainable, let ¬x ∈ x stand for ϕ within the {}E1−
and {}E2− rules, and assign the parameter a to both term t and u.
Consequently, the subsequent rules emerge as instances of the {}E1−
and {}E2− rules.
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a = {x|¬x ∈ x}
D4

¬a ∈ a

D5

∃!a
{ }E1a ∈ a

a = {x|¬x ∈ x}
D6

a ∈ a
{ }E2¬a ∈ a

The followings are reduction procedures for {} in RF ′ .

[ϕ[a/x]]1, [∃!a]1

D1

a ∈ t
D2

∃!t

[a ∈ t]1

D3

ϕ[a/x]
{}I,1t = {x|ϕ(x)}

D4

ϕ[u/x]

D5

∃!u
{}E1u ∈ t ▷{}1′

D4

ϕ[u/x]

D5

∃!u
D1

u ∈ t

[ϕ[a/x]]1, [∃!a]1

D1

a ∈ t
D2

∃!t

[a ∈ t]1

D3

ϕ[a/x]
{}I,1t = {x|ϕ(x)}

D6

u ∈ t
{}E2

ϕ[u/t] ▷{}2′

D6

u ∈ t
D3

ϕ[u/t]

Then, the closed normal derivation of ¬∃y(y = {x|¬x ∈ x}) is estab-
lished.

Proposition 5.1. There is a normal derivation of ¬∃y(y = {x|¬x ∈
x}) in SF ′ relative to RF ′ .

Proof. Starting with a closed derivation Σ′
4 of ¬∃y(y = {x|¬x ∈ x}),

it shall be demonstrated that Σ′
3 is in normal form.

Claim 1. there is a closed derivation Σ′
4 of ¬∃y(y = {x|¬x ∈ x}).

Initially, an open derivation Σ′
1 of ⊥ is derived from the assump-

tions [a = {x|¬x ∈ x}] and [a ∈ a].

[a = {x|¬x ∈ x}]1 [a ∈ a]2
{}E2¬a ∈ a [a ∈ a]2

¬E
⊥
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With the derivation Σ′
1, an open derivation Σ′

2 of a ∈ a from the as-
sumtion [a = {x|¬x ∈ x}] is achieved.

[a = {x|¬x ∈ x}]1

[a = {x|¬x ∈ x}]1, [a ∈ a]3

Σ
′
1

a ∈ a
¬I,3¬a ∈ a

[a = {x|¬x ∈ x}]1
RD

∃!a
{}E1a ∈ a

With the possession of derivations Σ′
1 and Σ′

2, an open derivation Σ′
3

of ⊥ from the assumption [a = {x|¬x ∈ x}] is established.

[a = {x|¬x ∈ x}]1
[a = {x|¬x ∈ x}]1

[a = {x|¬x ∈ x}]1, [a ∈ a]2

Σ
′
1

a ∈ a
¬I,2¬a ∈ a

[a = {x|¬x ∈ x}]1
RD

∃!a
{}E1a ∈ a

{}E2¬a ∈ a

[a = {x|¬x ∈ x}]1

Σ
′
3

a ∈ a
¬E

⊥

Fianlly, a closed derivation Σ′
4 of ¬∃y(y = {x|¬x ∈ x}) is established.

[∃y(y = {x|¬x ∈ x})]4

[a = {x|¬x ∈ x}]1

Σ
′
3

⊥
∃E,1⊥

¬I,4¬∃y(y = {x|¬x ∈ x})

Claim 2. Σ′
4 is in normal form.

Given the lack of a maximum formula in Σ′
4 and the fact that

no applicable reduction process exists within RF ′ , it follows that Σ′
4

constitutes a normal derivation.
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Appendix B. Prawitz’s Derivation of Russell’s Paradox in
a Natural Deduction System for Naive Set Theory

Let us consider the natural deduction system SN for naive set theory,
constructed in a manner analogous to Prawitz (1965, Appendix B).
SN encompasses the rules for ∧, →, ¬, and the following additional
rules:

D

ϕ[t/x]
∈ I

t ∈ {x|ϕ(x)}
t ∈ {x|ϕ(x)}

∈ E
ϕ[t/x]

∈ −rules have the following standard reduction process.

D

ϕ[t/x]
∈ I

t ∈ {x|ϕ(x)}
∈ E

ϕ[t/x] ▷∈

D

ϕ[t/x]

Introduce a parameter a in the following manner: {x|¬x ∈ x}. An
application of the ∈ I−rule to ¬a ∈ a yields the result a ∈ a, while
an application of the ∈ E−rule to a ∈ a gives rise to ¬a ∈ a. Prawitz
(1965, p. 95) explores the inability to transform a derivation of ⊥
originating from Russell’s paradox into a normal derivation due to
the generation of an infinite reduction sequence.

Proposition 5.2. Let us define a parameter a as {x|¬x ∈ x}. Then,
there is a closed derivation of ⊥ in SN which generates an infinite
reduction sequence and so is not normalizable.

Proof. Two claims justify the result.

Claim 1. there exists a closed derivation ∆3 of ⊥.

To begin with, below and to the left, an open derivation ∆1 of ⊥
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arises from [a ∈ a]. Coupled with the derivation ∆1, a closed deriva-
tion ∆2 of a ∈ a is obtained below and to the right.

[a ∈ a]1
···················· de f
a ∈ {x|¬x ∈ x}

∈ E
¬a ∈ a [a ∈ a]1

¬E
⊥

[a ∈ a]1

∆1

⊥
¬I,1¬a ∈ a

∈ I
a ∈ {x|¬x ∈ x}
···················· de f

a ∈ a

Then, a closed derivation ∆3 of ⊥ is achieved.

[a ∈ a]1

∆1

⊥
¬I,1¬a ∈ a

∆2

a ∈ a
¬E

⊥

Claim 2. ∆3 generates an infinite reduction sequence and is not nor-
malizable.

∆3 has a maximum formula ¬a ∈ a in the last ¬E−rule and, by
applying ▷¬−reduction, it reduces to the derivation ∆4 below.

[a ∈ a]1

∆1

⊥
¬I,1¬a ∈ a

∈ I
a ∈ {x|¬x ∈ x}

∈ E
¬a ∈ a

∆2

a ∈ a
¬E

⊥

Within ∆4, a maximum formula a ∈ {x|¬x ∈ x} exists, which equates
to a ∈ a by definition, also apparent in the ∈ E−rule. Applying the
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∈−reduction results in a derivation identical to ∆3, where the process
initially began. Thus, the applications of reduction procedures to ∆3

and ∆4 generate an infinite reduction sequence, establishing that ∆3

is not a normalizable derivation.

An unending oscillation between ¬− and ∈ −reductions character-
izes the reduction process of ∆3. Since it constantly results in maxi-
mum formulas, such as a ∈ x|¬x ∈ x and ¬a ∈ a, the process cannot
eliminate all maximum formulas. This stands in contrast to Tennant’s
belief that Russell’s paradox does not constitute a genuine paradox;
conversely, ∆3 adheres to PCP and appears to indicate that Russell’s
paradox embodies a genuine paradox.
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역설에 대한 증명론적 기준에서 진정한 역설이란 무엇인가?

최 승 락

닐 테넌트는 자연연역에서 형식화된 역설에 관한 증명론적 기준

을 최초로 제안했다. 그에 따르면, 자연연역에서 형식화된 역설은 

특정 형태의 바꿔쓰기(id est) 추론을 사용하며 받아들일 수 없는 

결론을 도출하는 것인데 이것이 무한한 환원열을 양산하는 특징을 

지닌다. 그는 자연연역에서 진정한 역설을 형식화하는 모든 도출이 

이 기준을 충족한다고 여겼으며 거짓말쟁이 역설은 진정한 역설이

지만 러셀의 역설은 그렇지 않다고 주장했다.
  본 논문은 테넌트의 진정한 역설에 대한 가설을 자세히 살펴

보고, 이 가설을 검증하기 위해서는 두 가지 문제 중 적어도 하나

가 해결되어야 함을 제안한다. 첫 번째 문제는 비형식적인 의미에

서 진정한 역설이 무엇을 의미하는지에 대한 철학적 합의가 필요하

다는 것이다. 두 번째는 자연연역에서 역설을 형식하기 위한 유일

한 방식이 제시되어야 한다는 것이다. 이 두 가지 문제 중 하나가 

해결된다는 것은, 테넌트의 진정한 역설에 대한 가설이 검증될 수 

있거나 최소한 역설에 관한 증명론적 특징을 설명하는 데 있어 철

학적 중요성이 있다는데 의의가 있다 할 것이다.

주요어: 거짓말쟁이 역설, 러셀의 역설, 진정한 역설, 역설에 관

한 증명론적 기준, 니일 테넌트. 


