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Oversights in the Respective Theorems of von Neumann and Bell are Homologous
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We show that the respective oversights in the von Neumann’s general theorem against all hidden
variable theories and Bell’s theorem against their local-realistic counterparts are homologous. Both
theorems unjustifiably assume the additivity of expectation values within hidden variable theories
to derive their respective conclusions. However, for non-commuting observables, the equivalence of
a sum of expectation values and the expectation value of the sum of measurement results, although
respected within quantum mechanics, need not hold for hidden variable theories, regardless of specific
characteristics such as local realism they may respect. Once this oversight is ameliorated from Bell’s
argument and local realism is implemented correctly, the bounds on the CHSH correlator work out
to be £2+/2 instead of 2, thereby mitigating the conclusion of Bell’s theorem. Consequently, what
is ruled out by the Bell-test experiments is not local realism but the additivity of expectation values.

I. INTRODUCTION

One of the characteristic features of quantum theory is the fact that the result of any individual measurement event
is not determined by the theory. If the quantum state of a physical system is not represented by an eigenvector of the
observable being measured, then the theory predicts only a statistical distribution of possible results of measurements.
This apparent deficiency — and it can be viewed as deficiency — has long inspired investigations into the possibility of
a deeper theory underlying quantum theory, built on the so-called “dispersion-free” states [I]. Such states are supposed
to be specified by “hidden variables”, in addition to the usual quantum mechanical state vector, and determine the
outcomes of individual measurement events. That, in turn, implies simultaneous assignment of definite values to all
of the observables of a quantum mechanical system, whether or not they are actually observed, making the resulting
theory compatible with Einstein’s conception of realism [2, B]. The hypothetical variables accomplishing this feat are
called “hidden” because if states with prescribed values of such variables can be actually prepared, then quantum
theory would be rendered observationally inadequate.

Against this background, von Neumann set out to prove in his theorem [I], based on a set of four assumptions [4, 5],
that no hidden variable theories consisting dispersion-free states are possible that could simultaneously assign definite
values to all the observables of a quantum system consistently [6]. In other words, he set out to prove that any theory
supplementing quantum theory with hidden variables to produce dispersion-free states would be logically inconsistent.

In recent decades Bell’s theorem [7] has become much more familiar compared to von Neumann’s theorem because
of its significance for quantum information theory, quantum computing, quantum cryptography, and other quantum
technologies. But unlike von Neumann’s theorem, it does not purport to rule out all hidden variable theories. In fact,
Bell was a supporter of Bohm’s non-local hidden variable theory [8]. Indeed, the scope of Bell’s theorem is limited. It
claims that no locally causal and realistic theory of the kind envisaged by Einstein and formed the conceptual basis for
the argument of Einstein, Podolsky, and Rosen [2] can reproduce all of the statistical predictions of quantum theory.

By now it is well known that von Neumann’s theorem against hidden variable theories reproducing the predictions
of quantum theory contains a rather serious oversight [9H14] [16]. What is less well known and less appreciated in
some quarters is that Bell’s theorem against local hidden variable theories also contains a similar oversight, in addition
to other questionable assumptions [I7H22]. In what follows, we compare the respective oversights in the theorems of
von Neumann and Bell and show that they are homologous. It is important to bear in mind, however, that while
Bell’s theorem is not a theorem within quantum theory itself, von Neumann’s theorem is a mathematically correct
theorem providing significant other results for the logical foundations of quantum theory. But both theorems assume
the additivity of expectation values to derive their respective conclusions. However, for non-commuting observables,
the equivalence of any sum of expectation values and the expectation value of the sum, although respected within
quantum mechanics, need not hold within hidden variable theories, regardless of specific characteristics such as locality
or realism they may be required to respect. Once this oversight is ameliorated from Bell’s argument, the bounds on
the CHSH correlator work out to be +2v/2 instead of 2, thereby mitigating the conclusion of Bell’s theorem. This,
in turn, implies that what is ruled out by the Bell-test experiments is not local realism as widely believed, but the
additivity of expectation values, which does not hold in general for any hidden variable theories to begin with.
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II. THE OVERSIGHT IN VON NEUMANN’S THEOREM

It appears that Einstein was aware of the oversight in von Neumann’s theorem before the publication of his argument
against the completeness of quantum mechanics in 1935, co-authored with Podolsky and Rosen [2]. He, however, does
not seem to have published his criticism anywhere. We learn about it from what has been reported by Shimony some six
decades later in the collection of his own papers [6]. In the third paragraph of Section 1 of Chapter 7, Shimony writes:

The great paper of Einstein, Podolsky and Rosen [2] of 1935 concludes that quantum mechanics is an
incomplete theory, without suggesting that changes of the theory are prerequisites to the job of completion.
They make no reference to von Neumann’s argument, which had been published three years earlier,
although they could hardly have been unaware of it. ... It is conceivable that Einstein was critical of one
or more of von Neumann’s premises, as were Bell [I1], Siegel [12], and Kochen and Specker [I3] thirty
years later. However, in the absence of specific evidence that this is so, I doubt it.

As noted, this quote is from the Chapter 7 in the collection of Shimony’s papers, which was originally published in 1971
[6]. But by 1993 Shimony’s doubt about Einstein’s awareness and criticism of von Neumann’s oversight were put to rest
by Peter G. Bergmann, who was Einstein’s collaborator. In the comment added to his original paper, Shimony writes:

The question raised in the third paragraph of Section 1 was cleared up by a conversation with Prof. Peter
G. Bergmann around 1980. He recalled a discussion with Einstein and Valentine Bargmann around 1938
at the Institute for Advanced Study, during which Einstein took von Neumann’s book from the shelf and
pointed to premise B’ of von Neumann'’s theorem (in Section 1 of Chapter IV): “If R, S, ... are arbitrary
quantities and a, b, ... real numbers, then Exp(aR +bS +...) = aExp(R) + bExp(S) + ....” Einstein
then said that there is no reason why this premise should hold in a state not acknowledged by quantum
mechanics if R, S, etc. are not simultaneously measurable. Einstein’s criticism is essentially the same as
those of Siegel [12], Jauch and Piron [I0], Bell [11], and Kochen and Specker [I3] nearly thirty years later.

Although Shimony does not mention Grete Hermann’s contribution to the debate [9], by now it is well known [T4HI6]
that she was the first to publish a criticism of von Neumann’s argument in her 1935 essay on the philosophy of quantum
mechanics, essentially along the line of the criticism by Einstein, Bell [11], Siegel [12], and Kochen and Specker [13].
As we shall see in more detail below, the essence of Einstein’s argument is that, for non-commuting observables,
the assumed equivalence of a sum of expectation values and the expectation value of the sum of corresponding
measurement results, although respected by quantum mechanical expectation values, need not hold within hidden
variable theories, regardless of whether those theories are local or nonlocal.

Among the criticisms of von Neumann’s assumption, the one that appears to have struck the chord is that by Bell
[11]. In anticipation of what we wish to demonstrate below, let us restrict his assumption to four arbitrary observables,
R, S, T, and U, and four real numbers, a, b, ¢, and d. Then, within quantum theory, using normalized state vectors | 1),
his assumption is: Given the observables R, S, T, and U, there exists an observable a R +bS + ¢T + d U such that

a(|RI)+b@[S[Y) +c@|T|P)+d@[UlY) = (Y {aR+0S+cT +dU}|Y), (1)

where (¢ | R | ) represents the quantum mechanical expectation value of the self-adjoint operator R in the state [).
His theorem then asserts that there exists a self-adjoint operator R on the corresponding Hilbert space # such that

(W R*|Y) # (W R|¥)% (2)

That is to say, the state defined by (¢ | R|%) is not dispersion-free over the quantum mechanical observables R.
But as Bell points out in his exposition of von Neumann’s oversight [T1], the relation — 1i.e., the additivity of
expectation values — is one of the peculiar properties of quantum mechanical states. It need not hold in a hidden
variable theory.

It is not difficult to understand why von Neumann was led to assume otherwise. With a slight abuse of notation, we
may represent a hypothetical dispersion-free state by a unit vector |1, A) characterizing a hidden variable theory that
has no statistical character by definition, in contrast to a quantum theory with a genuine unit vector [¢)) in a Hilbert
space. Then, the expectation value of any observable R would be necessarily equal to one of its eigenvalues Z(\):

(0, M IR, M) = Z( M), (3)
where () is a unique scalar determined by a specific hidden variable Ay € {A1, ..., A, } and the eigenvalue equation
Rlv)=2Z[v), (4)

so that the measurement of R in the state |1, ) specified by 9 and A results with certainty in that eigenvalue Z(\y).
Consequently, such a dispersion-free state would satisfy

<1/J,/\\(R—<¢7)\|RW%)\>)2|1/%/\>:07 (5)



or, equivalently,

(P, N R2 [, X)) = (¢, AR [, A)?, (6)

for all observables R, since — by hypothesis — every physical quantity would have a unique value Z(\;). The
quantum mechanical state specified by |¢) is then recovered by uniform averaging over A, which would give the
expectation value

1 ¢ 1
(¢|R[¢) = lim E; ¢,Ak|R|w,Ak>:T}iglﬁk;%(xk). (7)

In what follows we will omit the limits on summations for convenience, with the large n limits understood implicitly.

It is important to note that Eq. (| . ) exhibits an inter-theoretical relation between quantities pertaining to two
entirely different theories. On its LHS is the standard quantum mechanical expectation value of the operator R in the
state |1 ), and on its RHS is a classical average of Z(\) over the hidden variables A\, with no physical significance
attributed to A. To be sure, a fully developed hidden variable theory would have to include a detailed theory of
measurement accounting for the behaviour of A during the measurement process itself, but such a detailed theory is
not necessary for our analysis. On the other hand, as noted in the Introduction, if physical states supplemented with
such hidden variables can be actually prepared, then quantum theory would be rendered observationally inadequate.
Therefore, A must be traced out by uniform averaging, as done in Eq. @ An explicit example of how that works can
be found in Section 2 of Bell’s paper [11].

Since by hypothesis the inter-theoretical relation @ holds for all observables, we can express the LHS of Eq. as

o

where each of the eigenvalues Z(\;), % (Ax), 7 (Ar), and % (\;) is a unique scalar number. But that makes the last
equality a slippery slope. Because every schoolchild knows that a sum of averages is equal to the average of the sum:
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a (| RIV)+b (0[S [0)+e (| Tw)+d W Ul¥) = =3 Z(\ zmk Zﬂ o)+
k=1
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a Z B () + Z FOw)+ Z T+ Z U () = % S {aZOw)+bF () +¢ T () +d % (M)} (9)
kfl

k=1

Comparing the equalities (1) and @ it is mdeed tempting to conclude that @ is a natural dispersion-free coun-
terpart of the quantum mechanical property (|1 , and therefore additivity of expectation values must hold also in any
hidden variable theory, as von Neumann had assumed. But the obvious disanalogy between and is that, while
R, S, T, and U are Hermitian operators in a complex Hilbert space and therefore may not commute with each other in
general, Z(\;), % (Ak), 7 (A\k), and % (M) — being the specific results of the measurements of the observables R, S,
T, and U — are scalar numbers and therefore necessarily commute with each other. More importantly, as explained
by Bell [11], eigenvalues of non-commuting observables are not additive [9]. The result of the measurement of the sum
aR+bS+cT +dU of non-commuting operators will not be the sum a Z(A\r) +b.7(\) + ¢ T (Ax) + d % (i) of the
eigenvalues of those operators in a dispersion-free state. Consequently, for non-commuting operators R, S, T, and U,

(0, Mo [{aR+bS+ T +dU b, \e) # aZ(Ne) + b7 () + ¢ T () +dU (\e). (10)

As Bell notes [I1], it is not possible to work out the result of the measurement of a sum of non-commuting observables
by trivially adding the results of separate measurements on each observable because each requires a distinct experiment.

The example Bell gives to illustrate this well known fact is that of the spin components of a fermion. A measurement
of o, can be made with a suitably oriented Stern-Gerlach magnet. But the measurement of o,, would require a different
orientation of the magnet. And the measurement of the sum (o, +0,) would again require a third and quite a different
orientation of the magnet from the previous two. Consequently, the result of the last measurement — i.e., an eigenvalue
of (0 + 0y) — will not be the sum of an eigenvalue of o, plus an eigenvalue of . The additivity of the expectation
values, namely, (¢ | o, | )+ (Y| oy |¥) = (¢ |0+ 0y | 1), is a peculiar property of the quantum states |9 ). It would
not hold for individual eigenvalues of non-commuting observables in a dispersion-free state of a hidden variable theory.
In a dispersion-free state, every observable would have a unique value equal to one of its eigenvalues. And smce there
can be no linear relatlonshlp between the eigenvalues of non-commuting observables, the additivity relation (1)) that
holds for quantum mechanical states would not hold for dispersion-free states. Therefore von Neumann’s assumptlon
@D above — as innocent and inevitable it may seem mathematically — is wrong physmally And since at least one of the
assumptions used in the proof of his theorem is wrong, his conclusion ruling out hidden variable theories is not valid.

It may appear that this objection by Bell holds only for individual eigenvalues of non-commuting observables and
therefore Einstein’s observation concerning the additivity of expectation values quoted above is not quite correct. In



other words, it may appear that the oversight in von Neumann’s theorem is that it not only assumes the additivity of
expectation values but also additivity in every instance of eigenvalues. With the notation v(A) for the eigenvalue of the
observable A, this interpretation of the oversight in von Neumann’s theorem is stated by Mermin as follows: “But to
require that v(A+ B) = v(A4) 4+ v(B) in each individual system of the ensemble is to ensure that a relation holds in the
mean by imposing it case by case — a sufficient, but hardly a necessary condition” [I5]. This interpretation, however,
as popularized by Mermin, is not quite correct. Einstein’s observation above that the additivity of expectation values
need not hold for hidden variable theories even “in the mean” remains valid, as we have proved in Appendix [A] below.
As a result, because of the inequality , for non-commuting observables the quantum mechanical expectation value

(YH{aR+bS+cT +dUY| ) # % Zn: {aZ(Xe) + b (N\i) + ¢ T (Ne) +dU (M)} (11)
k=1

That is, the quantum mechanical expectation value of the operator a R +bS + ¢T + d U is not equal to the average
over the linear sum of the individual eigenvalues Z (M), -7 (Ax), 7 (Ag), and % (Ax). In the Appendix [A| below we
have proved the inequality and the fact that the eigenvalue of the sum a R +bS + ¢T + d U of operators is not
the sum a Z+b.7 + ¢ T +dZ of eigenvalues, unless R, S, 7, and U commute with each other. We have also proved
that the inequality in can reduce to equality if and only if the operators R, S, T, and U commute with each
other. But that means that, for non-commuting observables, in a dispersion-free state, assumption @D is not correct:

n
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k=1 k=1 k=1 k=1 k=1

Incidentally, in the past decade Bub [23] and Dieks [24] have attempted to revive von Neumann’s theorem despite
the fact that the existence since 1952 of Bohm’s non-local hidden variable theory [8] provides a constructive refutation
of the theorem, independently of its formal defect discussed above. As Mermin and Schack [25] in their refutation of
the argument by Bub [23] and Dieks [24] point out, the claim made by the latter authors amounts to insisting that
von Neumann’s assumption @D is “analytic” and therefore perfectly valid. But that misses the point of the objection
to the theorem raised by Einstein, Bell, and others, which has to do with physics, not mathematics. In particular,
the identification @D goes against the very definition of what is meant by a hidden variable theory. The notion of
realism, as it was understood by Einstein, demands that every observable of a given physical system must possess a
definite value as a preexisting property of the system, whether or not it is observed (e.g., the moon exists, regardless
of whether anyone is looking at it). Therefore, the first requirement of any hidden variable theory is simultaneous
assignment of definite values to all observables of a given physical system. And as we saw above, these definite values
must be the eigenvalues of the corresponding quantum mechanical operators. Now there are five observables involved
in the quantum mechanical relation (l)): R, S, 7, U, and X =aR +bS + ¢T + dU. Therefore, its hidden variable
counterpart must involve their respective eigenvalues Z(\i), L (i), T (), % (A), and Z (). But the linear
sum of eigenvalues a Z(\) +b.7 (M) + ¢ T (M) + d % (A\r) appearing on the RHS of (9) is not one of the eigenvalues
Z (M) of the operator X,

aZ (M) +bF (M) + ¢ T (M) +dU (M) # X (M), (13)

when R, S, 7, and U are non-commuting, and this is the problem with the identification @ Consequently, the claim
by Bub [23] and Dieks [24] that (9] is “analytic” and therefore it must be valid misses the point of the objection raised
by Einstein, Bell, and others. In fact, given a definite eigenvalue 2" (\x) of the operator X = aR +bS + ¢T + dU,
the hidden variable or dispersion-free counterpart of the quantum mechanical relation is mot, in general, the
identification @D that follows analytically, but necessarily the following physically correct and meaningful equality:

n
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It is this equality that must hold for hidden variable theories, regardless of their specific characteristics, not equality @D

III. THE OVERSIGHT IN BELL’S THEOREM

We now turn to Bell’s theorem [7] and show that it harbours the same oversight as that in von Neumann’s theorem.
As we noted in the Introduction, Bell’s theorem purports to prove that no locally causal and realistic theory in the
sense envisaged by Einstein can reproduce all of the statistical predictions of quantum theory. We will follow the proof
of the theorem in the manner of Clauser, Horne, Shimony, and Holt (CHSH) [26] 27]. In the derivation of the bounds
on the CHSH correlator, such as those in Eq. below, one usually employs factorized probabilities of observing the



measurement results rather than the measurement results themselves as we will do in our derivation. But employing
probabilities in that manner only manages to mask the implicit assumption in the proof we intend to bring out here.

Consider the standard EPR type spin—% experiment, as proposed by Bohm and later used by Bell in the proof of
his theorem [7) 27]. Alice is free to choose a detector direction a or a’ and Bob is free to choose a detector direction
b or b’ to detect spins of the fermions they receive from a common source, at a space-like distance from each other.
The objects of interest then are the bounds on the sum of counterfactually possible averages of their observations put

together in the manner of CHSH [26],
5(&, b) + g(av b/) + g(alv b) - 5(a/a b/)v (15)

with each average, or expectation value, or correlation between the observations of Alice and Bob, defined as

1
E(a,b) = lim |—
n>1|n

> (a, A) B(b, /\k)] = <=527/e(a) % (b) >7 (16)
k=1

where o7 (a, A\;) = o (a) = +£1 and B(b, A\;) = PBr(b) = £1 are the respective measurement results of Alice and Bob.
Note that <7 (a, \) and Z(b, ) are manifestly local and realistic functions, where, following Bell[7], locality is defined
as follows:

Local Causality: Apart from the hidden variable A, the result &/ = +1 depends only on the measurement
direction a, chosen freely by Alice, regardless of Bob’s actions. And, similarly, apart from the hidden
variable A, the result 2 = +1 depends only on the measurement direction b, chosen freely by Bob, regard-
less of Alice’s actions. In particular, the function </ (a, A) does not depend on b or # and the function
PB(b, \) does not depend on a or «. Moreover, the hidden variable A does not depend on a, b, <7, or A.

Now, to derive the bound on the CHSH correlator (|15)), suppose that four independent experiments are carried out
(each on a different day, for example), resulting in the following four separate averages, which can subsequently added
together as

(@) Ba (b)) + (9, (2) B, 0) ) + (@) By (0) ) — (o, (@) B, () ), a7

where k; = ki, ko, k3, and k4 are unrelated indices for each average. But since 4, (a) = £1 and %y, (b) = £1, the
average of the product of the measurement results in each case would be —1 < < o, (a) By, (b) ) < +1. Consequently,
we can immediately read off the upper and lower bounds on the sequence of four averages as

— 4 < (o, (2) B, (b) ) + { (@) Bu(0) ) + ( (@) Bry(b) ) — (o, (@) Zi,(0) ) < +4. (19)

Next, the assumption of local realism allows Bell to consider counterfactual possibilities such as the following: Alice
could have chosen the detector direction a’ instead of a and thus observed the result o7, (a’) instead of @, (a) while
Bob observed the result %y, (b) choosing the detector direction b, for the same run of the experiment with the same
pair of particles represented by the index k;. Such counterfactual possibilities, together with the assumption of a
large number of trials for each experiment, allow him to equate all four indices k1, ks, k3, and k4 to the same index
k = k1 = ko = ks = k4, reducing the sequence in (|18) to

~4 < ((@) Bu(b) ) + (Hl(a) Bu(b) ) + (@) Bu(b) ) — (@) B(D) ) < +4, (19)
giving the bounds of +4 on the CHSH correlator , thanks to the definition of the correlation :

—4 < €&(a,b) + E@ D)+ E@, b) — £@, D) < +4. (20)

At this stage we can question, on physical grounds, the significance of the identification of the four independent set of
experiments, characterized by the indices k1, ko, k3, and k4, with a single set of experiments involving counterfactually
possible detector directions, characterized by the same index k = k1 = ky = k3 = k4. Because, physically, nothing has
changed between the experiments considered in (18)) and , apart from the increased number n of trials for each set
[26, 27]. The experiments considered in are still four entirely independent sets of experiments that may have been
carried out on four different days, for example. But we need not question the identification k = k1 = ko = k3 = k4 to
recognize that there is no reason so far to believe that, after , the bounds on the CHSH correlator are anyway
tighter than +4. So far, the assumptions of (a) local realism and (b) a large number of trials for each counterfactually
possible detector direction have led us to the bounds in on the CHSH correlator that are no tighter than +4.

This should have been Bell’s final conclusion. However, by continuing, Bell overlooked something that is physically
unjustifiable. By assuming the additivity of expectation values, without which his theorem cannot be formally proven,



Bell identified the above sum of four separate averages of real numbers (to be recorded, for example, in experimental
runs performed on four different days) with the following single average:

E(a, b) + 5(3, b/) + E(a’, b) — S(a’, b/> = <,;sz(a) <%}k(b) + ,ka(a) t@k(b/) + sz}g(a/) c@k(b) — ,ssz(a') %k(bl) > . (21)

As innocuous as this step may seem mathematically, it is in fact an illegitimate step physically, because what is being
averaged on its RHS are unobservable and unphysical quantities. Moreover, it is not dictated by the assumptions
of local realism and a large number of trials for each counterfactually possible experiment, both of which have been
exhausted by the stage of the derivation. It is a mathematical step, analogous to von Neumann’s assumption @D,
quite independent of the assumptions of local realism and a large number of trials. But while it has no counterpart
in physics, it allows Bell to reduce the sum in to

( A(a) { Zi(b) + Z(D) } + A(a) { Zu(b) - Z(b) } ). (22)

And since Hi(b) = 1, if |Br(b) + By (b')| = 2, then |ZBi(b) — Br(b')| =0, and vice versa. Consequently, using
. (a) = %1, it is easy to conclude that the absolute value of the above average cannot exceed 2, just as Bell concluded:

—2< <ﬂk(a) Bi.(b) + iy(a) Br(b) + d(a’) By(b) — ,sz{k(a'),%’k(b')> < +2. (23)

Given the identification (the LHS of which is a perfectly meaningful physical quantity), the last calculation then
allows Bell to conclude that the CHSH correlator is bounded by 42, thereby facilitating the experimental tests
of local realism:

-2 < &(a, b) + E@ D)+ E@, b) — £@, D) < +2. (24)

In summary, the stringent bounds of +2 on the CHSH correlator derived by Bell follow from three assumptions: (a)
local realism, (b) a large number of trials for each counterfactually possible experiment, and (c) the identification
represented by Eq. ; namely, the additivity of expectation values: a sum of expectation values is equal to the
expectation value of the sum.

Sometimes it is argued that the last assumption — assumption (¢) — is not an additional assumption. It is argued
that the assumption of local realism and the appeal to statistics makes the addition of expectation values in Eq.
possible. It is argued that local realism makes the individual expectation values take definite values on the real line of
numbers, which can then be added to give the inequalities . But this argument belies the fact that an additional
step, namely , over and above the assumption of local realism, is inevitable in any formal proof of Bell’s theorem.
It is not automatically implied by local realism and the appeal to statistics. It must be acknowledged as an additional,
if implicit assumption. An appeal to the large-n limit to make the LHS of Eq. (21)) tend to its RHS is nothing but
assumption (c¢) in disguise. It is true that for large n the LHS of Eq. tends to its RHS making that identification
possible. But that is only the first step. It brings the horse to the waterhole, but does not make it drink the water.

Let us now try to understand why the identification in Eq. (21)) is illegitimate. To begin with, Einstein’s, or even
Bell’s own notion of local-realism, does not, by itself, demand this identification. Since this notion is captured already
in the very definition of the functions </ (a, \x) [7], together with the procedure by which we have arrived at the
averages in ((19)), the LHS of the identification satisfies the demand of local realism perfectly well. Nor can the
statistical equivalence between (|18)) and we have granted to arrive at the LHS of justify its replacement with
the single average on its RHS, at the expense of what is physically possible in the actual experiments. To be sure, just as
mathematically there is nothing wrong with von Neumann’s physically unjustified identification @D, mathematically
there is nothing wrong with the identification of four separate averages in with a single average in . Indeed,
every schoolchild knows that a sum of averages is equal to the average of the sum. But this rule of thumb is not valid
in the above case, because (a, b), (a, b’), (a’, b), and (a’, b’) are mutually exclusive pairs of measurement directions,
corresponding to four incompatible experiments. Each pair can be used by Alice and Bob for a given experiment, for
all runs 1 to n, but no two of the four pairs can be used by them simultaneously. This is because Alice and Bob do not
have the ability to make measurements along counterfactually possible pairs of directions such as (a, b) and (a, b’)
simultaneously. Alice, for example, can make measurements along a or a’, but not along a and a’ at the same time.

But this inconvenient fact is rather devastating for Bell’s argument, because it means that his identification
is illegitimate. Consider a specific run of the EPR-Bohm experiment we started out with and the quantity being
averaged in :

.ka(a) %k(b) + Mk(a) %k(b/) + .dk(a') %k(b) - ,ka(a/) %k(b/) (25)

Here the index k = 1 now represents a specific run of the experiment. But since Alice and Bob have only two particles
at their disposal for each run, only one of the four terms of the above sum is physically meaningful. In other words,
the above quantity in is physically meaningless, because Alice, for example, cannot align her detector along a
and a’ at the same time. And likewise, Bob cannot align his detector along b and b’ at the same time. What is more,



this will be true for all possible runs of the experiment, or equivalently for all possible pairs of particles. But that, in
turn, implies that all of the quantities listed below, as they appear in the average , are unobservable, and hence
physically meaningless:

o (a) Bi(b) + i(a) B1(D') + A (a) Zi(b) — A (a) Z1 (D),
o(a) Ba(b) + oh(a) Ba(b') + (') Ba(b) — h(a’) Ba(b'),
() By(b) + aty(a) B(b) + Ho(al) By(b) — chy(al) B(b)
oy(a) Ba(b) + H(a) Ba(b') + H(a') Ba(b) — ui(a’) Bu(b'),

Ap(a) Bn(b) + o (a) B, (b') + (") Bu(b) — o, (a') #, (D).
But since each of the quantities above is physically meaningless, their average appearing on the RHS of , namely
( (@) Br(b) + Sh(a) Zu(b) + (@) Zi(b) — (@) Bi(b) ), (26)

is also physically meaningless. That is to say, no physical experiment can be performed — even in principle — that
can meaningfully allow to measure or evaluate the above average, since none of the above list of quantities could have
experimentally observable values. Therefore, the innocuous looking identification of Bell is, in fact, illegitimate.

In the extensive literature on Bell’s theorem the identification is often justified on the grounds of “counterfactual
definiteness”, a variant of realism. But, as we will see in more detail at the end of the next section, such a justification
also does not hold water. It is usually argued in this regard that, because each of the four results appearing in the
summation being averaged in is at least counterfactually realizable, the quantity (25| representing their sum is
also counterfactually meaningful. However, this argument is mistaken. While each of the four results appearing in
the summation being averaged in is indeed realizable counterfactually, the quantity representing their sum
cannot be realized even counterfactually, precisely because only one of the four results can be realized actually in a
given run of the experiment. But this implies that, because the LHS of the identification is a sum of actually
realizable averages, the identification amounts to asserting

physically meaningful quantity = physically meaningless quantity. (27)

Moreover, as noted in the paragraph after Eq. (24)), it is not possible to prove Bell’s theorem formally without taking
the step (21)). Without this step, the horse is brought to the waterhole but it fails to drink the water — i.e., without this
step, the bounds on the CHSH correlator cannot be tighter than +4. But the absurdity of the equality suggests
that local realism is not implemented correctly in the proof of Bell’s theorem. It compels us to search for a physical
quantity that is at least counterfactually realizable so that the RHS of Eq. can be corrected, as we shall do next.

IV. COMPARING THE OVERSIGHTS IN THE THEOREMS OF VON NEUMANN AND BELL

Now, to compare Bell’s oversight we just discussed with von Neumann’s oversight discussed in Section [T} let us
view the measurement result &7 (a, Ay) #(b, A\x) = +1 or —1, simultaneously observed by Alice and Bob at remote
stations, as a specific eigenvalue Z(a, b, \) of the observable R(a, b) =01 -a ® o3 - b in the quantum mechanical
singlet state

) = = {Im +1 @, =2 = o, =)y @[, )} (28)

Here n is an arbitrary unit direction in space, subscripts 1 and 2 refer to particles 1 and 2, and the eigenvalue equation
o-njn, +) = £|n, &) (29)

determines the quantum mechanical eigenstates in which the particles have spin “up” or “down” in the units of & = 2,
with o being the Pauli spin “vector” (o4, oy, 0.). As before, our interest lies in comparing the quantum predictions
of spin correlations between the constituent fermions with those derived within some locally causal dispersion-free
theory [7]. For that purpose, we make the following identifications between the notations used in Sections [[I and

o (a, \,) B(b, \i) = Z(a, b, \;) = 1 is an eigenvalue of the observable R(a,b) =01 -a ® 03 -b 30)
o (a, \) B(D', \) = L (a, b', \x) = 1 is an eigenvalue of the observable S(a, b’) =071 -a ® o2-b’ 31)
(@', \p) B(b, \y) = 7(a’, b, \x) = £1 is an eigenvalue of the observable T (a’, b) =01 -a' @ 03 b 32)
o (a', \g) BB, \p) = % (', b/, A\r) = £1 is an eigenvalue of the observable U(a’, b’)=0;,-a’ @ o2-b’. (33)

(
(
(
(



With these identifications we can now rewrite the CHSH correlator for n>1 as a sum of the average values as

E(a,b) + E(a, b') + @, b) — E@, b') = % > RO+ % >+ % ST -

k=1 k=1 k=1

3=

Su(n)  (34)
k=1

by setting the scalar coefficients appearing in and @D toa=0=c=+1 and d = —1, and, similarly, the RHS of

Eq. as

<.52/k(a) %k(b) + .ka(a) %k(bl) + ﬂk(a/) %k(b) - ﬂk(a’) ,@k(b/) > = % Z {%()\k)ﬁ-y()\k)-i-y()\k)—%()\k)}, (35)

k=1
so that Bell’s assumption can be rewritten as
1< 1< 1< R 1<
- ];%(Ak) + - kz_:lyi(xk) + - kz_:l 7 () — — }; U (M) =~ kz_:l {Z2(\) +-7 (W) + T (\) =% (M)} (36)

Now, as we discussed in the previous two sections, mathematically this assumption — without which the stringent
bounds of —2 and +2 on the CHSH correlator cannot be derived — is a trivial identity. But is it meaningful
physically? To answer this question, note that the spin observables R(a, b), S(a, b’), T(a’, b), and U(a’, b") defined
in to do not commute with each other [I1]. Consequently, in parallel with the discussion in Section in
the dispersion-free counterpart |1y, A) of the state (28) the result of the measurement of their sum R +S + 7T — U,
or the eigenvalue of the observable R + S + 7 — U, will not be the sum Z(\;) + -7 (Ax) + T (\x) — Z (\g) of the
individual eigenvalues:

(thny M {R + S+ T = U} thn, Ak ) # Z (M) + 7" (M) + T (M) = % (Ak), (37)

and therefore — as proved in Appendix [A] for arbitrary a, b, ¢, and d — the quantum mechanical expectation value

n

(R4 S+ T~ U um) # = 3 AR + 7 O0) + TOw) — % (M)} (39)

k=1
But in the light of , , and the identifications of the observables in to , this lack of equivalence implies

n

% S 0w) + % zn: SO + % Zn: T() — % zn: Y £ % zn: (B0 + SO0+ TOw) -2 (W)} (39)
k=1

k=1 k=1 k=1 k=1

Consequently, the assumption , or equivalently the assumption , is physically wrong. As a result, the stringent
bounds of +2 on the CHSH correlator derived on the basis of this assumption are also wrong. It is not at all surprising
that they are violated in the Bell-test experiments [28]. It is also important to note that in arriving at this conclusion
we have not compromised either locality or realism. We have merely brought out a flaw in the logic of Bell’s argument.

In summary, since Bell’s theorem, above all, is a theorem against a class of hidden variable theories, it is no different,
in this regard, from von Neumann’s theorem [6]. Consequently, it too pertains to simultaneous (albeit contextual [I1])
assignment of definite values to all of the observables of a relevant quantum system, thereby making the corresponding
hidden variable theory compatible with realism [2], or counterfactual definiteness [27]. The notion of realism demands
that every observable of a given physical system must possess a definite value as a preexisting property, whether or
not it is actually observed (“the moon exists whether or not it is observed”). Therefore, the first requirement of any
hidden variable theory, whether it is local or nonlocal, is simultaneous assignment of definite values to all observables
of a given physical system. But as we saw in the previous section, realism is not implemented correctly in the proof
of Bell’s theorem. For it to be implemented correctly, the quantity being averaged on the right-hand side of Eq.
would have to be realizable at least counterfactually. Now there are five observables associated with the Hilbert space
of the singlet systems investigated in the Bell-test experiments; namely, R, S, T, U, and

X=R+S+T-U=01-a® {o2-b+02-b'} +01-a" @ {o2-b — 0y-b'}. (40)

Among these, X is never observed in the experiments we considered in Section [l But it does exist as a self-adjoint
operator in the corresponding quantum theory. According to von Neumann’s Hilbert space formulation of quantum
mechanics [I} [, B], a sum of self-adjoint operators such as X = R + & + T — U is also a self-adjoint operator
in the corresponding Hilbert space. Moreover, the correspondence between self-adjoint operators and observables
is one-to-one [Il [Bl 25]. Therefore, realism demands that all five of the above observables must possess preexisting
values, whether of not they are observed. And within any hidden variable theory these values must be one of the



eigenvalues of the corresponding quantum mechanical operators, as explained in Section [[Il Now Bell’s theorem,
perhaps unintentionally, does assign a definite value to X, but the value it ends up assigning is

%(Ak) + y()\k) + 9()\/9) - %()\k) = ssz(a) <%k(b) + ﬂk(a) ggk(b/) + ,ka(a/) %k(b) — dk(a’) %k(b/), (41)

which is not the correct eigenvalue of X. As we have derived in the Appendix [A] below, the correct eigenvalue of X is

20w = {200 + 200 + TOw) - 200 + (9]Y]9), (42)

which is a highly nonlinear function of (¢ | V| ) and the linear sum { Z(Ax)+.% (Ae)+.7 (i) —% (k) } of eigenvalues
X MN)y, L (Ak), T (M), and —% (M), necessitating the inequality , as we have proven in Appendix More
importantly, 2 (Ag) is at least a counterfactually realizable result, because it is a bona fide eigenvalue of X'. Therefore,
the corrected version of the identification , with the correct implementation of local realism, would be via the
following replacement on its RHS:

BN +FO0) + T = 2 () — { B + 700 + T =200} + (01 V[0).  (43)

But since (¢ | Y |1¥) # 0 in general, the absolute bounds on the CHSH correlator would then exceed 2 in general.

It is evident from the above discussion that the physically unjustified assumption Bell’s theorem depends on is
homologous to the additivity assumption @D von Neumann’s theorem depends on. This conclusion, however, holds only
for non-commuting observables. In exact analogy with von Neumann’s assumption @[), the RHS of the identification
(36) is physically meaningless only for non-commuting observables. Consequently, it may be tempting to conclude that
Bell’s theorem is valid but only excludes hidden variable theories corresponding to commuting observables. However,
the relevant quantum mechanical observables do not commute even for the singlet state. Therefore, the trivial case of
commuting observables is physically uninteresting. On the other hand, when the relevant observables do commute,
the eigenvalue reduces to , thereby recovering the incorrect implementation of local realism posited by Bell.

V. CORRECT LOCAL-REALISTIC BOUNDS ON THE CHSH CORRELATOR

In the previous section we saw that Z(Ar) +.7 (Ai) + 7 (M) — % (M) is not one of the eigenvalues of the observable
X, and therefore it cannot be used to work out the correct local-realistic bounds on the CHSH correlator. Indeed, as
we saw in Section the extreme values of Z(\) + -7 (Ai) + 7 (M) — % (\i) are —2 and +2, leading to the incorrect
bounds on the CHSH correlator (L5 because of the physical incompatibility between and . Fortunately,
the correct local-realistic bounds on the CHSH correlator can be easily worked out by working out the extrema of the

expectation (or average) value of the operator X’ defined in , and they work out to be —2v/2 and +2v/2 as follows:

Let 2" (M) # Z(Ar)+-L (\i) + T (\i) — % (Ar) be an eigenvalue of the observable X specified in (40]). In Section [ITI]
we saw that X is not observable in a typical EPR-Bohm experiment involving only two particles per run. However,
as a self-adjoint operator on the Hilbert space of the composite system, it is an observable in theory, according to von
Neumann’s Hilbert space formulation of quantum mechanics. Therefore, regardless of whether X is actually measured
in the experiment, in the dispersion-free counterpart |y, A) of | ¢y ) we would have

<¢1’17 Ak ‘ Xlwru >\k> = %()\k) (44)

Consequently, the quantum mechanical expectation value of X can be recovered by uniform averaging over A as before:

1< 1<
(Un [ X[tn) =~ (U A X |, Ai) = — 30 27 (). (45)
k=1 k=1
Using , the relation can then be corrected to give the following relation that is immune to a Bell-type criticism:
li%@)+3§n:y(A)+1iy(x)fli%(x)—li%u) (46)
"= ’ "= ’ "= ' "= ' 7nk:1 "

which is a special case of the general relation for hidden variable theories with the scalar coefficients appearing
in and set to a = b =c¢ =41 and d = —1. Unlike (36, this is the correct dispersion-free counterpart of
the quantum mechanical relation among the operators R, S, 7, U, and X. Unlike that between and @D
brought out by Bell [I1], there is no physical incompatibility between the linear relationship among the quantum
mechanical expectation values and its dispersion-free counterpart .
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Now, one way to derive the correct bounds on the CHSH correlator (15]) is by recalling from our discussion leading
to Eq. that —2 < Z(\x) + L (M) + T (M) — % (M) < +2 and by establishing that —4 < (¢ [V [v¥) < +4,
so that the eigenvalue 2" ()\;) expressed in 1D can be deduced to be bounded by +2v/2. Since these bounds would
hold for each A, the CHSH correlator , or equivalently the LHS of Eq. , would also be bounded by —2v/2

and +2v/2. However, it is cumbersome to establish that —4 < (| |#) < +4. Therefore, we will employ a simpler
method to derive these bounds:

Note that local commutativity of the operators acting on the spacelike separated subsystems 1 and 2 dictates that
[01-a,02-b]=0 V a and b. (47)

Moreover, we have the identities
(01-a)* = (013 ) =(62-b)? = (02-b)? =1, (48)
where 1 is a 2 x 2 identity matrix. For the next steps, it is convenient to introduce the following Tsirel’son operator,
P % (01 a (172.10\272.10'))2+ % <¢71 o (02.1)\/;2.10’))27 (19)
which is a sum of squared Hermitian operators and therefore its expectation value in any state would be non-negative:
(Yn]Z]¢n) >0. (50)
By expanding the RHS of Eq. and using the relations and , the Tsirel’son operator can be simplified to

Z=2/21-4X. (51)
Then, using the non-negativity of ( Z), it is easy to see that
Consequently, we have the desired bounds:
—2V2 < (Y | X |¥n) < +2V2. (53)

These are the extrema of the quantum mechanical expectation value (tn | X |1y ) of the operator defined in (40)).
However, according to the relations and , the above inequalities are equivalent to the inequalities

n

93 < {Tll i%’(AkH%iYWH%Z T () —
k=1 k=1

k=1

S|

3 %(Aw} < +2v8, (54)
k=1

giving the correct bounds on the CHSH correlator . In the notation of , they can be expressed as
—2v2 < &(a, b) + E(a, b') + £(a’, b) — £(a’, b') < +2V2. (55)

We have thus derived the quantum mechanical Tsirel’son bounds [29] in a purely local-realistic, dispersion-free setting.
Needless to add, these corrected bounds on the CHSH correlator have never been violated in any Bell-test experiments.
Therefore, far from ruling out local realism, the experimental violations of the stringent bounds of +2 on the CHSH
correlator derived in Section [lIl rule out Bell’s assumption of the additivity of expectation values represented by
Eq. , or equivalently by Eq. (36)

Not surprisingly, the above conclusion is further supported by the independent derivations in references [20H22] of
the bounds derived in within a manifestly local-realistic 3-sphere model [I7, 18] (cf. Fig. [I):

—2vV2 < E(a, b) + E(a, b)) + @, b) — £(@', b)) = — cOSTab — COSNab/ — COSTarb + COSTarby < 2V2, (56)

where 7ap, Mab’, Mab, and Nap are the angles between respective detector directions Alice and Bob can choose
counterfactually. The above inequalities can be easily verified by considering, for example, the following extreme
values of the angles: nap, = 45°, Nap = 45°, Narb = 45°, and Nay = 135°. In this model the results o/ (a, A) = £1 and
%(b, \) = £1 observed remotely by Alice and Bob are taken to be limiting scalar points of a quaternionic 3-sphere,
53, taken as a model for the three-dimensional physical space, instead of its usual model as IR?, and the correlations
E(a, b) between their results are calculated using the prescription

1
EPR :
& "(a,b) = lim |~

o kY B(b, \F)| = — ab -
lim ”,; (a, \") Z(b, \") COS Nab (57)
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FIG. 1: A graph of the singlet correlations predicted by the local-realistic 3-sphere model presented in [18] 20H22]. The x-axis
depicts the angle in degrees between the vectors a and b freely chosen by Alice and Bob and the y-axis depicts the value of the
correlations. The dotted straight lines represent classical correlations predicted by Bell’s theorem for any local-realistic model.

Needless to say, this local-realistic model provides a constructive counterexample to Bell’s theorem, complementing
the critique of its formal aspects presented in the current paper. Its upshot is that the strong correlations we observe
in Nature have little to do with quantum entanglement per se. Rather, they are consequences of the compact geometry
and topology of the physical space we live in; namely, of the quaternionic 3-sphere [21, 22]. In fact, any hidden variable
model based on the functions &/ (a, \) = £1 and (b, A\) = %1 respecting the conditions of local causality specified
in Section [[T]] that reproduces the singlet correlations calculated using the above prescription would have the desired
local-realistic properties. There would be no need to consider or investigate any Bell-type inequalities for this purpose.

VI. CONCLUDING REMARKS

We have compared the mistaken assumptions in the respective theorems of von Neumann and Bell against hidden
variable theories and found them to be homologous. While Bell’s theorem concerns a rather restricted class of locally
causal theories, both theorems claim to rule out theories based on dispersion-free states by assuming the relationship

= Z R (\,) + Z (M) + Z T () + Z U (\i) = Z {aZ\e)+b.S M)+ T Ne)+d% (M)} @)

k_l k_l k_l k_l k:l

between expected values of observables to arrive at their respective conclusions. But, rather ironically, it is precisely the
requirement of hypothetical dispersion-free states that forces the above assumption to fail for hidden variable theories.
It is the very notion of realism — the idea that the outcomes of individual measurement events are predetermined, with
simultaneous assignment of definite values to all observables of a physical system — that forces the assumption @[) to
fail, as Bell himself has argued in his criticism of von Neumann’s theorem [I1]. In Section 3 of his paper Bell writes:

Thus the formal proof of von Neumann does not justify his informal conclusion. ... It was not the objective
measurable predictions of quantum mechanics which ruled out hidden variables. It was the arbitrary
assumption of a particular (and impossible) relation between the results of incompatible measurements
either of which might be made on a given occasion but only one of which can in fact be made [I1].

But that is precisely the mistake Bell himself has made in his own famous theorem [7, 26]. Bell’s theorem can be
proven only by considering three or four incompatible physical experiments involving mutually exclusive detector
directions. Since experiments along mutually exclusive detector directions cannot be performed simultaneously, they
amount to observing non-commuting observables. And for non- commuting observables of a system in a dispersion-
free state, the result of the measurement of a sum of the observables is not the same as the sum of the results of the
measurements of the individual observables in that sum [II]. Therefore, Bell’s assumption (2 , or equivalently .,
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does not hold for dispersion-free states, rendering the informal conclusion of the formal proof of his theorem invalid.
Paraphrasing Bell from the above quote, we can therefore conclude: It is not the objectively measurable predictions
of quantum mechanics that rule out the possibility of a local-realistic theory. It is the ad hoc assumption of three or
four physically incompatible experiments, any one of which might be performed on a given occasion, but only one of
which can, in fact, be performed in practice.

Fortunately, Bell’s oversight can be rectified by replacing the equality with the physically meaningful equality

1 n n

- >R+ % >SS+ % znj T (M) — % i: U (M) = % En: 2 (Ak), (46)
k=1

k=1 k=1 k=1 k=1

X =R+S+T —U. Consequently, unlike (21)) or (36)), this equality correctly implements local realism, which requires
simultaneous (albeit contextual) assignment of definite values to all observables of a physical system. Once this
correction is made to 1} the bounds on the CHSH correlator work out to be £2+/2 instead of £2, thereby mitigating
the conclusion of Bell’s theorem. Consequently, what is ruled out by Bell-test experiments [27] 28] is not local realism,
but the additivity of expectation values, or , which does not hold for hidden variable theories to begin with.

where 2" (A\x), unlike Z(A;) +-L (M) + T (\g) — %ﬁk), is one of the bona fide eigenvalues of the self-adjoint operator

Appendix A: Eigenvalue of a Sum of Non-Commuting Operators and the Proof of Eq. (11))

In this appendix we prove that the eigenvalue of the sum a R +bS + ¢T + d U of operators is not equal to the sum
aZ+bS +cT +d% of the individual eigenvalues of the operators R, S, T, and U, unless they commute with each
other. It is not difficult to prove this by first evaluating the square of the operator {a¢ R +bS + ¢T + d U} as follows:

{aR+bS+cT+dUHaR+bS +cT +dU} = a*R?* + abRS + acRT + ad RU
+baSR + b*S? + be ST + bd SU
+caTR+chTS+ AT +cdTU
+daUR + dbUS + deUT + d°U>. (A1)

Now, assuming that the operators R, S, 7, and & do not commute in general, let us define the following operators:

L:=SR-RS < SR=RS+L, (A2)
M:=TR-RT < TR=RT + M, (A3)
N =TS—ST « TS=8T +N, (A4)
O:=UR-RU < UR =RU+ O, (A5)
P=UT —TU < UT =TU+P, (A6)
and Q:=US — SU + US =SU+ Q. (A7)

These operators would be null operators with vanishing eigenvalues if the operators R, S, 7, and U did commute with
each other. Using the above relations for the operators SR, TR, TS, UR, UT and US, Eq. (Al]) can be simplified to
{aR+bS+cT +dUMHaR+bS+cT +dU} = a*R* + 2abRS + 2ac RT + 2ad RU
+ab L+ b*S? + 2bc ST + 2bd SU
+acM+beN + ET? +2edTU

+adO +bd Q + cdP + d*U? (A8)
={aR+bS+cT+dU}2 + Y, (A9)

where
YVi=abLlL+acM+bcN+adO+cdP+bdQ. (A10)

We have thus separated out the commuting part {a R +bS +¢T +dU}. and the non-commuting part ) of the
operator {a R +bS +¢T +dU}. Note that the operators £, M, N, O, P, and Q defined in to will not
commute with each other in general unless their constituents R, S, 7, and U themselves are commuting. Next, we
work out the eigenvalue 2 of the operator X := {a R +bS + ¢T +d U } in a state | ¢ ) using the eigenvalue equations

X|v)=2"[¢) (A11)
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and
XX|Y)=X{X|)} =X {2 )} =2 {X[¢)} = 27%|¢), (A12)

in terms of the eigenvalues #Z, ., 7, and % of the operators R, S, T, and U and the expectation value (¢ | V| ):

2 = JOTXX[E) = (W {aR+bS+cT +duU}>|vw) + (4| Y[9), (A13)

where we have used Eq. (A9)). But the eigenvalue of the commuting part {a R +bS + ¢T + d U}, is simply the linear
sum aZ+b.S 4+ ¢ +d% of the eigenvalues of the operators R, S, T, and U. Consequently, using the equation
analogous to 1) for the square of the operator {aR +bS+cT+dU }c we can express the eigenvalue 2" of X' as

Z=\{aR+bS +cT +dw Y+ (|V]¥). (A14)

Now, because the operators £, M, N, O, P, and Q defined in Egs. (A2)) to (A7) will not commute with each other in
general if their constituent operators R, S, 7, and U are non-commuting, the eigenvalue % of the operator ) defined
in (A10) will not be equal to the linear sum of the corresponding eigenvalues &, .#, A, 0, &, and 2 in general,

Y 4abl +acll +beN +ad0+cd P +bd 2, (A15)

even if we assume that the operators X and Y commute with each other so that (¢ | Y | ) = & is an eigenvalue of Y.
That is to say, just like the eigenvalue 2" of X, the eigenvalue % of ) is also a nonlinear function in general. On the
other hand, because we wish to prove that the eigenvalue of the sum a R +bS + ¢ T + d U of the operators R, S, T,
and U is not equal to the sum a Z + b. + ¢ + d % of the individual eigenvalues of the operators R, S, T, and U
unless they commute with each other, we must make sure that the eigenvalue % does not vanish for the unlikely case in
which the operators £, M, N, O, P, and Q commute with each other. But even in that unlikely case we would have

Y =ab?+acH +bcHN +ad0+cdP +bd 2 (A16)
as eigenvalue of the operator ) defined in (A10)), and consequently the eigenvalue 2" in (A14)) will at best reduce to

2= \{aB S T +dUY b L acl +be N +adO+cd P +bd 2. (A17)

In other words, even in such an unlikely case ¢ will not vanish, and consequently the eigenvalue 2~ will not reduce to
X =aRZ+bS +cT +du. (A18)

As a result, we can now prove Eq. of Section [Tt Unless (| Y |¥) = 0, the average of the eigenvalue 2" will be

(110 = T3 200 = = 30\ {a@O0) 405 0n) + e T ) +du O} + (6 [V 0 M) (A19)
k=1 k=1

” %Z \/{a%’()\k) FbS ) + e T) +d% (M)} + F () i [X, V] £0 (A20)

k=1

£ %zn: {aZ(0) +b.S M) + ¢ T ) +dU N YL, M, N, 6, P, 2+ 0. (A21)
k=1

This proves Eq. (11) discussed in Section [lT} Note that, because 2" (A\x) and (¢ |V | ) are highly nonlinear functions

in general (recall, e.g., that \/22 + 32 # Va2 £ 1/42), the inequality in 1) can reduce to equality if and only if
the operators R, S, 7, and U commute with each other. In that case, the operators £, M, N/, O, P, and Q defined in
(A2) to (A7) will also commute with each other, as well as being null operators, with each of the eigenvalues &, #,
7, 0, &, and 2 reducing to zero. Consequently, in that case (¢ |) |+ ) will vanish identically and will reduce
to . In particular, for the CHSH correlator for whicha=b=c=+1and d = —1, will simplify to

%()\k) =Z (M) + S (M) + y()\k) — %()\k) (A22)

It is this eigenvalue 2 (A\x) in (A22)) that has been implicitly and unjustifiably assumed in the proof of Bell’s theorem.
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