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On a Surprising Oversight by John S. Bell in the Proof of his Famous Theorem
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Einstein Centre for Local-Realistic Physics, 15 Thackley End, Ozford OX2 6LB, United Kingdom

Bell inequalities are usually derived by assuming locality and realism, and therefore experimental
violations of Bell inequalities are usually taken to imply violations of either locality or realism, or
both. But, after reviewing an oversight by Bell, here we derive the Bell-CHSH inequality by assuming
only that Bob can measure along the directions b and b’ simultaneously while Alice measures along
either a or a’, and likewise Alice can measure along the directions a and a’ simultaneously while Bob
measures along either b or b’, without assuming locality. The observed violations of the Bell- CHSH
inequality therefore simply verify the manifest impossibility of measuring along the directions b and
b’ (or along the directions a and a’ ) simultaneously, in any realizable EPR-Bohm type experiment.

Consider the standard EPR type spln—l experiment, as proposed by Bohm and later used by Bell to prove his
famous theorem [1]. Alice is free to choose a detector direction a or a’ and Bob is free to choose a detector direction
b or b’ to detect spins of the fermions they receive from a common source, at a space-like distance from each other.
The objects of interest then are the bounds on the sum of possible averages put together in the manner of CHSH E],

5(&, b) + 5(&1, b/) + g(alv b) - g(alv bl)? (1)
with each average defined as
L 1 ¢ k ky| —
E(a, b) = lim, [Ekzl o (a, \*) B(b, \ )] = <.;z¥;€(a) %k(b)>, 2)

where o/ (a, \¥) = &, (a) = £1 and #(b, \¥) = %, (b) = £1 are the respective measurement results of Alice and Bob.
Now, since @, (a) = +1 and %y (b) = £1, the average of their product is —1 < <4sz(a) Pr.(b) > < +1. As a result,

we can immediately read off the upper and lower bounds on the sequence of four averages considered above in (I):
_4< <,ka(a) %k(b)> + <42fk(a) %’k(b’)> + <¢k(a')5gk(b)> - <¢k(a')5gk(b')> < +4. (3)

This should have been Bell’s final conclusion. However, by continuing, Bell overlooked something that is physically
unjustifiable. He replaced the above sum of four separate averages of real numbers with the following single average:

E(a, b)+E(a, b)) +E(@@, b) — (@, b) — <,ka(a) B, (b) + i (a) %’k(b’)+£{k(a’)%k(b)—Mk(a’)%k(b’)>. (4)

As innocuous as this step may seem mathematically, it is in fact an illegitimate step physically, because what is being
averaged on its RHS are unobservable and unphysical quantities. But it allows us to reduce the sum of four averages to

( (@) { Bu(b) + 2u0) } + (@) { Bu(b) - 2B } ). (5)

And since By (b) = £1, if | B (b) + By (b')| = 2, then | B, (b) — By (b')| = 0, and vice versa [3]. Consequently, using
(a) = %1, it is easy to conclude that the absolute value of the above average cannot exceed 2, just as Bell concluded®:

— 2 < <,ka(a) e%}k(b) + .ka(a) %k(b/) + .ka(a/) c%}k(b) — ﬂk(a’) e%}k(b/)> < +2. (6)

Let us now try to understand why the replacement in (@) above is illegitimate?. To begin with, Einstein’s (or even
Bell’s own) notion of local-realism does not, by itself, demand this replacement. Since this notion is captured already
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L A similar inequality was first derived by George Boole in 1862, but without the physical interpretation attributed to it by John Bell B}

2 In the derivation of the absolute bounds on the Bell-CHSH correlator, such as those in Eq. (B) above, one usually employs factorized
probabilities of observing binary measurement results rather than the actual measurement results we have used in our derivation. But
employing probabilities in that manner only manages to obfuscate the conceptual flaw in Bell’s argument we intend to bring out here.
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in the very definition [1] of the functions 27 (a, AF), the LHS of (@) satisfies the demand of local-realism perfectly well.
Nor can a possible statistical independence of the four separate averages on the LHS of () justify their replacement
with the single average on its RHS, at the expense of what is physically possible in the actual experiments. To be sure,
mathematically there is nothing wrong with a replacement of four separate averages with a single average. Indeed,
every school child knows that the sum of averages is equal to the average of the sum. But this rule of thumb is not valid
in the above case, because (a, b), (a, b’), (a’, b), and (a’, b’) are mutually exclusive pairs of measurement directions,
corresponding to four incompatible experiments. Fach pair can be used by Alice and Bob for a given experiment, for
all runs 1 to n, but no two of the four pairs can be used by them simultaneously. This is because Alice and Bob do not
have the ability to make measurements along counterfactually possible pairs of directions such as (a, b) and (a, b’)
simultaneously. Alice, for example, can make measurements along a or a’, but not along a and a’ at the same time.

But this inconvenient fact is rather devastating for Bell’s argument, because it means that his replacement () is
illegitimate. Consider a specific run of the EPR-B experiment and the corresponding quantity being averaged in (@l):

A (a) %k(b) + %k(a) %k(b/) + .ka(a’) %k(b) — .ka(a') %k(b/). (7)

Here the index k = 1 now represents a specific run of the experiment. But since Alice and Bob have only two particles
at their disposal for each run, only one of the four terms of the above sum is physically meaningful. In other words,
the above quantity is physically meaningless, because Alice, for example, cannot align her detector along a and a’ at
the same time. And likewise, Bob cannot align his detector along b and b’ at the same time. What is more, this will
be true for all possible runs of the experiment, or equivalently for all possible pairs of particles. Which implies that all
of the quantities listed below, as they appear in the average (@), are unobservable, and hence physically meaningless:

o (a) Z1(b) + o (a) Z1(b') + (a') Bi(b) — A (a') B1(D),
o(a) #2(b) + oh(a) #2(b') + ch(a’) Ba(b) — h(a’) Ba(b),
3(a) #3(b) + ofs(a) B3(b') + (a) Bs(b) — (@) Bs(b'),
Ai(a) Ba(b) + Ai(a) Bu(b') + ci(a’) Ba(b) — Ai(a) Bu(b),

() B (b) + y(a) Bo(b') + oy(a) Bp(b) — oy(a) By (b').

But since each of the quantities above is physically meaningless, their average appearing on the RHS of (@), namely
<J27k(a) Zr(b) + i(a) Br(b') + (a') Br(b) — i (a’) Br(b') >, (8)

is also physically meaningless®. That is to say, no physical experiment can ever be performed — even in principle — that
can meaningfully allow to measure or evaluate the above average, since none of the above list of quantities could have
experimentally observable values [§]. Therefore the innocuous looking replacement @) made by Bell is, in fact, illegal.

3 The possible space-like separated events being averaged in (B) cannot possibly occur in any possible world, classical or quantum. To
appreciate this elementary fact, consider the following homely analogy: Imagine a couple, say Jack and Jill, who decide to separate
while in Kansas City, and travel to the West and East Coasts respectively. Jack decides to travel to Los Angeles, while Jill can’t make
up her mind and might travel to either New York or Miami. So while Jack reaches Los Angeles, Jill might reach either New York or
Miami. Thus there are two possible destinations for the couple. Either Jack reaches Los Angeles and Jill reaches New York, or Jack
reaches Los Angeles and Jill reaches Miami. Now suppose that, upon reaching New York, Jill decides to buy either apple juice or orange
juice. And likewise, upon reaching Miami, Jill decides to buy either apple juice or orange juice. Consequently, there are following four
counterfactually possible events that can realistically occur, at least in our familiar world: (1) While Jack reaches Los Angeles and buys
apple juice, Jill reaches New York and buys apple juice; Or, (2) while Jack reaches Los Angeles and buys apple juice, Jill reaches New
York and buys orange juice; Or, (3) while Jack reaches Los Angeles and buys apple juice, Jill reaches Miami and buys apple juice; Or,
(4) while Jack reaches Los Angeles and buys apple juice, Jill reaches Miami and buys orange juice. So far so good. But what is being
averaged in () are impossible events of the following kind: (5) While Jack reaches Los Angeles and buys apple juice, Jill reaches New
York and buys apple juice and Jill reaches Miami and buys orange juice at exactly the same time! Needless to say, no such events can
possibly occur in any possible world, even counterfactually. In particular, Einstein’s conception of local realism by no means demands
such absurd or impossible events in any possible world |6]. It is therefore not at all surprising why the unphysical bounds of 2 on the
CHSH sum of expectation values obtained by averaging over the absurd events like (7)) are not respected in the actual experiments [5].



On the other hand, it is important to note that each of the averages appearing on the LHS of replacement (@),

£(a,b) = lim, %kzn:l o (a, \F) B(b, A’“)] = {h(a) Zu(b) ). )
Ea, ) = lm, %é o (@, \*) B(D, Ak)] = (hi(a) 2D ). (10)
E(a,b) = lim %kzn:l o (a', \F) B(b, Ak)] — <,Q%k(a’)93k(b)>, (11)
and E(a,B) = lim %kzn:l (&, \F) B, Ak)] — <gfk(a’)%k(b’)>, (12)

is a perfectly well defined and observable physical quantity |7][€]. Therefore the bounds (B]) on their sum are harmless.
These bounds of {—4, +4}, however, have never been violated in any experiment. Indeed, nothing can violate them.

In summary, Bell and his followers derive the upper bound of 2 on the CHSH series of averages by an illegal move.
In the middle of their derivation they unjustifiably replace an observable, and hence physically meaningful quantity,

(A(@) b)) + { (@) Bu(B) ) + ( Fl@) Zu(b) ) - (@) BV ), (13)
with an experimentally unobservable, and hence physically entirely meaningless quantity (regardless of the method):
( (@) Zu(b) + (a) Zu(b) + (&) Br(b) — (@) Bu(b)) ). (14)

If they do not make this illegitimate replacement, then the absolute upper bound on the CHSH series of averages is
4, not 2. And the absolute upper bound of 4 has never been exceeded — and can never exceed — in any experiment [7].

One may suspect that the above conclusion is perhaps an artifact of the discrete version, (2)), of the expectation
values £(a, b). Perhaps it can be ameliorated if we considered the CHSH sum () in the following continuous form:

/sz a, \) Z(b, \) dp(\ /,Qf ', N) dp(N) +/A,ef(a’, \) B(b, \) dp()\) —/sz%(a’, A) BB, ) dp())

(15)
where A is the space of all hidden variables A and p(\) is the probability measure of A [1]. Written in this form, it is
now easy to see that the above CHSH sum of expectation values is both mathematically and physically identical to

/[,Qf N {B(Db, \) + BB, N} + (@, N){ B, \) — @(b',x)}} dp()) . (16)
A

But since the above two integral expressions are identical to each other, we can use the second expression without loss
of generality to prove that the criterion of reality used by Bell is unreasonably restrictive compared to that of EPR.

To begin with, expression (IG) involves an integration over fictitious quantities® like <7 (a, \) {Z(b, \) + Z(b’, \)}
and o7 (a’, \) {#B(b, \) — Z(b’, A\)}. These quantities are not parts of the space of all possible measurement outcomes
such as & (a, \), Z(a’, A), B(b, \), B(b’, \), etc.. Because the space of all possible measurement outcomes —
although evidently closed under multiplication — is not closed under addition. Since each function Z(b, \) is by
definition either +1 or —1, their sum such as Z(b, \) + Z(b’, \) can only take values from the set {—2, 0, +2}, and
therefore it is not a part of the unit 2-sphere representing the space of all possible measurement results. Consequently,
the quantities o7 (a, A\) {B(b, \) + Z(b’, )} and &/(a’, \) {Z(b, \) — B(b’, \)} appearing in the integrand of (6]
do not themselves exist, despite the fact that &7 (a, A), &7 (a’, A), Z(b, A\) and B(b’, \) exist, at least counterfactually,
in accordance with the hypothesis of local realism. This is analogous to the fact that the set O := {1,2,3,4,5,6} of all
possible outcomes of a die throw is not closed under addition. For example, the sum 3 4 6 is not a part of the set O.

But there is also a much more serious physical problem with Bell’s version of reality. As noted above, the quantities
o (a, \) {ZB(b, \) + B(b', \)} and & (a’, \) {HB(b, \) — B(b’, \)} are not physically meaningful quantities in any
possible physical world, classical or quantum. That is because #(b, A\) and Z(b’, \) can coexist with </ (a, A) only
counterfactually, since b and b’ are mutually exclusive directions. If Z(b, A) coexists with o/ (a, A), then B(b’, \)
cannot coexist with &7 (a, A), and vice versa. But in the proof of his theorem Bell assumes that both Z(b, A) and



P(b', \) can coexist with &7 (a, A) simultaneously. That is analogous to being in New York and Miami at exactly
the same time®. But no reasonable criterion of reality can justify such an unphysical demand. The EPR criterion of
reality most certainly does not demand any such thing.

In conclusion, since the two integrands of (IGl) are physically meaningless, the stringent bounds of +2 on the
expression (I5) are also physically meaningless. They are merely mathematical curiosities, without any relevance for
the question of local realism, as we have extensively demonstrated elsewhere [3][7][8][9][10].

Corollary: It is not possible to be in two places at once.

It is instructive to consider the converse of the above argument. Consider the following hypothesis®: It is possible —
at least momentarily — to be in two places at once — for example, in New York and Miami — at exactly the same time.

From this hypothesis it follows that in a world in which it is possible to be in two places at once, it would be
possible for Bob to detect a component of spin along two mutually exclusive directions, say b and b’, at exactly the
same time as Alice detects a component of spin along the direction a, or a’. If we denote the measurement functions
of Alice and Bob by «7(a, \) and Z(b, \), respectively, then we can posit that in such a world it would be possible
for the measurement event like o/ (a, A) observed by Alice to coexist with both the measurement events #(b, \) and
A (b’, \) that are otherwise only counterfactually observable by Bob, where A is the initial state of the singlet system.
Therefore, hypothetically, we can represent such a simultaneous event observed by Alice and Bob by a random variable

X(a, b, b, \) = o(a, \) {B(b, \) + B, \)} = +2, or 0, or —2, (17)

notwithstanding the fact that there are in fact only two localized particles available to Alice and Bob for each run
of their EPR-Bohm type experiment. It is also worth stressing here that in our familiar macroscopic world (after all
the vectors a and b represent macroscopic directions) such a bizarre spacetime event is never observed, because the
measurement directions a and b, chosen freely by Alice and Bob, are mutually exclusive macroscopic measurement
directions in the physical space.

Likewise, nothing prevents Alice and Bob in such a bizarre world to simultaneously observe an event represented by
Y(a',b, b/, \) := (@, N\ {%(b, \) — Bb', \)} = +2, or 0, or —2. (18)

And of course nothing prevents Alice and Bob in such a bizarre world to simultaneously observe the sum of the above
two events as a single event (i.e., four simultaneous clicks of their four detectors), represented by the random variable

Z(a,a’, b, b’/ )\) := X(a,b, b, \) + Y(a’,b, b/, \) = +2 or —2. (19)

Consider now a large number of such initial states A and corresponding simultaneous events like Z(a, a’, b, b’, \).
We can then calculate the expected value of such an event occurring in this bizarre world, by means of the integral

/ Z(a,a’, b, b, \) dp()\) = / [sz(a, MN{%BDb, \) + BDb, N} + @, N {BDb, N — BD, N }} dp(\),
A A

(20)
where A is the space of all hidden variables A and p(\) is the corresponding normalized probability measure of A € A.

Note that we are assuming nothing about the hidden variables A. They can be as non-local as we do not like. They
can be functions of o7 and %, as well as of a and b. In which case we would be dealing with a highly non-local model:

A>X=f(a,a',b, b, o B). (21)

Next we ask: What are the upper and lower bounds on the expected value 20)7? The answer is given by ([Id)). Since
Z(a, a’, b, b’, \) can only take two values, —2 and +2, the bounds on its integration over p(\) are necessarily

—Zg/[%@M%@J%ﬂﬂmM%WA%Hﬂ&M%@A%ﬂﬂ&M%WAﬁm@)QM.@m
A
But using the addition property of anti-derivatives this expected value can be written as a sum of four expected values,

/da&%bA@ /w /%aA )@)—AmaMﬂun@?B
23



despite our allowing of A (a, a’, b, b’, &, B) to be non-local. As a result, (22)) can be written in a familiar form as
—2< &(a,b) + &(a, b)) + £@, b) — @, D) < +2. (24)

Note that the only hypothesis used to derive these stringent bounds of + 2 is the one stated above: It is possible — at
least momentarily — to be in two places at once. Locality was never assumed; nor was the realism of EPR compromised.

Now we perform the experiments and find that our results exceed the bounds of + 2 we found in (24]) theoretically:
—2V2 < &(a, b) 4+ £(a, b)) 4+ £(@, b) — £(a’, b) < +2V2. (25)

Consequently, we conclude that the hypothesis we started out with must be false: We do not actually live in a bizarre
world in which it is possible — even momentarily — to be in New York and Miami at exactly the same time. This is what
Bell proved. He proved that we do not live in such a bizarre world. But EPR never demanded, nor hoped that we do.

To summarize our Corollary, Bell inequalities are usually derived by assuming locality and realism, and therefore
violations of Bell inequalities are usually taken to imply violations of either locality or realism, or both. But we
have derived the Bell-CHSH inequality above by assuming only that Bob can measure along the directions b and b’
simultaneously while Alice measures along either a or a’, and likewise Alice can measure along the directions a and a’
simultaneously while Bob measures along either b or b’, without assuming locality. The violations of the Bell-CHSH
inequality therefore simply confirm the impossibility of measuring along b and b’ (or along a and a’) simultaneously.

Note added to proof

Ironically, the oversight in the proof of Bell’s theorem we have brought out above is quite similar to that made by
von Neumann in his own no-go theorem against (not necessarily local) hidden variables. Bell is usually credited for
discovering von Neumann’s mistake, but, in fact, both Einstein and Grete Hermann had discovered it independently
some thirty years before Bell. But Bell has a rather succinct explanation of von Neumann’s mistake in the section 3
of the first chapter of his book [1]. At the end of his section 3 Bell writes something that is quite ironic in our view:

Thus the formal proof of von Neumann does not justify his informal conclusion. ... It was not the objective
measurable predictions of quantum mechanics which ruled out hidden variables. It was the arbitrary
assumption of a particular (and impossible) relation between the results of incompatible measurements
either of which might be made on a given occasion but only one of which can in fact be made.

But that is precisely the mistake Bell himself has made in his own famous theorem. Bell’s theorem can be proven only
by considering three or four incompatible physical experiments involving mutually exclusive detector directions. Thus,
to paraphrase Bell, “it is not the objective measurable predictions of quantum mechanics which rules out local hidden
variables. It is the arbitrary assumption of a particular (and impossible) relation between the results of incompatible
measurements, either of which might be made on a given occasion but only one of which can, in fact, be made.”
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