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Abstract

We present an overview of typed and untyped disquotational truth
theories with the emphasis on their (non)conservativity over the base
theory of syntax. Two types of conservativity are discussed: syntactic
and semantic. We observe in particular that TB - one of the most
basic disquotational theories - is not semantically conservative over
its base; we show also that an untyped disquotational theory PTB is
a syntactically conservative extension of Peano Arithmetic.

1 Disquotational truth theories

Disquotationalists believe that the whole content of the notion of truth is
captured by the so called schema T :

(T) ‘p’ is true iff p.

The general intuition is that the result of adding “is true” to a name of a
sentence (or an utterance, or a proposition) is equivalent – in some weaker or
stronger sense – to the sentence (the utterance, the proposition) itself. Apart
from that, no further explanation of the meaning of “is true” is needed. Thus
e.g. Field in [5] states that for a given person and an utterance u, “the claim
that u is true (true-as-he-understands-it) is cognitively equivalent (for the
person) to u itself (as he understands it)” (p. 250); and he proceeds to assert
that “the cognitive equivalence of the claim that u is disquotationally true to
u itself provides a way to understand disquotational truth independent of any
nondisquotational concept of truth or truth conditions” (p. 251). Another
example of a philosophical position arising from disquotational intuitions is
Horwich’s minimalism (see his [10]). According to Horwich, all the facts
about truth can be explained on the basis of the so called “minimal theory”,
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whose axioms have a disquotational form.1 Horwich claims that the minimal
theory fully characterizes the content of the notion of truth. In particular,
to understand the truth predicate it is simply enough to be ready to accept
the substitutions of the relevant T-schema. Accordingly, truth has no hidden
nature which could and should be revealed by scientific enquiry ([10], p. 2).
In effect all the traditional, substantive conceptions of truth (like correspon-
dence, coherence and warranted assertability theory) turn out to be useless
at best and probably misleading.

In this context disquotationalists quite often cite Alfred Tarski, recalling
his famous Convention T. Why are we ready to call Tarski’s definition a defi-
nition of truth, and not of some other property? The reason is that it permits
us to derive all the instances of the T-schema for sentences of the object lan-
guage. Tarski gives us a clear hint: his predicates (for various languages)
are truth predicates, because they satisfy the same condition of material ad-
equacy, i.e. they conform to Convention T. After we recognize this, there
is only one last step to be taken: one can declare that all the apparatus of
classical semantics (compositional approach, involving an inductive charac-
terization of reference and satisfaction) is really unnecessary in the context
of our general project of explaining the intuitive notion of truth. “Truth has
a certain purity” (see [10], p. 12) – we can explain it directly in terms of
T-schemata without any appeal to other semantic notions.

What’s the form of the theory of truth most adequate to disquotational
intuitions? The most direct approach consists in stipulating that the set of
axioms of our theory of truth will take the form of a collection of chosen
instantiations of a T-schema.2 Of course due to the contradictions of the
liar type, we can’t have all substitutions on our list – some restrictions are
necessary. Nevertheless, the disquotationalist will claim that no other sort
of axioms is really needed.

There are two basic variants of disquotational theories of truth. One
possibility consists in adopting as axioms the substitutions of the local T-
schema:

(L) T (pϕq) ≡ ϕ

The second option is to adopt a schema of uniform disquotation:

1It’s worth mentioning that Horwich attributes truth to propositions, not sentences or
utterances.

2Admittedly, it is not the only possible option. Cf. Beall [1], where disquotationalism is
understood as a view that truth is a “fully transparent device” (p.3); more exactly: it’s “a
device introduced via rules of intersubstitution: that Tr(pαq) and α are intersubstitutable
in all (nonopaque) contexts” (p. 1). On this approach, adopting T-biconditionals as
axioms might be just one of the possible ways to give justice to the disquotationalist’s
intuitions.
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(U) ∀a1...an[T (pϕ(a1...an)q) ≡ ϕ(a1...an)]

In the second case our axioms are formulas obtained from (U) by substituting
concrete variables for a1...an and concrete formulas for a schematic letter ϕ.
In fact (L) can be viewed as a special case of (U), with ϕ being a sentence
and the sequence of quantified variables being empty.

Comment. Using (U) instead of (L) retains a lot of the disquotationalist
spirit, although one could complain that it is more a satisfaction than a truth
schema. The intended meaning of “T (pϕ(a1...an)q)” is after all that a for-
mula ϕ(x1...xn) is satisfied by objects a1...an. Admittedly, in an arithmetical
context, where every object has a standard numeral denoting it, we can ex-
press this thought employing just a one place truth predicate: we say in effect
that the result of substituting in ϕ numerals for a1...an is true. However, in
other contexts, where nameability assumption can’t be employed, we would
have to use a satisfaction predicate instead.

In what follows both types of disquotational axioms will be discussed,
in two variants: typed and untyped one. I will concentrate on arithmetical
context, taking PA as the base theory of syntax and stressing each time the
arithmetical strength of the resulting theory.

2 Conservativeness

The main emphasis will be on (non)conservativity results. Conservativeness
has been one of the major issues in recent debates about truth theories.
Should we expect from a theory of truth that it be conservative over its
base? The opinions have been divided. On the one hand, some philosophers
of deflationary bent claimed that truth is an innocent and metaphysically
thin notion. An explication of this claim has been proposed by Horsten
in [9] and elaborated by Shapiro [16] and Ketland [13]. On this view, an
adequate theory of truth for a given language should conservatively extend
a base theory of syntax for this language. The motivation for accepting
conservativeness demand is succinctly formulated in the following fragment
of Shapiro’s paper:

How thin can the notion of arithmetic truth be, if by invoking it
we can learn more about the natural numbers?

(see [16] p. 499.) As we see, the underlying intuition is that if by invoking
the notion of truth we can learn more about natural numbers, then the
notion of truth is not thin. In the next step the notion of conservativeness is
used to analyze the situation in more detail. A representative fragment from
Shapiro’s paper runs as follows:
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I submit that in one form or another, conservativeness is essential
to deflationism. Suppose, for example, that Karl correctly holds
a theory B in a language that cannot express truth. He adds
a truth predicate to the language and extends B to a theory
B’ using only axioms essential to truth. Assume that B’ is not
conservative over B. Then there is a sentence Φ in the original
language (so that Φ does not contain the truth predicate) such
that Φ is a consequence of B’ but not a consequence of B. That
is, it is logically possible for the axioms of B to be true and yet
Φ false, but it is not logically possible for the axioms of B’ to be
true and Φ false. This undermines the central deflationist theme
that truth is in-substantial. (Shapiro [16], p. 497)

Observe that although in the quoted passage the claim of insubstantiality of
truth is explicated in terms of conservativeness, Shapiro remains noncommit-
tal about a particular form of a conservativeness demand. (In fact various
versions of the demand can be considered; see below, Definition 1.)

Others have argued that the deflationists have no reason to embrace con-
servativeness as a condition on truth theories; in addition, a theory of truth
with this property would be too weak.3 I am not going to engage into this
debate here; I stress only that results about arithmetical strength of truth
theories are philosophically important no matter what one’s standpoint in
the debate is.4

Let us introduce now the definition of two notions of conservativeness.

Definition 1 Let T1 and T2 be theories in languages L1 and L2 (with L1 ⊆
L2). Then:

(a) T2 is syntactically conservative over T1 iff T1 ⊆ T2 and ∀ψ ∈ L1[T2 `
ψ → T1 ` ψ].

(a) T2 is semantically conservative over T1 iff every model M of T1 can be
expanded to a model of T2 (interpretations for new expressions of L2

can be provided in M in such a way as to make T2 true).

The two notions of conservativeness do not coincide. Semantic conser-
vativeness is a more general notion: it gives via completeness theorem the

3See e.g. Halbach [8], p. 188: “As far as I can see, neither have deflationists subscribed
to conservativeness explicitly nor does it follow from one of their other doctrines. (...) But
if the deflationist understands his claim that truth is not a substantial notion as implying
that his truth theory has no substantial consequences, he commits a mistake.”

4For a philosophical discussion of conservativeness as a demand for deflationary truth
theories, see also [3], [12] and [17].
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syntactic version, but the opposite implication does not hold. Examples
of truth theories being syntactically, but not semantically conservative over
their base theories will be given below. Both notions are invoked by Shapiro
in [16]. Later however most of the authors writing on the subject concen-
trated almost exclusively on the syntactic notion, ascribing to the deflationist
a commitment to syntactic conservativeness. One of the few pleas for seman-
tic conservativeness can be found in McGee [14].

3 Typed disquotation

I will discuss typed disquotational theories in two variants: local and uniform
one.

3.1 Typed uniform disquotation

Adopting the typed approach, we obtain a Tarskian hierarchy of truth predi-
cates and a family of theories characterizing the notion of truth for languages
with truth predicates of all lower levels. Let L0 be the language of Peano
arithmetic; let Ln+1 be the extension of Ln with a new one place predicate
“Tn”. Denote by Ind(Ln) the set of all induction axioms for formulas of the
language Ln. Then we define (“UTB” reads “uniform Tarski bicondition-
als”):

Definition 2

• UTB0 = PA

• UTBn+1 = UTBn∪{∀a1...an[Tn(pϕ(a1...an)q) ≡ ϕ(a1...an)] : ϕ ∈ Ln}∪
Ind(Ln+1)

(Observe that UTBn is always in the language Ln.) Then the following result
can be obtained:

Theorem 3 For every n, UTBn+1 is syntactically conservative over UTBn.5

Proof. Assume that UTBn+1 ` ϕ, ϕ ∈ Ln. Consider all disquotational
axioms employing Tn in a (fixed) proof of ϕ. Let ψ0...ψi be all formulas
mentioned in these axioms in the scope of Tn (i.e. every such an axiom has
a form “∀a1...an[Tn(pψk(a1...an)q) ≡ ψk(a1...an)]” for some k ≤ i). Taking
m as a maximal quantifier rank of ψ0...ψi, we observe that that there is a
predicate “Trm(x)” of the language Ln, which is a truth predicate for for-
mulas of Ln with a quantifier rank smaller or equal m.6 Since UTBn proves

5Cf. Halbach [6], p. 55, where the proof is given that UTB1 is conservative over PA.
6On partial truth predicates, see Kaye [11], p. 119ff.
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all biconditionals of the form “∀a1...an[Trm(pψk(a1...an)q) ≡ ψk(a1...an)]”
for k ≤ i, the proof of ϕ can be reconstructed in UTBn by substituting
“Trm” for “Tn” and by supplying proofs for the resulting biconditionals
when necessary. �

Before analyzing the semantic conservativeness property, I want to remind
the reader an important notion of a recursively saturated model.

Definition 4

• Let Z be a set of formulas with one free variable x and parameters
a1...an from a model M . Z is realized in M iff there is an a ∈M such
that every formula in Z is satisfied in M under a valuation assigning
a to x.

• Z is a type of M iff every finite subset of Z is realized in M .

• M is recursively saturated iff every recursive type of M is realized in
M .

It is a well known fact that every infinite model is elementarily equivalent
with a recursively saturated structure (see e.g. Kaye [11], Proposition 11.4,
p. 14).

Theorem 5 UTBn+1 is not semantically conservative over UTBn.7

Proof. The proof consists in observing that only recursively saturated
models of UTBn can be expanded to models of UTBn+1. Given a model M1

of UTBn, assume that it’s possible to expand it to a model M2 = (M,T0...Tn)
in such a way that M2 |= UTBn+1. Let p(x, a1...an) be a recursive type over
M1. Let “s ∈ p” be an arithmetical formula representing in PA the recursive
set of formulas (without parameters) used in forming the type p(x, a1...an).
Then we have:

∀k ∈ NM2 |= ∃z∀ϕ(x, y1...yn) < k[ϕ(x, y1...yn) ∈ p→ Tn(ϕ(z, a1...an))]

So by overspill, there is a nonstandard b ∈M2 such that:

M2 |= ∃z∀ϕ(x, y1...yn) < b[ϕ(x, y1...yn) ∈ p→ Tn(ϕ(z, a1...an))]

Then such a z realizes our type p(x, a1...an) in M1.
8

�

7Cf. [11], p. 228, Proposition 15.4.
8Although we worked in M2, the transition to M1 is made possible by the fact that all

formulas in our type belong to the language Ln, i.e. they do not contain “Tn”, so if they
are satisfied in M2, they are also satisfied in M1.
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3.2 Typed local disquotation

In an analogous manner, we define now the hierarchy of typed theories based
on the local disquotational schema.

Definition 6

• TB0 = PA

• TBn+1 = TBn ∪ {Tn(pϕq) ≡ ϕ : ϕ ∈ Ln} ∪ Ind(Ln+1)

Since local disquotation is a special variant of uniform disquotation, some
results from the last subsection carry over to the present case. In particular,
Theorem 3 applies without any changes – TBn is syntactically conservative
over TBk for k < n. As for Theorem 5, although its proof doesn’t carry over
to our present case, the result still holds.

Theorem 7 TBn+1 is not semantically conservative over TBn.9

Before giving the proof, I would like to remind the reader some basic
concepts, which will be used later on.

Explanation 1 (the notion of coding). A set Z of natural numbers is
coded in a model M by an element a of this model iff Z = {n : M |= n ∈ a}.
Expression of the form “x ∈ y” is taken to be an arithmetical formula used
for the purposes of coding; it can be e.g. “px | y” (“the xth prime divides
y”). In the standard model it is exactly finite sets which are coded. The
situation is different in nonstandard models, where some infinite sets will be
coded as well.10

Explanation 2 (the notion of a prime model). Let S be a consistent
extension of PA in the language L with new predicates Ã1...Ãn, with full
induction for L. Let M∗ = (M,A1...An) be a model for S. A prime model
K of S is obtained from M∗ in the following manner:

• The universe of K is defined as {a ∈M : a is definable in M∗ by some
formula of L}

• The operations of K are the operations of M∗ restricted to the universe
of K

9After obtaining Theorem 7, I found out that the result was proved earlier by Fredrik
Engström. Engström’s work is unpublished.

10For more about coded sets, see e.g. Kaye [11] p. 141ff.
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• for i ≤ n,AK
i = Ai ∩K.

It is possible to show that K is an elementary submodel of M∗, with all
elements of K being definable in K.11

We now start with the following lemma:

Lemma 8 For every n ∈ N , the following conditions are equivalent for an
arbitrary nonstandard model M∗ = (M,T0...Tn−1) of TBn:

(a) M∗ can be expanded to a model of TBn+1

(b) M codes Th(M∗).

Proof. For the direction from (b) to (a), assume that a is a code of
Th(M∗) in M . Define: Tn = {x ∈ M : M |= “x ∈ a”}. Then (M,T0...Tn) |=
TBn+1 as required (observe in particular, that Tn is inductive, since it’s
definable with parameters in M). For the opposite direction, assume that
M∗∗ is an expansion of M∗ satisfying TBn+1. Then we have:

∀k ∈ NM∗∗ |= ∃z∀s[s ∈ z ≡ (s < k ∧ Tn(s))]

Therefore by overspill there is a nonstandard a ∈M such that:

M∗∗ |= ∃z∀s[s ∈ z ≡ s < a ∧ Tn(s)]

(Observe that overspill can be used, because we assumed that Tn is in-
ductive.) Picking such a z, we obtain a code for Th(M∗) in M , as required. �

With Lemma 8 at hand, the proof of Theorem 7 is immediate.

Proof of theorem 7. Let M∗ = (M,T0...Tn−1) be a prime nonstandard
model of TBn. We show that it can’t be expanded to a model of TBn+1. For
an indirect proof, assume that it can. Then by Lemma 8, M codes Th(M∗),
and since it’s prime, a code c of Th(M∗) is definable in M∗. Take a formula
α(x) defined as:

α(x) := ∃z[ψ(z) ∧ x ∈ z]

with ψ(x) being a formula of Ln which defines c in M∗. It’s easy to observe
that α(x) is a truth predicate of the language Ln for Ln sentences in M∗,
which contradicts Tarski’s indefinability theorem. �

11More information about prime models can be found in Kaye [11], p. 91ff.
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4 Untyped disquotation

If we decide to drop the typing restrictions, the situation may change drasti-
cally, depending on our choice of the substitution class for the T-schemata.
Even a seemingly weaker schema (L) can generate quite powerful theories
once a suitable set of instances is selected. The key observation was made
by Vann McGee in [15]. Consider an arbitrary sentence ϕ of the arithmetical
language extended with the truth predicate (it will be denoted as LT ). Let
PAT be a theory in the language LT whose all extralogical axioms are just
those of PA. Then there is a substitution of (L) which is provably (in PAT)
equivalent with ϕ. The method of finding an appropriate substitution of (L)
is effective; it is also possible to ”decode” effectively the sentence ϕ given a
corresponding substitution of (L). In effect we obtain the following:

Theorem 9 Let H be an arbitrary recursive set of sentences of the language
LT . Then there is a recursive set G of substitutions of (L) such that H and
G are (over PAT) recursive axiomatizations of the same theory.

Superficially, Theorem 9 might look like a great news for the disquota-
tionalist. Whatever your favourite theory of truth is, you can always ax-
iomatize it by substitutions of (L). Nothing else is needed! However, in fact
McGee’s result leads the disquotationalist nowhere. The main problem is
that the disquotationalist wants to treat the substitutions of the T-schemata
as epistemologically basic. Whatever more substantial principles of truth we
accept, he plans to justify them by recourse to the T-schemata, and not the
other way round. (In particular, it won’t do to justify the acceptance of a
given set of substitutions by saying that they are equivalent to the axioms of
our favourite (substantial) theory of truth.) Unfortunately, McGee’s result
shows, that in general there is nothing basic about the schema (L). False
sentences are provably equivalent to substitutions of (L); arithmetical truths
unknown to us are also provably equivalent to such substitutions. It seems
that (in many cases) accepting a given substitution of (L) requires a special
argument, which goes beyond a mere saying that it is a substitution of a
disquotational schema.

In short: the disquotationalist needs to characterize a set S satisfying the
following conditions: (1) S is a recursive set of substitutions of a T-schema
(the local or the uniform one) (2) we have good reasons to treat elements of
S as epistemologically basic. In particular, we do not accept S because of its
equivalence (over PAT) with some substantial truth theory of our choice.
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The disquotationalist’s predicament is that it seems quite difficult to find
a comprehensive set S satisfying (1) and (2).12 The difficulty will be illus-
trated below, by considering a concrete candidate for the role of such an S:
a set of positive substitutions of a T-schema.

4.1 Untyped uniform disquotation

The proposal is described by Volker Halbach in [7]. It arises from an analysis
of the way paradoxes are produced. The initial insight is that in paradoxical
reasonings we apply the truth predicate to sentences containing a negated
occurrence of this predicate (see [7], p. 788). This is plainly the case with
the liar sentence: the standard, diagonal construction of the liar produces a
sentence with “T” within a scope of one negation. In effect one could try to
avoid the paradoxes by restricting the set of substitutions of (U): from now
on we admit positive substitutions only, i.e. our axiom is whatever can be
obtained from (U) by substituting a positive formula for a schematic letter
ϕ.

The notion of a positive formula is defined for a language containing ¬,∧
and ∨ as the only connectives. (Implication is not a primitive symbol. A
reflection on Curry’s paradox forces us to treat apparently positive occur-
rences of “T” in an antecedent of an implication as negative.13) From now
on we stipulate that LT (the extension of the language of PA with the truth
predicate) contains just those connectives. Then we define:

Definition 10

(a) A formula ϕ of LT is positive iff every occurrence of “T” in ϕ appears
in the scope of an even number of negations.

(b) PUTB (“positive uniform Tarski biconditionals”) is a theory axioma-
tized by all axioms of PAT with extended induction and all substitutions
of the uniform truth schema (U) by positive formulas.

Halbach’s main theorem characterizes the arithmetical strength of PUTB.
Far from being conservative over PA, PUTB is arithmetically very strong –

12One path could consist in considering maximal conservative sets of substitutions of a
T-schema. It has been shown however, that there are uncountably many such sets and
none of them is axiomatizable. See Cieśliński [4].

13In Curry’s paradox we consider a sentence ψ satisfying the condition: ψ ≡ [T (pψq)→
0 = 1]. It turns out then that adopting a T-biconditional for ψ results in a contradiction.
However, a Curry sentence ψ constructed by diagonalization contains an occurrence of the
truth predicate which is not negated.
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it is in fact arithmetically equivalent to the Kripke-Feferman theory KF, one
of the strongest truth theories discussed in contemporary literature.14

Theorem 11 ∀ψ ∈ LPA[PUTB ` ψ ≡ KF ` ψ]

The proof consists in showing that PUTB defines the truth predicate
of KF, i.e. there is a formula α(x) such that PUTB proves all sentences
obtained from axioms of KF by replacing the truth predicate T (x) with α(x).
Together with the information that PUTB ⊆ KF , this implies Theorem 11.
For details, see [7] (lemma 4.3 and theorem 5.1). It’s also worth mentioning,
that nevertheless PUTB is truth-theoretically weaker than KF – it doesn’t
prove compositional truth axioms (Halbach [7], lemma 6.1 and below).

Halbach ended his paper with an open question about the arithmetical
strength of the theory taking as axioms all positive substitutions of the local
truth schema (L). I will sketch the answer in the next subsection.

4.2 Untyped local disquotation

Let’s consider now a case of a positive local disquotation. The basic definition
is as follows.

Definition 12 PTB (“positive Tarski biconditionals”) is a theory axioma-
tized by all axioms of PAT with extended induction and all substitutions of
the local truth schema (L) by positive sentences.

We formulate now the main theorem about PTB.

Theorem 13 PTB is syntactically conservative over Peano Arithmetic.15

The proof consists in showing that:

(*) For every finite set S of axioms of PTB, for every recursively saturated
model M of Peano arithmetic, M can be expanded to a model of S (i.e.
an interpretation of the truth predicate can be found in M in such a
way as to make all sentences in S true).

14A presentation of KF can be found in Halbach [6], starting on p. 195.
15The proof of Theorem 13 was presented on the “Truth be told” conference in Ams-

terdam (2011), and also in [2].
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After (*) is obtained, Theorem 13 follows immediately.

Proof of Theorem 13 from (*). Assume that PTB ` ϕ for an
arithmetical sentence ϕ. Then there is a finite set S of axioms of PTB
such that S ` ϕ. By (*), every recursively saturated model of PA can be
expanded to a model of S; therefore ϕ is true in every recursively saturated
model of PA. But every model of PA is elementarily equivalent with a
recursively saturated model, therefore ϕ is true in every model of PA, which
by completeness implies that PA ` ϕ. �

Sketch of the proof of (*). A handy tool in this proof is a notion of a
translation function t(a, ψ), which takes as arguments a number a (possibly
nonstandard) from a given model and a formula ψ belonging to the language
with the truth predicate. The value of this function is an arithmetical formula
(no “T” inside) with a parameter a – a translation of ψ. The translation
is obtained by substituting all occurrences of “T (t)” in ψ by “t ∈ a” – an
arithmetical formula used for the purposes of coding sets (see Explanation
1). In effect the translation interprets the truth predicate in ψ as referring
to the set coded by a.

With the notion of a translation at hand, we can define, for a recursively
saturated model M , a family of recursive types over M , a family of elements
realizing these types and of models expanding M with an interpretation of
the truth predicate. In what follows the predicates SentPA and Sent+T denote
(respectively) the set of all sentences of the language of PA and the set of all
positive sentences of the language LT .

Definition 14

1. • p0(x) = {ϕ ∈ x ≡ ϕ : ϕ ∈ SentPA} ∪ {∀w(w ∈ x⇒ w ∈ SentPA}
• d0 realizes p0(x)

• T0 = {a : M |= a ∈ d0}
• M0 = (M,T0)

2. • pn+1(x, dn) = {ϕ ∈ x ≡ t(dn, ϕ) : ϕ ∈ Sent+T } ∪ {∀z(z ∈ dn ⇒ z ∈
x)} ∪ {∀z(z ∈ x⇒ z ∈ Sent+T )}
• dn+1 realizes pn+1(x, dn)

• Tn+1 = {a : M |= a ∈ dn+1}
• Mn+1 = (M,Tn+1)
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The idea behind Definition 14 is as follows. A number d0 obtained at
the start codes the set of all arithmetical sentences true in M – we denote
it as T0. Building a model M0, we interpret the truth predicate with just
this set.16 In the next stage we obtain a number d1 coding the set of all
positive sentences of the language LT , which become true in M once “T” is
interpreted by a set T0 (i.e. once “T (t)” is replaced by “t ∈ d0”). And then
we iterate the construction for all natural numbers.

At this moment two observations become useful. The first is that T0 ⊆
T1 ⊆ T2.... The second is a general fact about positive formulas: if A and B
are subsets of the universe of a model M with A ⊆ B, then every positive
formula satisfied under some valuation in (M,A) will be also satisfied in
(M,B). From these two observations it follows that given a finite set S =
{T (pϕ0q) ≡ ϕ0 ... T (pϕkq) ≡ ϕk} of axioms of PTB, there will be a natural
number n such that Mn+1 |= S. We simply find an n such that:

∀i ≤ k[Mn |= ϕi ∨ ¬∃l ∈ NMl |= ϕi]

and then observe that all the equivalences from S are true in Mn+1. Since
Tn+1 is definable with parameters in M (by a formula “x ∈ dn+1), Mn+1

satisfies also all the induction axioms for the extended language. �

Although PTB is syntactically conservative over PA, it doesn’t have the
semantic conservativeness property. This follows easily from Theorem 7.

Corollary 15 PTB is not semantically conservative over PA.

Proof. Otherwise, since TB1 can be treated as a subtheory of PTB,
every model of PA could be expanded to a model of TB1, contrary to
Theorem 7. �

5 Justification of disquotational axioms

Is disquotationalism a philosophically attractive position? An answer to this
question depends on the one hand, on the assessment of the strength of dis-
quotational theories, and on the second, on the justification of disquotational
axioms. In these final comments I want to concentrate on the second issue.
As we saw, the key move consists in choosing a substitution class S for a

16Strictly speaking, T0 will contain not only (codes of) arithmetical sentences true in
M , but also these nonstandard numbers a, for which the formula “a ∈ d0” is satisfied in
M .
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T-schema (local or uniform one). In view of Theorem 9, the choice of S must
be well motivated – it won’t do in general to accept S as a set of “mere sub-
stitutions of a T-schema” (see remarks below Theorem 9). What motivations
can be offered?

Restoration of the consistency of disquotational theory is a natural aim.
Naive, unrestricted T-schema generates a contradiction – that’s a fact to
which all truth theorists must react and the disquotationalist is no excep-
tion. Restoring the consistency of a theory of truth should be treated as a
permissible motivation for the disquotationalist to proceed. The question is
only how far it can take us.

I will discuss two worries concerning this type of justification. Eventually
I will dismiss the first one; in contrast, the second seems to me a real issue.

Objection 1 (cf. Halbach [6], p. 311). The disquotationalist should
not only guarantee that his theory is safe from a contradiction, but he
must do it by using safe proof methods. In particular, since his aim is to
characterize a satisfactory notion of truth, he shouldn’t be allowed to use
model theoretic arguments. A model theoretic notion of truth goes beyond
the disquotational notion, therefore he can’t employ it. Perhaps he will
achieve his aim for typed theories: using the means available in PA, he can
prove e.g. relative consistency of UTB1 (i.e. he can prove in PA that if PA is
consistent, then UTB1 is consistent), so he is entitled to claim that his trust
in the consistency of UTB1 is no less warranted than his trust in PA itself.
But the problem is that this approach fails as a general strategy. We can’t
do the same for strong disquotational theories, whose relative consistency is
not provable in PA.

Answer. I can see no reason why model theoretic means shouldn’t be
available to the disquotationalist, discussing the notion of arithmetical truth.
Observe that the notion of truth in a model can be expressed by set theoret-
ical means; the completeness theorem can also be viewed as a set theoretical
result. Questioning set theory is not a part of the disquotationalist’s bag-
gage; he questions rather a substantial notion of truth. As I take it, he is
free to use “truth in a model” as a technical notion, useful for obtaining
consistency results. He can just add: “this is not the same as the concept
of (unrelativized) truth-as-we-understand-it, which I try to characterize by
means of a T-schema. These are just two different concepts”.

Although I take the above answer as basically correct, one qualification
is needed. The real issue is not whether the disquotationalist can use set
theory with its notion of model theoretic truth (he can!); the issue is rather
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how he uses it. In particular, I would find his employment of the notion of
truth in the standard (or the intended) model quite problematic. If a given
philosophical argument hinged on identifying truth-as-we-understand-it
with truth in the intended model, it would seem indeed that a stronger
(non-disquotational) notion of truth is needed to make the argument work.
As we will see, this provides a basis for the second and more serious
objection.

Objection 2. It is not enough that a disquotational theory be consistent.
If a T-schema is to be treated as epistemologically basic, some argument
is needed to show that the obtained theory is arithmetically sound. By
Theorem 9, false arithmetical sentences are also provably equivalent to
substitutions of (L). Why should we trust that the disquotational theory of
our choice doesn’t produce false results?

Comment. An advocate of typed disquotation – say, of UTB1 – could
retort that PA proves not only relative consistency, but also conservativeness
of UTB1 over PA. In effect we (as users of PA) are entitled to trust UTB1

just as we are entitled to trust PA. No strong notion of truth is needed to
establish that.17

However, the situation of an advocate of an untyped theory like PUTB
is more problematic. A natural move could consist in arguing that PUTB
admits a standard interpretation – that it’s possible to interpret the truth
predicate of PUTB in the intended model of arithmetic. But the problem
with this rejoinder is that in its employment of the notion of truth in the
standard model, it goes beyond the legitimate disquotational means. The
disquotationalist can’t argue “my axioms are trustworthy, since they pro-
duce true arithmetical results, which I know because they are true under the
intended interpretation”. In saying this he commits himself to a stronger
notion of arithmetical truth than the disquotational one. And that’s his
predicament.

6 Problems

I end with listing what I take to be the main problems in this area of research.
The problems are:

17In this respect the situation of an adherent of a typed disquotational theory is quite
comfortable; his problems lie elsewhere: in the deductive weakness of his theory.
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(1) Is there a natural substitution class for (U), which could be used to ob-
tain not only the arithmetical content of KF, but also its compositional
principles?

(2) Are there any plausible candidates for the role of a natural substitution
class for (L), producing an arithmetically strong theory?

(3) Is there a disquotationally acceptable answer to the question “why
should we trust positive disquotational axioms”?

(4) Is there an argument for conservativity of PTB over PA, which can be
formalized in PA?

Questions (1)-(3) are philosophical; question (4) is formal. (1) relates to
the fact that PUTB, although arithmetically strong, is quite weak in proving
compositional principles (see [7], pp. 793ff). Admittedly, it is not very clear
what classes should count as “natural”. The intuition is that principled,
non ad-hoc reasons should stand behind selecting such a class. Question
(2) is motivated by our observation, that PTB is conservative over PA, so
positive substitutions of (L) do not take us very far (are there other good
candidates worth considering?) Question (3) is in effect whether a good
answer to Objection 2 can be given. For question (4), observe that the proof
of conservativity of PTB over PA given here is semantic and doesn’t translate
easily to a syntactic argument.
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