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Abstract

An adequate account of laws should satisfy at least five desiderata: it should pro-
vide a unified account of laws and chances, it should yield plausible relations between
laws and chances, it should vindicate numerical chance assignments, it should accom-
modate dynamical and non-dynamical chances, and it should accommodate a plausi-
ble range of nomic possibilities. No extant account of laws satisfies these desiderata.
This paper presents a non-Humean account of laws, the Nomic Likelihood Account, that
does.

1 Introduction

This paper defends a new account of laws, the Nomic Likelihood Account. The motiva-
tion for this account comes from the desire for an account that satisfies five desiderata,
desiderata I take to be necessary conditions on an adequate account of laws. Roughly,
these desiderata are (1) providing a unified account of laws and chances, (2) entail-
ing plausible relations between laws and chances, (3) explaining why chance events
deserve the numerical values values we assign them, (4) accommodating both dynam-
ical and non-dynamical chances, and (5) accommodating a plausible range of nomic
possibilities.

The Nomic Likelihood Account satisfies all of these desiderata. In broad strokes,
the nomic likelihood account proceeds as follows. First, it posits a single fundamental
nomic relation — the “nomic likelihood” relation — which satisfies certain constraints.
Then it characterizes laws and chances in terms of this relation. So on this account,
laws and chances end up being things that encode facts about the web of nomic like-
lihood relations.

I'll present the Nomic Likelihood Account in a largely theory-neutral manner. The
main assumption I'll make, following |Lewis| (1983), is that there’s a special subset of
properties, the perfectly natural or fundamental properties, that fix all qualitative truths.
Thus to describe what the world is like, it suffices to describe what there is and what
fundamental properties those things have. And to provide an adequate account of
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some important feature of the world, one must ultimately be able to spell it out in the
language of fundamental propertiesﬂ

Here is a road map for the rest of this paper. In section [2 I spell out the desider-
ata on an adequate account of laws sketched above. After presenting and motivating
these desiderata (section[2.T), I suggest that none of the extant accounts of laws satisfy
these desiderata, and show how several popular accounts fail to do so (section [2.2).
In section 3} T offer an intuitive sketch of the Nomic Likelihood Account. In section 4},
I present the nomic likelihood relation and the constraints I take this relation to sat-
isfy. In section[5] I present a representation and uniqueness theorem showing that the
pattern of instantiations of the nomic likelihood relation can be uniquely represented
by things that look a lot like laws and chances (section [5.I). This theorem has some
unique features that are of independent interest — it can distinguish between nomi-
cally forbidden events and chance 0 events that aren’t nomically forbidden (e.g., an
infinite number of fair coin tosses landing heads), and it doesn’t employ the kind of
“richness” assumptions that such theorems typically require. Using these results, I
propose an account of laws and chances (section [5.2), describe some features of laws
and chances that follow from this account (section [5.3), and apply the account to a
toy example (section [5.4). In section [6} I show how the Nomic Likelihood Account
satisfies the desiderata described above. In section[7], I consider some worries for the
Nomic Likelihood Account. I conclude in section[8] Appendices and [C] contain
proofs of the main results.

2 Desiderata For An Adequate Account of Laws

2.1 The Desiderata

I'll now present five desiderata that I think must be satisfied by any adequate account
of laws. While I'll briefly motivate these desiderata, I won’t engage in an extended
defense of them here. Those who are inclined to contest some of these desiderata can
understand my case for the Nomic Likelihood Account as taking conditional form: if
one takes these to be desiderata for an adequate account of laws, then we have reason
to accept something like the Nomic Likelihood Account.

Desideratum 1. An adequate account should provide a unified (and appropriately
discriminating) account of laws and chances.

An adequate account of laws should provide a unified account of laws and chances.
It should allow for both probabilistic and non-probabilistic laws, and it should recog-
nize non-probabilistic laws as a limiting case of probabilistic laws. That is, it should

1Some have argued that instead of taking the distinction between fundamental and non-fundamental
properties to be primitive, one should take something like a grounding relation to be primitive, and charac-
terize the fundamental properties in terms of this grounding relation (e.g., see Schaftfer| (2009)). I take what
I say here to be largely compatible with such an approach.
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recognize that nomic requirements/forbiddings and chances are of a kind, differing
only on where they lie on the spectrum of nomic likelihood, with nomic requirements
at one end, nomic forbiddings at the other, and non-trivial chances in-between. More-
over, it should do this without conflating being nomically required/forbidden with
having a chance of 1/0. After all, there are events that have a chance of 0 that aren’t
nomically forbidden (e.g., infinitely many fair coin tosses landing heads), and events
that have a chance of 1 that aren’t nomically required (e.g., infinitely many fair coin
tosses not all landing heads)E]

Desideratum 2. An adequate account should yield plausible connections between
laws and chances, laws and other laws, and chances and other chances.

An adequate account of laws should yield plausible relations between laws and
chances, laws and other laws, and chances and other chances. For example, it should
entail that nomically required events have a chance of 1. It should entail that some-
thing can’t be nomically forbidden and nomically required at the same time. And it
should say something about how the dynamical chances at one time are related to the
dynamical chances at another.

Desideratum 3. An adequate account should describe what, at the fundamental level,
makes it the case that chance events deserve the numerical values they’re as-
signed.

An adequate account of laws should provide a satisfactory explanation for why
chance events deserve the numerical values we assign them. That is, it should provide
an account of the metaphysical structure underlying chances that explains why these
numerical assignments are a “good fit” with the underlying metaphysical reality.

To get a feel for what this desideratum requires, let’s consider an unsatisfactory
attempt to meet this demand. Suppose one tried to satisfy this desideratum by stip-
ulating that, as a primitive fact, the world has a nomic disposition of 0.6 strength to
bring about one state of affairs given some other state of affairs. What, at the funda-
mental level, does this posit amount to?

At first glance, this would seem to amount to positing a fundamental “nomic dis-
position” relation between one state of affairs, another state of affairs, and the number
0.6. But it’s implausible to think that, at the fundamental level, the chance facts boil
down to relations to numbers of this kind. After all, the choice to assign chances val-
ues between 0 and 1 is purely conventional; we could assign chances using values
between 0 and 2, or 0 and 0.5, just as wellﬂ A more plausible story would provide

2] speak loosely here of chance events, but it will be more convenient to follow Lewis| (1980) and take
the objects of chance to be propositions. That said, little of importance hangs on this; see section [/| for a
discussion of some of the ways in which one can modify the account defended here to fit one’s particular
ontological sensibilities.

3For further worries regarding such appeals to fundamental relations to numbers, see section 4 of Eddon
(2013a) and [Eddon|(2013Db).



some non-numerical relations whose structure justifies these numerical assignments.
But this would, of course, require saying more than simply stipulating the existence
of a nomic disposition of a certain numerical strength.

Desideratum 4. An adequate account should be able to accommodate both dynami-
cal and non-dynamical chances (like those of statistical mechanics)

An adequate account of laws should be able to accommodate both dynamical
chances — such as those of the GRW interpretation of quantum mechanics — and non-
dynamical chances — such as those of statistical mechanicsﬂ Since statistical mechan-
ical chances are macrostate-relative and compatible with determinism, it follows that
an adequate account of laws should be able to make sense of macrostate-relative
chances and non-trivial chances at deterministic worlds|

Desideratum 5. An adequate account should be able to accommodate plausible nomic
possibilities.

An adequate account of laws should be able to make sense of a plausible range of
nomic possibilities. For example, it should be able to make sense of laws concerning
particular locations, times, or objects, like the Smith’s garden case discussed by Tooley
(1977). It should be able to make sense of uninstantiated laws, such as worlds where
F = ma is a law but there are no massive objects. It should be able to make sense
of world in which there is only one chance event — a coin toss, say — with a chance
of 0.6 of landing heads and a chance of 0.4 of landing tails. And it should be able to
distinguish such a world from an otherwise identical world in which the chance of
heads is 0.7 and the chance of tails is 0.3.

While this is a desideratum that many accounts of laws and chances fail to fully
satisfy (see section [2.2), it’s most notably violated by Humean accounts — accounts
on which the laws and chances supervene on the distribution of local qualities. For
example, such accounts cannot make sense of uninstantiated laws, nor can they dis-
tinguish between worlds which differ only with respect to their chance assignments.

4Dynamical chances, or transition chances, are chances of the world evolving from some state S at one
time into another state S’ at another. Non-dynamical chances are chances that can’t be thought of in this way;
chances of the initial conditions being a certain way are a standard example (though see [Demarest| (2016)
for a discussion of how to reinterpret such chances dynamically).

>The claim that an adequate account of laws should be able to accommodate non-dynamical chances is
somewhat contentious, but it’s been defended by a number of people, including [Loewer| (2001), Meacham
(2005), Winsberg| (2008), |Frigg & Hoefer| (2010), Strevens| (2011), Emery| (2013), Handfield & Wilson| (2014),
and [Elliott| (2018).

®Some have suggested understanding non-dynamical chances, such as those of statistical mechanics,
as measures of rational indifference. If one adopted this stance, then one could dispense with this fourth
desideratum, since one would only need an account of laws to accommodate dynamical chances. But
there are well-known reasons for being skeptical of this understanding of statistical mechanical chances.
For some of these reasons, see [Strevens| (1998), |Albert (2000), Loewer| (2001), North| (2010), and [Meacham
(forthcoming); for a survey of this debate, see Meacham) (2010).
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Humeans take this to be a bullet worth biting in order to avoid positing fundamental
nomic properties or powers. As such, Humeans won'’t take desideratum 5 to be a re-
quirement on an adequate account of laws, even though they might concede that failing
to accommodate plausible nomic possibilities is a mark against their view. The debate
between Humeans and non-Humeans is a long one, and I won't attempt to settle it
here. Instead, I'll simply side with the non-Humeans, and assume that desideratum 5
is a requirement on an adequate account of laws.

2.2  Other Accounts

To my knowledge, no existing account of laws satisfies the five desiderata described
above. Due to space constraints, I won't try to provide an exhaustive discussion of
the existing accounts and why they fall short. Instead, I'll just briefly discuss seven
prominent accounts, and flag the desiderata that each fails to satisfy.

1. Carroll’s (1994) primitivist account fails to satisfy desiderata 2 and 3. Carroll’s
account takes what the laws and chances are to be primitive. But simply stating that
such-and-such laws and chances hold doesn’t suffice to tell us what relations can
hold between laws/chances and other laws/chances (desideratum 2). For example,
it doesn’t tell us anything about how the dynamical chances at one time should be
related to the dynamical chances at another.

Likewise, simply stating that it's a primitive fact that a certain event has a chance
of 0.6 doesn’t provide a plausible story for what, at the fundamental level, makes this
event deserve this numerical assignment (desideratum 3). At first glance, the claim
that it’s a fundamental fact that a certain event has a chance of 0.6 seems to be assert-
ing that some kind of fundamental relation holds between that event and a number.
But as we saw in section [2.T) this story is deeply implausible. Alternatively, one might
understand claims about numerical chance assignments as concise ways of describ-
ing some more fundamental non-numerical structure that underlies these numerical
assignments. But such a story requires a description of what this more fundamen-
tal non-numerical structure is, and Carroll’s account doesn’t provide us with these
details /]

2. |Lewis(s (1994) best system account of laws fails to satisfy desiderata 4 and 5.
Lewis’s account requires all chances to be dynamical chances, and so fails to satisfy
desideratum 4f] And as a Humean account — an account which takes the laws to
supervene on the distribution of local qualities — it fails to satisfy desideratum 5, since
it’s unable to accommodate a plausible range of nomic possibilities. For (as we saw
in section 2.1)) there are plausible nomic possibilities — such as pairs of worlds that are

’Maudlin's (2007) primitivist account doesn’t satisfy desiderata 2 and 3 for similar reasons. Maudlin’s
account also fails to satisfy desiderata 4 since it takes all chances to be dynamical chances. But Maudlin
takes this to be a feature, not a bug.

8Though there are variants of Lewis’s proposal that allow for such chances; e.g., see [Loewer| (2001),
Winsberg| (2008)), and [Frigg & Hoefer| (2010).



identical with respect to the distribution of local qualities but different with respect to
the chances — that Humean accounts cannot recognize.

3./Armstrong/s (1983) universalist account fails to satisfy desiderata 2, 3 and 5. On
one natural reading of Armstrong’s account, it takes the nomic facts to be entailed
by infinitely many fundamental necessitation relations — each intuitively correspond-
ing to a different chance value — which hold between pairs of fundamental properties
(universals) F and Gﬂ Armstrong’s account fails to satisfy desideratum 3 because it
doesn’t provide these necessitation relations with any structure that would justify one
numerical assignment over any other. For example, nothing about the account tells us
whether the necessitation relation N, is stronger than the necessitation relation Nj, or
whether N, is closer in strength to Nj than N, or whether N, is twice as strong as Nj,.
In a similar vein Armstrong’s account fails to satisfy desideratum 2, since it doesn’t
say enough about these necessitation relations to determine what, for example, the re-
lation between dynamical chances at different times is. Finally, Armstrong’s account
rules out plausible nomic possibilities (desideratum 5), since it rules out the possibil-
ity of worlds with uninstantiated laws or chances (such as a world where Newton’s
gravitational force law holds but there are no masses)

4-5. Swoyer(s (1982) necessitarian account and [Lange[s (2009) counterfactual ac-
count both fail to satisfy desiderata 1, 2 and 3. While these accounts differ in a number
of ways, they are similar in that they both don’t take chances to be part of the laws.
Instead, they take chances to be just another quantitative property like mass or charge,
and their accounts say little more about what chances are like. As a result, these ac-
counts fail to satisfy the first three desiderata: they fail to provide a unified account
of laws and chances (desideratum 1), they fail to yield plausible relations between
laws/chances and other laws/chances (desideratum 2), and they fail to explain what,
at the fundamental level, makes chance events deserve the numerical values they’re
assigned (desideratum 3)EI

The preceding discussion suggests that most extant accounts of laws have partic-
ular trouble satisfying desiderata 2 and 3. This is likely because these accounts have
largely focused on non-probabilistic laws, with probabilistic laws being something of
a sideshow. So I'll conclude by assessing two accounts of chances that do better with
respect to desiderata 2 and 3. Since these accounts are only intended as accounts of

9For a discussion of this and other ways of understanding Armstrong’s account of probabilistic laws,
see [Jacobs & Hartman| (2017). That said, for the purposes of this paper, figuring out the most plausible
reading of Armstrong isn’t important, since Armstrong’s account will fail to satisfy desiderata 2, 3 and 5 on
all of these readings.
19Tooley(s (1987) universalist account fails to satisfy the same desiderata, though Tooley’s account fails to
satisfy desideratum 5 for a different reason (namely, it's unable to make sense of laws regarding particular
locations, like Smith’s garden; see [Carroll (1994), Appendix A, footnote 6). Tooley’s account also takes all
chances to be dynamical chances, so it also fails to satisfy desideratum 4.
Lange's (2009) account does say some things about the relationship between laws and other laws, and
laws and chances (cf. section 3.7 of [Lange| (2009)), but says little about the relationship between different
chance distributions.



chance, they won’t provide a unified account of laws and chances (desideratum 1),
nor say everything we’d like about how laws/chances bear on other laws/chances
(desideratum 2). But it's worth seeing how they fare.

6. Suppes(s (1973) propensity account of chances fails to satisfy desiderata 1, 2 and
3, though it does better with respect to desideratum 3 than the other accounts we’ve
considered. Suppes takes an “at least as probable than” relation as primitive, imposes
certain constraints on this relation, and then uses these constraints to provide repre-
sentation theorems for various kinds of probabilistic phenomena, such as radioactive
decay and coin tossesF_ZI These representation theorems show, roughly, that one can
assign numerical values to chance events that will line up with the “at least as proba-
ble than” relation and satisfy the probability axioms.

Suppes’s account fails to satisfy desiderata 1 and 2 for the reasons given above —
since it only provides an account of chances, not laws and chances, it doesn’t provide
a unified account of laws and chances, or the relationships between them. Moreover,
Suppes’s account doesn’t provide a unified account of chances. For Suppes takes
different probabilistic phenomena to impose different kinds of constraints, and goes
on to provide different representation theorems for these different phenomena. Thus
Suppes’s account of chances is highly heterogeneousF_gl

Suppes’s account does better with respect to desideratum 3, making substantial
progress with respect to explaining what, at the fundamental level, makes chance
events deserve the numerical values they’re assigned. Unfortunately, it still falls short
of providing a satisfactory justification. For while Suppes’s approach yields a repre-
sentation theorem, it doesn’t yield the uniqueness theorem required to show that these
numerical representations are unique. Thus this account doesn’t justify our assigning
the particular numerical values that we do.

7. Konek(s (2014) propensity account of chances fails to satisfy desiderata 1, 2 and
5. Konek’s account employs a primitive “comparative propensity ordering” that satis-
ties certain constraints, and then uses these constraints to provide a representation and
uniqueness theorem. Thus we finally have an account which fully satisfies desidera-
tum 3 — an account that explains what, at the fundamental level, makes chance events
deserve the numerical values we assign them.

But Konek’s account fails to satisfy desiderata 1 and 2 for reasons we’ve already
seen — since it’s not an account of laws and chances, just chances, it doesn’t provide a
unified account of laws and chances, or describe the relations that hold between them.
Moreover, Konek’s account also doesn’t yield all of the relations between chances that
one would like. For example, it doesn’t say anything about how dynamical chances
at different times are related [

12See |Suppes| (1987).

13This is something Suppes takes to be a merit of his account. For he takes the expectation that there will
be some unified account in the offing to be wrong-headed. Like much of the contemporary literature, I'm
inclined to disagree.

140Of course, it would be unfair to raise any of this as a criticism of Konek. Konek’s goal is simply



Finally, Konek’s account fails to recognize some plausible nomic possibilities (desider-
atum 5). It seems possible for there to be a world with only one chance event —a coin
toss — with a chance of 0.6 of landing heads (cf. section[2.1). And this possibility seems
distinct from an otherwise identical world where the chance of heads is 0.7. But on
Konek’s account neither of these worlds are possible — the comparative propensity or-
dering facts that line up with these numbers will be too weak to yield a precise numer-
ical chance assignment, so Konek’s account will take such worlds to have imprecise
chances. And since the comparative ordering facts that line up with these numbers
will be the same in both worlds, Konek’s account can’t recognize these possibilities as
distinct.

3 The Nomic Likelihood Account (I): The Intuitive
Picture

Let’s start by sketching the intuitive picture behind the Nomic Likelihood Account.

It’s natural to think that laws and chances are of a kind. Deterministic laws tell us
that if one state of affairs obtains, then another state of affairs is nomically required to
obtain. Chances tell us that if one state of affairs obtains, then another state of affairs
has a certain nomic likelihood of obtaining. And nomic requirements and nomic like-
lihoods seem to be instances of the same kind of thing. Nomic requirements are just
what you get when you turn the nomic likelihood “all way up”.

Now, the nomic likelihood of one state of affairs given another is a quantitative
feature of the world. You can have different degrees of nomic likelihood. And these
degrees can be characterized in precise, numerical ways — one state of affairs can be
twice as likely as another, for example. So what undergirds these quantitative features
of the world? What's the metaphysical structure underlying nomic likelihoods?

The view I propose takes its cue from a popular account of quantitative properties
like massE] Consider an object that has a certain amount of mass. What undergirds
the fact that it has that quantity of mass? According to one popular account, it’s the
mass relations that hold between the object and all other massive objects. For example,
this object might be more massive than some objects, and less massive than others.
And it’s this web of mass relations that fixes the particular amount of mass the object
has. What it is for an object to have a particular amount of mass is just for it to bear
the right relations of this kind to everything else.

to show that proponents of propensity accounts of chances can provide a principled story for why they

expect propensities to satisfy the probability axioms. And just as it would be unfair to criticize Konek

for presenting a view which doesn’t provide an account of laws (since Konek wasn’t trying to provide

an account of laws), it would be unfair to criticize Konek for failing to yield relations between dynamical

chances at different times (since Konek wasn't trying to provide a comprehensive account of chances).
I5For a survey of different accounts of quantitative properties, see Eddon|(2013b).



The Nomic Likelihood Account adopts a similar approach to nomic likelihood. In
the case of mass, what bears a quantity of mass is an objectE In the case of nomic
likelihood, what bears a quantity of nomic likelihood is a pair of states of affairs —
given this state of affairs, there’s such-and-such likelihood of this other state of affairs
coming about. Or, if we factor in the fact that these likelihoods can vary from world
to world, what bears a quantity of nomic likelihood is a triple — a pair of states of
affairs and a world.

Now consider a triple that has a certain nomic likelihood — at this world, given this
state of affairs, there’s such-and-such likelihood of this other state of affairs coming
about. What undergirds the fact that this triple has that nomic likelihood? According
to the Nomic Likelihood Account, it’s the relations that hold between that triple and
all other triples that have nomic likelihoods. For example, this triple might be more
nomically likely than some triples, and less nomically likely than others. And it’s this
web of nomic likelihood relations that fixes the particular amount of nomic likelihood
this triple has. What it is for a triple to have a particular nomic likelihood is just for it
to bear the right relations to other triplesm

Of course, a satisfying account has to do more than just gesture at certain relations.
Return to the case of mass. A satisfying account of quantities of mass has to do more
than gesture at some mass relations. It has to tell us what these relations are, what
these relations are like, and how these relations vindicate taking masses to be quanti-
tative, i.e., vindicate assigning numerical values to these quantities in the way that we
do. And this is what accounts of quantitative properties like mass do. They propose
certain fundamental mass relations, present some “axioms” that describe how these
relations behave, and provide a representation and uniqueness theorem showing that
these relations vindicate our using numbers to represent the amount of mass things
have in the way that we do.

Providing a satisfying account of nomic likelihood requires doing something sim-
ilar. We need to spell out what the fundamental relations are, what these relations
are like, and how these relations vindicate assigning numerical values to chances in
the way that we do. This is what I'll do in the next two sections. I'll spell out the
fundamental nomic likelihood relation, present some “axioms” describing how this
relation behaves, and provide a representation and uniqueness theorem showing that
these relations vindicate our using numbers to represent amounts of nomic likelihood
in the way that we do. And with an account of nomic likelihood in hand, it’s straight-

16 Assuming we're taking objects to be world-bound. If we don’t, then since an object’s mass can vary
from world to world, we might take the bearer of mass to be an object and world pair.

7For those familiar with the literature on quantitative properties, the account of nomic likelihood de-
scribed here is analogous to the version of the first-order relations account of quantitative properties dis-
cussed by |[Eddon| (2013a)) that allows these relations to hold between individuals in different possible
worlds. An alternative way of developing the Nomic Likelihood Account is sketched in section [7]in the
discussion of the third worry. This alternative “two layer” account of nomic likelihood is analogous to the
second-order relations account of quantitative properties defended by Mundy|(1987) and Eddon|(2013a).



forward to provide an account of laws and chances.

While proponents of the Nomic Likelihood Account can remain neutral about
many metaphysical debates, it’s hard to sketch an intuitive picture of the view in a
theory-neutral manner. So I've made some assumptions in this section while pre-
senting the picture; for example, I've appealed to things like Chisholm-style states of
affairs. But these aren’t assumptions that the Nomic Likelihood Account is wedded
to; we'll return to discuss some alternative approaches in section@ﬁ

4 The Nomic Likelihood Account (II): The Posit

In this section I'll present the key posit of the Nomic Likelihood Account, the nomic
likelihood relation. In section [4£.1]I'll introduce the nomic likelihood relation. In sec-
tion 4.2/ I'll introduce some helpful terminology. In section |4.3/I'll describe the con-
straints (i.e., axioms) that I take the nomic likelihood relation to satisfy.

Two comments before we get started. First, in sectionI talked about nomic likeli-
hoods in terms of states of affairs. As it turns out, it will be formally more convenient
to characterize nomic likelihoods in terms of propositions instead of states of affairs.
But this is purely for convenience — we could formulate everything in terms of states
of affairs instead, albeit in a slightly clunkier Wayﬁ In what follows I'll assume that
a proposition can be identified with the set of possible worlds at which it’s true@
I'll take Q2 to be the set of all possible worlds, i.e., the trivially true proposition that
some possibility obtains, and I'll take @ to be the empty set, i.e., the trivially false
proposition that no possibility obtains.

Second, it’s worth saying something about the representation and uniqueness the-
orem this approach employs in order to help the reader understand the motivation
for some of the axioms. The measurement theory literature contains a number of
representation and uniqueness theorems which take an ordering relation that satis-
fies certain constraints, and show that there’s a unique numerical representation that
lines up with that relation. Given this, working out the axioms of the nomic likeli-
hood relation and providing a representation and uniqueness theorem for it seems
like a straightforward task. All that’s required to complete this project, it seems, is to
take one of these formal results and change its interpretation.

Unfortunately, none of the results in the literature can do the work required, for
two reasons. First, none of the results in the literature I'm aware of can distinguish
between having a probability of 1 and being required to be true. Or, given the inter-
pretation we’re interested in, can distinguish between having a chance of 1 and be-
ing nomically required. So while these results provide us with something to identify

18For example, we can replace the role of states of affairs with properties or propositions (as I do in
section , or replace the role of worlds with states of affairs or properties.

9For discussion of some different ways of characterizing the nomic likelihood relation, see sectionl?}

20711 use the term “set” here loosely to cover both sets and classes.
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chances with, they don’t provide us with something to identify nomic requirements
with. (Recall that we can’t just take nomic requirements to be the things that have a
probability of 1, for there are things which have a probability of 1 that aren’t nomically
required — e.g., an infinite number of fair coin tosses not all landing heads.) In order
to satisfy the first desideratum of section we need an account that can make such
distinctions.

Second, all of the theorems in the literature I know of require strong “richness”
assumptions in order to derive their result These richness assumptions impose
strong constraints on the probability function, such as, e.g., that for every value in
the unit interval, there’s something that has that probability. This rules out plausible
nomic possibilities like there being a world with only a single chance event, e.g., a
coin toss, which has a chance of 0.6 of heads and a chance of 0.4 of tails. In order
to satisfy the fifth desideratum of section 2.1} we need an account that can recognize
such possibilities.

The framework I'll present will allow us to distinguish between having a chance
of 1 and being nomically required. It does so by introducing, in addition to the unique
largest and smallest nomic likelihoods, held by () and @, unique next largest and next
smallest likelihoods. Likewise, the framework I'll present doesn’t need to posit the
kind of richness axioms the existing theorems require. This is because it introduces
cross-world relations that effectively allow us to “import” richness from other worlds.
Of course, these changes require replacing many of the standard axioms that the re-
sults in the literature employ, and showing that we can still derive everything we
want from their replacements.

4.1 The Nomic Likelihood Relation

Here is the fundamental posit of the Nomic Likelihood Account:

The Nomic Likelihood Relation: There exists a fundamental six-place nomic likeli-
hood relation, = (C,A,w,C',A’,w') (“C given A at w is at least as nomically
likely as C’ given A’ at w'”), that satisfies the [12| nomic axioms (cf. section [4.3),
where w, w' are worlds, and A, A’, C, C’ are propositions that supervene on the
fundamental properties and relations other than .

The last clause ensures that the propositions the nomic likelihood relation holds
of aren’t themselves about nomic facts. I take this constraint to be independently
plausible, and it ensures that we won’t run into self-reference paradoxes. Now let’s
turn to the[I2lnomic axioms that the nomic likelihood relation is required to satisfy.

2 For some discussions of worries regarding these richness axioms in the context of standard theories of
quantitative properties, see Melia (1998), Eddon| (2013a), Eddon| (2013b), and [Perry|(2015).
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4.2 Terminology

Let me start by introducing some terminology.

Let C4 4 be an ordered triple consisting of a pair of propositions A,C C ) and
aworld w € Q). I'll call A and C the antecedent and consequent propositions of the
triple, respectively. When expressing such triples, everything that’s bolded should be
understood as describing the consequent proposition of the triple. E.g., (CNC’) , , is
a triple whose consequent proposition is C N C’, whose antecedent proposition is A,
and whose world is w. When talking about triples which share the same indices, I'll
leave the indices implicit.

At the risk of abusing notation, I'll often express the nomic likelihood relation in
terms of these triples. ThusI'll use “Ca 4, > C/, ,,” as shorthand for “> (C, A, w,C’, A", w")".
Using this notation, we can define the “more r{omically likely than” relation > as fol-
lows: C = C"iff C = C’ and C’ # C. Likewise, we can define the “nomically on a
par” relation ~ as follows: C ~ C" iff C = C’ and C’ > C.

Let NS (for “nomic space”) be the set of all triples C4 ,, such that C, A, and w are
either the first three or last three arguments of some instantiation of >~. Intuitively, NS
is the set of all triples that have nomic likelihoods.

Let the (A,w)-cluster be the subset of NS containing all the triples with A and w
as their second and third members. Intuitively, A and w pick out a situation, and
the (A, w)-cluster identifies the consequent propositions that nomic likelihoods are as-
signed to in that situation. For example, if A and w pick out a chance distribution, the
(A,w)-cluster will consist of the triples whose consequent propositions are assigned
chances by this distribution. Note that clusters can be “gappy”, in the sense that for
some propositions C, the (A,w)-cluster won’t contain C4 4. This is because, holding
A and w fixed, there can be nomic constraints on some consequent propositions but
not others. For example, A and w might pick out a chance distribution which assigns
chances to propositions about the behavior of particles, but not to propositions about
the behavior of incorporeal spirits. Likewise, note that clusters can be empty. For ex-
ample, if w is a lawless world, then the (A,w)-cluster will be empty, since no triples of
the form Cy4 , are assigned nomic likelihoods.

With this notation in hand, let’s turn to the [12Jnomic axioms.

4.3 The Nomic Axioms

We haven’t imposed any constraints on which consequent propositions C are as-
signed nomic likelihoods in an (A,w)-cluster. For example, as it stands, it could be
the case that C is assigned a nomic likelihood but C is not; or that C and C' are as-
signed nomic likelihoods but C U C’ is not. The first axiom ensures that the consequent
propositions that are assigned nomic likelihoods are closed under natural operations
like negation and disjunction. E.g., it ensures that if given certain meteorological con-
ditions A at world w there’s some nomic likelihood of it raining (C), then there’s also
some nomic likelihood of it not raining (C); and if there’s some nomic likelihood of
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it raining (C) and some nomic likelihood of it snowing (C’), then there’s also some
nomic likelihood of it raining or snowing (C U C’).

Axiom 1] (c-algebra):

1. If Cisin NS, then C is in NS.
2. If C4,C,, ... are in NS, then U;=, C; is in NS.

Formally, this axiom ensures that for every non-empty (A,w)-cluster, the consequent
propositions in that cluster form a c-algebra.

2l Nothing we’ve said so far requires all triples with nomic likelihoods to be com-
parable, or requires comparisons between triples to be transitive. For all we’ve said,
it could be the case that it raining (given meteorological conditions A at w) is more
nomically likely than it snowing (given A’ at w’), and it snowing (given A’ at w’) is
more nomically likely than it being sunny (given A” at w'), but it raining (given A
at w) is neither more nomically likely than, less nomically likely than, or on a par
with, it being sunny (given A” at w”). The second axiom rules this out, by ensuring
that all triples with nomic likelihoods are comparable, and that these comparisons are
transitive.

Axiom 2| (Weak Order):

1. > is connected: for all Cay, CY, , in NS, either Cpy = C), o 0r Cly ) =
Caw-
2. > is transitive: for all C4 4, C'y,

”" : ; / ’
CA”,w” m NS/ lf CA,w t CA’,w’ and CA’,w’ i
CZ/, then CA,w t CX”,ZU”'

/
'

/!
'

Formally, this axiom ensures that the nomic likelihood relation provides a weak or-
dering of NS.

The previous axioms haven’t imposed any constraints on how the nomic like-
lihoods assigned to members of different (A,w)-clusters line up with each other. For
example, as it stands, it could be that all the triples in one cluster are more nomically
likely than all the triples in another. The third axiom ensures that triples whose con-
sequent propositions are trivially true () or trivially false () have the same nomic
likelihoods in all (A,w)-clusters. Intuitively, this ensures that the “ceiling” and “floor”
of nomic likelihoods is the same at all clusters.

Axiom _3|(Cross-algebra Comparisons):

1. If QA,w and QA’,w’ arein NS: QA,w ~ QA’,w’-
2. If ®A,w and ®A’,w’ arein NS: ®A,w ~ ®A’,w’~
Ml So far, nothing we’ve said requires there to actually be any triples with nomic
likelihoods. For all we’ve said, it could be the case that all (A,w)-clusters are empty.

And even if we assume there are non-empty clusters, nothing we’ve said requires
them to be fine-grained. E.g., it could be the case that every triple which has a nomic
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likelihood is on a par with (say) one of three triples, entailing that there are effectively
only three degrees of nomic likelihood. And even if we assume there is a cluster
with a rich range of nomic likelihoods, nothing we’ve said requires these nomic likeli-
hoods to be fine-grained enough to distinguish between consequent propositions that
are nomically required and ones which are “just” overwhelmingly likely (e.g., that at
least one of infinitely many fair coin tosses lands heads). The fourth axiom imposes
“richness” requirements that ensure there’s an appropriately fine-grained range of
nomic likelihoods.

Axiom [4 (Rich Algebra): There exists a particular cluster, call it “R” (for “rich”), with
the following features:

1. There is a pair of triples in R, call them “@+” and “Q-", such that:
(@) @ <D+ < 0- < O,
(b) Forall C such that C £ @, C = @+.
(c) Forall C suchthat C % ), C < Q-
2. There are no C > @+ in R such that, for any C’ in R such that C' C C, either:
(@) C" ~C.
(b) C' ~ @.
(c) C" ~ D+.
(d) C'~Q-and C ~ Q.
3. Forany Csy and C), , in NS such that CNC' = @, there’s some Cy and Cr”
in R such that Cp, ~ Cf, C , ~ C¢’,and C"'NC" = @.

This is an important axiom, so it’s worth talking through what it says in a bit more
detail. This axiom posits the existence of a “rich” cluster, R. The three clauses of this
axiom ensure that R is rich in three different ways. (This axiom is compatible with
there being multiple clusters which satisfy these clauses. But “R” is a name for a
particular one of them.)

The first clause entails that in this rich cluster there’s (i) a “next highest” rank of
nomic likelihood, which sits below € but above every other rank, and (ii) a “next
lowest” rank of nomic likelihood, which sits above @ but below every other rank. I
use the names “Q)-" and “@+" for some particular triples in R that have these ranks.
(This clause is compatible with there being multiple triples in R which have these
ranks. But “Q)-" and “@+” are names for a particular pair of them.)

It's worth emphasizing that “-" and “@+” are names for two particular triples in
R, not names for the consequent propositions of some triples whose indices have been
left implicit. (E.g., I'm not using “Q-" as shorthand for “Q-z”; “0)-" is not the name
of a proposition.) Thus Q- and @+ will never be expressed with indices; the second
and third elements of these triples are fixed.

In what follows, it will be convenient to have a name for triples C whose rank is
such that @+ < C < Q-. I'll say that such triples have a middling rank.
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The second clause is the analog of the standard “atomless” assumptionE] Roughly,
it ensures that in this rich cluster, any triple C of at least middling rank can be always
be decomposed into smaller triples of middling rank.

The third clause ensures that every degree of nomic likelihood is instantiated in R.
That is, it entails that R is rich enough to be such that every triple in NS is nomically
on a par with some triple in RF_’;I

Intuitively, nomic likelihoods should satisfy something like a qualitative notion
of additivity. For example, given meteorological conditions A at world w, if it rain-
ing (C) is more nomically likely than it snowing (C’), then it raining or being sunn
(C U C") should be more nomically likely than it snowing or being sunny (C" U C")
The fifth axiom ensures that nomic likelihoods will satisfy this kind of additivity re-
quirement.

Axiom [5|(Restricted Cross-algebra Additivity): Suppose that (CNC"), , ~ (C" N
C") a1 ~ Daw, that Cay ~ CY, ,, and that none of the following three condi-
tions hold: (i) Cao ~ Q= Cl, ~ CHly ~ @4, (ii) Caw ~ D+, Clyy ~ CliLy ~
Q- (ii)) Qa0 > Caw > Daws Chy ~ Dawos Chly ~ O+ Then Cly = C2E L iff
(CUC) 40 = (C7UCT)

!
S
'

It's worth flagging two ways in which this qualitative additivity axiom differs from
typical qualitative additivity axioms. First, typical qualitative additivity axioms don’t
include conditions (i)-(iii). But the introduction of Q- and @+ requires the additivity
claim to be restricted to cases where none of conditions (i)-(iii) hold@ Second, typical
qualitative additivity axioms effectively only apply within a single cluster. But in
order to “import” richness facts from other clusters, we need the additivity claim to

22 An atom is a triple C = @ such that any C’ that C contains is either on a par with C or @. So, intuitively,
an atom is a triple with some nomic likelihood which can’t be decomposed into anything that’s strictly less
nomically likely, but still at least somewhat nomically likely. The standard atomless assumption is just the
assumption that there are no atoms: there are no C > @ such that, for any C’ such that C’ C C, either (a)
C’ ~ C,or (b) C' ~ @. Introducing @+ and Q- requires modifying the standard atomless assumption. This
modified assumption (the second clause of Axiom [4) entails that if we remove all triples on a par with @+
and Q-, then this rich cluster will be atomless.

ZThough this is not all it entails; it also entails that for any two disjoint triples in any cluster, there are
two disjoint triples in R that have those same ranks.

24Where I'm assuming here that raining, snowing, and being sunny are mutually exclusive.

25We need to add these restrictions because if any of (i)-(iii) obtain, we can construct counterexamples to
the additivity claim (that C), , = C}7 , iff (CUC’) 4, = (C"UC") p ). For an intuitive example within
a single algebra, let C = C”’ be the proposition that at least two of infinitely many coin tosses landed tails,
let C’ be the proposition that none of infinitely many coin tosses landed tails, and let C"”’ be the proposition
that no more than one of infinitely many coin tosses landed tails. This is an instance of (ii): C ~ Q-, and
C' ~ C" ~ @+. Now note that the rest of the conditions this axiom imposes (other than (i)-(iii)) are
satisfied: CNC’ ~ C"NC" ~ @,and C ~ C"”. But while C’ = C"" istrue, CUC' ~ Q- > C"UC'"" ~ O
is false. Thus without the restriction ruling out cases of type (ii), axiom [5| would be false. And we can
construct similar counterexamples if we omit conditions (i) or (iii).
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apply to triples belonging to different clustersFﬂ

6l The sixth axiom plays an important role in establishing the representation and
uniqueness theorem, but it’s a bit harder to get an intuitive grip on than the other
axioms. Consider a sequence of triples from some cluster that’s “expanding”, in the
sense that the consequent proposition of each triple in the sequence is entailed by
the consequent propositions of all the earlier members of the sequence. And suppose
some other triple C is more nomically likely than any triple in this sequence. Then
it’s natural to think that C should also be more nomically likely than a triple whose
consequent proposition is the disjunction of all of the consequent propositions in this
sequence. This is what the sixth axiom requires.

Axiom [6] (Continuity): If for alli, C = C; and C; C Ci;q, then C = UiZ; C;.

Formally, this axiom ensures that the = relation is monotonically continuous.

[/l So far we’ve said little about how the nomic likelihoods of triples on a par with
@+ and Q- behave. For example, given conditions A at world w, suppose the nomic
likelihood of a certain coin landing heads (C) is middling, the nomic likelihood of an
independent sequence of infinitely many coins all landing heads (C’) is on a par with
@+, and the nomic likelihood of at least one coin in this infinite sequence landing tails
(C') is on a par with Q-. How does the nomic likelihood of the coin landing heads (C)
compare to that of the coin landing heads or the infinite sequence of coins all landing
heads (C U C’)? Likewise, how does the nomic likelihood of the coin landing heads (C)
compare to that of the coin landing heads and at least one of an independent infinite
sequence of coins landing tails (C N C’)? The seventh axiom settles the answer to these
questions, holding in both cases that the likelihoods are the same.

In particular, the seventh axiom entails that adding things on a par with @+ can
only result in a change of likelihood in extremal cases, when it’s added to something
on a par with @ or Q-. Likewise, it entails that intersecting things on a par with
Q)- can only result in a change of likelihood in extremal cases, when it’s intersecting
something on a par with @+ or Q).

Axiom [7) (D+/Q)- Differences):

1. @+ <C<O-,and C' ~ @+,thenC~ CUC’.
2. fO+ < C=<QO-,and C' ~ O-, thenCNC’ ~ C.

We haven'’t yet imposed any requirements tying nomic likelihood to truth. For
all we’ve said, it could be the case that if meteorological conditions A hold at world
w then it’s maximally likely that it will rain (C), and meteorological conditions A do
hold at w, and yet it doesn’t rain at w. The eighth axiom ensures that nomic likelihood
is tied to truth in the way we’d expect.

26 A third and more subtle way in which it differs from typical qualitative additivity axioms is that it
doesn’t require C and C’ (and C” and C”') to actually be disjoint. Instead, it merely requires the triples
corresponding to these intersections to be on a par with @.
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Axiom [8](Q) Instantiation): If C4, ~ Q44 and w € A, thenw € C.

9 Nothing we’ve said so far has imposed conditions tying the fact that if A obtained
at w then C would have a certain likelihood to the possibility of A obtaining. Consider the
set of worlds L, containing all the worlds that assign the same nomic likelihoods as
world w. (Le., if w’ € Ly, then for all CX,,’w,, in NS, Cay = qu’,,,w,, iff Caw = C”,,,w/,.)
And suppose that given meteorological conditions A ata world in Ly, there’s a certain
nomic likelihood of rain (C). As it stands, this could be true even though there’s no
world in L, at which conditions A hold. One might take this to be implausible. If
there’s a certain likelihood of rain given certain meteorological conditions at w, then
there should be some nomically similar world where those meteorological conditions
obtain. The ninth axiom ensures that this is the case.

Axiom 9] (Antecedent Instantiation): If C, , is in NS, then there exists a w’ € A such
that for all C}, ., in NS, Casy = C/y o iff Cazy = Cllu -

Nothing we’ve said so far has imposed conditions tying the fact that if A ob-
tained at w then C would have a middling likelihood to the possibility of C obtaining.
Suppose that given meteorological conditions A at a world in L, there’s a middling
nomic likelihood of rain (C). As things stand, it could be the case that it rains at every
world in L;, where A obtains, even though it only has a middling likelihood of do-
ing so. Likewise, it could be the case that it doesn’t rain at any world in L, where A
obtains, even though it has a middling nomic likelihood of doing so. Both scenarios
are implausible: if there’s a middling likelihood of rain, then there should be some
A-worlds in L;, where it rains, and some where it does not. The tenth axiom ensures
that this is the case.

Axiom (Chancy Instantiation): If @4, < Cay < Qay, then there exists a w’ and
w" such that:

1. FOI' all qu’/l//lzu/// in NS, CA/w t CZ/,”,IUNI l:ff Cw/,A t CX/////w/// l:]’cf CA,wH i Czlql,/”,ll)/”'
2. w' e Aand w” € A.
3. w' e Cand w” ¢ C.

The previous axioms haven’t imposed any constraints on what triples there
are in different (A,w)-clusters indexed to the same world. Suppose that given meteo-
rological conditions A at w, there’s a middling likelihood of it raining the next day (C)
and a middling likelihood of it raining the day after that (C’). And consider the nomic
likelihoods that might obtain at w given those meteorological conditions and that it
rains the first day (A N C). For all we’ve said so far, it could be that given AN C at w
there’s a maximal likelihood assigned to it raining the first day (C), but no likelihood
at all — whether high or low — assigned to it raining the second day (C’). That is, it
could be that the (A N C,w)-cluster is simply silent about the likelihood of it raining
the second day. This is odd. If the (A,w)-cluster assigns a nomic likelihood to C’, it
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seems the (A N C,w)-cluster should as well. The eleventh axiom ensures this, by re-
quiring clusters at the same world to have consequent propositions that line up with
each other.

Axiom (11| (Same Algebra): Suppose that A O A’, that A} , = @+, and that the
(A’ w)-cluster is not empty. Then Car 4, is in NS iff Ca 4 isin NS EI

Axiom (11| ensures that clusters at the same world have consequent proposi-
tions that line up with each other. But while axiom [11|ensures that these clusters will
assign nomic likelihoods to the appropriate propositions, we haven’t yet said any-
thing about what the magnitudes of these nomic likelihoods should be. Suppose that
given meteorological conditions A at w, there’s a middling likelihood of it raining the
next day (C), a middling likelihood of it raining the day after that (C’), and a smaller
but still middling likelihood of it raining both days (C N C’). Given those meteorolog-
ical conditions and that it rains the next day (A N C), what should the likelihood of it
raining both days be? For all we’ve said so far, it could be anything, including on a
par with the trivially true proposition () or the trivially false proposition @. This is
implausible: the likelihood of it raining both days should be middling. The twelfth ax-
iom ensures this, by requiring the nomic likelihoods assigned by same-world clusters
to line up in the way you’d expect.

Formulating the twelfth axiom precisely requires a little stage-setting. Let an n-
equipartition P of a cluster be a set of n triples P; which are all nomically on a par
with each other, and whose consequent proposmons are mutually exclusive and ex-
haustive/| Let f : N x NS — N be a function such that: f(1,Ca) = x iff for any
n-equipartition P of the rich cluster R, and any C4 4, in NS:

f(n,Can) =1 if Cpp ~ (UIZIP;) 4
f(n,Caz) =mifn >m > 0and (U’ m“P)A,w = Camw = (UETPi)A,w-
f(?l, CA,w) =0 if PlA,w - CA,w-

Intuitively, f takes a natural number n and a triple C, and spits out a natural number
x indicating that the nomic likelihood of C is at least 3 that of (), but less than xnil that

of Q. Thus if f(n,C) = 0, we know the nomic likelihood of C is less than % of O); if
f(n,C) =1, we know the nomic likelihood of C is at least % but less than % of (3; and

?’To see why the A’,

be assigned to C without violating countable additivity).

28That is, an n-equipartition P is a set of n triples P; such that (i) Vi,j, P; ~

(iii) Vi, UI="P; = Q.
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» ~ @D+ clause is required, consider the chance of a dart landing on various points
intheOto1cm 1nterval “with uniform probability. Let A be the proposition that a dart landed in the 0 to 1
cm interval, A’ be the proposition that the dart landed on some rational number in the 0 to 1 cm interval,
and C be the proposition that the dart landed on the 1/2 point in the 0 to 1 cm interval. Then A D A’, and
the (A’,w)-cluster is not empty, but while C, , is plausibly in NS (since given A, C has a chance of 0), Cy4/ ,,
is plausibly not in NS (since given A’ and the uniform probability assumption, no well-defined chance can

P]', (11) Vi,j, Pi N P] = @, and



so on; and if f(n, C) = n, we know the nomic likelihood of C is at least ZofQ)ie.,is
exactly that of ().

Axiom [12|(Algebra Coordination): Suppose that A4, Aarw, (CMNA),,, and (CN
A) A arein NS. If A C A/, and if it’s not the case that there’s some m such that
foralln >m, f(n,Aaz) =0o0r f(n,Aa ) =0, then:

lim f(n/ (C N A)A,w) — lim f(?’l, (C N A)A’,w)
neo  f(n,Apw) n—e f(n,Aaw)

This axiom ensures that if A C A’, the (A,w)-cluster and the (A’,w)-cluster agree on
the proportion of A’s nomic likelihood that contributes to C’s likelihood.

Some key lemmas that follow from the axioms are described in appendix[A.1] The
proofs of these lemmas are given in appendix

5 The Nomic Likelihood Account (ITI): The Account

In this section I finish developing the Nomic Likelihood Account. In section |5.1|1'1]
present a representation and uniqueness theorem regarding the nomic likelihood re-
lation. In section[5.2} using these results, I'll present the Nomic Likelihood Account of
laws and chances. In section[5.3|I'll present some consequences of this account regard-
ing laws and chances. And in section [5.4|I'll present a toy example of some complete
laws given the Nomic Likelihood Account.

Before we proceed, it’s worth sketching the role that the representation and unique-
ness theorem plays in this account. It’s helpful to start with an analogy. In the decision
theory literature, people have offered representation and uniqueness theorems show-
ing that if a subject’s preferences satisfy certain conditions, then there’s a (more or
less) unique pair of functions that line up with these preferences in the way you’d
expect rational credences and utilities to line up with them. One popular account of
credences and utilities identifies them with the functions picked out by these theo-
remsF_gI On this account, credences and utilities are just things that encode facts about
a subject’s preferences. And if we adopt this account, the theorem provides a straight-
forward explanation for why credences and utilities deserve the numerical values we
assign them — because these are the only numerical assighments that line up with
preferences in the right way:.

Similarly, the representation and uniqueness theorem described in section shows
that if the nomic likelihood relation satisfies certain conditions, then there’s a unique
function and pair of relations that line up with these nomic likelihood relations in the
way you’d expect chances and nomic requirements/forbiddings to line up with them.
The Nomic Likelihood Account identifies chances and nomic requirements/forbiddings

PFor classic presentations, see Savage| (1954) and Jeffrey| (1965). For criticisms of these accounts, see
Eriksson & Hajek| (2007) and [Meacham & Weisberg| (2011).
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with the function and relations picked out by the theorem. On this account, chances
and nomic requirements/forbiddings are just things that encode facts about the web
of nomic likelihood relations. And if we adopt this account, the theorem provides a
straightforward explanation for why chances deserve the numerical values we assign
them — because these are the only numerical assignments that line up with the nomic
likelihood relations in the right way.

5.1 The Representation and Uniqueness Theorem

We can partition the space of worlds such that two worlds w’ and w” are in the same
cell of the partition iff, forall C’, A’,and all C4 4 in NS: Cay = Clyy o iff Caw = Clyy -
Intuitively, two worlds are in the same cell of this partition iff the same nomic facts
hold at both worlds. I'll call this the nomic partition. I'll use L, L', L”, etc., to denote
different cells of this partition, and L, to denote the cell w is in.

The following representation and uniqueness theorem is shown in appendix

The Representation and Uniqueness Theorem: If > satisfies the nomic likelihood
axioms, then there’s a unique function ch, 1 (C) (that takes three propositions
C, A, and L as arguments, and spits out a real number between 0 and 1), and a
unique pair of three-place relations NR(Cj, ,) and NF(Cy 4,) (that hold between
a pair of propositions C and A and a world w) such that:

1. char(C) > char 1(C') iff forany w € L and w' € L', either:
(a) CA,w i C’ L'
(b) Caw qu,,zv,, and Cy4 4 ~ Q- and Cg,/w, ~ Qs g
(c) Caw Cl’q,,w,, and Cyy ~ D4y and C/ L ™~ D
2. NR(Caw) iff Caw ~ Qp .
3. NF(Cauw) iff Caw ~ Daw-
Furthermore, the function chy4 1 (-) will be a countably additive probability func-

tionl?’zl

30 As it turns out, only the first seven nomic axioms are required to obtain this result. The last five nomic
axioms only come into play when deriving the lemmas regarding laws and chances given in section
310ne would typically express these relations as NR(C, A, w) and NF(C, A, w). But in what follows it
will be more convenient (if a slight abuse of notation) to express these relations in terms of triples.
3That is, for all A and L, ch () will be such that:
1. For all C such that C4, € NS, char, (C) > 0.
2. Forany Q4. € NS, chap, (Q) =1.
3. For any sequence Cy, ..., Cj, ... such that for all C;, C;4 ., € NS, and for all i # j, C; N G =9,

[e9)

char, <U Ci) =Y char,(G).
i=1 w,A

i=1

20



This theorem shows that the nomic likelihood relation can be uniquely represented
by a countably additive probability function ch which assigns numbers that line up
with the nomic likelihood relation, and a pair of relations NR (nomically required)
and NF (nomically forbidden) that hold between the members of a triple C4 4, iff it’s
maximally or minimally nomically likely, respectively.

5.2 The Account of Laws and Chances

Given the representation and uniqueness theorem, we can provide an account of laws,
chances, and nomic requirements and forbiddings, as follows.

Complete Laws of Nature: A world w has complete laws of nature L iff L = LZUF_:‘TI

It will be convenient to follow Lewis| (1979) and identify properties with the set of
possible individuals that instantiate them. Since the property £ of being a world with
laws Ly, picks out the same set of worlds as the proposition L that laws L, obtain, it
follows that £ = L. Thus we can refer to the laws as both properties and propositions,
since they’re both.

The Nomic Likelihood Account then identifies chances, nomic requirements and
nomic forbiddings with the ch function and NR and NF relations provided by the
representation and uniqueness theorem:

Chances: The chance of C given complete laws L and antecedent A is x iff ch 1 (C) =
X.

Nomic Requirements: If A holds at w then C is nomically required to hold at w iff
NR(Ca)-

Nomic Forbiddings: If A holds at w then C is nomically forbidden from holding at w iff
NF(Ca)-

5.3 Some Lemmas Regarding Laws and Chances

The second desideratum discussed in section2.1|was that an adequate account should
yield plausible connections among laws and chances. We can now show some of the
ways in which the Nomic Likelihood Account satisfies this desideratum by describ-
ing some further lemmas that follow from the nomic axioms described in section

3Given this account of complete laws, how do we determine whether a given proposition (e.g., a state-
ment of Newton’s gravitational force law) is a law? Presumably a necessary condition is that it should
be entailed by the complete laws. One might take this to be a sufficient condition as well, or one might
add various other requirements — that it express a regularity, be appropriately general, etc. From the per-
spective of the Nomic Likelihood Account, this is merely a terminological matter — what really matters,
metaphysically speaking, are the complete laws. (In a similar vein, there won't be an interesting distinction
to draw between “fundamental laws” and “derived laws” on the Nomic Likelihood Account (Johansson
(2005), [Frisch| (2014)), since the only plausible candidate for a “fundamental” law would be the complete
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and the account of laws and chances offered in section (The numbering of these
lemmas starts at [10] because they follow the [J] lemmas given in appendix The
derivations of these lemmas are given in appendix|C})

If (given A at w) there’s some likelihood of C, and A entails C, then it seems C
should be nomically required. E.g., suppose there’s some nomic likelihood of rain (C)
given that it’s raining hard (A) at w. Then, given that it’s raining hard at w, it should
be nomically required that it rains. This is what the tenth lemma shows.

LemmafIQ If C4 . isin NS, and A entails C, then NR(Cg4 ).

It seems like nomic requirements should be closed under entailment. For ex-
ample, if (given A at w) it’s nomically required that it be rainy (C), and nomically
required that it be windy (C’), then it should be nomically required that it be rainy
and windy (C N C’). This is what the eleventh lemma says.

Lemma[dl Forall Cin NS:IfCy,...,Cy, entail C,and NR(Cy), ..., NR(C,), then NR(C).

It seems nomic requirements and nomic forbiddings should be linked: if C
is nomically required, then C should be nomically forbidden, and vice versa. For
example, if (given A at w) it’s nomically required that it rain (C), then it should be
nomically forbidden that it not rain (C), and vice versa. This is what the twelfth lemma
states.

Lemma[l2} NR(C) iff NF(C).

It seems like nomic requirements and forbiddings should be tied to the truth.
For example, if (given A at w) rain is nomically required, and A obtains, then it should
rain. Likewise, if (given A at w) rain is nomically forbidden, and A obtains, then it
shouldn’t rain. This is what the thirteenth lemma asserts.

Lemma

1. If NR(Cayp)and w € A, thenw € C.
2. f NF(Cap)and w € A, thenw € C.

It seems nomic likelihoods should be tied to chances. For example, if (given
A at w) the nomic likelihood of rain is on a par with Q- or ), then the chance of rain
(given A and the laws that hold at w) should be 1. Likewise, if the nomic likelihood
of rain is on a par with @+ or @, then the chance of rain should be 0. And if the nomic
likelihood of rain is middling, then the chance of rain should be greater than 0 but
smaller than 1. This is what the fourteenth lemma says.

Lemma [14}

1. If Caw = Q-, then ChA,Lw(C) =1.
2. If Caw = O+, then ChA,Lw(C) =0.

3. If Q- = Cyp = @+, then chia . (C) € (0,1).
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It seems related chance distributions should assign chances to the same propo-
sitions. For example, suppose A and L yield a well-defined chance distribution over
a sequence of fair coin tosses. And suppose the conjunction of A and the first fair coin
toss landing heads (call this conjunction A’) and L also yield a well-defined chance
distribution. It would be strange if ch 4/ | assigned chances to coin tosses that ch 1
did not assign chances to, or vice versa. Rather, it seems ch, . and chy ; should as-
sign chances to the same propositions. This is what the fifteenth lemma says.

Lemma(% If A D A’, char(A’) > 0, and cha 1 (Q)) is well-defined, then for all C,
char 1 (C) is well-defined iff ch4 1 (C) is well-defined.

It seems related chance distributions should have related chance assignments.
For example, suppose A and L yield a well-defined chance distribution over a se-
quence of independent coin tosses, and this distribution assigns a chance of 1/2 to
the first coin landing heads (C), and chance of 1/4 to the first two coin tosses landing
heads (C N C’). And suppose the conjunction of A and the first fair coin toss landing
heads —i.e.,, AN C-and L also yield a well-defined chance distribution. What chance
should chanc, assign to the first two coin tosses landing heads? Given the chances
cha, assigns, it seems the right answer is 1/2. This is what the sixteenth lemma en-
tails.

Lemmafd& If A D A’,andchy(C | A") and chy 1 (C) are well-defined, then ch 4/ 1 (C)
char(C|A).

54 A Toy Example

It can be helpful to see a concrete example of some complete laws L;, on the Nomic
Likelihood Account. But it’s hard to do so concisely for realistic physical theories. So
I'll instead present a toy example corresponding to a pair of cases discussed in section
a pair of worlds in which there’s only one chance event, a coin toss, where the
chance of heads is 0.6 in one world, and 0.7 in the other.

Let A be a proposition describing the state of a world at t consisting of a certain
coin toss set-up, and let C be a proposition stating that the outcome of this coin toss
was heads. Let w be a world such that there are only four triples indexed to w in NS:
Daws Caws Caw, and Qg . Let Cay be on a par with the triples in the rich cluster
that are assigned a value of 0.6 by the representation and uniqueness theorem.

The complete laws of w, L,,, will consist of the set of worlds in w’s cell of the nomic
partition. And these laws describe a world in which there’s almost nothing of nomic
interest going on: there’s only a single non-trivial chance event — a coin toss — which
has a chance of 0.6 of landing heads.

We can also consider a world w’ such that the only triples indexed to w’ in NS are:
Dawr, Caw, fA,w/, and Q4 .. And in this case, C4 s is on a par with the triples in
the rich cluster that are assigned a value of 0.7. The complete laws L, will consist of
the set of worlds with the same nomic facts as w’, and these laws describe a world in
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which there’s only a single non-trivial chance event — a coin toss — which has a chance
of 0.7 of landing heads.

6 The Nomic Likelihood Account and the Desider-
ata

Now let’s turn to see how the Nomic Likelihood Account fares with respect to the five
desiderata given in section[2.1}

Desideratum 1. An adequate account should provide a unified (and appropriately
discriminating) account of laws and chances.

The Nomic Likelihood Account provides a unified account of laws and chances,
characterizing both in terms of the nomic likelihood relation (cf. section [5.2). Prob-
abilistic and non-probabilistic laws are treated similarly, with the laws that impose
nomic requirements just being stronger versions of the laws that impose chances.
And the Nomic Likelihood Account is appropriately discriminating, distinguishing
between propositions that are nomically required and propositions that have a chance
of 1 but aren’t nomically required.

Desideratum 2. An adequate account should yield plausible connections between
laws and chances, laws and other laws, and chances and other chances.

The Nomic Likelihood Account yields the kinds of relations between laws and
chances that one would expect (cf. section [5.3). For example, it entails that nomi-
cally required propositions are not nomically forbidden, and vice versa; it entails that
nomic requirements are closed under entailment it entails that nomically required
propositions will have a chance of 1, and nomically forbidden propositions a chance
of 0; it entails that chance distributions at the same world will be related by condition-
alization; and so on.

Desideratum 3. Anadequate account should describe what, at the fundamental level,
makes it the case that chance events deserve the numerical values they’re as-
signed.

The Nomic Likelihood Account provides a satisfactory explanation for why chance
events deserve the numerical values we assign them. At the fundamental level we
have various instantiations of the nomic likelihood relation which satisfy certain con-
straints (cf. sections[4.]jand £.3). And we have a representation and uniqueness theo-
rem that shows that there is exactly one way of assigning numbers in the [0, 1]-interval
to propositions so that these assignments line up with these nomic likelihood relations
(cf. sectionsp.1Jand [5.2). Since the Nomic Likelihood Account identifies chances with

34 Assuming that the entailed propositions bear any likelihood relations at all.
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these assignments, it provides an explanation for why chance events deserve the nu-
merical values we assign them.

Desideratum 4. An adequate account should be able to accommodate both dynami-
cal and non-dynamical chances (like those of statistical mechanics).

The Nomic Likelihood Account itself doesn’t appeal to a distinction between “dy-
namical” and “non-dynamical” chances. But we can distinguish between different
kinds of chances, and see what the Nomic Likelihood Account entails about them.

Here is one way to draw such a distinction. Let’s say that a world w has non-
trivial chances iff there are middling likelihood triples indexed to w. Call these chances
dynamical iff all of the middling likelihood triples indexed to w have an antecedent
proposition H describing a complete history up to some timeF_EI Call these chances
non-dynamical iff they’re not dynamical

Given this characterization of dynamical chances, the Nomic Likelihood Account
will entail that dynamical chances will have the features they're expected to have.
For example, the Nomic Likelihood Account will entail that worlds with dynami-
cal chances can’t have deterministic laws. If w has deterministic laws, then every
likelihood-having triple indexed to w that has a complete history H as its antecedent
proposition will either be nomically required or nomically forbidden (depending on
whether H and L, entail the triple’s consequent proposition or its negation). Since
none of these triples have a middling likelihood, it follows that w can’t have dynami-
cal chances ]

Likewise, the Nomic Likelihood Account will entail that at worlds with dynamical
chances, propositions about the past can only be assigned a chance of 0 or 1. Let w be
a world with dynamical chances, H a history up to ¢, and C some proposition about
what the world is like prior to t such that Cp 4, has some likelihood. By construction

30r at relativistic worlds, propositions describing a complete history up to some Cauchy slice.

36 Although this is one way to draw the distinction between “dynamical” and “non-dynamical” chances,
it is not the only way. A different (and to my mind, equally reasonable) way to draw the distinction is
to call these chances dynamical iff all of the middling likelihood triples indexed to w have an antecedent
proposition S which includes a description of the complete state of the world at some time. This alternative
characterization of “dynamical” chances won't yield the result that propositions about the past can only
be assigned a dynamical chance of 0 or 1. Those who hold that dynamical chances should only be able to
assign propositions about the past a chance of 0 or 1 (like Lewis| (1980)) will take this to be a reason to favor
the characterization of dynamical chances given in the text. Those who want to permit the possibility of
future-to-past dynamical chances, or even temporally symmetric dynamical chances (like Meacham|(2005))
will take this to be a reason to favor the alternative characterization just described. In any case, on the
Nomic Likelihood Account, this is merely a terminological matter. Nothing of substance hangs on our
choice about which chances to call “dynamical”.

%0n some ways of characterizing determinism, such as Lewis(s (1983), a complete history and deter-
ministic laws will only fix the truth of every qualitative proposition, not every proposition simpliciter. Given
this understanding of determinism, the Nomic Likelihood Account will only entail that deterministic laws
are incompatible with dynamical chances that assign middling likelihoods to qualitative propositions.
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H will entail either C or C, from which it follows (by lemmas [10|and [12) that Cp ,, is
either nomically required or nomically forbidden. Thus (by lemma the chance of
Ch y is either O or 1.

By contrast, the Nomic Likelihood Account will allow worlds with deterministic
laws to have non-dynamical chances, and so can accommodate classical mechanical
worlds with statistical mechanical chances. For example, let the laws of w be those
of classical statistical mechanicsf¥| let A be the claim that the world at  consists of
a small isolated system containing uniform lukewarm water, and let C be the claim
that the world five minutes after t consists of a small isolated system containing an ice
cube in hot water. L, and A don’t entail whether C is true or not — the laws and the
fact that the world consists of uniform lukewarm water doesn’t entail that there will
be an ice cube in five minutes, nor does it entail that there won’t be. So C4 ;, can have
a middling likelihood even though the laws at w are deterministic.

Likewise, the Nomic Likelihood Account doesn’t require non-dynamical chances
to assign propositions about the past a chance of 0 or 1. Consider a variant of the
example from above, where w has classical statistical mechanical laws, A asserts that
the world at t consists of lukewarm water, and C asserts that the world 5 minutes
before t consists of an ice cube in hot water. A is compatible with both the truth and
falsity of C — the world consisting of lukewarm water at t is compatible with both
there being an ice cube five minutes ago and there not being such an ice cube. So C4 4
can have a middling likelihood, even though C is a proposition about the pastm

Desideratum 5. An adequate account should be able to accommodate plausible nomic
possibilities.

The Nomic Likelihood Account can accommodate a wide range of plausible nomic
possibilities. For example, since the only kind of consequent proposition the account
can’t assign nomic likelihoods to are propositions concerning nomic facts (section[4.T)),
the account allows nomic likelihoods to be assigned to propositions about particular
locations, times, and objects. Thus the account allows for laws about particular loca-
tions, times, and objects, like the case of Smith’s garden discussed by Tooley, (1977).

38Following Albert (2000), we can take these to be the conjunction of Newton’s laws of motion, the Past
Hypothesis, and the Statistical Postulate.

¥T'm evaluating the claim that “all propositions about the past get a chance of 0 or 1” by taking the
antecedent proposition to pick out a particular time — the earliest time which the proposition says something
about —and taking consequent propositions to be “about the past” if they say things about times earlier than
that. This way of understanding when propositions are about the past yields the result that non-dynamical
chances can assign chances other than 0 or 1 to propositions about the past. A different (and to my mind,
equally reasonable) approach would be to maintain that the antecedent propositions of non-dynamical
chances (like those of statistical mechanics) aren’t naturally time-indexed. And claims about whether “all
propositions about the past get a chance of 0 or 1” simply don’t make sense in the context of non-dynamical
chances, since there’s no good way of picking out a “now” time that we can use to determine whether a
proposition is about the past.
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Likewise, the account can assign nomic likelihoods to triples even if both their conse-
quent and antecedent propositions are false (section axiom . Thus it can allow
for worlds with uninstantiated laws, like a world where F = ma is a law but there are
no massive objects. And as we saw in section[5.4} the account can can make sense of a
world w with a single chance event, a coin toss, where the chance of heads is 0.6, and
an otherwise identical world w’ where the chance of heads is 0.7.

7 Worries

Let’s turn to assess some worries one might raise for the Nomic Likelihood Account.

The Ontological Worry: The nomic likelihood relation is a fundamental relation
defined over propositions and worlds. Characterizing the laws in terms of such
a relation commits one to having propositions and possible worlds in one’s on-
tology.

Reply: First, note that the Nomic Likelihood Account doesn’t require one to un-
derstand propositions and worlds in a metaphysically heavyweight way. For exam-
ple, one might identify propositions with sets of worlds, and adopt a metaphysically
lightweight understanding of worlds themselves, like the one advocated by Stalnaker
(2011).

Second, although I've characterized the nomic likelihood relation as taking propo-
sitions and worlds as relata, one could characterize the relation in other ways to avoid
these commitments. If one doesn’t like propositions, one could replace the appeal to
propositions with an appeal to properties, i.e., the property of being a world at which
the relevant proposition is true. Or one could replace the appeal to propositions with
an appeal to Chisholm-style states of affairs@

Likewise, if one doesn’t like worlds, one could replace the appeal to worlds with
an appeal to propositions, i.e., the maximally specific propositions describing that
possibility. (On this approach, of course, one would not identify propositions with
sets of worlds.) Or one could replace the appeal to worlds with an appeal to very de-
tailed properties or states of affairs. These alternative characterizations of the nomic
likelihood relation would require only superficial modifications to the details pre-
sented in sections 4/ and

40Gee (Chisholm! (1976).

41A related complaint is that the account described in sections 35 commits one to taking propositions
and worlds to be more fundamental than (say) chance events and lawful states of the world at a time. But,
one might argue, the latter should be more fundamental than the former — for example, it’s natural to take
chance events to be more fundamental than the propositions describing them. (I owe an anonymous referee

for raising this concern.)

So far I've followed Lewis| (1983) in taking the fundamental /non-fundamental distinction to only apply
to properties, not to things like propositions and events. So properly articulating this concern would require
spelling out a broader account of the fundamental/non-fundamental distinction. But, putting that aside, I
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The Explanatory Worry: The Nomic Likelihood Account allows for pairs of worlds
that, nomic facts aside, are qualitatively identical, and yet which differ with re-
spect to their laws. (For example, the pair of worlds discussed in section[5.4}) But
it’s hard to see how such an account could explain why these worlds differ with
respect to their laws, other than simply stipulating that different nomic likeli-
hood relations hold of them. And that seems little better than being a primitivist
about laws [

Reply: The Nomic Likelihood Account is, indeed, similar to primitivist accounts of
laws in these respects@ But I don’t take this to be a problem for the Nomic Likelhood
Account. The complaint I raised in section2.2Jabout primitivist accounts like|Carroll(s
(1994) wasn’t that they took nomic facts to be primitive, or that they couldn’t explain
why certain laws obtained without appealing to nomic facts. After all, pretty much
any non-Humean account is going to have to appeal to some kind of brute modal or
nomic facts. Rather, the complaint was that accounts like Carroll’s don’t provide the
kind of detailed framework needed to satisfy desiderata 2 and 3 — to yield plausible
connections among laws and chances, and to show why chance events deserve the nu-
merical values we assign them. And this is a demerit the Nomic Likelihood Account
does not share.

The Duplication/Intrinsicality Worry: Following David Lewis|(1983), let’s say two
worlds are duplicatespy, iff there is a bijection between their parts that preserves
their fundamental properties and the fundamental relations holding between
them. Since the nomic likelihood relation holds between a world and things that
aren’t a part of that world (i.e., another world and several propositions), it won't
play a role in our assessment of whether worlds are duplicatesp;. Indeed, one
world can be a duplicatep;, of another even if one bears various nomic likelihood
relations and the other bears no nomic likelihood relations at all. And since the
laws of a world are determined by its nomic likelihood relations, it follows that
duplicatep; worlds needn’t have the same laws. This is implausible.

Likewise, following David Lewis|(1983), let’s say that a property is intrinsicpy, iff
it never divides duplicates — any two things that are duplicates either both have

take this concern to be in the same vein as the ontology worry described in the text, and to be amenable to
the same kind of reply. Just as one can adjust the account to fit one’s ontological sensibilities by changing
the relata of the nomic likelihood relation, one can also adjust the account to fit one’s sensibilities regard-
ing what'’s ontologically fundamental by changing these relata. For example, if we replace the appeal to
propositions with an appeal to states of affairs, and we take events to be a kind of state of affairs (Chisholm

(1990)), then we can avoid any suggestion that chance events are less fundamental than propositions.
#21'd like to thank an anonymous referee for bringing this worry to my attention.

“Indeed, the two-layerversion of the Nomic Likelihood Account discussed in worry {3/~ which posits
both fundamental first-order “complete law” properties of worlds, and a fundamental second order nomic
likelihood relation that holds of these properties and propositions — might naturally be classified as a form

of primitivism (cf. footnote [50).
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this property or both fail to have this property@ It follows that the laws of a
world aren’t intrinsicp;, properties of that world. This is implausible.

Reply: To begin, it's worth noting that an analogous worry arises for a popular
measurement theoretic account of quantitative properties like mass and charge;*’| This
account posits some fundamental relations over objects corresponding to each quan-
titative property —e.g., in the case of mass, a mass ordering and a mass concatenation
relation — and then use those relations to characterize the quantitative structure of
that property. Now, note that the up quark and the charm quark are identical in ev-
ery way except for their mass. Since on this account these differences of mass are the
result of the different mass relations they stand in, it follows that the up quark and
the charm quark will be duplicatesp; . Indeed, given a similar account of other quan-
titative properties, it will follow that all fundamental particles are duplicatesp;. This
seems implausible. Likewise, it will follow that all of the derivative monadic quantita-
tive properties — e.g., having chﬂ-mass — will not be intrinsicpr. Again, this seems
implausible.

There are three ways for the proponent of the Nomic Likelihood Account to reply
to the worries raised above. These replies mirror the options available to the propo-
nents of the popular measurement theoretic account of quantitative properties just
described. They can (1) challenge the characterizations of duplication and intrinsical-
ity given above, (2) modify the posits the theory makes, or (3) bite the bullet. I won't
discuss the third reply but let’s look at each of the first two replies more carefully.

(1) Let’s start by distinguishing between two kinds of relations. First, there are
relations that only hold between things located at the same possible world; call these
connecting relations. Spatiotemporal relations are connecting relations — you can’t be
five feet from something located at a different possible world. Second, there are rela-
tions that can hold between things that are located at different possible worlds; call
these non-connecting relations. The more-mass-than relation is a non-connecting rela-
tion — we can make sense of something at another possible world having more mass
than me ]

Intuitively, qualitative duplicates are perfectly alike “in and of themselves”. That
is, duplicates must share their monadic fundamental properties. By contrast, dupli-

#Gee Shumener (forthcoming) for some arguments for why we should take laws to be intrinsic. Of
course, there are various worries one might raise regarding whether Lewis’s account of intrinsic properties
is fine-grained enough; e.g. see[Eddon| (2011). But those worries are orthogonal to the worries being raised

45For some early and influential accounts along these lines see Krantz et al. (1971) and [Field| (1980). For

a survey of this literature, see Eddon| (2013b).
4For a defense of this third reply, see Dasguptal (2013).

#Lewis(s (1986) conception of possible worlds relies on a distinction of this kind, taking possible worlds
to be fusions of possible individuals that are related by some chain of connecting relations. [Lewis| (1986)
also endorsed a particular conception of connecting relations, taking them to consist of all and only those

fundamental relations that are ‘spatiotemporal or analogously spatiotemporal” (p. 76).
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cates need not be alike in how they are connected to other things — two copies of a
book may differ in their spatiotemporal relations to me and still be duplicates. That
is, duplicates can differ with respect to their fundamental connecting relations. But
these two truisms leave open the question of whether duplicates should be alike with
respect to their non-connecting relations. One thought is that duplicates must also be
alike with respect to their fundamental non-connecting relations. So in order for two
objects to be duplicates, they must not only share their monadic fundamental proper-
ties, they must also stand in the same kinds of fundamental non-connecting relations
—e.g., they must bear the more-mass-than relation to the same things.

This suggests an alternative to Lewis’s account of duplication. Let’s say that a
pair of objects a and b are interchangeable with respect to a relation R iff R(...,a, ....) <>
R(...,b,...). So two objects are interchangeable with respect to a relation iff whenever
that relation holds between the first object and certain other things, it also holds be-
tween the second object and those same other things. Now let’s say that two things
a and b are duplicateso iff (i) one can form a bijection between a’s parts and b’s parts
that preserves the fundamental properties and fundamental relations between them
(i.e., they're duplicatespr), and (ii) a and b are interchangeable with respect to all fun-
damental non-connecting relations. One might propose that our ordinary notion of
duplication is duplicationo

We saw above that given a popular measurement theoretic account of mass, the
up quark and the charm quark will be duplicatespr. But they won’t be duplicatesp.
The mass ordering and mass concatenation relations are paradigmatic instances of
non-connecting relations, and the up and charm quarks aren’t interchangeable with
respect to them. So this alternate account of duplication avoids the unpleasant result
that the up and charm quarks are duplicates, in the ordinary sense.

Likewise, on the Nomic Likelihood Account, two otherwise identical worlds with
different laws will be duplicatesp;. But they won't be duplicatesp. The nomic like-
lihood relation is a non-connecting relation, and these two worlds won’t be inter-
changeable with respect to it. So given this alternate account of duplication, the pro-
ponent of the Nomic Likelihood Account can maintain that worlds with different laws
aren’t duplicates, in the ordinary sense.

Turning to intrinsicality, let’s say that a property is intrinsico iff it doesn’t di-
vide duplicatesp. One might propose that our ordinary notion of intrinsicality is
intrinsico If this is correct, then proponents of this popular measurement theo-
retic account of mass can maintain that monadic quantitative properties (like having
%-mass) are intrinsic in the ordinary sense.

Likewise, proponents of the Nomic Likelihood Account can maintain that the
property of being a world where the laws are L is intrinsic in the ordinary sense.

40, if one takes our ordinary notion of duplication to be vague, that duplicationg is one of the possible
disambiguations of our ordinary notion of duplication.

490r more or less our ordinary notion. For some remaining issues that crop up, see [Eddon| (2011), and
the references therein.
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(2) Those who would prefer to keep Lewis’s characterizations of duplication and
intrinsicality can respond to this objection in a different way.

As we saw above, according to a popular measurement theoretic account of quan-
titative properties, things that differ solely with respect to their quantitative proper-
ties (e.g., the up and charm quarks) will be duplicatesp;, and the derivative monadic
quantitative properties (e.g., having 224¢ -mass) will not not be intrinsicp;. Mundy
(1987) and Eddon!(2013a) have argued that we should avoid these difficulties by mod-
ifying the account. In particular, instead of just positing one layer of fundamental
quantitative properties — fundamental quantitative relations that hold between objects
— we should posit two layers of fundamental quantitative properties — fundamen-
tal monadic quantitative properties instantiated by objects, and fundamental second-
order quantitative relations that hold between these monadic properties. Thus, for
example, instead of positing fundamental mass-concatenation and mass-ordering re-
lations over objects, we can posit fundamental monadic mass-properties (e.g., having
%—mass) that hold of objects, and fundamental mass-concatenation and mass-
ordering relations over these monadic mass properties. If we do this, then the up
and charm quarks won’t be duplicatesp;, and monadic quantitative properties (like
having Z%#—mass) will be intrinsicpy.

We can avoid the analogous worries for the Nomic Likelihood Account presented
in sections Blf5| by modifying it in a similar fashion. Namely, instead of positing one
layer of fundamental nomic likelihood properties — fundamental nomic likelihood
relations over worlds and propositions — we can posit two layers of fundamental
nomic likelihood properties — fundamental monadic nomic properties instantiated by
worlds, and fundamental second-order nomic likelihood relations that hold between
these monadic properties and propositions. In this two-layerpicture, the monadic
properties will intuitively line up with the complete laws instantiated by that world,
L. And the nomic likelihood relation will replace the appeal to worlds with an appeal
to these complete laws, where = (C, A, L, C’, A’, L") holds when C given A if the laws
are L is at least as nomically likely as C’ given A’ if the laws are L' °| If we adopt this
two-layerversion of the Nomic Likelihood Account, then otherwise identical worlds
with different laws won’t be duplicatesp;, and the property of having complete laws
L will be intrinsicp;, as desired.

[ The Holism Worry: Grant that the laws and chances are intrinsic features of the
world (cf. worry . On the Nomic Likelihood Account, the laws and chances
will still be holistic features of the world. This contrasts with a local picture on
which, for example, the chance of a coin toss is determined by local features of
the coin toss set-up. On this local picture, a local duplicate of this coin toss set-up

0Since this two-layer version of the Nomic Likelihood Account posits a range of fundamental complete
law properties in addition to the fundamental nomic likelihood relation, this account might be classified
as a form of primitivism about laws. I have no objection to this classification, since I don’t think there’s
anything inherently problematic about primitivist accounts. What matters is not whether an account is

primitivist, but whether it satisfies the desiderata an adequate account of laws should satisfy.
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in another world would have the same chance of landing heads. On the Nomic
Likelihood Account, this needn’t be the case@

Reply: Let’s first get clear on what the distinction between holistic and local pic-
tures of laws and chances amounts to. At a first pass, we can take the disagreement
to be about whether there are local regions (regions smaller than a world) such that
any duplicate of these regions, in any world, will have the same operative laws and
chances. On local pictures there are regions like this: since the laws and chances are
local features of regions, and a duplicate of such a region will share its local features,
any duplicate of such a region will be governed by the same laws and chances. On
holistic pictures, like the one provided by the Nomic Likelihood Account, there aren’t
regions like this: since the laws and chances are determined at the world level, and
vary from world to world, duplicates of local regions in different worlds generally
won'’t be governed by the same laws and chances.

I don’t have any strong intuitions about whether the holistic or the local picture is
correct@ So I'm inclined to take this to be a case of spoils to the victor — we should
adopt the picture suggested by the account of laws and chances that we indepen-
dently find most plausible. ButI grant that if one is strongly attracted to a local picture
of laws and chances, then one has a reason to dislike the Nomic Likelihood Account.

The Wrong Grain Worry: The nomic likelihood relation is fine-grained in some re-
spects — for example, it allows us to distinguish between chance 1 propositions
that are nomically required and chance 1 propositions that are not. But in other
respects it still seems too coarse-grained to capture all of the nomic likelihood
facts. For example, suppose a point-like dart is thrown at a one meter interval,
with the probability of it hitting any point determined by a bell-curve centered
around the 0.5-meter point. The nomic likelihood relation will treat the dart
landing on the 0.5-meter point and the dart landing on the 0.9-meter point as on
a par (~ @+). But surely the dart landing on the 0.5-meter point is nomically
more likely than the dart landing on the 0.9-meter point.

Reply: It’s true that given the version of the Nomic Likelihood Account developed
here, the fundamental nomic likelihood relation won’t be sensitive to such facts. But
the proponent of this account can explain (and partially vindicate) these intuitions
regarding more fine-grained nomic likelihood factsﬁ

>11d like to thank an anonymous referee for encouraging me to address this worry.

5250me (like Armstrong(1983) and Maudlin| (2007)) want to allow for worlds where the laws and chances
differ in different epochs. It’s natural to think that this might be a consideration which tells between a lo-
cal and holistic picture of laws. But both pictures can make sense of such possibilities. Holistic laws can
accommodate such worlds by having laws that assert that regions in different spatiotemporal locations be-
have differently. And local laws can accommodate such worlds by positing different local laws in different

spatiotemporal locations.

3 A different response to this objection would be to develop a variant of the Nomic Likelihood Account
whose axioms provide a representation and uniqueness theorem that yields non-standard probability as-
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For example, it’s true that this account will take the dart landing on the 0.9-meter
point and the dart landing on the 0.5-meter point to be on a par (~ @+). But if we con-
sider arbitrarily small neighborhoods surrounding these points (i.e., all points within
+e meters), then the nomic likelihood of landing in the neighborhood of the 0.5-meter
point will be greater than that of landing in the neighborhood of the 0.9-meter point.
And we can use this fact to explain the intuition that the dart landing on the 0.5-meter
point is more likely than it landing on the 0.9-meter point.

Likewise, if the probability measure representing the chances is absolutely con-
tinuous with respect to some other salient (c-finite) measure, then it follows from the
Radon-Nikodym theorem that one can define a probability density with respect to that
salient measure@ In the dart case described above, the salient measure is length, and
we can define the probability density at each point of the one meter interval of the
dart landing there. The probability density of the dart landing on the 0.5-meter point
will be larger than the probability density of the dart landing on the 0.9-meter point.
And we can use this fact to explain our intuition that the former is more nomically

likely@

8 Conclusion

I've suggested (section[2.1) that an adequate account of laws should satisfy five desider-
ata: it should (1) provide a unified account of laws and chances, (2) yield plausible
relations between laws and chances, (3) explain why we’re justified in assigning nu-
merical values to chance events in the way that we do, (4) allow for both dynamical
and non-dynamical chances, and (5) allow for an appropriately expansive range of
nomic possibilities. I've argued (section that no extant account of laws satisfies
these desiderata.

In this paper I've developed an account of laws, the Nomic Likelihood Account
(sections Bf5), that satisfies all five desiderata (section [f). On this account, the fun-
damental nomic property is a nomic likelihood relation. And laws and chances are

signments (e.g., hyperreal valued-probabilities). Although this is an interesting avenue for future research,
there are some prima facie reasons to be skeptical that chances are this fine-grained; see Pruss (2018) and
Easwaren & Towsner| (2018).

>¥Billingsley| (1995).

%0One might be tempted to construct a second and more fine-grained nomic likelihood relation in light
of such facts, and take this to be the “real” nomic-likelihood relation. I think this would be a mistake. For
these densities will only be defined with respect to a second measure; so at best they’re providing us with
something like comparisons of nomic likelihood with respect to such-and-such a measure, not comparative
nomic likelihoods simpliciter.

A similar obstacle prevents us from skipping over having to posit the Q- and @+ likelihoods, and simply
distinguishing between chance 0 events that are nomically forbidden and those that are not by appealing
to whether they have non-zero densities. For again, these densities will only be defined relative to some
further measure.
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things that encode facts about the web of nomic likelihood relations. As I've noted,
there are various challenges one might raise for this account (section @ But I think
this is ultimately the most attractive account of laws and chances on offerE]

A Some Lemmas Regarding Nomic Likelihood

A.1 Some Key Lemmas
Lemmaflt Forall Cin NS, Q = C = @.

Lemma[2 Forall C, C’in NS,if C C C/, then C < C’.

Lemma[3t For all C’ in NS:

1. C~ @, thenCNC' ~ Q.
2. fC~Q,thenCUC’" ~ Q.

Lemmal® For all C’ in NS:

1. C~ @, thenCUC’ ~ C'.
2. fC~Q,thenCNC’' ~ (.

LemmalBt C ~ @ iff C ~ Q.

Lemmal@ C ~ @+ iff C ~ Q-.

Lemma[Z If 9+ < C < Q-, then @+ < C < Q-.
Lemmal8t If C = C’, then C’ = C.

Lemmal9% For all Cin NS:

1. fCNC' ~CNC"” ~ @, and none of the following three conditions hold:
() C~ Q- C' ~ C" ~ @+, (ii) C ~ @+, C' ~ C" ~ Q- or (i) O = C = @,
C'~Q,C" ~@+,thenC' = C"iff CUC' - CcuUC”.

2.IfCNC' ~CNC"” ~ @, and none of the following four conditions hold:
() C ~ Q- C' ~ C" ~ @+, (ii) C ~ D+, C' ~ C" ~ O-, (i) Q = C = O,
C'~0,C"~Q+,0or(ivyQ>C>Q,C" ~ D+, C" ~ @, then C" -~ C" iff
cuc =cuc”.

% For helpful comments and discussion, I'd like to thank Maya Eddon, Jenn McDonald, Alejandro Perez-
Carballo, two anonymous referees, and participants of the Fall 2019 UMass Brown Bag group, the 2019 Rut-
gers Conference on the Philosophy of Probability, the 2021 Canadian Society for the History and Philosophy
of Science conference, the 2021 Formal Philosophy conference, and the 2021 Society for the Metaphysics of
Science conference.
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A.2 Proofs

While the lemmas in section are ordered thematically, the proofs are presented
in order of dependence (with later lemmas depending on earlier ones, but not vice
versa). Most of these proofs implicitly appeal to axioms like [Ijand 2| to discharge the
existence assumptions of the other axioms they employ; to avoid needless clutter, I'll
leave such appeals implicit.

e Proof of Lemma [9; (1) The first part of the lemma is a special case of axiom
where all of the relevant propositions belong to the same cluster, and C = C”. (Note
that while axiom |5/imposes the condition that C4 ,, ~ CXf,w'/ which entails that Cy4 4,
isin NS, lemma 5 doesn’t have such a clause since C = C”. Thus lemma 5 needs to
explicitly add the existence assumption “For all C in NS”.)

(2) The second part of the lemma follows from the first and the assumption that
it’s also not the case that (iv) Q > C > @, C’' ~ @+, C”" ~ @. To see this, suppose
that the relevant triples are on a par with the emptyset, and none of conditions (i)-(iv)
hold.

First, let’s establish that if C’ = C”,then C’ UC -~ CUC”.1If C’' = C”, then C’ ~
C”’, and since none of (i)-(iii) hold, the first part of the lemma entails that C’ U C =
C U C”. Furthermore, C’ = C” entails that C’ A C”’, and since none of (i), (ii) or (iv)
hold, the first part of the lemma entails that C’ U C A C U C”. (The conditions change
because C’ and C” switch places. Conditions (i) and (ii) treat C’ and C” symmetrically,
but condition (iii) does not; condition (iv) is what you get when you swap C’ and C”
in condition (iii).) So if C’ = C”,then C’ UC = CU C".

Second, let’s establish thatif C’ UC = CUC"”,thenC’ = C". IfC’UC - CU (",
then C’ U C = CUC”, and since none of (i)-(iii) hold, the first part of the lemma
entails that C’ > C”. Furthermore, C' U C = C U C” entails that C’ UC A CU C”,
and since none of (i), (ii) or (iv) hold, the first part of the lemma entails that C’ £ C".
Soif C"UC =~ CUC”, thenC’ - C".

e Proof of Lemma 2} Suppose that A D B. Let C = B,C' = A—Band C" = Q.
Note that CN C’ ~ CN C” ~ @. Note also that none of conditions (i)-(iii) of lemmal9]
obtain (since in all of them C”" % @). Thus by lemma@ c=c'iffcuc’ -cuc”,
ie, (A—B) = Qiff BU(A— B) = BUQIff A > B. Since the left-hand side is true,
the right-hand side must be true as well.

e Proof of Lemmal(l} (1) Since @ is a subset of every proposition, lemma ] entails that
@ =< every proposition. (2) Likewise, since every proposition is a subset of (), lemma
entails that ) > every proposition.

e Proof of Lemma[3} (1) Since C N C' is a subset of C, lemma 2 entails that C N C’ has
to be < to C. Since nothing is ranked lower than @ (lemmall), C N C’ is on a par with
@. (2) Likewise, since C U C' is a superset of C, lemma [2| entails that C U C’ has to be
= to C. Since nothing is ranked higher than Q (lemmal(l), C U C’ is on a par with Q.

e Proof of Lemma |4} part (1): Let C ~ @, let C’ be an arbitrary proposition, and let
C" = @. Since C ~ @, lemma |3| entails that C N C’ ~ @; likewise since C" ~ @,
it follows that C’ N C” ~ @. Given this and the fact that none of conditions (i)-(iii)
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of lemma [9 hold (since in each of (i)-(iii), C"” ¢ @), lemma 9| entails that C"” = C iff
C”"UcC’ = CUC'. Since C"” ~ C, we know the left hand side is true, so C"’ U C’ >
C U C’ must be true. Since C" = @, C" UC’' = C/, so C' = C U C’ must be true. And
since C’ is a subset of C U C’, lemma 2] entails that C’ < CU C’. Thus C' ~ CU C’.

e Proof of Lemma |5} First, let’s establish that if C ~ @, then C~ Q. IfC~ @, then
it follows from part (1) of lemma 4| that CU C ~ C. Since CU C ~ Q, it follows that
C ~ Q. Second, let’s establish that if C ~ ), then C > @. Suppose for reductio that
C ~ Q, but that C # @, and thus (given lemma [1) that C > @. Note that CNC =
CN® = @. And, letting C = C, C' = C, and C"” = @, note that none of conditions
(i)-(iv) of lemma |§Ihold. Thus lemma |§I entails that C > @ iff CUC = @ U C. Since
C > @ is true by supposition, the left-hand side of this bijection must be true. But
since @ U C ~ Q) (by lemma [3), the right-hand side of this bijection must be false. By
reductio, C ~ Q.

e Proof of Lemma @ First, let’s establish that if C ~ @+, then C ~ Q-. Suppose
C ~ @+. Note that either (i) C ~ @, (ii) C ~ @+, (iii) @+ < C < Q-, (iv) C ~ Q-,
or (v) C ~ Q. (i),(v): If C ~ @/Q, then by lemma it follows that C ~ Q/@, contra
supposition. (ii),(iii): If C ~ @+ or @+ < C < Q- then (since C ~ @+) the first part of
axiom|7]entails that CU C ~ C < Q, which is impossible since C U C ~ Q. Thus the
only remaining option is (iv): C ~ Q-.

Second, let’s establish that if C ~ Q-, then C ~ @+. Suppose C ~ Q-. Note that
either (i) C ~ @, (ii) C ~ @+, (iii) @+ < C < Q-, (iv) C ~ Q-, or (v) C ~ Q. (i),(v):
If C ~ @/Q, then by lemma [5/it follows that C ~ €/®, contra supposition. (iii),(iv):
If 9+ < C < Q- or C ~ Q-, then axiom [7| entails that CN C ~ C > @, which is
impossible since C N C ~ @. Thus the only remaining option is (ii): C ~ @+.

o Proof of Lemma 7} For reductio suppose otherwise — that @+ < C < Q-, but not
@+ < C < O-. For this to be the case, C must be on a par with either @, @+, -,
Q. If C ~ @/Q, then by lemma 5| it follows that C ~ /@, contra supposition. If
C ~ @+/Q-, then by lemma |§I it follows that C ~ Q-/@+, contra supposition. By
reductio, 0+ < C < Q-.

e Proof of Lemmal8} Suppose for that C = C’.

Note that (CNC')N(C—-C") = (CNC')N(C"—C) = @. If it’s not the case that
either i) (CNC") ~ Q- (C—C") ~ (C"=C) ~ D+, (i) (CNC') ~ D+, (C—C") ~
(C"=C) ~ Q- or(iii)2+ < (CNC') < OQ-, (C—=C") ~, (C"' = C) ~ O+, then
by lemma [9] it follows that (C — C’) = (C' = C) iff (CNC')U(C—C') = C =
(CNC’")U(C'—C) = C'. Since the right hand side is true by supposition, the left
hand side must be true too.

Note also that (CNC’)N(C—C') = (CNC)N(C'—C) = @. If it’s not the case
that either (i*) (CNC’) ~ Q-, (C—=C’) ~ (C' = C) ~ @+, (ii*) (CNC') ~ O+,
(C—=C) ~ (C'"=C) ~ Q- (iii*)y @+ < (CNC') <Q-, (C—=C") ~?,(C'=C) ~
@+, or (iv*) @+ < (CNC’) < Q-, (C—C') ~ @+, (C' — C) ~ @, then by lemma 9]
it follows that (C' — C) = (C—C")iff (CNC')U(C'—C)=C = (CNC")u(C—
C’) = C’. Note that we derived the falsity of the left hand side above (we derived
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that (C — C") = (C’ — C) is true, which entails that (C' — C) = (C — C’) is false).
Thus the right hand side must be false too. Thus C # C’,or (equivalently) C < C’. So
if C= C’, then C < C'.

We’ve only shown this result, though, in cases where none of (i)-(iii), (i*)-(iv*) ob-
tain. To establish the result in full generality, we need to show that in each of these
cases lemma [§| will still hold. So suppose C = C’:

(i) Suppose (CN C’) ~ O-, (C— C’) ~ (C' — C) ~ @+. By lemma c NC ~

2

@+. And since both C and C’ are subsets of C N C/, it follows from lemma [2| that both
C and C’ can’t be more nomically likely than @+. Since C has (C' — C) as a subset, and
C’ has (C — C’) as a subset, lemmaentails that both C and C’ can’t be less nomically
likely than @+. Thus both C and C’ must be on a par with @+, and thus C < C’, as
desired.

(i) Suppose (CNC’) ~ @+, (C—C') ~ (C' = C) ~ Q-. We can ignore this
possibility, since the latter two assignments are impossible. (If both (C — C’) and
(C’ — C) were a par with Q-, then by axiom[7] (C — C’) N (C’ — C) = @ must be on
a par with -, which is impossible.)

(iii) Suppose @+ < (CNC') < Q- (C—C') ~ @, (C"' — C) ~ D+. Note that by
the first part of lemma[d]and lemmalf] (CNC’) U (C—C') U (C' = C) ~ (CNC’),
which we know is of middling rank. Note also that (CNC")U(C-C")U(C'-C) =
(CuC’),and by lemma@the triple corresponding to its negation (CU C") = (CNC’)
must also be middling. Since C = (C' — C) U (CN (), it follows from axiom [7| that
C ~ (CNC"). Likewise, since C' = (C — C") U (CN ), it follows from the first part
of lemma@that C’' ~ (CNC’). Thus C ~ C’,and so C < C’, as desired.

(i*) Suppose (CNC’) ~ Q-, (C—C') ~ (C' = C) ~ @+. Since (CNC') is a
subset of both C and C/, it follows from lemma [2| that both C and C’ must be at least
as nomically likely as Q-. Note also that neither C nor C’ can be on a par with Q.
(Suppose for reductio that C ~ C’ ~ Q. Then C and C’ would be on a par with @
(by lemma5). But C and C’ are supersets of (C— C’) and (C' — C), and (C — C’) ~
(C' = C) ~ @+, so by lemma2|C and C’ must be at least as nomically likely @+. But
that’s impossible if they’re on a par with @.) Thus both C and C’ must be on a par
with Q-, and thus C < C’, as desired.

(ii*) Suppose (CN C’) ~ @+, (C—C') ~ (C' — C) ~ Q-. We can ignore this
possibility, since the latter two assignments are impossible (see (ii), above).

(iii*) Suppose @+ < (CNC’) < Q-, (C—C') ~ @, (C' = C) ~ @+. Since
C = (C"-C)u(CNC), it follows from axiom @ that C ~ (CN C’). Likewise, since
C' = (C—-C)u(CnC),itfollows from the first part of lemmathat ' ~(Cn(C).
Thus C ~ ?, which entails C < F, as desired.

(iv*) Suppose @+ < (CNC’) < Q-, (C —C’) ~ @+, (C' — C) ~ @. By swapping
C and C’ throughout, the reasoning offered for (iii*) above shows that C < C’ here
too.
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e Proof of Lemma 4] l part (2): Let C’ be an arbitrary proposition. C ~ Q iff C ~ @
(by lemma . It follows from part (1) of lemma @that CUC’ ~ C’, which is logically
equivalent to CN C’ ~ C’. Tt follows from lemmalthat cnc' ~C.

B The Representation and Uniqueness Theorem

This representation and uniqueness theorem can be broken down into three steps.
First, I'll show that given the nomic likelihood relation, we can define a relation =
that, restricting our attention to the R-algebra posited by axiom {4}, satisfies some ax-
ioms (which I'll call the “k-axioms”). As|Villegas| (1964) and Krantz et al. (1971) show,
if a relation over an algebra satisfies the k-axioms, then there exists a unique order-
preserving function from this algebra to the real interval [0, 1], and it will be a count-
ably additive probability function. Second, I'll show that given such a countably addi-
tive probabilistic representation, we can assign a countably additive probabilistic rep-
resentation to all of the proposition in NS, and that this representation is also unique.
Third, I'll show that there’s a unique way of assigning NR and NF relations over the
propositions in NS. Together, these steps establish the theorem.

e Step I(a). Given a nomic likelihood relation that satisfies the axioms given in
section we can define a coarser relation = that, restricting our attention to the
R-algebra, satisfies the following K-axioms required for a countably additive proba-
bilistic representation of these relations.

Define > in terms of > as follows: C4,, =y C/ W iff either (i) Caq =k C/ A7 s OF
(ii) Cap ~ Q-and CA, p o~ Qg gy, or (iii) Caqp ~ @A » and CA/ , ~ D+, Intu1t1vely,
> is a coarser version of >, which is blind to the difference between @ and @+, and
Q and O-.

K-Axiom 1.
1. If Cisin R, then C is in R.
2. If C4,C,, ... are in R, then U=, C; is in R.
Proof: Axiom [I]entails that this holds for any cluster in NS, so it holds for R.

K-Axiom 2. >, is a weak order over R. That is:

1. >y is connected: for all C and C’ in R, either C =, C’ or C’ = C.
2. =y is transitive: for all C, C’ and C” in R, if C =, C’ and C’ =, C”, then
Cr.C".

Proof: (1) If = is connected, then it’s trivially the case that > will be connected as
well.

(2) If > is transitive, then > will be transitive as well. To see this, suppose for
reductio that > is transitive, but = is not — there’s some C, C’, and C” such that
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C =, C',C" = C”,but C %4 C”. Either (i) C = C"and C" = C”, (ii) C # C’ and
C'=C",[i)C>=C'and C" # C",or (iv) C # C"and C" # C".

(i) Suppose C = C" and C’ = C”. Then since - is transitive, C »= C”, which entails
that C = C", contra our supposition.

(ii) Suppose C # C’ and C’ = C”. Then since C = C’ but C # C’, it follows
that either (a) C ~ Q-and C’ ~ Q, or (b) C ~ @ and C' ~ @+. (a) If C ~ Q- and
C’ ~ Q, then since anything on a par with - will be > to everything, it follows that
C =y C”, contra our supposition. (b) If C ~ @ and C’ ~ @+, then since C’ > C”,
either C"” ~ @ or C”” ~ @+. Either way, since anything on a par with @ or @+ will be
=< everything, it follows that C =, C”, contra our supposition.

(iii) Suppose C = C’ and C’ # C”. Then since C’ =y C” but C' # C”, it follows
that either (a) C’ ~ Q-and C” ~ Q,0or (b) C' ~ @ and C” ~ @+. (@) If C' ~
Q- and C” ~ Q, then since C > C’, either C ~ Q or C ~ Q-. Either way, since
anything on a par with Q- will be = to everything, it follows that C > C”, contra
our supposition. (b) If C’ ~ @ and C” ~ @+, then since anything on a par with @+
will be < everything, it follows that C =, C”, contra our supposition.

(iv) Suppose C # C" and C’ # C”. Then since C =y C’ and C" =, C”, it follows
that either (a) C ~ Q-and C’ ~ Q, or (b) C ~ @ and C’ ~ @+, and either (¢) C' ~ Q-
and C"" ~ O, or (B) C' ~ @ and C” ~ @+. But neither (a) nor (b) is compatible with
either (x) or (B), so this is impossible.

K-Axiom 3.
1. Qr >, Dr.
2. Forall AR, AR ik ®R-

Proof: (1) It follows from the first part of axiom E] that Qr > @gr. This entails that
Qg = @g, and thus that Qg > @g. This also entails that @ ¥ Qg; which combined
with the fact that @g % Q- and Qr # @+ entails that Or #; Qr. Thus Qg = Dr.

(2) It follows from lemmal | that for all Ag, Ag > @g, which entails that for all Ag,
AR = Dr.

K-Axiom 4. For all C, C/, C" in NS, if CNC' = CNC" = @, then C' = C” iff
cuc’ -, cuc”.

Proof: As a preliminary, consider the following conditions: (i) C ~ Q-, C' ~ C"" ~
D+, ({i))C~ D+, C" ~C" ~ Q- (i) Q> C > Q,C' ~ @, C" ~ @+. Note that if any
of these conditions hold, then C’ =, C” iff CU C’ =, C U C”. (Call this biconditional
“kiff”.) If condition (i) holds, then the left hand side of kiff is true (since C’ ~ C”).
And by lemma @ both CUC’ = Q-and CUC” = Q-. Since Q- is = everything, it
follows that the right hand side of kiff is true too. For precisely the same reasons, if
condition (ii) holds then both the right and left hand sides of kiff are true. If condition
(iii) holds, then since everything =; @+, the left hand side of kiff is true. And since
C is middling, CUC’ ~ C ~ CU C” (by axiom[7]and the first part of lemma4), and
thus the right hand side of kiff is true too.
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Now, suppose that CNC" = CNC" = @. To establish K-axiom 4, we need to show
that if this is the case, kiff will be true. We just saw that if any of conditions (i)-(iii)
hold, kiff will be true. So we just have to show that if none of conditions (i)-(iii) hold,
kiff will also be true. By lemma [9) if conditions (i)-(iii) don’t obtain then C’ = C” iff
CUC’ = CUC(”. (Call this biconditional “niff”.) Now, either both sides of niff are
true, or both are false. We can establish K-axiom 4 if we can show that either way kiff
will be true.

If both sides of niff are true, then since > entails >, it trivially follows that C’ =
C"iff cCucC’ =, cuc”.

What if both sides of this niff are false? For the left hand side of niff to be false,
one of the following three possibilities must obtain: (a) C’ %, C”, (b) C" = C”
and ¢’ ~ Q- C" ~ Q,o0r (¢) C" = C"”" and C' ~ @, C” ~ @+. For the right
hand side of niff to be false, one of the following three possibilities must obtain: (a*)
CUC 4 CUuCl”, b)CUC =, CuC”"and CUC" ~ Q- CUC" ~ O, or (c¥)
CUC' =y CuC’"and CUC' ~ @, CUC"” ~ @+. So both sides of niff being false
presents us with nine possibilities, and we need to show that kiff will be true given
each one.

(a&a*): Suppose C’ #¢ C”,and CU C’ #; CU C”. This entails that both sides of
kiff are false, and thus that kiff holds.

(a&b*): Suppose that C" #, C”,CUC’ =, CUC”,CUC' ~ O-,and CUC" ~ Q.
There are five possibilities to consider: (¢) C ~ Q, (B) C ~ Q-, (7) C is middling, (J)
C~Q@+,(e)C~ Q.

(«) Suppose C ~ Q. Then it follows from lemma 3| that CU C’ ~ Q, contra
supposition. So this is impossible.

(B) Suppose C ~ Q-. C is disjoint with C’ and C”, and thus C" and C” are subsets
of C. It follows from lemma [6| that C ~ @+, and thus from lemma [2| that C’ and C”’
are on a par with either @ or @+. Either way, C’ = C”, contra supposition. So this is
impossible.

(7) Suppose C is middling. It follows that C”” must also be middling. (For if
C” ~ @ then by lemma [ C U C”” wouldn’t be on a par with Q-; if C”/ ~ @+ then
by axiom[7]C U C”” wouldn’t be on a par with Q-; if C"” were on a par with Q or Q-
then C and C” couldn’t be disjoint (since if C and C" are disjoint then C” C C and
so C" < C (by lemma [2), and since C must be middling (by lemma[7) it follows that
C” < O-).) For similar reasons, C’ must also be middling.

Now, note that the fact that C U C”” ~ Q entails that any triple associated with a
set of worlds outside of 51, S2 and S3 in figure [ will be a par with @ (by lemma 5).
Since C’ must be middling, and C’ — §2 ~ @, it follows from lemma @ that S2 must
also be middling.

Since CU C’ ~ Q-, it follows (from lemma @) that CU C’ ~ @+, and since S1is a
subset of C U C’, it follows (from lemma that S1 < @+. But that, and the fact that S2
is middling, entails that §1 U S2 must be on a par with S2 (by lemma E] and axiom @,
and thus that C’ ~ C”. This entails that C’ ~; C”, which contradicts the supposition

40



C

Figure 1

that C’ % C”. So this is impossible.

(6) Suppose C ~ @+. It follows from this, and the fact that CU C’ ~ Q- and
CUC(C"” ~ Q, that C’ and C” are on a par with either Q or Q-. (If not, then it follows
by lemma@and axiomﬁ]that CU C’ and CU C” would be < Q-, contra supposition.)
Either way, C’ >, C”, contra supposition. So this is impossible.

(€) Suppose C ~ @. It follows from this, lemma |4} and the fact that CU C’ ~ Q-
and CUC” ~ Q, that C’ and C” are on a par with either Q or Q-. Either way,
C’ = C”, contra supposition. So this is impossible.

(a&c*): Suppose C" #; C”,CUC’ =, CUC",CUC' ~ Q@and CUC" ~ O+. It
follows (by lemma that C ~ C’ ~ @, and thus that C”" ~ @+. But that entails that
C’ = C” is true, contra supposition. So this is impossible.

(b&(a*)—(c*)): Suppose C' =y C”, C" ~ Q-,and C"” ~ Q. Since C"NC = Q, it
follows that C ~ @. So (by lemmafd) CU C’ ~ C" and CU C” ~ C”. It follows that
the left hand side of kiff is true iff the right hand side of kiff is true, and thus that kiff
holds.

(c&(a*)—(c*)): Suppose C’ = C”" and C' ~ @, C" ~ @+. C must either () be on a
par with Q, (B) be on a par with @, or () be between those two. («) If C ~ ), then
the fact that C and C” are disjoint entails (by lemmas |5/and [I) that C"” ~ @, contra
the supposition that C”” ~ @+. So this is impossible. (8) If C ~ @, then (by lemma4)
CUC' ~ C"and CUC” ~ C”, and so the the left hand side of kiff is true iff the right
hand side of kiff is true. So kiff holds. () If C is between the two, then since C' ~ @
and C” ~ @+, condition (iii) holds, and thus (as we saw above) kiff holds.

K-Axiom 5. There’s no C in R such that (i) C > @, and (ii) for any C’ in R such that
C’ is a proper subset of C, either:
(@ €'~ C,
(b) C' ~ @.

Proof: Suppose otherwise for reductio — that there is a C in R such that (i) C > @,
and (ii) for any C’ in R such that C’ is a proper subset of C, either: (a) C’ ~ C or (b)
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C’ ~ @. First, note that C’ ~; C entails that one of the following five things must be
true: () C’ ~C,(B)C' ~Qand C ~ Q-, (7)) C' ~ Q-and C ~ Q, (§) C' ~ @ and
C ~ @+, 0or (¢) C' ~ @+ and C ~ @. Second, note that C’ ~; @ entails that either ()
C' ~ @ or () C" ~ @+ must be true. Third, note that if C > @, then C > @+. Since
C’ is a subset of C, lemma [2|entails that C’ # C, which rules out (8) and (¢). And ()
makes () redundant. So, putting this together, it follows that there is a C in R such
that (i) C > @+, and (ii) for any C’ in R such that C’ is a proper subset of C, either: («)
C'~C (7)C ~Q-and C ~ O, () C' ~ @, or (y) C" ~ @+. But this is precisely
what part 2 of axiom [4] denies. Reductio.

K-Axiom 6. Suppose C, C1, Cy, ..., and Ujeq C; are in R. If for all i, C =, C; and
Ci C Ciyq, then C = U2, Ci.

Proof: Suppose that C, Cy, C, ..., and Ui=; C; are in R, and for all i, C = C; and
Ci C Ciy1. For every i, the fact that C =y C; entails that either C = C;, C ~ Q-
and C; ~ Q, or C ~ @ and C; ~ @+. Thus there are three (somewhat overlapping)
possibilities: (i) for every i, C > C;, (ii) for some i, C ~ Q- and C; ~ Q, or (iii) for
some i, C ~ @ and C; ~ O+.

(i) If for all i, C = C;, then axiom |§] entails that C = ;2 C;, which entails that
C U:il Ci.

(ii) If for some i, C ~ Q- and C; ~ Q, then since C; C U]?O:1 C;, it follows from
lemma | that Ui2; C; ~ Q. Since Q- = €, it follows that C =, Ui~, C;.

(iii) Finally, suppose that C ~ @. Since C ~ @ and for all i, C = C;, it follows that
for all i, @+ = C;. It follows from axiom@that @+ = Uiz, Ci. And it follows from the
fact that C; C ;2 C; and lemmathat Uiz, Ci = @+, and thus U;2; C; ~ @+. Since
@ r @+, it follows that C = Ui, C;.

e Step I(b). Consider the condition that chy (C) > cha /(C') iff for any w € L
and w’ € L', either:

1' CA,ZU i CA/ w!'”’
2. Cppp~Q-and C/y,
3. CA,w ~ ®A,w and Cllq/ w ™ D+.

Note that this is equivalent to the condition that chy 1 (C) > cha p/(C') iff for any
w € Land w’ € L', Can = C)y - Let’s say that a ch which satisfies this condition is
order-preserving with respect to =, and order-encoding with respect to >.

We’ve established that the nomic likelihood relation over R satisfies k-axioms 1-6.
It follows from a result by |Villegas| (1964) that if this relation satisfies k-axioms 1-6,
then there is a unique order-preserving function p from the algebra the relation is
defined over (R) to the unit interval [0, 1], and p is a countably additive probability
function. (See Krantz et al.|(1971), p216.)

Now, strictly speaking p is a function which takes one argument (a triple in R),
whereas ch is a function of three arguments, each corresponding to an element of that
triple. But we can uniquely pair each p with a ch function such that for all C, A, and w,

~ QA/,w’/
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char,(C) = p(Caw)F’| Since there’s a unique order-preserving (with respect to =)
function p from R to [0,1] that’s a countably additive probability function, it follows
that there’s a unique order-preserving (with respect to >;) and order-encoding (with
respect to =) function ch from triples of propositions corresponding to the elements
of R to [0,1], and it’s a countably additive probability function.

In what follows I'll speak loosely of ch as assigning values to triples like C, , and
the like, even though this is only strictly true for p, not ch.

o Step II. Now we'll extend the result from R to any (A,w)-algebra in NS. Given
a probability function over R, we’ll show that there’s a unique countably additive
assignment to every triple in NS that is order-preserving with respect to =, and order-
encoding with respect to =. First, we’ll establish that there’s a unique assignment that
is order-preserving with respect to >~ /order-encoding with respect to >~. Second,
we’ll establish that this assignment is a countably additive probability function.

1. Recall that in order for ch to be order-preserving with respect to > /order-
encoding with respect to >, it must be the case that chis 1 (C) > char 1/(C) iff for any
w € Land w' € L', Cay = C . This entails that in order for ch to be order-
preserving with respect to =/ ordér—encoding with respect to =, it must be the case
that cha 1 (C) = cha 1 (C') iff forany w € Land w’ € L', Cayp ~k Clys -

It follows from part 3 of axiom [4] that every triple in NS is ~ with a triple in R.
That entails that every triple in NS is ~ with a triple in R. Thus in order for ch to be
order-preserving with respect to > /order-encoding with respect to >, it must be the
case that ch assigns to each triple in NS the same value it assigns to the triple(s) in R
they’re on a pary with. Since part 3 of axiom [4entails that there will be such a ck, and
this uniquely identifies what ch must be, and it follows that there is a unique ch over
all NS that is order-preserving with respect to = /order-encoding with respect to >.

2. Now let’s establish that this ch is a countably additive probability function.

The first probability axiom requires that every assignment in NS be positive. Since
every assignment in R is positive (since ch is probabilistic over R), and every assign-
ment in NS is equal to some assignment in R, it follows that every assignment over
NS is positive.

The second probability axiom requires every Q4 4, in NS to be assigned 1. Qg is
assigned 1, and by axiom 3| every Q4 ., ~ Qg and thus every Q4 ., ~¢ Qr. Since
these are assigned the same values, it follows that every ()4, in NS is assigned 1.

Let’s establish that the third probability axiom is satisfied in two steps, first (a)
showing that ch is finitely additive, and then (b) showing that ch is countably additive.

(a) Let’s start by showing that ch will be finitely additive. So we want to show that
for any arbitrary (A,w)-cluster containing C and C’ (where C and C’ are disjoint), it
will be the case that cha,(C) + char,(C') = char, (CUC).

>0f course, this identification requires it to be the case that for all w, w’ in the same L, p(C4 ) =
p(Ca ). To see that this is the case, recall that if w and w’ are in the same L, it follows from the definition of
L that C4 4 ~ Cp 4, which entails that Cy4 , ~ Cy4 4. And since ps assignments line up with =, it follows

that p(CA,w) = p(CA,w’)'
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By part 3 of axiom [4] the rich algebra R contains some C§ and Cg (where C* and
C™* are disjoint) such that C4, ~ Cf and C),, ~ Cg. Assume that none of the
following conditions obtain: (i) Qa4 = Caw - Dawr Chy ~ Daw, CE ~ D+, (ii)
Caw ~ Q-, C,y .~ CR ~ @4, (i) Capy ~ @+, Cy , ~ Ci ~ O-. (In a moment
we'll return to consider cases where one of these conditions does obtain.) Then it
follows from axiomthat Caw = CRiff (CUC")y, = (C*UC™)pand C; = Can
iff (C* U Cl*)R t (C U CI)A w*

Since the left hand side of both biconditionals are true, it follows that (CU C’) Aw ™
(C*U C™)g. We know from above that cha(C) = cha /(C') iff for any w € L
and w' € L', Can ~r C)y - Letting R = A’,w/, it follows that chy, (CUC') =
char 1 (C*UC™). Likewise, it follows that cha 1, (C) = char (C*) and char, (C') =
char 1 (C'™*). We've established that ch is finitely additive over R = A’,w’, so char 1/ (C*) +
ChA’,L;u (C/*) = ChA’,LQU (C* U CI*). Thus it follows that ChA,Lw (C) + ChA,Lw (CI) = ChA,Lw (C U
).

To derive this result, we assumed that none of the conditions (i)-(iii) obtained.
Now let’s relax that assumption, and show that it will still be the case that ch4 1, (C) +
cha,(C') =char, (CUC).

(i) Suppose that Q4 = Caw = Daw, C oy ~ Daw, CF ~ O+. But by stipulation,
C/, ,, ~ Cg, soit’s impossible for this condition to obtain.

'(ii) Suppose that C4 4, ~ Q- Cho~ CR ~ D+,

We know Qp is assigned 0, and by axiom [3| every @4, ~ @r and thus every
Daw ~k Dr. Recall that chy 1 (C) = chy p(C') iff foranyw € Land w’ € L', Caqp ~5
C)y - It follows that every @4 5, in NS is assigned 0.

Now, since C)y ., ~k D+aw ~k Daw, it follows that chap, (C') = char, (D) = 0.
Likewise, since C A’,w ~g Q- ~ Qg it follows that chp (C) = char, (Q) = 1.

It follows from lemma [2] and the fact that ch is order preserving/encoding, that if
C CC, thenchyr,(C) < chap,(C'). Since C C CUC/, it follows that chyr,(C) <
char,(CUC’). And since C (), it follows that char, (CUC") < char,(Q). Since
char,(C) = chayr,(Q) =1, it follows that chu;,(CUC’') = 1. Thus if condition (ii)
obtains, char, (C) 4+ char,(C') = 1+0 = chyp,(CUC') = 1. So additivity is not
violated.

(iii) Suppose that C4, ~ @+, C)y,, ~ C* ~ Q-. By switching C and C’ in the
argument for condition (ii), we get the result that if condition (iii) obtains, additivity
is still not violated.

(b) Now let’s establish that ch is countably additive.

It follows from a result by |Villegas| (1964) (see also Fishburn (1986), p342) that if
(x) a (A,w)-cluster is a o-algebra, and (B) ch is a finitely additive probability measure
that is order-preserving with respect to >, and () = is monotonically continuous,
then ch is countably additive. Earlier, we used the core axioms to derive K-axiom 6,
which states that > is monotonically continuous over R. Note that nothing about the
derivation depended on the (A,w)-cluster in question being R — one can use precisely
the same derivation to establish that > is monotonically continuous over any cluster
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in NS. So we can conclude that > is monotonically continuous in general.

Since («) it follows from axiom (1] that every (A,w)-cluster in NS is a c-algebra,
(B) we've established above that ch is order-preserving with respect to =, and is a
finitely additive probability function over every (A,w)-cluster in NS, and () we've
established that >~ is monotonically continuous, it follows from Villegas’s result that
ch is always countably additive.

e Step III. We've established that ch is a unique countably additive probability
function over the (A,w)-clusters in NS. To conclude the theorem, we just need to show
that there’s a unique nomic requirement function NR and nomic forbidding function
NF such that NR(Ca ) iff Caw ~ Qaw, and NF(Cay) iff Caw ~ Daq. But that's
trivially done, since we can use those biconditionals to define NR and NF. Thus the
representation and uniqueness theorem holds.

C Some Lemmas Regarding Laws and Chances

e Proof of Lemma|10; Suppose for reductio that A logically entails C, and C, 4, is in N,
but it’s not the case that NR(Cy 4, ). It follows (from the representation and uniqueness
theorem) that C4 4, % Q4 -

It will also follow that C4 4 # @a. To see this, suppose otherwise: that C4 ) ~
D pw, and thus Cpq ~ Qay. Bitherw € Aorw € A. If w € A, then (by axiom
w € C, which is impossible since A entails C. If w ¢ A, then (by axiom@) there exists
aw € Asuchthat Cy, ~ Qu . But then (by axiom w' € C, which is impossible
since A entails C. Reductio.

Together, these results entail (by lemma 1) that @4, < Caw < Qay. It follows
from axiom [10] that there’s some w” € A with the same laws as w such that w” ¢ C.
But this is impossible, since A entails C. By reductio, it must be the case that NR(Cx ).

e Proof of Lemma Suppose C is in NS. If NR(C1), ..., NR(C,), then it follows
(from the representation and uniqueness theorem) that C; ~ ... ~ C, ~ Q. It follows
from lemma E]that M7_,C; is also on a par with Q. Now, if Cy, ..., C; logically entail C,
then C is a superset of their intersection, N, C;. By lemma [2} it follows that C must
be at least as likely as N_, C;, and thus (by lemmal()) that C must be on a par with Q.
It follows from the representation and uniqueness theorem that NR(C).

e Proof of Lemma Suppose NR(C). It follows from the representation and
uniqueness theorem that C ~ Q. Thus C ~ @ (by lemma , and (by the repre-

sentation and uniqueness theorem) NF(C). Thus NR(C) entails NF(C).

Likewise, suppose NF(C). It follows from the representation and uniqueness the-
orem that C ~ @. Thus C ~ Q (by lemma , and (by the representation and unique-
ness theorem) NR(C). Thus NF(C) entails NR(C).

e Proof of Lemma|13} (1) Suppose NR(C4 ) and w € A. By the representation and
uniqueness theorem, C4,, ~ Q4,. By axiom 8 it follows that w € C. (2) Suppose

NF(Caq) and w € A. By the representation and uniqueness theorem, Ca, ~ @4 1.
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It follows from lemma f|that C . ~ Q4 , and thus by axiom|[8|that w € C.

e Proof of Lemma (1) Since the representation theorem assigns chances using
>k, a relation that fails to distinguish between Q) and €)-, it follows that the same
chance will be assigned to propositions on a par with Q2 and Q-. It follows from the
representation and uniqueness theorem that the chance of propositions on a par with
Q) is 1; thus the chance assigned to propositions on a par with Q- will also be 1.

(2) The representation and uniqueness theorem entails that ch is additive, and
that for any Q. € NS, chap,(Q) = 1. It follows that char, (Q) + char, (D) =
char,(QU®) = chyr,(Q) = 1, and thus that chy (@) = 0. Since > fails to
distinguish between @ and @+, it follows that the same chance will be assigned to
propositions on a par with @ and @+. Thus the chance assigned to propositions on a
par with @+ will also be 0.

(3) It follows from the representation and uniqueness theorem that ch is proba-
bilistic, so cha 1, (C) € [0,1]. It also follows from the representation and uniqueness
theorem that C >, C’ iff the chance of C is greater than the chance of C’. Thus if
Q- > Cpyp = O+ then it can’t be the case that chs 1, (C) = 0, since then chy 1, (C) =
char, (D) even though Ca ., > @4y Likewise, it can’t be the case that chiap,(C) =1,
since then cha,(C) = char,(Q)) even though Cq < Qay. Thusif Q- > Cpq >~
@+, then chyp,(C) =0 € (0,1).

e Proof of Lemma Suppose, for reductio, that A D A’, chp(A") > 0, and
ch 1 (Q)) is well-defined, but either (i) for some C, ch 4/ | (C) is well-defined but ch 4 1 (C)
is not, or (ii) for some C, ch s 1 (C) is well-defined but ch 4/ | (C) is not.

(i): Since char 1 (C) is well-defined, it follows from the representation and unique-
ness theorem that, for some world w € L, Ca/ 4, is in NS. And since chy 1 (A’) # 0, it
follows from lemma (14| that A/, , A @+, or (equivalently) A, - @+. Given this and
the fact that A D A/, it follows from ax1om. 11| that Cy4 4 is in NS. It follows from this
and axiom I 2|that Cary = Cap Or Cagy = Carg. Thus it follows from the representa-
tion and uniqueness theorem that either ch 4/ 1 (C) > cha 1 (C) orcha(C) > char 1 (C).
Either way, ch4 1 (C) must be well-defined, contra supposition. Reductio.

(ii): Since ch4 1 (C) is well-defined, it follows from the representation and unique-
ness theorem that, for some world w € L, C44 is in NS. And since cha(A") # 0, it
follows from lemmathat Al , # @+, or (equivalently) A, , >~ @+. Given this and
the fact that A O A/, it follows from axiom . 11| that C4/ 4 is in 'NS. It follows from this
and axiom I 2|that Ca/y = Cayp Or Cagy = Carg. Thus it follows from the representa-
tion and uniqueness theorem that either ch 4/ | (C) > chp(C)orchyr(C) > char(C).
Either way, ch 4/ 1 (C) must be well-defined, contra supposition. Reductio.

e Proof of Lemma First, let’s establish two preliminary results, lemmas (17| and
18

Lemma For every natural number 7, there exists a n-equipartition of R.

e Proof of Lemma Call a n-equipartition with respect to = (instead of =) a
n-equipartitiony. It follows from a result of Villegas| (1964) that if = over an algebra
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satisfies K-axioms 1-6, then that algebra satisfies the “fineness” and “tightness” con-
ditions (see Krantz et al. (1971), p216 for details, though these details don’t matter
for our purposes). It follows from a result by Savage| (1954) that if an algebra satis-
ties these two conditions (in addition to the other K-axioms), then for any natural ,
there exists a n-equipartition of that algebra (see Krantz et al.[(1971) p206-207). Thus
from the results shown above it follows that for every natural number 7, there exists
a n-equipartitiony of R.

Now, the members of an n-equipartition can’t be on a par with Q- (if n = 1 then
the set would fail to be exhaustive, while if n > 1 then the set couldn’t be mutually
exclusive, given lemmas [2]and [p). Likewise, the members of an n-equipartition can’t
be on a par with @+ (since the set wouldn’t be exhaustive — by axiom [7] for all n,
UL, P; ~ @+ < Q). Note thatif A,B # Q-and A,B % @+, then A = Biff A = B.
Thus any n-equipartition, of R is also a n-equipartition of R.

LemmafI8 If C,, is in NS, and we know the values of f(1,Ca ) for all n, then we
can identify the unique real number r such thatch, . (C) =r.

o Proof of Lemma Suppose C4 4 is in NS. The representation and uniqueness
theorem entails (i) that ch is additive, (ii) that char, (Q) = 1, and (iii) that C4 4 ~
C)y » which entails chs 1, (C) = chppr (C'). It follows from this that the chance of

each member of an n-equipartition is 1, and the chance of the union of m members of
the n-equipartition is 7.

It follows from the above that if n = 10, f(n, C4 ) yields the first 2 values of the
decimal expansion of char, (C). (Le., “1.0” if x = 10, and “0.x” if x < 10). More
generally, note that if n = 10/, f(1n,Ca ) yields the first [ + 1 values of the decimal
expansion of chy 1, (C). (Le., “1.0..0” if x = 10, and “0.x” if x < 10").

It follows from this that if we know the values of f(1n,Cy,) for all n, then we
can identify the unique real number r = chy 1, (C). For by looking at arbitrarily fine-
grained n-equipartitions, the values of f(n, C, ;) allow us to identify arbitrarily many
places in the decimal expansion of r. And every real number will correspond to a
unique decimal expansion of this kind. (The relationship between decimal expansions
and real numbers isn’t quite one-to-one, since, e.g., 1.0 and 0.9 correspond to the same
real number. But the manner of identifying decimal expansions using using f (1, C4 1)
as described above will be unique, since it never yields the latter (...9) kinds of decimal
expansions.)

Now;, this only shows that we can identify the unique real number r = cha 1 (C) if
Ca,w is a member of the rich cluster R, since we’ve only shown that all of the relevant
n-equipartitions exist in R (lemma(I7). But axiomdentails that every Cis on a par with
some Cy, and it follows from (iii) above that the numerical chance that gets assigned
to C; must be the same as the chance assigned to C. So we can use this technique in
R to identify the relevant numerical chances for any C in NS.

e Given lemma (18| we can now prove lemma [16| as follows. Suppose A D A’
and cha(C | A’) and char [ (C) are well-defined. It follows from the definition of
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conditional probability that chs(C N A’) and chy(A’) are well-defined, and thus
(by lemmal(15) that cha  (CNA") and char  (A') are well-defined. Thus ch a1 (C | A")
is well-defined as long as ch 4 1 (A") # 0. And since cha 1 (A") =1 # 0 (by lemmas|[10]
and[14)), it follows that ch 4 1 (C | A) is well-defined.

har; (CNAT) hap(CNA’ .
If cha [ (C| A") # chpar(C | A’) then CC/Z;L(A’) #+ Ccz/j,i(A’))‘ Given lemma

we can identify the unique real numbers that each of those four terms correspond
to, and thus identify the real numbers the ratios of these chances on the left and
right hands sides correspond to, by looking at the values of the corresponding fs

for increasingly large ns. If the left and right hand sides differ, then for some large
%m will differ from %ﬁl:ﬁ”)
ther of the denominators stay at O for arbitrarily large n) axiom [12| forbids this. So
cha(C| A") = chyr(C | A’). And since ch is probabilistic and cha: [ (A") = 1 (by
lemmas|[10]and[14), it follows that cha/ (C) = cha (C | A').

(n,CNAL ) f(nCNA) )
Fmar, - O TfmAn,)
arbitrarily large n? Then the real number representing these values is 0, and ch 1 (C |
A"y or cha (C | A") will be undefined. But as we've shown, both of these values are

well-defined. So this is impossible.

enough m, for alln > m, . But (assuming nei-

What if either of the denominators of f

do stay at 0 for
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