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Abstract. A wide family of many-valued logics—for instance, those based on the weak
Kleene algebra—include a non-classical truth-value that is “contaminating” in the sense
that whenever the value is assigned to a formula ϕ, any complex formula in which ϕ ap-
pears is assigned that value as well. In such systems, the contaminating value enjoys a wide
range of interpretations, suggesting scenarios in which more than one of these interpreta-
tions are called for. This calls for an evaluation of systems with multiple contaminating
values. In this paper, we consider the countably infinite family of multiple-conclusion
consequence relations in which classical logic is enriched with one or more contaminat-
ing values whose behavior is determined by a linear ordering between them. We consider
some motivations and applications for such systems and provide general characterizations
for all consequence relations in this family. Finally, we provide sequent calculi for a pair
of four-valued logics including two linearly ordered contaminating values before defining
two-sided sequent calculi corresponding to each of the infinite family of many-valued logics
studied in this paper.

1 Introduction

A broad family of many-valued logics [3, 10, 11, 21, 26] impose a syntactic filter on logical con-
sequence, to the effect that:

Γ � ϕ only if V ar(ϕ) ⊆ V ar(Γ )

where V ar(Γ ) represents the collection of propositional variables in a formula or set of formulae.
This filter condition4 and similar requirements are achieved by including a semantic value that
is “contaminating” or “infectious” in the sense that whenever the value is assigned to a formula
ϕ, any complex formula in which ϕ appears is assigned that value as well.5 The most famous
among the systems that include such a value is the three-valued weak Kleene logic Kw

3 by [3, 19],
which obeys a weaker version of the filter condition above, namely:

Γ � ϕ only if

{

either V ar(ϕ) ⊆ V ar(Γ )

or Γ � ψ for all ψ

4 The condition is called Proscriptive Principle by [21], and the logics obeying it are among the systems
usually called containment logics—we believe the reason for this is clear enough. In [24] the logics
obeying the condition above or related ones are called filter logics, whence our name for the condition.

5 This property has been very well-studied, under different names, in relation to particular systems
or fragments of some systems. In [1] it is called predominance of the atheoretical element, in [7] it is
referred to as principle of contamination, whereas [17] calls it principle of component homogeneity,
and [13, 28] calls it infectiousness.
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The contaminating value of Kw
3 and its sublogics [10, 11, 26] has been proposed as an ade-

quate model for a remarkably diverse range of phenomena, including linguistic, epistemic, and
computer-theoretical ones. In particular, Bochvar [3] uses the contaminating value of Kw

3 to rea-
son about class-theoretic antinomies, while Fitting [14] uses it, in his bilattice-based semantics,
to capture lack of shared expertise among groups of experts. Finally, Avron and others [2] use
the contaminating value as a model for catastrophic errors encountered by a computer program,
in the spirit of [20].

Now, each of the above phenomena may have different sources, or come in different varieties.
For instance, the meaninglessness of a sentence can be due to category mistakes [27], Chomsky-
style nonsense [6], or ill-formedness [1], and all or some of these traits can be found concurrently
in a given set of complex expressions. Also, in computer-program applications, we often have
multiple virtual machines running within one another (e.g., a Java VM running inside Wine
running inside Linux), with each of these possibly facing errors (be they catastrophic or not) or
faults of some kind. Also, we can receive non-uniform expert advice because, along with some
experts having no take on a given issue, two or more of them propose conflicting replies. The
logic Kw

3 [3, 14] and related ones [2, 20] can model only one of these sources in isolation, and
they cannot give an adequate insight on their possible interactions. These can be modeled just
if many contaminating values are available.

In this paper, we serve this purpose by providing a general many-valued semantics in which
classical logic is augmented by a linear order of contaminating values in which some values may
be designated and others not. Depending on the range of the contaminating values admitted,
many different consequence relations arise.6 We present general characterization results of all
such consequence relations in terms of the satisfaction of variable-inclusion properties between
sets of premises and (sets of) conclusions—Theorem 1 and Theorem 2. Throughout the paper,
we focus on standardly defined multiple-conclusion consequence.7

In this vein, throughout this paper we will be focusing on logics satisfying the following filter
condition:

Γ � ∆ only if V ar(Γ ′) ⊆ V ar(∆′) for some non-empty Γ ′ ⊆ Γ and ∆′ ⊆ ∆

or some weaker versions of it, later establishing that sometimes particular chains of variable-
inclusion conditions are needed for logical consequence in matrices that extend classical logic
with more than two contaminating values—Theorem 3 and Theorem 4. We also include proof-
theoretical results, by providing decorated complete sequent calculi for a pair of four-valued
logics whose non-classical values are contaminating and linearly ordered before defining two-
sided sequent calculi for a countably infinite family of such systems.

The paper proceeds as follows. Section 2 introduces the basic notation and definitions that
we use throughout the paper. Section 3 introduces the basic semantic machinery of contami-
nating values, which can be exemplified with the three-valued logics Kw

3 [3, 19] and PWK [18],
and the simplest combination of contaminating values, which gives rise to the four-valued logics
HYB1 and HYB2 [28]. Theorem 1, Theorem 2 and their corollaries are presented in this section.
Section 4 deploys a straightforward, general method for the construction of matrices endowed

6 There is a close connection between some of the many-valued matrices presented in this paper and an
algebraic construction known as P lonka sums of (direct systems of) logical matrices, initially explored
in [22, 23] and recently discussed in [4, 5]. In this paper we do not discuss the relation of our matrices
with these constructions, but we hope to make a thorough examination of this topic in future works.

7 The investigation of single-conclusion consequence relations induced by many-valued semantics count-
ing with a linear order of contaminating values is another, deeply interesting project that we hope to
explore in the near future.
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with a linear order of (finitely many) contaminating values. Theorems 3–6 are presented in this
section. In Section 5, we prove that the infinitely many LOC-matrices built on the matrix for CL
induce infinitely many multiple-conclusion consequence relations. Section 6 presents sound and
complete sequent calculi for the logics HYB1 and HYB2 (Theorem 8 and Theorem 10, respec-
tively) and two-sided sequent calculi for an infinite family of their subsystems (Theorem 11).
Finally, Section 7 presents some concluding remarks.

2 Preliminaries

Throughout the paper, we adopt the standard notation and basic definitions from Abstract
Algebraic Logic, as presented e.g. in [15]. One important exception with regard to [15], however,
concerns our definition of multiple-conclusion matrix consequence (see below).

Given a similarity type ν and a countably infinitely set X of generators, the absolutely free
algebra Fml over X is called the formula algebra of type ν. Fml denotes the universe of Fml.
We call propositional variables—or variables, simply—the members of X , and we denote them
by p, q, r, . . . . We call ν-formulae the members of Fml, and we denote them by φ, ψ, θ, . . . . We
use Γ,∆, Ψ . . . to denote sets of formulae.8 We omit reference to the type ν when this does not
create confusion. In this paper, if no particular remark is made, Fml is assumed to be a formula
algebra of type (1, 2, 2), namely, of the type containing the connectives ¬,∨,∧.

A logic of type ν is a pair S = 〈Fml,⊢S〉, where Fml is a formula algebra of type ν and
⊢S ⊆ P(Fml) × P(Fml) is a substitution invariant multiple-conclusion consequence relation.
A ν-matrix—or, simply, a matrix—is a pair M = 〈A,D〉 with A an algebra of type ν with
universe A and D ⊂ A. D is called the filter of M. Informally, we think of the members of
A as truth-values. Under this informal reading, the members of D are naturally thought of as
designated values.9

Just to make an example, classical logic CL is defined as 〈Fml, |=MCL
〉, and MCL is defined

as 〈B2, {1}〉, where B2 = 〈{0, 1},¬,∨,∧〉 is the well-known two-element Boolean algebra of type
(1, 2, 2). The elements 0 and 1 of its universe are informally interpreted as ‘false’ and ‘true’,
respectively, with 1 being the only designated value. In this paper, we will focus especially in
matrices that have MCL as a submatrix, in the following sense:

Definition 1. A matrix M = 〈A,D〉 is a submatrix of a matrix M′ = 〈A′,D′〉 (M ⊑ M′) if
and only if A is a subalgebra of A′ and D = D′ ∩A.

Logical matrices, in turn, can be seen to give raise to substitution invariant multiple-
conclusion consequence relations, as Definition 3 illustrates.

Definition 2. A valuation is a homomorphism v : Fml −→ A from a formula algebra Fml
into an algebra A of the same type.

We denote by HomFml,A the set of valuations for Fml defined on A. When Fml is clear by the
context and we wish to focus on the matrix rather than on the algebra, we write HomM . For
every M = 〈A,D〉, we let HomM(Γ ) be the set {v ∈ HomM | v[Γ ] ⊆ D} of the models of Γ
based on M. In this paper, we focus on matrix consequence relations :

8 Unless specified otherwise, in this paper we consider just finite sets of formulae, with the exception,
of course, of Fml itself.

9 Notice that, in using these notions, we do not assume or even try to stress that we do not allow
the presence of matrices whose algebraic reduct is the trivial algebra. However, as will become clear
shortly, in this paper our interest is in investigating logics induced by matrices having contaminating
values which, in turn, extend the two-valued matrix inducing classical logic—i.e. the matrix whose
algebraic reduct is the two-element Boolean algebra. We would like to thank an anonymous reviewer
for urging us to clarify this issue.
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Definition 3. Given a matrix M = 〈A,D〉, the relation |=M ⊆ P(Fml)×P(Fml) defined as
follows:

Γ |=M ∆ ⇔ for every v ∈ HomM , ν[Γ ] ⊆ D implies ν(ψ) ∈ D for some ψ ∈ ∆

is a multiple-conclusion matrix consequence relation.

We say that ∆ is a tautology if and only if ∅ |=M ∆, and we say that Γ is unsatisfiable if and
only if Γ |=M ∅. We write φ |=M ψ instead of {φ} |=M {ψ}, and φ, ψ |=M γ, δ instead of
{φ, ψ} |=M {γ, δ}. We also use other notation, writing e.g. Γ,∆ for Γ ∪∆, or Γ, φ for Γ ∪ {φ}.
Finally, when |=MS

is the matrix consequence relation of a logic S, we refer to |=MS
as to

MS-consequence.10

Before closing this section, it is of high importance to notice that the notion of multiple-
conclusion consequence that we define here is different from the one defined in [15], which
provides all the other basic notation and definitions in the present paper. In particular, Defini-
tion 3 above comes with the standard disjunctive reading of the right side of |=M , while [15,
Definition 1.7] comes with a conjunctive reading of it—implying that all the formulae in the
conclusion-set have to be satisfied. In fact, in [15], the author himself notices that his definition
is not standard. In this paper, a particular reason to stick to the standard definition, as we
did, is that the disjunctive reading of the right side of |=M fits the interpretation of two-sided
sequents in sequent calculi, and a uniform reading seems more appropriate in view of the results
on sequent calculi from Section 6.

3 Basic Contaminating Logics

As we previously advertised, in this paper we are interested in logics with contaminating truth-
values, that is, in logics induced by single logical matrices containing contaminating truth-values.
Thus, in order to proceed to their study and analysis, we will distinguish two classes of such
logics and, consequently, of such matrices.

The first class will comprise the basic contaminating logics, i.e. those logics induced by
matrices complying with the most basic understanding of what a matrix with a contaminating
logic is. The second class will comprise the logics equipped with a linear order of contaminating
values, i.e. those logics induced by matrices having a plurality of linearly ordered contaminating
values. In what follows, we begin our journey towards understanding basic contaminating logics
by defining what an algebra with a contaminating element looks like.

Definition 4. An algebra A of type ν has a contaminating element k if and only if there is a
non-empty A′ ⊆ A, with A′ 6= {k}, such that for every m-ary g ∈ ν and every {a1, . . . , am} ⊆ A′:

if k ∈ {a1, . . . , am} then gA(a1, . . . , am) = k

If A′ = A, we say that k is absolutely contaminating; if A does not satisfy Definition 4 relative
to k, but some A′ ⊂ A does, we say that k is partially contaminating. With the exception of Kw

3

and PWK, defined below, all the logics in this paper include one or more partially contaminating
values alongside an absolutely contaminating one. In this regard, if y ∈ A′ and k contaminates
the elements of A′, we write C(y, k) for “y is contaminated by k”.

Definition 5. A matrix M = 〈A,D〉 has a contaminating value k if A has a contaminating
element k. Otherwise, we say M has no contaminating value.

10 For the basic setting defined in this section, see also [15, Chapter 1].
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Our first example of a matrix extending the two-valued matrix MCL with a contaminating
value are the matrices inducing the three-valued logics Kw

3
and PWK by [3] and [18], respectively.

These are built using the so-called weak Kleene algebra WK, an algebra with an absolutely
contaminating element introduced in [19]. More precisely, WK is the algebra of type (1, 2, 2)
whose universe is {0, n, 1} and whose operations are given by Table 1.

Table 1.

¬

1 0
n n

0 1

∨ 1 n 0

1 1 n 1
n n n n

0 1 n 0

∧ 1 n 0

1 1 n 0
n n n n

0 0 n 0

It is clear from Table 1 that value n satisfies Definition 4 relative to {0, n, 1}. This is, in a way,
the simplest case of contamination, where a value n contaminates all the values in the universe
of the algebra in question.

Moving to the logics themselves, it is interesting to observe some features of the three-valued
systems Kw

3
and PWK—for which sound and complete sequent calculi were provided in [9].

Definition 6. Kw
3 = 〈Fml, |=MKw

3

〉 and PWK = 〈Fml, |=MPWK
〉, where:

MKw

3
= 〈WK, {1}〉 MPWK = 〈WK, {n, 1}〉

Kw
3 lacks any tautology, exactly as its more famous kin K3 by [19]. By contrast, PWK shares

tautologies with classical logic CL, but it fails to validate some classical inference rules (most
notably, Ex Falso Quodlibet and Reductio ad Absurdum), exactly as its more famous kin LP by
[25]. The presence of a contaminating value determines further failures. In particular, we have
v(ϕ ∨ ψ) = n in any valuation v such that v(ϕ) = 1 and v(ψ) = n, and v(ϕ ∧ ψ) = n in any
valuation v such that v(ϕ) = 0 and v(ψ) = n. Since DMK3

= {1} and DMPWK
= {n, 1}, this

implies:

ϕ 6�MKw
3

ϕ ∨ ψ Failure of Disjunctive Addition

ϕ ∧ ψ 6�MPWK
ϕ Failure of Conjunctive Simplification

However, notice that the following local versions of these properties hold:

ϕ ∨ ψ �MKw
3

ϕ ∨ ¬ϕ Local Excluded Middle

ϕ ∧ ¬ϕ �MPWK
ϕ ∧ ψ Local Explosion

Our second example of a matrix extending the two-valued matrix MCL with a contaminating
value are the matrices inducing the four-valued logics HYB1 and HYB2, introduced in [28],
themselves sublogics of Kw

3
and PWK. These matrices are built on the algebra HYB, which

includes two contaminating elements. More precisely, HYB is the algebra of type (1, 2, 2) whose
universe is {0, n1, n2, 1} and whose operations are given by Table 2.

It is clear, again, by looking at Table 2, that n2 satisfies Definition 4 relative to the entire
universe {0, n1, n2, 1}. By contrast, n1 satisfies Definition 4 relative to {0, n1, 1} only. As a
consequence, n2 is absolutely contaminating, while n1 is just partially contaminating.

Yet again, let us now turn to two logics induced by logical matrices built using the HYB
algebra, the systems HYB1 and HYB2—for which we will provide sound and complete sequent
calculi in Section 6.
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Table 2.

¬

1 0
n1 n1

n2 n2

0 1

∨ 1 n1 n2 0

1 1 n1 n2 1
n1 n1 n1 n2 n1

n2 n2 n2 n2 n2

0 1 n1 n2 0

∧ 1 n1 n2 0

1 1 n1 n2 0
n1 n1 n1 n2 n1

n2 n2 n2 n2 n2

0 0 n1 n2 0

Definition 7. HYB1 = 〈Fml, |=MHYB1
〉 and HYB2 = 〈Fml, |=MHYB2

〉, where:

MHYB1
= 〈HYB, {n1, 1}〉 MHYB2

= 〈HYB, {n2, 1}〉

Each of HYB1 and HYB2 shares all the failures of Kw
3

and PWK. Additionally, the following
distinguish the two logics HYB1 and HYB2 from Kw

3 and PWK:

ϕ ∨ ψ �MHYB1
ϕ ∨ ¬ϕ ϕ ∧ ¬ϕ 6�MHYB1

ϕ ∧ ψ

ϕ ∨ ψ 6�MHYB2
ϕ ∨ ¬ϕ ϕ ∧ ¬ϕ �MHYB2

ϕ ∧ ψ

As for Local Excluded Middle, any valuation v such that v(ψ) = v(ϕ ∨ ψ) = n2 and v(ϕ) = n1

is such that v(ϕ ∨ ψ) ∈ DMHYB2
and v(ϕ ∨ ¬ϕ) /∈ DMHYB2

. Also, for every valuation v such that
v(ϕ∨ψ) ∈ {n1, 1}, we have v(ϕ∨¬ϕ) ∈ {n1, 1}. Since DMHYB1

= {n1, 1}, the rule has no counter-
model in MHYB1 . As for Local Explosion, any valuation v where v(ϕ∧¬ϕ) = n1 and v(ψ) = n2

provides a countermodel to the rule in HYB1; for every valuation v where v(ϕ) = v(ϕ∧¬ϕ) = n2,
we have v(ϕ∧ψ) = n2 by contamination. Since DMHYB2

= {n2, 1}, the rule has no countermodel
in MHYB2

.

After analyzing these examples of basic contaminating logics, it is interesting to consider the
rather general idea of obtaining an extension of a given matrix M by adjoining it an absolutely
contaminating value n—to later study the logic induced by this single matrix. In order to do
this, we make precise what extending a given matrix M with an absolutely contaminating value
would amount to.

Definition 8. Given an algebra A of type ν, let A[n] be the algebra of the same type that results
from adjoining to A an absolutely contaminating element n such that n /∈ A, i.e. A[n] is such
that for every m-ary g ∈ ν and every {a1, . . . , am} ⊆ A ∪ {n}:

gA[n](a1, . . . , am) =

{

n if n ∈ {a1, . . . , am}

gA(a1, . . . , am) otherwise

Definition 9. Given a matrix M = 〈A,D〉, let M[n] = 〈A[n],D ∪D′〉, where D′ ⊆ {n} be the
matrix with a contaminating value that results from adjoining an absolutely contaminating value
n to M.

With the help of these definitions, we are now in a position to study the case of some basic
logics induced by single logical matrices which have a contaminating value. To this extent, the
following two theorems establish that, for every matrix M[n] extending a matrix M with a
contaminating value, the corresponding M[n]-consequence can be characterized on the ground
of M-consequence alone, together with certain filter conditions.

Theorem 1. Given a matrix M = 〈A,D〉, let M[b] = 〈A[b],D〉 be the matrix with a contam-
inating value that results from adjoining a non-designated absolutely contaminating value b to
M. Then, M[b]-consequence can be characterized as follows:

Γ �M[b]
∆ ⇔ V ar(∆′) ⊆ V ar(Γ ) for some ∆′ ⊆ ∆ s.t. Γ �M ∆′
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Proof. For left-to-right, we prove this by contraposition. Assume it is not the case that V ar(∆′) ⊆
V ar(Γ ) for some ∆′ ⊆ ∆ such that Γ �M ∆′.

If Γ �M ∅, then for every M valuation v we have that v(Γ ) * D—i.e. there are no M
valuations under which each formula in Γ is designated. If this is the case, the filter condition
is trivially satisfied by letting ∆′ be ∅. Furthermore, given the set of designated values of M[b]
is the same than those of M, in this case we would also have that Γ �M[b] ∅.

If Γ 2M ∅, i.e. if Γ is satisfiable in M, we reason as follows. Suppose that for every
∆′ ⊆ ∆, either V ar(∆′) * V ar(Γ ) or Γ 2M ∆′. We construct an M[b] valuation witnessing
that Γ 2M[b] ∆.

Now, by the condition assumed on ∆ we can split ∆ into two sets, the set ∆⋄ = {ψ ∈ ∆ |
V ar(ψ) * V ar(Γ )} and its complement∆• = ∆r∆⋄. Importantly, because V ar(∆•) ⊆ V ar(Γ ),
our supposition entails that Γ 2M ∆•. Also, because Γ is by hypothesis satisfiable in M and
because Γ 2M ∆•, there exists an M valuation v such that v[Γ ] ⊆ D and v[∆•] ∩D = ∅.

Now, from this valuation v, we define an M[b] valuation v⋆ by the following scheme:

v⋆(p) =

{

v(p) if p ∈ V ar(Γ )

b otherwise

Recall that DM[b] = DM , by definition. Then, because v⋆ agrees with v with respect to the
propositional variables appearing in Γ , v⋆(Γ ) ⊆ DM[b]. Moreover, because V ar(∆•) ⊆ V ar(Γ ),
for each ψ ∈ ∆•, v⋆(ψ) /∈ DM[b]. If ∆⋄ = ∅, this suffices to have a countermodel witnessing
that Γ 2M[b] ∆, since V ar(∆) = V ar(∆•) and V ar(∆•) ⊆ V ar(∆). If ∆⋄ 6= ∅, then by
construction every ψ ∈ ∆⋄ contains a propositional variable p such that v⋆(p) = b. Whence, for
each ψ ∈ ∆⋄, v⋆(ψ) = b /∈ DM[b]. Because ∆ = ∆• ∪∆⋄, v⋆ provides a countermodel witnessing
that Γ 2M[b] ∆.

As for right-to-left, assume there exists a ∆′ ⊆ ∆ such that V ar(∆′) ⊆ V ar(Γ ) and Γ �M ∆′.
Hence, any M[b] valuation v for which v(Γ ) ⊆ D is—when restricted to V ar(Γ )—essentially an
M valuation. This implies HomM[b](Γ ) ⊆ HomM[b](∆

′) if and only if HomM(Γ ) ⊆ HomM(∆′)
if ∆′ = ∅. Otherwise, the valuation maps each ψ ∈ ∆′ to a designated value. As v was selected
arbitrarily, this reasoning extends to any M[b] valuation, whence Γ �M[b] ∆

′ and a fortiori
Γ �M[b] ∆. �

Theorem 2. Given a matrix M = 〈A,D〉, let M[h] = 〈A[h],D ∪ {h}〉 be the matrix with a
contaminating value that results from adjoining a designated absolutely contaminating value h
to M. Then, M[h]-consequence can be characterized as follows:

Γ �M[h] ∆ ⇔ V ar(Γ ′) ⊆ V ar(∆) for some Γ ′ ⊆ Γ s.t. Γ ′
�M ∆

Proof. For left-to-right, we again prove this by contraposition. Assume that for every Γ ′ ⊆ Γ ,
either V ar(Γ ′) * V ar(∆) or Γ ′ 2M ∆. As before, we may split Γ into two sets: Γ • = {ψ ∈ Γ |
V ar(ψ) * V ar(∆)} and Γ ⋄ = Γ r Γ •.

By construction, V ar(Γ ⋄) ⊆ V ar(∆), whence Γ ⋄ 2M ∆, in which case we fix an M valuation
v witnessing the failure of this inference. From v, we again define an M[h] valuation v∗:

v∗(p) =

{

v(p) if p ∈ V ar(∆)

h otherwise
.

Recall that DM[h] = DM∪{h}, by definition. Because v∗ restricted to the propositional variables
of ∆—and a fortiori to the propositional variables of Γ ⋄—is coextensional with v, we know that
v∗(∆) ∩ DM[h] = ∅ while v∗(Γ ⋄) ⊆ DM[h]. If Γ • = ∅, this suffices to have a countermodel
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witnessing that Γ 2M[h] ∆, since V ar(Γ ) = V ar(Γ ⋄) and V ar(Γ ⋄) ⊆ V ar(∆). If Γ • 6= ∅, since
h contaminates all other values, by construction we have that v∗(Γ •) = {h} ⊆ DM[h]. Hence,
v∗ maps every formula of Γ = Γ ⋄ ∪ Γ • to a designated value yet fails to map any ψ ∈ ∆ to a
designated value, i.e. v∗ witnesses that Γ 2M[h] ∆.

For right-to-left, we assume that there is a Γ ′ ⊆ Γ such that V ar(Γ ′) ⊆ V ar(∆) for which
Γ ′

�M ∆. If Γ ′ = ∅, since A \ D = (A ∪ {h}) \ DM[h], and h contaminates every other value,
then every M[h] valuation that is a countermodel for every ψ ∈ ∆ is—when restricted to the
variables in ∆—an M valuation that is a countermodel to every ψ ∈ ∆.

If Γ ′ 6= ∅, then for any M[h] valuation v such that v(Γ ′) ⊆ DM[h], if h ∈ v(∆) then
there is a ψ ∈ ∆ such that v(ψ) = h. Otherwise—if h /∈ v(∆)—then because all propositional
variables appearing in Γ ′ appear in ∆, also h /∈ v(Γ ′). Hence, v restricted to the propositional
variables appearing in ∆ is essentially an M valuation, and the fact that Γ ′

�M ∆ ensures that
v(ψ) ∈ D for some ψ ∈ ∆. Hence, in either case we conclude that Γ ′

�M[h] ∆ and a fortiori
that Γ �M[h] ∆. �

Interestingly, these two theorems have immediate corollaries concerning our previous exam-
ples of logics induced by single matrices which extend the two-valued matrix for classical logic
MCL with contaminating values. As is easy to observe, MKw

3
is the matrix MCL[b] obtained by

extending MCL with a non-designated contaminating value b, while MPWK is the matrix MCL[h]
obtained by extending MCL with a designated contaminating value h. Thus, from Theorem 1
and Theorem 2 we obtain the next result.

Corollary 1. MKw
3
- and MPWK-consequence can be characterized as follows:

Γ �MKw
3

∆ ⇔ V ar(∆′) ⊆ V ar(Γ ) for some ∆′ ⊆ ∆ s.t. Γ �MCL
∆′

Γ �MPWK
∆⇔ V ar(Γ ′) ⊆ V ar(∆) for some Γ ′ ⊆ Γ s.t. Γ ′

�MCL
∆

Corollary 1 improves the characterization results by [7, 12]. Additionally, it offers a different
look at the above failures and validities in Kw

3
and PWK—especially concerning the lack of

tautologies and the failure of Disjunctive Addition in Kw
3 , as well as the identity between classical

tautologies and PWK-tautologies and the failure of Conjunctive Simplification in PWK.
Moreover, the generality of Theorem 1 and Theorem 2 allows us to observe that MHYB1

is the matrix MPWK[b], whereas MHYB2
is the matrix MKw

3
[h]. Furthermore, this allows us to

establish that MHYB1 is the matrix MCL[hb] obtained by extending MCL first with a designated
contaminating value h, and then with a non-designated contaminating value b. On the other
hand, MHYB2

is the matrix MCL[bh] obtained by inverting h and b in the extension procedure.
Thus, from Corollary 1, Theorem 1 and Theorem 2 we obtain the next result.

Corollary 2. MHYB1
-consequence and MHYB2

-consequence can be characterized as follows:

Γ �MHYB1
∆⇔ V ar(Γ ′) ⊆ V ar(∆′) ⊆ V ar(Γ )

for some Γ ′ ⊆ Γ,∆′ ⊆ ∆ s.t. Γ ′
�MCL

∆′

Γ �MHYB2
∆⇔ V ar(∆′) ⊆ V ar(Γ ′) ⊆ V ar(∆)

for some Γ ′ ⊆ Γ,∆′ ⊆ ∆ s.t. Γ ′
�MCL

∆′

Corollary 2 improves the characterization results suggested by [28], and gives a different
perspective on the above failures and validities in HYB1 and HYB2—especially concerning the
failure or validity of Local Excluded Middle and Local Explosion, respectively.
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4 Contaminating Logics with a Linear Ordered of Contaminating

Values

In computer programs, two prominent kinds of errors may cause a system to permanently halt.
On the level of software, we can have errors in code (such as an attempt to assign a value to an
undeclared variable), which in turn may cause a process to halt. On the level of hardware, we
can have physical errors that are caused, for instance, when an environment attempts to retrieve
a value from a physical address that is corrupt. As noticed by [2], we may want to distinguish
between the two kinds of errors when modeling the behavior of a program that is encountering
a fault in some of its procedures.

An application of Kw
3

to errors at the level of code has been provided by [12]. More precisely,
[12] represents code errors in the language C++ by means of the value n from MKw

3
. In C++,

undeclared variables are not treated as variables, and an expression in which they appear will
not be computed, exactly as an ill-formed string of symbols.11

Note that these two types of errors—errors in code and errors in the physical constitution of
hardware—enjoy the type of linear ordering that has been central to this paper. The triggering
of the syntactic error at the local level—that is, within the virtual machine—may cause the
environment within which the executable was run to halt prematurely. But that this occurs
within the scope of a virtual machine insulates the operating system from such local errors. On
the other hand, if the operating system attempts to retrieve a value on behalf of the virtual
machine from a bad address, the error that causes the operating system to fail will bring down
the virtual machine alongside it.

Now, there is a distinction between the semantic features of an “error” value’s being contam-
inating and with its being designated. In the former case, the semantic features are forced upon
us by the scenario itself. In the latter case, however, whether or not a value should be taken to be
designated is a pragmatic decision, determined by an end user’s interest. For example, Halldén,
in [18], allowed that some formulae should be valid even if there are occasions in which they are
meaningless. Halldén defended this by arguing that the validity of a formula should be judged
solely on the basis of its meaningful instances. In a similar vein, an end user may similarly be
concerned with the stability of the code itself and not in the stability of the physical memory.
The parallel with Halldén’s treatment of the contaminating value in PWK, then, suggests that
one might justifiably consider this global error to be designated.

In the case of a large ontology with an integrated theorem prover, for example, one might
wish for certain theorems to be derivable, in spite of the potential for hardware errors. In this
case, practical concerns make lead the ontology’s developers to discount this type of situation
from consideration when judging validity, just as Halldén elects to discount meaninglessness.
Furthermore, when one is testing code, some tiers of errors are important to acknowledge while
others are not. Simply put, whether one’s code leads to a software error is part of a developer’s
concern; the fact that a particular piece of hardware upon which the software runs crashes due
to faulty RAM is not. If we follow Halldén in taking practical concerns to determine whether a
particular semantic category is designated or not, then we clearly encounter scenarios in which
some contaminating values ought to be designated while others should not.

In the present era—in which development is increasingly virtualized—the line between soft-
ware errors and hardware errors rapidly blurs. One might develop in a language run in a virtual
machine hosted in a Docker container running on a server. Given the prevalence of these types
of linearly nested development environments, one might as well be interested in situations where
we have an arbitrarily deep cascade of situations featuring aspects that deserve to be modelled

11 A syntactic object p is treated as a variable—or, is a declared variable—if the interpreter is informed
that p is to be used in this manner.
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by contaminating values, some of which we may choose to be designated and some of which we
may choose not to be.

Thus, in the next sections we extend our previous considerations to build appropriate se-
mantic tools to model such settings. We do this by appealing to the idea of a linear order of
contaminating values, such that the greater contaminating values contaminate the smaller ones
and, of course, the non-contaminating values.

4.1 Formal Definitions

The extension procedure mentioned in the previous section allows to generate an infinity of
matrices with contaminating values extending the two-valued matrix MCL that induces classical
logic—and, in general, extending any given matrix M. In particular, we focus particularly on
the case of those matrices that have a linear order of contaminating values. To this extent,
we begin this section by defining what an algebra with a linear order of contaminating values
amounts to.

Definition 10. An algebra A of type ν has a linear order of contaminating elements n1 . . . nk

(with 1, . . . , k ∈ ω) if and only if each nj ∈ {n1, . . . , nk} is an absolutely contaminating element
in the subalgebra A[n1 . . . nj ] of the same type, whose universe is A \ {ni | i > j ≥ 1}.

Definition 11. A matrix M = 〈A,D〉 has a linear order of contaminating values n1 . . . nk if
A has a linear order of contaminating elements n1 . . . nk. If this is the case, we say that M is
a LOC-matrix.

It is indeed easy to check that, given an algebra with a set of contaminating elements
{n1, . . . , nk} complying with the definition above, then the following holds for every ni, nj , nm ∈
{n1, . . . , nk}:

1. If C(ni, nj) and C(nj , ni), then ni = nj

2. If C(ni, nj) and C(nj , nm), then C(ni, nm)
3. C(ni, nj) or C(nj, ni)

The properties above correspond, respectively, to the antisymmetry, transitivity and totality
of the relation C, whence by definition C turns to be a linear order on {n1, . . . , nk}. Given this, we
believe that talk of a linear order of contaminating elements of an algebra or—alternatively—of
a linear order of contaminating values of a matrix, is justified.

Notice that for some LOC-matrices, the linear order of the contaminating values can be de-
scribed in terms of some independent orderings induced by the underlying algebra.12 In particu-
lar, given the matrix MCL, consider the LOC-matrix MCL[n1, . . . , nk] whose underlying algebra
is B2[n1, . . . , nk] = 〈{0, 1, n1, . . . , nk},¬,∨,∧〉, where B2 is the previously referred two-element
Boolean algebra. Then, we can define:

a ≤∨ c⇔ a ∨ c = c a ≤∧ c⇔ a ∧ c = a

In this regard, it is easy to see that both ≤∨ and ≤∧ linearly order {0, 1, n1, . . . , nk}. Indeed,
we have 0 <∨ 1 <∨ n1 <∨ · · · <∨ nk−1 <∨ nk and nk <∧ nk−1 <∨ . . . n1 <∧ 0 <∧ 1.
Furthermore, we can observe that with the help of ≤∨ and ≤∧ it is possible to provide an
alternative definition of the contaminating relation, in the following terms:

C(a, c) ⇔ a ≤∨ c and c ≤∧ a

12 We thank an anonymous reviewer for noticing this fact.
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This alternative definition allows us to interpret “a is contaminated by c” as “a is lesser than c
according to order ≤∨ and greater than c according to order ≤∧”.

This highlights an interesting connection between LOC-matrices and a family of algebraic
structures known as involutive bisemilattices. These are algebras A = 〈A,∨,∧,¬〉 such that (i)
〈A,∨〉 and 〈A,∧〉 are semilattices, and (ii) ¬¬a = a, a ∧ c = ¬(¬a ∨ ¬c), a ∧ (¬a ∨ c) = a ∧ c.13

More concretely, given a LOC-matrix M[n1, . . . , nk] whose underlying algebra A[n1, . . . , nk]
is an involutive bisemilattice 〈A ∪ {n1, . . . , nk},∨,∧,¬〉, as is the case with any LOC-matrix
extending MCL, then the contamination order of M[n1, . . . , nk] can be described as in the pre-
vious paragraph—using ≤∨ and ≤∧. Furthermore, involutive bisemilattices can be represented
in terms of P lonka sums of (direct systems of) algebras (cf. [22, 23]). This is, in fact, of special
interest for us given that some—but perhaps not all—LOC-matrices whose algebra reduct is an
involutive bisemilattice can be represented in terms of P lonka sums of (direct systems of) logical
matrices, which are themselves based on P lonka sums of their underlying algebras (cf. [4, 5, 22,
23]).

Having made these remarks, we now focus on the analysis of the extensions of MCL—and,
in general, of any given matrix M—obtained by adjoining it a linear order of contaminating
values n1 . . . nk, to later study the logic induced by this single matrix. In order to do this, in
what follows we make precise what extending a given matrix M with such a linear order of
contaminating values amounts to.

Definition 12. Given an algebra A of type ν, let A[n1 . . . nk] be the algebra of the same type
that results from adjoining to A a linear order of contaminating elements n1 . . . nk such that
A ∩ {n1 . . . nk} = ∅, i.e. A[n1 . . . nk] is such that each nj ∈ {n1, . . . , nk} is an absolutely con-
taminating element in the algebra A[n1 . . . nj ], whose universe is A ∪ {ni | 1 ≤ i ≤ j}.

Alternatively, A[n1 . . . nk] can be seen as the result of adjoining an absolutely contaminating
value to the algebra A[n1 . . . nk−1]. Whence:

A[n1 . . . nk] = A[n1 . . . nk−1][nk] = A[n1 . . . nk−2][nk−1][nk] = · · · = A[n1] . . . [nk]

Definition 13. Given a matrix M = 〈A,D〉, let M[n1 . . . nk] = 〈A[n1 . . . nk],D ∪ D′〉, where
D′ ⊆ {n1, . . . , nk} be the LOC-matrix that results from adjoining a linear order of contaminating
values n1 . . . nk to M.

We reprise the convention from the previous section and use b to denote a non-designated
contaminating value and h to denote a designated contaminating value. In this vein, we can think
of any LOC-matrix M[n1 . . . nk] as a matrix having alternations of the value b and the value h,
i.e. by replacing each undesignated contaminating value in n1 . . . nk for b, and each designated
contaminating value in n1 . . . nk for h. Thus, for instance the LOC-matrix M[n1, n2, n3] where
n1 and n2 are undesignated would become the matrix M[bbh], whereas the the LOC-matrix
M[n1, n2, n3, n4] where n2 and n4 are designated would become the matrix M[bhbh].

In fact, to be precise enough, in these cases we should differentiate each instance of a non-
designated and a designated contaminating value by enumerating each of these in parallel and
consecutively. That is, for instance, by referring to the LOC-matrix M[bbh] in more precise
terms as the matrix M[b1b2h1], and similarly by referring to the LOC-matrix M[bhbh] as the
matrix M[b1h1b2h2]. For the sake of simplicity, however, we will try to keep the simpler notation
referring e.g. to M[h1b1b2b3h2b4] as M[hbbbhb], and so on and so forth, hoping that the reader
bears in mind the ultimate meaning of this nomenclature.

13 We refer the reader to [4, 23] for a detailed treatment of involutive bisemilattices.
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Finally, with regard to LOC-matrices we will say that M[. . . b] has a contaminating undes-
ignated value “on top” of its linear order of contaminating values, while the M[. . . h] has a
contaminating designated value “on top” of its linear order of contaminating values.

4.2 Characterization Results

In this section, for any given LOC-matrix MCL[n1 . . . nk] extending MCL we provide a character-
ization result for the notion of MCL[n1 . . . nk]-consequence. It should be remarked, nevertheless,
that our characterization results have full generality and do not depend on the fact that MCL is
the matrix that gets extended with a linear order of contaminating values—the results will hold
without loss of generality for any given matrix M. Moreover, these results will be of particular
interest when we discuss the completeness results for the sequent calculi associated to these
systems.

For the purpose of proving our characterization results, let us begin by noticing that for each
LOC-matrix with a linear order of contaminating values we can consider a simplified linear order
of such contaminating values. To do this, we replace every b-block (i.e. every consecutive block of
contaminating undesignated values of any length) and every h-block (i.e. every consecutive block
of contaminating designated values of any length) with a single appearance of a non-designated,
or a designated contaminating value—respectively. In this regard, the following result about
LOC-matrices and simplified LOC-matrices is a corollary of Theorem 1 and Theorem 2:

Corollary 3. Given a matrix M = 〈A,D〉, let M[n] be the extension of M with a contami-
nating value n, and let M[nn′] be the extension of M[n] with a contaminating value n′, such
that either {n, n′} ⊆ DM[nn′] or {n, n′} ∩ DM[nn′] = ∅. Then, M[nn′]-consequence can be
characterized as follows:

Γ �M[nn′] ∆⇔ Γ �M[n] ∆

Thus, Corollary 3 tells us that instead of working with a given LOC-matrix we can work with
the corresponding simplified LOC-matrix, without loss of generality.

Let us notice that this does not mean that one can mix designated values and non-designated
ones, inducing the same logic, but rather than one will induce the same logic by collapsing
blocks of designated contaminating values and blocks of non-designated contaminating values,
into single appearances thereof. To illustrate this, the reader is encouraged to straightforwardly
check that what holds of, e.g., a matrix M[bhb] will hold without loss of generality e.g. of the
matrices M[bbbhhhhb] and M[bhbbb].

Furthermore, given our previous equivalence result concerning LOC-matrices and simplified
LOC-matrices, let us refer to the cardinality m of the simplified linear order of contaminating
values of a given LOC-matrix M, as its number of alternations. We will, correspondingly, state
m as 2n+ 1 if it is odd, and as 2n if it is even.

In Section 5, we will se that the infinitely many LOC-matrices based on MCL induce infinitely
many distinct multiple-conclusion relations.

Before moving on, we prove one further logical property that will be useful in the sequel.

Lemma 1. Let M[hb . . . hb] be a classical matrix M endowed with a linear order hb . . . hb of
contaminating values, and let M[bh . . . bh] be the matrix resulting from M[hb . . . hb] by replacing
each h with a b and vice versa. The consequence relations �M[hb...hb] and �M[bh...bh] are dual,
that is:

Γ �M[hb...hb] ∆⇔ ∆¬
�M[bh...bh] Γ

¬

where, for every Γ ⊆ Fml, Γ¬ = {¬ϕ ∈ Fml | ϕ ∈ Γ}.
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Proof. Take a matrix M[n1,n2,...,nk] where M is the matrix of classical logic, [n1, n2, . . . , nk] is
a sequence of contaminating values, and (i) for every ni, ni is designated if and only if ni+1 is
non-designated, (ii) n1 is designated, and nk is non-designated. Take now matrix M′

[n1,n2,...,nk]
,

which is like M[n1,n2,...,nk] except that (ii) is replaced by (ii′): n1 is non-designated, and nk is
designated. We prove that

Γ �M[n1,n2,...,nk] ∆ ⇔ ∆¬
�M′ [n1,n2,...,nk] Γ

¬

Suppose that Γ �M[n1,n2,...,nk] ∆. This means that, for all valuations v ∈ HomM[n1,n2,...,nk],
if v(ψ) = {0, ni} for every ψ ∈ ∆ and some non-designated ni, then v(ϕ) = {0, ni} for some
ϕ ∈ Γ . We have HomM[n1,n2,...,nk] = HomM′ [n1,n2,...,nk] by construction of the two matrices,
whence the above transfers to M′ [n1, n2, . . . , nk]. From this and the fact that a contaminating
value will be designated in the matrix M′ [n1, n2, . . . , nk] if and only if it is non-designated in
M[n1, n2, . . . , nk], we have that, for every v ∈ HomM′ [n1,n2,...,nk], if v(¬ψ) = {1, ni} for every
ψ ∈ ∆ and M′ [n1, n2, . . . , nk]-designated ni, then v(¬ϕ) = {1, ni} for some ϕ ∈ Γ . As a con-
sequence we have that ∆¬

�M′ [n1,n2,...,nk] Γ
¬. The other direction of the equivalence is proved

with the same procedure. Given the definitions of M[n1, n2, . . . , nk] and M′ [n1, n2, . . . , nk] and
our convention on hs and bs, it is clear that the former is a matrix M[hb . . . hb] where [bh . . . hb]
has cardinality k, and the latter is a matrix M[bh . . . bh] where [bh . . . bh] has cardinality k. This
proves Lemma 1. �

Having proven Lemma 1, let us move to the main results of this section.

Definition 14. Given a non-empty Γ ⊆ Fml, we say that Γ0, . . . , Γn ∈ P(Γ ) is a decreasing
chain of subsets of Γ if and only if Γ0 ⊇ Γ1 ⊇ · · · ⊇ Γn.

Theorem 3. Given a matrix M, let M[. . . b] be a LOC-matrix extending M with a linear order
of contaminating values that has an odd number of alternations 2n+1 (where n ≥ 1), and a non-
designated contaminating value b “on top”. Then, M[. . . b]-consequence can be characterized as
follows:

Γ �M[...b] ∆⇐⇒ V ar(∆n) ⊆ V ar(Γn−1) ⊆ V ar(∆n−1) ⊆ · · · ⊆ V ar(Γ0) ⊆ V ar(∆0) ⊆ V ar(Γ )
for some Γ0, . . . , Γn−1 ∈ P(Γ ) and ∆0, . . . , ∆n ∈ P(∆) s.t. Γn−1 �M ∆n

where Γ0, . . . , Γn−1 and ∆0, . . . , ∆n are decreasing chains.

Proof. We prove this claim by induction on the number of alternations.

Base case: n = 1. In such a case, we have 2(1) + 1 = 3 alternations, i.e. we can assume
without loss of generality that we are dealing with the simplified LOC-matrix M[bhb].

By Theorem 1 we are guaranteed to infer that Γ �M[bhb] ∆ is equivalent to there being a
∆0 ∈ P(∆) such that Γ �M[bh] ∆0 and, of course, ∆0 ⊆ ∆, and more importantly V ar(∆0) ⊆
V ar(Γ ). In addition, by Theorem 2 the fact that Γ �M[bh] ∆0 is guaranteed to be equivalent to
there being a Γ0 ∈ P(Γ ) such that Γ0 �M[b] ∆0 and, of course, Γ0 ⊆ Γ , and more importantly
V ar(Γ0) ⊆ V ar(∆0). Finally, again by Theorem 1 the fact that Γ0 �M[b] ∆0 is guaranteed to
be equivalent to there being a ∆1 ∈ P(∆0) such that Γ0 �M ∆1 and, of course, ∆1 ⊆ ∆0, and
more importantly V ar(∆1) ⊆ V ar(Γ0).

All these facts together guarantee the equivalence of Γ �M[bhb] ∆ with there being sets
Γ0 ∈ P(Γ ) and ∆0, ∆1 ∈ P(∆) such that Γ0 �M ∆1, where ∆1 ⊆ ∆0, and V ar(∆1) ⊆
V ar(Γ0) ⊆ V ar(∆0) ⊆ V ar(Γ ).

Inductive step: n > 1. We assume that M[. . . b] is a simplified LOC-matrix with 2(n− 1) +
1 alternations, and a non-designated value on top. Given this, we consider the LOC-matrix
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M[. . . bhb], i.e. a simplified LOC-matrix with 2n + 1 alternations, and a non-designated value
on top.

By Theorem 1 we are guaranteed to infer that Γ �M[...bhb] ∆ is equivalent to there being a
∆0 ∈ P(∆) such that Γ �M[...bh] ∆0, and more importantly V ar(∆0) ⊆ V ar(Γ ). Moreover, by
Theorem 2 that Γ �M[...bh] ∆0 implies that there is a Γ0 ∈ P(Γ ) such that Γ0 �M[...b] ∆0, for
which V ar(Γ0) ⊆ V ar(∆0). Furthermore, by the Inductive Hypothesis, that Γ0 �M[...b] ∆0 is
equivalent to there being Γ1, . . . , Γn−1 ∈ P(Γ0) and ∆1, . . . , ∆n ∈ P(∆0) such that Γn−1 �M

∆n, where Γ1, Γ2, . . . , Γn−1 and ∆1, ∆2, . . . , ∆n are decreasing chains, and more importantly
V ar(∆n) ⊆ V ar(Γn−1) ⊆ V ar(∆n−1) ⊆ · · · ⊆ V ar(Γ1) ⊆ V ar(∆1) ⊆ V ar(Γ0).

Finally, all these facts together imply our desired result, i.e. that Γ �M[...bhb] ∆ is equivalent
to there being Γ0, . . . , Γn−1 ∈ P(Γ ) and ∆0, . . . , ∆n ∈ P(∆) such that Γn−1 �M ∆n, where
Γ0, Γ1, . . . , Γn−1 and ∆0, ∆1, . . . , ∆n are decreasing chains, and more importantly V ar(∆n) ⊆
V ar(Γn−1) ⊆ V ar(∆n−1) ⊆ · · · ⊆ V ar(Γ0) ⊆ V ar(∆0) ⊆ V ar(Γ ). �

Theorem 4. Given a matrix M, let M[. . . h] be a LOC-matrix extending M with a linear
order of contaminating values that has an odd number of alternations 2n+1 (where n ≥ 1), and
a designated contaminating value h “on top”. Then, M[. . . h]-consequence can be characterized
as follows:

Γ �M[...h] ∆⇐⇒ V ar(Γn) ⊆ V ar(∆n−1) ⊆ V ar(Γn−1) ⊆ · · · ⊆ V ar(∆0) ⊆ V ar(Γ0) ⊆ V ar(∆)
for some Γ0, . . . , Γn ∈ P(Γ ) and ∆0, . . . , ∆n−1 ∈ P(∆) s.t. Γn �M ∆n−1

where Γ0, . . . , Γn and ∆0, . . . , ∆n−1 are decreasing chains.

Proof. Similar to the proof of Theorem 3. �

Theorem 5. Given a matrix M, let M[. . . b] be a LOC-matrix extending M with a linear
order of contaminating values that has an even number of alternations 2n (n ≥ 1), and a non-
designated contaminating value b “on top”. Then, M[. . . b]-consequence can be characterized as
follows:

Γ �M[...b] ∆⇐⇒ V ar(Γn−1) ⊆ V ar(∆n−1) ⊆ V ar(Γn−2) ⊆ · · · ⊆ V ar(Γ0) ⊆ V ar(∆0) ⊆ V ar(Γ )
for some Γ0, . . . , Γn ∈ P(Γ ) and ∆0, . . . , ∆n ∈ P(∆) s.t. Γn−1 �M ∆n−1

where Γ0, . . . , Γn−1 and ∆0, . . . , ∆n−1 are decreasing chains

Proof. Similar to the proof of Theorem 6. �

Theorem 6. Given a matrix M, let M[. . . h] be a LOC-matrix extending M with a linear
order of contaminating values that has an even number of alternations 2n (where n ≥ 1), and
a designated contaminating value h “on top”. Then, M[. . . h]-consequence can be characterized
as follows:

Γ �M[...h] ∆⇐⇒ V ar(∆n−1) ⊆ V ar(Γn−1) ⊆ V ar(∆n−2) ⊆ · · · ⊆ V ar(∆0) ⊆ V ar(Γ0) ⊆ V ar(∆)
for some Γ0, . . . , Γn ∈ P(Γ ) and ∆0, . . . , ∆n ∈ P(∆) s.t. Γn−1 �M ∆n−1

where Γ0, . . . , Γn−1 and ∆0, . . . , ∆n−1 are decreasing chains.

Proof. We prove this claim by induction on the number of alternations.

Base case: n = 1. In such a case, we have 2(1) = 2 alternations, i.e. we can assume without
loss of generality that we are dealing with the simplified LOC-matrix M[bh].

By Theorem 2 we are guaranteed to infer that Γ �M[bh] ∆ is equivalent to there being a
Γ0 ∈ P(Γ ) such that Γ0 �M[b] ∆, and more importantly V ar(Γ0) ⊆ V ar(∆). In addition, by
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Theorem 1 the fact that Γ0 �M[b] ∆ is guaranteed to be equivalent to there being a ∆0 ∈ P(∆)
such that Γ0 �M[b] ∆0, and more importantly V ar(∆0) ⊆ V ar(Γ0).

All these facts together guarantee the equivalence of Γ �M[bh] ∆ with there being sets
Γ0 ∈ P(Γ ) and ∆0 ∈ P(∆) such that Γ0 �M ∆0, where V ar(∆0) ⊆ V ar(Γ0) ⊆ V ar(∆).

Inductive step: n > 1. We assume that M[. . . h] is a simplified LOC-matrix with 2(n − 1)
alternations, and a designated value on top. Given this, we consider the LOC-matrix M[. . . hbh],
i.e. a simplified LOC-matrix with 2n alternations, and an designated value on top.

By Theorem 2 we are guaranteed to infer that Γ �M[...hbh] ∆ is equivalent to there being
a Γ0 ∈ P(Γ ) such that Γ0 �M[...hb] ∆, and more importantly V ar(Γ0) ⊆ V ar(∆). Moreover,
by Theorem 1 that Γ0 �M[...hb] ∆ implies that there is a ∆0 ∈ P(∆) such that Γ0 �M[...h] ∆0,
and V ar(∆0) ⊆ V ar(Γ0). Furthermore, by the Inductive Hypothesis, that Γ0 �M[...h] ∆0 is
equivalent to there being Γ1, . . . , Γn−1 ∈ P(Γ0) and ∆1, . . . , ∆n−2 ∈ P(∆0) such that Γn−1 �M

∆n−1, where Γ1, Γ2, . . . , Γn−1 and∆1, ∆2, . . . , ∆n−1 are decreasing chains, and more importantly
V ar(∆n−1) ⊆ V ar(Γn−1) ⊆ V ar(∆n−2) ⊆ · · · ⊆ V ar(∆1) ⊆ V ar(Γ1) ⊆ V ar(∆0).

Finally, all these facts together imply our desired result, i.e. that Γ �M[...hbh] ∆ is equiv-
alent to there being Γ0, . . . , Γn−1 ∈ P(Γ ) and ∆0, . . . , ∆n−1 ∈ P(∆) such that Γn−1 �M

∆n−1, where Γ0, Γ1, . . . , Γn−1 and ∆0, ∆1, . . . , ∆n−1 are decreasing chains, and more impor-
tantly V ar(∆n−1) ⊆ V ar(Γn−1) ⊆ V ar(∆n−2) ⊆ · · · ⊆ V ar(∆0) ⊆ V ar(Γ0) ⊆ V ar(∆). �

5 Infinitely Many Multiple-Conclusion Consequence Relations

Section 3 makes it clear that Kw
3 , PWK, HYB1, and HYB2 are distinct logics. Thus, we know that

the infinitely many LOC-matrices that are definable from MCL induce at least four multiple-
conclusion consequence relations. In this section, we prove that such matrices actually induce
infinitely many multiple-conclusion consequence relations. This just follows from Proposition 3
below. Additionally, we provide further results, which contribute to have a clear insight on the
relations among the multiple-conclusion consequence relations that are induced by the infinitely
many LOC-matrices MCL[n1, . . . , nk] that have k alternations for k ≥ 2.

First, we consider the case where the number of alternations k in a matrix is k = 2n for
n ≥ 1. This case will suffice to show that there are infinitely many multiple-conclusion relations
based of LOC-matrices. Then we go to the case where k = 2n+1 for n ≥ 1. This case will help us
understand the relations between the infinitely many multiple-conclusion consequence relations
in terms of inclusion and distinctness. In what follows, we will often mention the following:

Observation 1 Let M[n1, . . . , nk] and M[n1, . . . , nm] be LOC-matrices, with m ≥ k and k, m
alternations, respectively. Then, 〈Fml,�MCL[n1,...,nm]〉 is a sublogic of 〈Fml,�M[n1,...,nk]〉. That
is:

If Γ �M[n1,...,nm] ψ, then Γ �M[n1,...,nk] ψ

Proof. Suppose that ni ∈ DM[n1,...,nm] iff ni ∈ DM[n1,...,nk]. Then, every v ∈ M[n1, . . . , nk] is
such that v ∈ M[n1, . . . , nk]. Hence, if Γ �M[n1,...,nm] ψ, then Γ �M[n1,...,nk] ψ. Suppose that
ni ∈ DM[n1,...,nm] iff ni /∈ DM[n1,...,nk]. Take the set Gk,m of the k most contaminating values in
M[n1, . . . , nm]. It is easy to see that, (∗) for every nj ∈ Gk,m, nj ∈ DM[n1,...,nm] iff nj−(m−k) ∈
DM[n1,...,nk], and nj /∈ DM[n1,...,nm] otherwise. Define now a function f : AM[n1,...,nk] → {0, 1}∪
Gk,m such that f(0) = 0, f(1) = 1, and f(ni) = f(ni+(k−m)), and that. For every valuation
v ∈ M[n1, . . . , nk], we can build a valuation v′ ∈ M[n1, . . . , nm] such that (i) v′(p) ∈ {0, 1}∪Gk,
and (ii) v′(p) = v(p) if v(p) ∈ {0, 1}, and (iii) v′(p) = f(v(p)). Given the definition of f and
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(∗), we have that v′(φ) ∈ DM[n1,...,nm] ∩ Gk,m iff v(φ) ∈ DM[n1,...,nk], and v′(φ) ∈ (A \
DM[n1,...,nm]) ∩ Gk,m iff v(φ) /∈ DM[n1,...,nk]. Hence, every v ∈ HomM[n1,...,nk] can be redefined
as a special valuation v ∈ HomM[n1,...,nm]. As a consequence, Hence, if Γ �M[n1,...,nm] ψ, then
Γ �M[n1,...,nk] ψ. Since the two cases discussed exhaust all the possible cases, we have the
statement proven.

5.1 The case where k = 2n for n ≥ 1

We need some preliminary constructions first. Given a natural number k ≥ 2 such that k = 2n
or k = 2n+ 1 for some natural number n, we consider formulas of the form p1 ∧ (p1 ∨ · · · ∨ pi)
for 1 ≤ i ≤ k, and we set the following abbreviations:

ζ1 = p1 ∧ (p1 ∧ p2) θ1 =











p1 ∧ (p1 ∨ p2 ∨ p3) if 3 < k for k = 2n

or 3 ≤ k for k = 2n + 1

undefined otherwise.

ζ2 =











p1 ∧ (p1 ∨ · · · ∨ p4) if 4 ≤ k for k = 2n

or 4 < k for k = 2n + 1

undefined otherwise.

θ2 =











p1 ∧ (p1 ∨ · · · ∨ p5) if 5 < k for k = 2n

or 5 ≤ k for k = 2n + 1

undefined otherwise.

.

.

.
.
.
.

ζn−1 =











p1 ∧ (p1 ∨ · · · ∨ pk−2) if k = 2n

p1 ∧ (p1 ∨ · · · ∨ pk−3) if k = 2n + 1

undefined if n = 1

θn−1 =











p1 ∧ (p1 ∨ · · · ∨ pk−1) if k = 2n

p1 ∧ (p1 ∨ · · · ∨ pk−2) if k = 2n + 1

undefined if n = 1

ζn =

{

p1 ∧ (p1 ∨ · · · ∨ pk) if k = 2n

p1 ∧ (p1 ∨ · · · ∨ pk−1) if k = 2n + 1
θn =

{

undefined if k = 2n

p1 ∧ (p1 ∨ · · · ∨ pk) if k = 2n + 1

For the time being, we focus on cases where k = 2n for some natural n ≥ 1, since this is
relevant for Proposition 2 and Proposition 3 below. The following are two particular examples
of the construction, with k = 4, and k = 6:

k = 4, n = 2 k = 6, n = 3

ζ1 = p1 ∧ (p1 ∧ p2) ζ1 = p1 ∧ (p1 ∧ p2)
θ1 = p1 ∧ (p1 ∨ p2 ∨ p3) θ1 = p1 ∧ (p1 ∨ p2 ∨ p3)
ζ2 = ζn = p1 ∧ (p1 ∨ · · · ∨ p4) ζ2 = ζn−1 = p1 ∧ (p1 ∨ · · · ∨ p4)
θj undefined for every j ≥ 2 θ2 = θn−1 = p1 ∧ (p1 ∨ · · · ∨ p5)
ζm undefined for every m > 2 ζ3 = ζn = p1 ∧ (p1 ∨ · · · ∨ p6)

θj undefined for every j ≥ 3
ζm undefined for every j > 3

Notice that, for every k = 2n with n ≥ 1, the sequence ζ1, . . . θn−1, ζn has length k − 1.

Proposition 1. Let MCL[n1, . . . , nk] be a LOC-matrix with k = 2n alternations for some nat-
ural n ≥ 1. Then:

If nk /∈ DMCL
[n1, . . . , nk], (⋆) ζ1, . . . , ζn �MCL[n1,...,nk] p1 ∨ ¬p1, θ1, . . . , θn−1

If nk ∈ DMCL
[n1, . . . , nk], (⋆⋆) p1 ∧ ¬p1, θ1, . . . , θn−1 �MCL[n1,...,nk] ζ1, . . . , ζn
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Proof. We first prove that, if nk /∈ MCL[n1, . . . , nk], then (⋆) is the case. Consider the following
construction:

Γn−1 = ∅
∆n−1 = {p1 ∨ ¬p1}
Γn−2 = {ζ1} = {p1 ∧ (p1 ∨ p2)} defined and relevant only if n ≥ 2.
∆n−2 = ∆n−2 = {θ1} = {p1 ∧ (p1 ∨ p2 ∨ p3)} defined and relevant only if n ≥ 2.

...

∆0 = {θn−1} = {p1 ∧ (p1 ∨ · · · ∨ pk−1)}
Γ =

⋃

0≤i≤n−1 Γi ∪ {ζn}

Clearly, Γ0, . . . , Γn−1 and ∆0, . . . , ∆n−1 are decreasing chains such that:

1. Γn−1 �MCL
∆n−1;

2. V ar(Γn−1) ⊆ V ar(∆n−1) ⊆ V ar(Γn−2) ⊆ · · · ⊆ V ar(Γ0) ⊆ V ar(∆0) ⊆ V ar(Γ ).

From 1–2 and Theorem 5, (⋆) follows.

The proof that (⋆⋆) is the case if nk ∈ DMCL[n1,...,nk] goes along the very same lines, with
the relevant construction being: ∆n−1 = ∅, Γn−1 = {p1∧¬p1}, ∆n−2 = {ζ1} = {p1∧ (p1∨p2)},
Γn−2 = {θ1} = {p1 ∧ (p1 ∨ p2 ∨ p3)}, . . . , Γ0 = {θn−1} = {p1 ∧ (p1 ∨ · · · ∨ pk−1}, ∆ =
⋃

0≤i≤n−1∆i ∪{ζn}—with each∆n−i and Γn−i being defined and relevant only if n ≥ i. It is easy
to check that the construction satisfies conditions (1) Γn−1 �MCL

∆n−1; and (2) V ar(∆n−1) ⊆
V ar(Γn−1) ⊆ V ar(∆n−2) ⊆ · · · ⊆ V ar(∆0) ⊆ V ar(Γ0) ⊆ V ar(∆) that Theorem 6 sets for every
MCL[n1, . . . , nk] that is relevant for the proposition. �

We distinguish infinitely many instances of (⋆) and (⋆⋆), depending on the value of k = 2n. For
every k = 2n, we call (⋆k) and (⋆ ⋆ k) its particular instances of (⋆) and (⋆⋆), respectively. We
list some examples here:

(⋆2) p1 ∧ (p1 ∨ p2) �MCL[hb] p1 ∨ ¬p1 (k = 2)
(⋆4) p1 ∧ (p1 ∨ p2), p1 ∧ (p1 ∨ · · · ∨ p4) �MCL[hbhb] p1 ∨ ¬p1, p1 ∧ (p1 ∨ p2 ∨ p3) (k = 4)
(⋆6) p1 ∧ (p1 ∨ p2), p1 ∧ (p1 ∨ · · · ∨ p4), p1 ∧ (p1 ∨ · · · ∨ p6) �MCL[hbhbhb]

p1 ∨ ¬p1, p1 ∧ (p1 ∨ p2 ∨ p3), p1 ∧ (p1 ∨ · · · ∨ p5) (k = 6)

(⋆ ⋆ 2) p1 ∧ ¬p1 �MCL[bh] p1 ∧ (p1 ∨ p2) (k = 2)
(⋆ ⋆ 4) p1 ∧ ¬p1, p1 ∧ (p1 ∨ p2 ∨ p3) �MCL[bhbh] p1 ∧ (p1 ∨ p2), p1 ∧ (p1 ∨ · · · ∨ p4) (k = 4)
(⋆ ⋆ 6) p1 ∧ ¬p1, p1 ∧ (p1 ∨ p2 ∨ p3), p1 ∧ (p1 ∨ · · · ∨ p5) �MCL[bhbhbh]

p1 ∧ (p1 ∨ p2), p1 ∧ (p1 ∨ · · · ∨ p4), p1 ∧ (p1 ∨ · · · ∨ p6) (k = 6)

Proposition 2. Let MCL[n1, . . . , nk] be a LOC-matrix with k alternations, k = 2n for some n ≥
1, and let M∗

CL
[n1, . . . , nk] be the LOC-matrix such that ni ∈ DM∗

CL
[n1,...,nk] iff ni /∈ DMCL[n1,...,nk]

for 1 ≤ i ≤ k. Then

If nk /∈ DMCL
[n1, . . . , nk], ζ1, . . . , ζn 6�M∗

CL
[n1,...,nk] p1 ∨ ¬p1, θ1, . . . , θn−1

If nk ∈ DMCL
[n1, . . . , nk], p1 ∧ ¬p1, θ1, . . . , θn−1 6�M∗

CL
[n1,...,nk] ζ1, . . . , ζn

Proof. We first prove that, if nk /∈ DMCL[n1,...,nk], then (⋆k) is not valid w.r.t. M∗
CL

[n1, . . . , nk].
For every MCL[n1, . . . , nk], if k = 2n for some n ≥ 1 and nk /∈ DMCL[n1,...,nk], then ni ∈
DMCL[n1,...,nk] if i is odd, and ni /∈ DMCL[n1,...,nk] if i is even. Given the constraint imposed
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on DM∗

CL
[n1,...,nk], we have that ni ∈ DM∗

CL
[n1,...,nk] if i is even, and ni /∈ DM∗

CL
[n1,...,nk] if i is

odd. Take now variables p1, . . . , pk and a valuation v ∈ HomM∗

CL
[n1,...,nk] such that v(pi) = ni.

This implies that (i) v(pi) ∈ DM∗

CL
[n1,...,nk] if i is even, and v(pi) /∈ DM∗

CL
[n1,...,nk] if i is odd.

Notice that, from the constraints imposed on v, we have (ii) for every j, i ∈ {1, k}, if j > i,
then v(pj) is more contaminating than v(pi). By construction of ζis and θis, we have that (iii)
V ar(ζi) = V ar(θi−1)∪ {p2i}, and (iv) 2i > j for every pj ∈ V ar(θi−1). (iii), (i), and v(pi) = ni

together imply v(p2i) = n2i, and hence v(p2i) ∈ DM∗

CL
[n1,...,nk]. (iv) and (ii) together imply

that v(ζi) = v(p2i). Hence, we have v(ζi) ∈ DM∗

CL
[n1,...,nk]. Since choice of i is arbitrary, we have

v(ζj) ∈ DM∗

CL
[n1,...,nk] for every j ∈ {1, . . . , n}. By construction of of ζis and θis, we have that (v)

V ar(θi) = V ar(ζi)∪{p2i+1}, and (vi) 2i+ 1 > j for every pj ∈ V ar(ζi). (v), (i), and v(pi) = ni

together imply v(p2i+1) = n2i+1, and hence v(p2i+1) /∈ DM∗

CL
[n1,...,nk]. (vi) and (ii) together im-

ply that v(θi) = v(p2i+1). Hence, we have v(θi) /∈ DM∗

CL
[n1,...,nk]. Since choice of i is arbitrary, we

have v(θj) /∈ DM∗

CL
[n1,...,nk] for every j ∈ {1, . . . , n}. Additionally, since v(p1) /∈ DM∗

CL
[n1,...,nk],

we have v(p1 ∨¬p1). Together with the fact that v(ζj) ∈ DM∗

CL
[n1,...,nk] for every j ∈ {1, . . . , n},

this implies that v satisfies all the premises from (⋆k), while dissatisfying all the conclusions.

We now prove that, if nk ∈ DMCL[n1,...,nk], then (⋆⋆k) is not valid w.r.t. M∗
CL

[n1, . . . , nk]. for
every MCL[n1, . . . , nk], if k = 2n for some n ≥ 1 and nk ∈ DMCL[n1,...,nk], then ni ∈ DMCL[n1,...,nk]

if i is even, and ni /∈ DMCL[n1,...,nk] if i is odd. Given the constraint above on DM∗

CL
[n1,...,nk],

we have that ni ∈ DM∗

CL
[n1,...,nk] if i is odd, and ni /∈ DM∗

CL
[n1,...,nk] if i is even. Take now

variables p1, . . . , pk and a valuation v ∈ HomM∗

CL
[n1,...,nk] such that v(pi) = ni. This implies that

(i) v(pi) ∈ DM∗

CL
[n1,...,nk] if i is odd, and v(pi) /∈ DM∗

CL
[n1,...,nk] if i is even, to the effect that v

provides a counterexample to (⋆ ⋆ k). �

Just to get a concrete example of this: take MCL[hb], with M∗
CL

[hb] = MCL[bh]. We have
p1 ∧ (p1 ∨ p2) 6�MCL[bh] p1 ∨ ¬p1, and any valuation v ∈ HomMCL[bh] provides a counterexample
if v(p1) = n1 = b, and v(p2) = n2 = h. In a similar way, p1 ∧ ¬p1 6�MCL[hb] p1 ∧ (p1 ∨ p2). Any
valuation v ∈ HomMCL[bh] provides a counterexample if v(p1) = n1 = h, and v(p2) = n2 = b.

Proposition 3. Let MCL[n1, . . . , nk] be a LOC-matrix with k alternations, k = 2n for some
n ≥ 1, and nk /∈ DMCL[n1,...,nk]. Then, for every number of alternations m > k, we have:

1. ζ1, . . . , ζn 6�MCL[n1,...,nm] p1 ∨ ¬p1, θ1, . . . , θn−1 if nk /∈ DMCL[n1,...,nk]

2. p1 ∧ ¬p1, θ1, . . . , θn−1 6�MCL[n1,...,nm] ζ1, . . . , ζn if nk ∈ DMCL[n1,...,nk]

Proof. We proof that 1–2 hold if m = k + 1 in the relevant cases, by building suitable counter-
models to (⋆k) and (⋆ ⋆ k). We then generalize the result to every natural m > k. We have two
cases:

Case 1: nk /∈ DMCL[n1,...,nk]. We distinguish two subcases:
Case 1a: ni ∈ DMCL[n1,...,nm] iff ni ∈ DMCL[n1,...,nk] for 1 ≤ i ≤ k. This implies that, if

MCL[n1, . . . , nk] is, say, MCL[hbhb], then MCL[n1, . . . , nm] is MCL[hbhbh]. For every MCL[n1, . . . , nk],
if k = 2n for some n ≥ 1 and nk /∈ DMCL[n1,...,nk], then ni ∈ DMCL[n1,...,nk] if i is odd,
and ni /∈ DMCL[n1,...,nk] if i is even. Given the constraint imposed on DMCL[n1,...,nm] by this
case, the same applies to MCL[n1, . . . , nm]. Take now variables p1, . . . , pk and a valuation
v ∈ HomMCL[n1,...,nm] such that v(pi) = ni+1. This implies that (i) v(pi) ∈ DMCL[n1,...,nm] if
i is even, and v(pi) /∈ DMCL[n1,...,nm] if i is odd. Notice that (ii)–(vi) from the proof of Proposi-
tion 2 also apply here. From this and v(pi) = ni+1, we have v(p2i) = n2i+1, v(p2i+1) = n2i+2,
and hence v(ζi) ∈ DM∗

CL
[n1,...,nm] and v(θi) /∈ DMCL[n1,...,nm]. Since choice of i is arbitrary, we

have v(ζj) ∈ DMCL[n1,...,nm] and v(θj) /∈ DMCL[n1,...,nm] for every j ∈ {1, . . . , n}. Since, addition-
ally, we have v(p1 ∨ ¬p1) by construction, we have that v satisfies all the premises from (⋆k),
while dissatisfying all the conclusions. This proves the statement for this case.
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Case 1b: ni ∈ DMCL[n1,...,nm] iff ni /∈ DMCL[n1,...,nk] for 1 ≤ i ≤ k—which implies that, if
MCL[n1, . . . , nk] is, say, MCL[hbhb], then MCL[n1, . . . , nm] is MCL[bhbhb]. This case follows from
Proposition 2 and Observation 1.

Case 2: nk ∈ DMCL[n1,...,nk]. We distinguish two subcases:
Case 2a: ni ∈ DMCL[n1,...,nm] iff ni ∈ DMCL[n1,...,nk] for 1 ≤ i ≤ k. This implies that, if

MCL[n1, . . . , nk] is, say, MCL[bhbh], then MCL[n1, . . . , nm] is MCL[bhbhb]. For every MCL[n1, . . . , nk],
if k = 2n for some n ≥ 1 and nk ∈ DMCL[n1,...,nk], then ni ∈ DMCL[n1,...,nk] if i is even, and
ni /∈ DMCL[n1,...,nk] if i is odd. Given the constraint above on DMCL[n1,...,nm], the same applies to
MCL[n1, . . . , nm]. Take now variables p1, . . . , pk and a valuation v ∈ HomMCL[n1,...,nm] such that
v(pi) = ni+1. The same construction from Case 1a provides a counterexample. This proves the
statement for this subcase.

Case 2b: ni ∈ DMCL[n1,...,nm] iff ni /∈ DMCL[n1,...,nk] for 1 ≤ i ≤ k—which implies that, if
MCL[n1, . . . , nk] is, say, MCL[hbhb], then MCL[n1, . . . , nm] is MCL[bhbhb]. This case follows from
Proposition 2 and Observation 1.

The cases above prove the statement for m = k + 1. From this and Observation 1, the
statement holds for every m > k. �

Propositions 1–3 together prove that each multiple-conclusion consequence relation induced
by a LOC-matrix with k alternations for k = 2n (for some n ≥ 1) is distinct from every
multiple-conclusion consequence relation induced by a LOC-matrix with m > k alternations.
This in turn implies that there are infinitely many multiple-conclusion consequence relations
based on LOC-matrices.

5.2 The case where k = 2n + 1 for n ≥ 1

We go now to the case where k = 2n+ 1 for some natural n ≥ 1. Remember that, in this case,
ζ2 = p1 ∧ (p1 ∨ · · · ∨ p4) if 4 < k, and undefined otherwise, θ2 = p1 ∧ (p1 ∨ · · · ∨ p5) if 5 ≤ k, and
undefined otherwise, and so on. Also, ζn = p1 ∧ (p1 ∨ · · · ∨ pk−1) and θn = p1 ∧ (p1 ∨ · · · ∨ pk).
The following are two particular examples of the construction, with k = 3, and k = 5:

k = 3, n = 1 k = 5, n = 2

ζ1 = p1 ∧ (p1 ∧ p2) ζ1 = p1 ∧ (p1 ∧ p2)
θ1 = p1 ∧ (p1 ∨ p2 ∨ p3) θ1 = p1 ∧ (p1 ∨ p2 ∨ p3)
ζj undefined for every j ≥ 2 ζ2 = ζn = p1 ∧ (p1 ∨ · · · ∨ p4)
θm undefined for every j ≥ 2 θ2 = θn = p1 ∧ (p1 ∨ · · · ∨ p5)

ζj undefined for every j ≥ 3
θm undefined for every j ≥ 3

Proposition 4. Let MCL[n1, . . . , nk] be a LOC-matrix with k = 2n+ 1 alternations for some
natural n ≥ 1. Then:

If nk /∈ DMCL
[n1, . . . , nk], (◦) p1 ∧ ¬p1, θ1, . . . , θn �MCL[n1,...,nk] ζ1, . . . , ζn

If nk ∈ DMCL
[n1, . . . , nk], (◦◦) ζ1, . . . , ζn �MCL[n1,...,nk] p1 ∨ ¬p1, θ1, . . . , θn

Proof. We first prove that, if nk /∈ DMCL[n1,...,nk], (◦) is the case. Consider the following con-
struction: ∆n = ∅, Γn−1 = {p1 ∧ ¬p1}, ∆n−1 = {ζ1} = {p1 ∧ (p1 ∨ p2)}, Γn−2 = {θ1} =
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{p1 ∧ (p1 ∨ p2 ∨ p3)}, . . . , ∆0 = {ζn} = {p1 ∧ (p1 ∨ · · · ∨ pk−1)}, Γ =
⋃

0≤i≤(k/2)−1 Γi ∪ {θn}—
with each ∆n−i and Γn−i being defined and relevant only if n ≥ i. The construction satisfies the
conditions that Theorem 3 sets for every MCL[n1, . . . , nk] that is relevant for the proposition.

The proof that (◦◦) is the case for nk ∈ DMCL[n1,...,nk] goes along the very same lines, with the
relevant construction being: Γn = ∅, ∆n−1 = {p1∨¬p1}, Γn−1 = {ζ1} = {p1∧(p1∨p2)}, ∆n−2 =
{θ1} = {p1∧(p1∨p2∨p3)}, . . . , Γ0 = {ζn} = {p1∧(p1∨· · ·∨pk−1)},∆ =

⋃

0≤i≤(k/2)−1∆i ∪{θn}—
with each ∆n−i and Γn−i being defined and relevant only if n ≥ i. It is easy to check that the
construction satisfies the conditions set by Theorem 4, which is the relevant theorem here. �

We distinguish infinitely many instances of (◦) and (◦◦), depending on the value of k = 2n+ 1,
and we follow the notational convention that we set when dealing with instances of (⋆) and (⋆⋆).
We list a pair of examples here:

(◦3) p1 ∧ ¬p1, p1 ∧ (p1 ∨ p2 ∨ p3),�MCL[bhb] p1 ∧ (p1 ∨ p2) (k = 3)
(◦5) p1 ∧ ¬p1, p1 ∧ (p1 ∨ p2 ∨ p3), p1 ∧ (p1 ∨ · · · ∨ p5) �MCL[bhbhb] (k = 5)

�MCL[bhbhb] p1 ∧ (p1 ∨ p2), p1 ∧ (p1 ∨ · · · ∨ p4)

(◦ ◦ 3) p1 ∧ (p1 ∨ p2) �MCL[hbh] p1 ∨ ¬p1, p1 ∧ (p1 ∨ p2 ∨ p3) (k = 3)
(◦ ◦ 5) p1 ∧ (p1 ∨ p2), p1 ∧ (p1 ∨ · · · ∨ p4) �MCL[hbhbh] (k = 5)

�MCL[hbhbh] p1 ∨ ¬p1, p1 ∧ (p1 ∨ p2 ∨ p3), p1 ∧ (p1 ∨ · · · ∨ p5)

Proposition 5. Let MCL[n1, . . . , nk] be a LOC-matrix with k alternations, k = 2n + 1 for
some n ≥ 1, and let M∗

CL
[n1, . . . , nk] be the LOC-matrix such that ni ∈ DM∗

CL
[n1,...,nk] iff ni /∈

DMCL[n1,...,nk] for 1 ≤ i ≤ k. Then:

If nk /∈ DMCL
[n1, . . . , nk], p1 ∧ ¬p1, θ1, . . . , θn 6�M∗

CL
[n1,...,nk] ζ1, . . . , ζn

If nk ∈ DMCL
[n1, . . . , nk], ζ1, . . . , ζn 6�M∗

CL
[n1,...,nk] p1 ∨ ¬p1, θ1, . . . , θn

Proof. Suppose that nk /∈ DMCL[n1,...,nk]. For every MCL[n1, . . . , nk], if k = 2n + 1 for some
n ≥ 1 and nk /∈ DMCL[n1,...,nk], then ni ∈ DMCL[n1,...,nk] if i is even, and ni /∈ DMCL[n1,...,nk]

if i is odd. Given the constraint imposed on DM∗

CL
[n1,...,nk], we have that ni ∈ DM∗

CL
[n1,...,nk]

if i is odd, and ni /∈ DM∗

CL
[n1,...,nk] if i is even. Take now variables p1, . . . , pk. Any valuation

v ∈ HomM∗

CL
[n1,...,nk] such that v(pi) = ni provides a counterexample to (◦k).

Suppose that nk ∈ DMCL[n1,...,nk]. Again, for every MCL[n1, . . . , nk], if k = 2n + 1 for some
n ≥ 1 and nk ∈ DMCL[n1,...,nk], then ni ∈ DMCL[n1,...,nk] if i is odd, and ni /∈ DMCL[n1,...,nk] if
i is even. Given the constraint above on DM∗

CL
[n1,...,nk], we have that ni ∈ DM∗

CL
[n1,...,nk] if i is

odd, and ni /∈ DM∗

CL
[n1,...,nk] if i is even. Take now variables p1, . . . , pk. Again, any valuation

v ∈ HomM∗

CL
[n1,...,nk] such that v(pi) = ni provides a counterexample to (⋆ ⋆ k). �

Just to get a concrete example of this: take MCL[bhb], with M∗
CL

[bhb] = MCL[hbh]. We have
p1 ∧¬p1, p1 ∧ (p1 ∨ p2 ∨ p3) 6�MCL[hbh] p1 ∧ (p1 ∨ p2), and any valuation v ∈ HomMCL[bh] provides
a counterexample if v(p1) = n1 = h1, v(p2) = n2 = b1, v(p3) = n3 = h2. In a similar way,
p1 ∧ (p1 ∨ p2) 6�MCL[bhb] p1 ∨ ¬p1, p1 ∧ (p1 ∨ p2 ∨ p3). Any valuation v ∈ HomMCL[bhb] provides a
counterexample if v(p1) = n1 = b1, v(p2) = n2 = h1, and v(p3) = n3 = h2.

Proposition 6. Let MCL[n1, . . . , nk] be a LOC-matrix with k alternations, k = 2n+1 for some
n ≥ 1. Then, for every number of alternations m > k:

1. p1 ∧ ¬p1, θ1, . . . , θn 6�MCL[n1,...,nm] ζ1, . . . , ζn if nk /∈ DMCL[n1,...,nk]

2. ζ1, . . . , ζn 6�MCL[n1,...,nm] p1 ∨ ¬p1, θ1, . . . , θn if nk ∈ DMCL[n1,...,nk]
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Proof. Again, we first prove the statement for m = k+1. As for Proposition 3, we have two cases:

Case 1: nk /∈ DMCL[n1,...,nk]. We distinguish two subcases:
Case 1a: ni ∈ DMCL

[n1, . . . , nm] iff ni ∈ DMCL
[n1, . . . , nk] for 1 ≤ i ≤ k. This goes exactly

as Case 1a from Proposition 3, to the effect that (◦k) does not hold w.r.t MCL[n1, . . . , nm]-
consequence for m = k + 1, if the latter meets the conditions of the present Case 1a.

Case 1b: ni ∈ DMCL
[n1, . . . , nm] iff ni ∈ DMCL

[n1, . . . , nk] for 1 ≤ i ≤ k. This goes exactly
as Case 1b from Proposition 3, to the effect that (◦k) does not hold w.r.t MCL[n1, . . . , nm]-
consequence for m = k + 1, if the latter meets the conditions of the present Case 1b.

Case 2: nk ∈ DMCL[n1,...,nk]. We distinguish two subcases:
Case 2a: ni ∈ DMCL

[n1, . . . , nm] iff ni ∈ DMCL
[n1, . . . , nk] for 1 ≤ i ≤ k. This goes exactly

as Case 2a from Proposition 3, to the effect that (◦ ◦ k) does not hold w.r.t MCL[n1, . . . , nm]-
consequence for m = k + 1, if the latter meets the conditions of the present Case 2a.

Case 2b: ni ∈ DMCL
[n1, . . . , nm] iff ni ∈ DMCL

[n1, . . . , nk] for 1 ≤ i ≤ k. This goes exactly
as Case 2a from Proposition 3, to the effect that (◦ ◦ k) does not hold w.r.t MCL[n1, . . . , nm]-
consequence for m = k + 1, if the latter meets the conditions of the present Case 2b.

The case above prove the statement for m = k + 1. From this and Observation 1, we have
that that statement holds for every m > k.

Propositions 4–6 together prove that each multiple-conclusion consequence relation induced
by a LOC-matrix with k alternations for k = 2n + 1 (for some n ≥ 1) is distinct from every
multiple-conclusion consequence relation induced by a LOC-matrix with m > k alternations.
Together with Section 3 and Propositions 1–3, this determines the relations illustrated by Figure
1:

�MCL

�MCL[h]

�MCL[b]

�MCL[h1b1]

�MCL[b1h1]

�MCL[h1b1...hi]

�MCL[b1h1...bi]

�MCL[h1b1...hibi]

�MCL[b1h1...bihi]

. . .

. . .

. . .

. . .

Fig. 1. Diagram of the infinitely many multiple-conclusion consequence relations induced by LOC-
matrices based on MCL

6 Proof Theory for Contaminating Logics

In this section, we present sequent calculi for the logics HYB1 and HYB2, thus extending similar
results from [9] for Kw

3 and PWK. More precisely, we provide sound and complete calculi of
annotated sequents for the two four-valued logics from Section 3. An annotated sequent is an
object of the form Γ, JΓ ′K ⇒ ∆, J∆′K where Γ, Γ ′, ∆,∆′ are sets of formulae of the language.
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In annotated sequent calculi, additional rules are provided in order to capture the interaction
among formulae within squared brackets, outside square brackets, and the interaction of formulae
within square brackets and formulae outside the brackets.

As in [9], each of our calculi places restrictions on several rules—more precisely, the rules
need some variable inclusion condition to be satisfied in order to be applicable. We will detail
the corresponding provisos when needed.

One further peculiarity of the calculi that follow should be acknowledged and discussed. Our
calculi for HYB1 and HYB2 are decorated insofar as we employ a bracketing device in each of
the antecedent and succedent to track variable-inclusion properties. On the surface, one might
interpret this as an instance of a four-sided sequent calculus. If this were the case, it would be
disappointing for several reasons. On the one hand, many-sided sequents are far less intuitive and
natural than two-sided sequents (or one-sided sequents, for that matter). On the other, there
exist tools such as MUltseq (described, e.g., in [16]) that can construct sound and complete
many-sided sequent calculi for any finitely-valued logic.

We do not believe that this is a reasonable concern, however. Whereas the standard reading
of a many-sided sequent is one in which each “side” plays the role of a distinct truth-value,
which might be considered an inauthentic smuggling of semantics into the proof theory, it is
not clear that a similar alignment exists in our calculi for HYB1 and HYB2. The motivation for
our bracketing device is not semantic, but rather, syntactic in nature, which seems to offend
our own proof theoretic sensibilities far less. In any case, should the reader remain unconvinced,
the general method for authentically two-sided sequent calculi that will be presented later—in
Section 6.2—count the consequence relations for HYB1 and HYB2 as special cases.

6.1 Sequent Calculi for HYB1 and HYB2

Both systems include the following three rules, where for every Γ ⊆ Fml, Γ ∗ is any modification
of Γ by permuting elements, absorbing redundancies, or duplicating formulae:

[Axiom]
∅, JpK ⇒ ∅, JpK

Γ, JΞK ⇒ ∆, JΘK
[Structural]

Γ ∗, JΞ∗K ⇒ ∆∗, JΘ∗K

Γ, JΓ ′K ⇒ ∆, J∆′K
[Weak]

Γ,Ξ, JΓ ′K ⇒ ∆,Θ, J∆′K

[Axiom] secures the validity of those classical axioms in which a propositional variable is
within the scope of a square bracket in each sequent. [Structural] grants standard structural
rules, but Weakening, within any of the four slots. [Weak] differs from the Weakening for non-
annotated calculus in that we can only allow Weakening outside the scope of the bracket. The
following “push” rules below meet the need to shift formulae from outside the scope of a square
bracket to within its scope. It is with these rules that variable-inclusion restrictions come into
play:

Γ, ϕ, JΓ ′K ⇒ ∆, J∆′K
[PushL]

Γ, JΓ ′, ϕK ⇒ ∆, J∆′K

Γ, JΓ ′K ⇒ ∆,ψ, J∆′K
[PushR]

Γ, JΓ ′K ⇒ ∆, J∆′, ψK

In the HYB1 calculus, [PushL] requires the restriction V ar(ϕ) ⊆ V ar(∆′) and [PushR] requires
V ar(ψ) ⊆ V ar(Γ ∪Γ ′). In the HYB2 calculus, the two rules require V ar(ϕ) ⊆ V ar(∆∪∆′) and
V ar(ψ) ⊆ V ar(Γ ′), respectively.
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Negation rules come with a pair of right rules and a pair of left rules, since we need to
distinguish the case where we are introducing the sign within the scope of a square bracket from
that where we are introducing the sign without such a scope:

Γ, JΓ ′, ϕK ⇒ ∆, J∆′K
[¬R1]

Γ, JΓ ′K ⇒ ∆, J∆′,¬ϕK

Γ, ϕ, JΓ ′K ⇒ ∆, J∆′K
[¬R2]

Γ, JΓ ′K ⇒ ∆,¬ϕ, J∆′K

In the HYB1 calculus, [¬R1] and [¬R2] require V ar(ϕ) ⊆ V ar(Γ ∪ Γ ′); in the HYB2 calculus,
[¬R1] requires that V ar(ϕ) ⊆ V ar(Γ ′), and [¬R1] has no proviso. As for the left rules:

Γ, JΓ ′K ⇒ ∆, J∆′, ψK
[¬L1]

Γ, JΓ ′,¬ψK ⇒ ∆, J∆′K

Γ, JΓ ′K ⇒ ∆,ψ, J∆′K
[¬L2]

Γ,¬ψ, JΓ ′K ⇒ ∆, J∆′K

where [¬L1] requires that V ar(ψ) ⊆ V ar(∆′) and [¬L2] has no proviso. Additionally, we consider
a couple of rules for conjunction:

Γ, JΓ ′, ϕ, ψK ⇒ ∆, J∆′K
[∧L1]

Γ, JΓ ′, ϕ ∧ ψK ⇒ ∆, J∆′K

Γ, ϕ, ψ, JΓ ′K ⇒ ∆, J∆′K
[∧L2]

Γ, ϕ ∧ ψ, JΓ ′K ⇒ ∆, J∆′K

Rules [∧L1] and [∧L2] require no provisos in either HYB1 or HYB2. However, the following mixed
rule requires a variable-inclusion restriction:

Γ, ϕ, JΓ ′, ψK ⇒ ∆, J∆′K
[∧L∗]

Γ, JΓ ′, ϕ ∧ ψK ⇒ ∆, J∆′K

In HYB1, the rule is admissible provided that V ar(ϕ) ⊆ V ar(∆′), while in HYB2, V ar(ϕ) ⊆
V ar(∆ ∪∆′) is required. For the right rules, we consider the case in which both conjuncts are
outside of the scope of J−K and the case in which both are within its scope. Note, again, that
we can appeal to [PushR] in order to cover mixed cases.

Γ, JΓ ′K ⇒ ∆, J∆′, ϕK Γ, JΓ ′K ⇒ ∆, J∆′, ψK
[∧R1]

Γ, JΓ ′K ⇒ ∆, J∆′, ϕ ∧ ψK

Γ, JΓ ′K ⇒ ∆,ϕ, J∆′K Γ, JΓ ′K ⇒ ∆,ψ, J∆′K
[∧R2]

Γ, JΓ ′K ⇒ ∆,ϕ ∧ ψ, J∆′K

Again, neither [∧R1] nor [∧R2] requires a proviso in the two logics, but one could define an
admissible rule that requires that V ar(ϕ) ⊆ V ar(Γ ∪ Γ ′) in HYB1 and V ar(ϕ) ⊆ V ar(Γ ′) in
HYB2:

Γ, JΓ ′K ⇒ ∆,ϕ, J∆′K Γ, JΓ ′K ⇒ ∆, J∆′, ψK
[∧R∗]

Γ, JΓ ′K ⇒ ∆, J∆′, ϕ ∧ ψK

Finally, we consider also the rules for disjunction:

Γ, JΓ ′, ϕK ⇒ ∆, J∆′K Γ, JΓ ′, ψK ⇒ ∆, J∆′K
[∨L1]

Γ, JΓ ′, ϕ ∨ ψK ⇒ ∆, J∆′K

Γ, ϕ, JΓ ′K ⇒ ∆, J∆′K Γ, ψ, JΓ ′K ⇒ ∆, J∆′K
[∨L2]

Γ, ϕ ∨ ψ, JΓ ′K ⇒ ∆, J∆′K

Neither [∨L1] nor [∨L2] require provisos. Again, for the right rules, we consider the case in which
both disjuncts are outside of the scope of J−K and the case in which both are within its scope.
Note, again, that we can appeal to [PushR] in order to cover mixed cases.
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Γ, JΓ ′K ⇒ ∆, J∆′, ϕ, ψK
[∨R1]

Γ, JΓ ′K ⇒ ∆, J∆′, ϕ ∨ ψK

Γ, JΓ ′K ⇒ ∆,ϕ, ψ, J∆′K
[∨R2]

Γ, JΓ ′K ⇒ ∆,ϕ ∨ ψ, J∆′K

Now we state soundness and completeness of HYB1 and HYB2 with respect to MCL[hb] and
MCL[bh], respectively.

Theorem 7 (Soundness of HYB1). If Γ, JΓ ′K ⇒ ∆, J∆′K is provable in HYB1, then Γ ∪
Γ ′

�MCL[hb] ∆ ∪∆′.

Proof. Any initial sequent ∅, JpK ⇒ ∅, JpK has the form Γ, JΓ ′K ⇒ ∆, J∆′K in which Γ and ∆
are empty and Γ ′ = ∆′ = {p}. In this case, the sequent enjoys the property that:14

1. V ar(Γ ′) ⊆ V ar(∆′) ⊆ V ar(Γ ∪ Γ ′)
2. Γ ′ ⊆ Γ ∪ Γ ′ and ∆′ ⊆ ∆ ∪∆′

3. The sequent Γ ′ ⇒ ∆′ is derivable in LK

It can be easily checked that that this property is preserved under each of the foregoing rules.
The case of the Exchange and Contraction rules, and Weakening (outside the scope of the square
brackets) can be noted to preserve this property, since they correspond to properties that are
valid in every Tarskian logic and HYB1 is a Tarskian logic, as every matrix logic is—see [29].
We notice that this property is preserved by the other rules as follows. Moreover, this can also
be checked to apply straightforwardly to the “push” rules and the operational rules (in- and
outside the square brackets). Hence, any derivable sequent enjoys the above tripartite property.

Now, we know that Ξ �MCL[hb] Θ if and only if there exists a Ξ ′ ⊆ Ξ and a Θ′ ⊆ Θ such that
V ar(Ξ ′) ⊆ V ar(Θ′) ⊆ V ar(Ξ) and Ξ ′

�MCL
Θ′. Because of soundness of LK (a presentation of

which is described in [9]), the above tripartite property entails validity in MCL[hb]. Soundness
of HYB2 with respect to MCL[bh] is proved by similar reasoning. �

In the sequel, when we refer to the two-sided sequent calculus for PWK (and similarly for Kw
3 ),

we will be talking about the calculi designed by Coniglio and Corbalán, presented in [9] as a
fragment of Gentzen’s sequent calculus for classical logic—indeed, as a fragment where some of
the operational rules were restricted with variable inclusion requirements.

Given these, the following will help prove the completeness of HYB1 with respect to MCL[hb].

Lemma 2. If Γ �MCL[hb] ∆ such that Γ ′ ⊆ Γ , ∆′ ⊆ ∆, V ar(Γ ′) ⊆ V ar(∆′) ⊆ V ar(Γ ) and
Γ ′

�MCL
∆′, then Γ ′ ⇒ ∆′ is provable in the calculus for PWK.

Proof. Assume Γ �MCL[hb] ∆. Then by Corollary 2 for MCL[hb], we know that there are Γ ′ ⊆ Γ ,
∆′ ⊆ ∆, with V ar(Γ ′) ⊆ V ar(∆′) ⊆ V ar(Γ ) and Γ ′

�MCL
∆′ . By completeness of LK, this

implies that Γ ′ ⇒ ∆′ is provable in LK. We also know that V ar(Γ ′) ⊆ V ar(∆′). Hence, by
[9, Lemma 21], these two observations jointly imply that Γ ′ ⇒ ∆′ is provable in the sequent
calculus for PWK. �

Definition 15. In the HYB1 calculus, a PWK rule that applies only to formulae within brackets
is a “bracketed rule”.

Theorem 8 (Completeness of HYB1). If Γ �MCL[hb] ∆ such that Γ ′ ⊆ Γ , ∆′ ⊆ ∆, V ar(Γ ′) ⊆
V ar(∆′) ⊆ V ar(Γ ) and Γ ′

�MCL
∆′, then Γ ′, JΓ ′′K ⇒ ∆′, J∆′′K is provable in HYB1, where

Γ = Γ ′ ∪ Γ ′′ and ∆ = ∆′ ∪∆′′.

14 As usual, this label denotes the standard sequent calculus for classical logic CL.
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Proof. Assume that Γ �MCL[hb] ∆. Then, by Lemma 2, there is a PWK proof of Γ ′ ⇒ ∆′. Call
this proof, i.e. a rooted binary tree, Π . We can design an algorithm to transform a PWK proof
of this sequent into an HYB1 proof of Γ, JΓ ′K ⇒ ∆, J∆′K.

First, replace every node Ξ ⇒ Θ of Π by a node ∅, JΞK ⇒ ∅, JΘK. Then, place below each
leaf, or axiom node, one instance of [Weak], such that from an axiom ∅, JpK ⇒ ∅, JpK we infer in
one step the sequent Γ, JpK ⇒ ∆, JpK. After that, for each non-axiom node place Γ to the left of
the square brackets in the antecedent and ∆ to the left of the square brackets in the succedent. In
the resulting proof, each PWK rule is applied within the scope of the square brackets. Moreover,
we can check that every application of a PWK rule corresponds to a “bracketed rule” in HYB1

that respects the corresponding provisos.
Actually, since Weakening is not fully admissible within the scope of square brackets, some-

thing must be said about this case. Suppose in an H proof of Γ ′ ⇒ Γ ′ there is an ineliminable
application of Weakening that allows to go from a node Ξ ⇒ Θ to a node Ξ,Ξ ′ ⇒ Θ,Θ′—
whence we can legitimately call Ξ ′ and Θ′ the active (sets of) formulae in this step. Then the
current algorithm can be further specified by saying that if Π is a proof which has no inelim-
inable application of Weakening, then we proceed as previously stated. However, if Π has an
ineliminable application of Weakening, then we enlarge every node (outside the square brackets)
with Γ and Ξ ′, and ∆ and Θ′, in their respective sides. Finally, when the Π requires the corre-
sponding application of Weakening, we mimic this in HYB1 applying the [PushL] and [PushR]
rules to Ξ ′ and Θ′, as needed.

This renders a rooted binary tree Π∗ with Γ, JΓ ′K ⇒ ∆, J∆′K as its terminal sequent. We then
proceed to apply the rules [PushL], [PushR] followed by elimination of duplicate formulae in Γ ′

and ∆′. We end up with a HYB1 proof ending with Γ ′′, JΓ ′K ⇒ ∆′′, J∆′K, for which Γ ′′ ∪Γ ′ = Γ
and ∆′′ ∪∆′ = ∆ and V ar(Γ ′) ⊆ V ar(∆′) ⊆ V ar(Γ ′′ ∪ Γ ′) = Γ . �

By similar means, we arrive at the corresponding results for HYB2.

Theorem 9 (Soundness of HYB2). If Γ, JΓ ′K ⇒ ∆, J∆′K is provable in HYB2, then Γ ∪
Γ ′

�MCL[bh] ∆ ∪∆′.

Theorem 10 (Completeness of HYB2). If Γ �MCL[bh] ∆ such that Γ ′ ⊆ Γ , ∆′ ⊆ ∆,
V ar(∆′) ⊆ V ar(Γ ′) ⊆ V ar(∆) and Γ ′

�MCL
∆′, then Γ ′, JΓ ′′K ⇒ ∆′, J∆′′K is provable in

HYB2, where Γ = Γ ′ ∪ Γ ′′ and ∆ = ∆′ ∪∆′′.

Proof. By Theorem 8 and Lemma 1. �

Finally, the above calculi suggest that they may be adapted to the cases of matrices with three
or more alternations by allowing some sort of nesting of brackets J−K.

6.2 Sequent Calculi for the General Case

Now, the foregoing calculi seem to follow from non-trivial modifications to the Coniglio-Corbalán
methods in which we have added a device that essentially tracks variable inclusions. It is clearly
attractive to be able to provide a schematic method to give a sound and complete sequent
calculus for each of the infinitely many consequence relations discussed in this paper. However,
in the process of generalizing these sequent calculi to provide proof theories for each of our M[σ]
systems, we are presented with a challenge.

For one, we have the option of trying to give a straightforward generalization of the calculi
for HYB1 and HYB2 by nesting instances of the J−K device within one another and adding
provisos and modifications to operational rules to preserve the structure of appropriate variable
inclusion properties. Such an approach, however, is on its face perilous, as it would lead to an
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exponential blow-up in the number of rules. For example, if we have a calculus with the J−K
device nested to a depth of (say) eighteen, it looks as though an appropriate suite of [∨L] rules
on formulae ϕ and ψ would need independent special cases for occasions in which ϕ appears at
depth m and ψ appears at depth n for all m,n < 18. While in principle such provisos could be
described schematically, the resulting blowup in number of operational rules would drastically
inhibit the utility of the resulting calculi.

A second approach would be to treat each system with an appropriate many-sided sequent
calculus. There are two apparent problems with this approach. On the one hand, it seems as
though the foregoing concern about explosion in the number of rules might apply to this case,
so that in an m sided sequent calculus, we would need 2m many distinct cases of a disjunction
rule. On the other hand, tools such as MUltseq are capable of producing such calculi already
and the importance of such a general scheme would be thereby severely diminished.

The third approach would be to make a straightforward (and shameless) appeal to our
semantic characterizations by describing a way to take a classically provable sequent Γ ⇒ ∆
and iterate a carefully controlled succession of application of Weakening on alternative sides
to construct a sequent enjoying the appropriate variable inclusion properties. This approach
risks the loss of some of the novelty found in the foregoing calculi HYB1 and HYB2 but retains
a novelty of a different sort. Furthermore, for any of the matrix logics endowed with a linear
order of contaminating values described in this work, this approach would permit us to describe a
succinct and natural way to determine an appropriate sequent calculus. Such an approach would
also have the benefit of being immediately recognizable as generating authentically two-sided
sequent calculi.

Among the options, the third seems to fare the best, so we present a general description of
appropriate sequent calculi that readily applies to any of the matrices discussed in this paper. If
we look closely at the form of Theorems 1 and 2, a rough roadmap to appropriate sequent calculi
can be inferred. In the case of (e.g.) MCL[hbh], we might follow something like the following
algorithm, where [WeakL] and [WeakR] are left and right Weakening, respectively:

1. Give a classical proof in LK for a sequent Γ ⇒ ∆
2. Apply arbitrary applications of [WeakR] to yield a sequent Γ ⇒ ∆′

3. Apply [WeakL] to yield a Γ ′ ⇒ ∆′ where V ar(∆′) ⊆ V ar(Γ ′)
4. Apply [WeakR] to yield a Γ ′ ⇒ ∆′′ where V ar(Γ ′) ⊆ V ar(∆′′)

A cursory reappraisal of our semantic characterization of MCL[hbh] suffices to reveal that Γ ′ ⇒
∆′′ is provable by this algorithm if and only if Γ ′

�MCL[hbh] ∆
′′ is valid. In the general case, all

that is necessary is that we track the steps at which we may apply [WeakL] and [WeakR] and
at what stage a proof can be said to have terminated. To gain the ability to track these steps,
we choose to make the novel decision to label the sequent separator itself by an index ranging
over the natural numbers.

Let us first describe the raw materials from which we will define the appropriate calculi. The
core of each system will be an indexed variant of a classical sequent calculus. Take a standard
two-sided sequent calculus for classical propositional logic—for convenience, let us fix the sequent
calculus LK described in [9]—and annotate the turnstiles in each rule with a subscript “0”. Call
this system LK0. By the definitions to follow, it will turn out that derivability in LK0 (i.e.,
derivability of a classically provable sequent Γ ⇒0 ∆) will correspond to the system MCL[Λ],
i.e., classical logic enriched with an empty linear order of contaminating values.

To LK0 we add the structural rules of Contraction and Permutation at every stage in a
proof (i.e., for every sequent separator ⇒i), a fact that is codified by the schematic rule where
i ∈ ω:

Γ ⇒i ∆ [Structurali]
Γ ′ ⇒i ∆

′
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where Γ ′ and ∆′ are the result of applying instances of Contraction, Exchange, or Duplication
to Γ and ∆, respectively.

Our earlier example demonstrated a need to alternate between stages at which [WeakL] is
appropriate and stages at which [WeakR] is appropriate. To permit Weakening only in appro-
priate positions at appropriate times, we stratify Weakening with the schematic rules for each
i ∈ ω:

Γ ⇒i ∆ [WeakLi]
Γ, Γ ′ ⇒i ∆

Γ ⇒i ∆ [WeakRi]
Γ ⇒i ∆,∆

′

Finally, we track the iterations by ascension rules in which we lift the operations on a sequent
Γ ⇒i ∆ to Γ ⇒i+1 ∆ when certain variable-inclusion provisos are met. These schematic rules
are presented below, where i ∈ ω:

Γ ⇒i ∆ [AscensionLi]
Γ ⇒i+1 ∆

Γ ⇒i ∆ [AscensionRi]
Γ ⇒i+1 ∆

These rules have the provisos that in order to apply [AscensionLi], it must be established that
V ar(∆) ⊆ V ar(Γ ) while correct applications of [AscensionRi] require that V ar(Γ ) ⊆ V ar(∆).

In order to more conveniently define our general suite of sequent calculi, we define four types
of collections of Weakening and Ascension rules:

Definition 16. LOddm = {[WeakL2i+1], [AscensionL2i+1] | 2i+ 1 � m}.

Definition 17. ROddm = {[WeakR2i+1], [AscensionR2i+1] | 2i+ 1 � m}.

Definition 18. LEvenm = {[WeakL2i], [AscensionL2i] | 2i � m}.

Definition 19. REvenm = {[WeakR2i], [AscensionR2i] | 2i � m}.

These collections permit us to perspicuously define sequent calculi for every one of the infinitely
many consequence relations described in this paper. For each string σ of alternating instances
of h and b, we define a calculus LK[σ]. These systems are given a bipartite definition, broken
apart on the basis of the initial element of σ. Where a string begins with h, we define LK[σ] in
the following terms, where ⊕ indicates enriching a sequent calculus with additional rules.

Definition 20. For a string hb... of length n, the calculus LK[hb...] is the following:

LK0⊕[Structurali]⊕REvenn ⊕ LOddn

We say that a sequent Γ ⇒ ∆ is provable in LK[hb...] if the labeled sequent Γ ⇒n ∆ is provable.

When σ, on the other hand, counts b as its initial element, we give a dual definition for LK[σ].

Definition 21. For a string bh... of length n, the calculus LK[bh...] is the following:

LK0⊕[Structurali]⊕ROddn ⊕ LEvenn

Again, we say that a sequent Γ ⇒ ∆ is provable in LK[hb...] if the labeled sequent Γ ⇒n ∆ is
provable.

Now, we may proceed to observe that these sequent calculi are indeed appropriate for our
matrices by a general soundness and completeness proof:

Theorem 11. Let σ be a string of alternating instances of h and b. Then:
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Γ �MCL[σ] ∆ if and only if Γ ⇒ ∆ is provable in LK[σ]

Proof. We prove this by induction on complexity of σ for the two cases in which the terminal
element of σ is either h or b.

The basis step is when σ = Λ, i.e., the empty string. Then derivability of Γ ⇒0 ∆ corresponds
to derivability in LK. As induction hypothesis, then, suppose that for the cases for which σ is
of length m have been covered. Then we cover two cases to establish the result for σ of length
m+ 1.

In the case in which the terminal element of σ is h, let σ′ be the string σ without its terminal
element. Then we arrive at LK[σ] by adding the rules [WeakRm] and [AscensionRm] to the
calculus LK[σ′]. Then we know that Γ ⇒m ∆ is derivable in LK[σ] if and only if V ar(Γ ) ⊆
V ar(∆) and for a ∆′ ⊆ ∆, Γ ⇒m−1 ∆

′ is derivable in LK[σ′]. By induction hypothesis, this
holds if and only if Γ �MCL[σ′] ∆

′ is valid in MCL[σ′]. But by Theorem 2, this is equivalent to
the existence of a ∆ ⊇ ∆′ for which Γ �MCL[σ′h] ∆ is valid, and MCL[σ′h] is just MCL[σ].

The case in which the terminal element of σ is b is carried out in an identical fashion by
dualizing each of the foregoing steps and appealing to Theorem 1 rather than Theorem 2. �.

With Theorem 11 in hand, we have provided a recursively defined and countably infinite suite of
authentically two-sided sequent calculi that correspond to any case in which two-valued classical
logic is supplemented with a linear order of contaminating values.

6.3 Cut Admissibility in the Calculi LK[σ]

There are many proof-theoretic properties that are worth investigating in the case of the calculi
LK[σ] and we are unable to examine them all. The plight of the rule of [Cut], however, has
been identified by a referee as one particularly worthy of investigation and we will consider this
question before closing this section.

The rule [Cut], of course, in the case of LK is the following:

Γ ⇒ ∆,ϕ ϕ,Σ ⇒ Ξ
[Cut]

Γ,Σ ⇒ ∆,Ξ

For sequent calculi in which [Cut] is included as a rule, one is frequently interested in whether a
system enjoys cut elimination, that is, whether any sequent provable with [Cut] can be proven
without the rule. The systems LK[σ] do not include [Cut], however, so the question we will in-
vestigate is whether these systems enjoy cut admissibility, that is, whether [Cut] can be emulated
in the calculi.

We note that it is not on its face obvious that any of the systems LK[σ] (where σ 6= Λ)
enjoys cut admissibility. Where Γ ⇒ ∆,ϕ and ϕ,Σ ⇒ Ξ are provable there exist relatively
delicate, back-and-forth-type variable-inclusion properties between Γ and ∆ ∪ {ϕ} on the one
hand and Σ ∪ {ϕ} ⇒ Ξ on the other. The roles that the cut formula ϕ plays in these back-and-
forth containments might differ between the two cases and, moreover, in either of these cases,
ϕ may be critical in the satisfaction appropriate variable-inclusion properties right. That ϕ is
eliminable—or that its role may be taken over by some other formula—is not an obvious fact.

Happily, each of these systems enjoys cut admissilibity and, indeed, enjoys a stronger property
in which [Cut] is admissible for each sequent seperator ⇒i. We will say that one of our systems
LK[σ] enjoys full cut admissibility if [Cut] can be emulated for every indexed sequent separator
⇒i. To put this more precisely:

Definition 22. We say that a calculus LK[σ] enjoys full cut admissibility if for every index i,
whenever the sequents Γ ⇒i ∆,ϕ and ϕ,Σ ⇒i Ξ are provable in LK[σ], then there exists an
LK[σ] proof of the sequent Γ,Σ ⇒i ∆,Ξ.
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Note that this is a stronger claim than mere cut admissibility, as Γ ⇒ ∆ holds in a system LK[σ]
when Γ ⇒i ∆ is derivable for the maximum index i. Hence, a proof of full cut admissibility has
cut admissibility simpliciter as a corollary.

With respect to cut admissibility, we close Section 6 with the observation that all the sequent
calculi LK[σ] enjoy full cut admissibility.

Theorem 12. For all strings σ comprising alternating instances of h and b, the system LK[σ]
enjoys full cut admissibility.

Proof. For an arbitrary σ, we prove this by induction on the subscript of the sequent separator
⇒i. For the basis step in which i = 0, we note simply that [Cut] is admissible in LK (i.e., LK0),
whence we conclude that the special instance

Γ ⇒0 ∆,ϕ ϕ,Σ ⇒0 Ξ

Γ,Σ ⇒0 ∆,Ξ

is admissible.
For the induction step, suppose that for all j < i, the corresponding instance of [Cut] for

⇒j is admissible. Furthermore, suppose that we have LK[σ] proofs Π and Π ′ of Γ ⇒i ∆,ϕ
and ϕ,Σ ⇒i Ξ, respectively. Now, these two sequents are derived from one of two methods,
depending on the choice of LK[σ] and value of i:

– There exist LK[σ]-provable sequents Γ ⇒i−1 ∆
′ and ϕ,Σ ⇒i−1 Ξ

′ such that ∆′ ⊆ ∆ ∪
{ϕ}, Ξ ′ ⊆ Ξ, V ar(∆′) ⊆ V ar(Γ ), and V ar(Ξ ′) ⊆ V ar(Σ ∪ {ϕ}). Furthermore, the rule
[AscensionLi−1] is applied to each of these sequents, (possibly) followed by applications of
[WeakRi].

– There exist LK[σ]-provable sequents Γ ′ ⇒i−1 ∆,ϕ and Σ′ ⇒i−1 Ξ such that Γ ′ ⊆ Γ ,
Σ′ ⊆ Σ ∪ {ϕ}, V ar(Γ ′) ⊆ V ar(∆ ∪ {ϕ}), and V ar(Σ′) ⊆ V ar(Ξ). Furthermore, the rule
[AscensionRi−1] is applied to each of these sequents, (possibly) followed by applications of
[WeakLi].

• First, consider the former case, for which there are two subcases, one in which ϕ /∈ ∆′ and
another in which ϕ ∈ ∆′. In the former subcase, we can construct the end sequent easily.
By hypothesis, Π contains as a subproof an LK[σ] proof Π ′′ of the sequent Γ ⇒i−1 ∆

′. Our
assumptions about LK[σ] include the fact that [AscensionLi−1] is applied to this sequent. Hence,
the iterative construction described in Definition 20 means that either [WeakLi−1] (if i 6= 1) or
Weakening simpliciter (if i = 1) is a valid rule of LK[σ], whence we may derive Γ,Σ ⇒i−1 ∆

′.
Because V ar(∆′) ⊆ V ar(Γ ), it holds also that V ar(∆′) ⊆ V ar(Γ ∪ Σ), whence we may apply
[AscensionLi−1] to yield Γ,Σ ⇒i ∆

′. But by hypothesis, we may also apply [WeakRi], whence
we can modify Π ′′ to construct an LK[σ] proof of the sequent Γ,Σ ⇒i ∆,Ξ.

On the other hand, if ϕ ∈ ∆′, then Π has as a subproof an LK[σ] proof of Γ ⇒i−1 ∆
′r{ϕ}, ϕ

and Π ′ contains a subproof of ϕ,Σ ⇒i−1 Ξ
′. By induction hypothesis, the instance of [Cut]

for i − 1 is admissible, whence we are guaranteed that there exists an LK[σ] proof Π ′′ of the
sequent Γ,Σ ⇒i−1 ∆

′ r {ϕ}, Ξ ′. We know that V ar(∆′) ⊆ V ar(Γ ) and V ar(Ξ ′) ⊆ V ar(Σ ∪
{ϕ}), entailing that V ar(∆′ ∪ Ξ ′) ⊆ V ar(Γ ∪ Σ ∪ {ϕ}). Because ϕ ∈ ∆′, the variables in ϕ
appear in Γ , and V ar(Γ ∪ Σ ∪ {ϕ}) = V ar(Γ ∪ Σ), so we may rewrite this as the fact that
V ar(∆′ ∪ Ξ ′) ⊆ V ar(Γ ∪Σ), licensing us to apply [AscensionLi−1] to extend Π ′′ to a proof of
Γ,Σ ⇒i ∆

′ r {ϕ}, Ξ ′. Finally, a single application of [WeakRi] is sufficient to convert Π ′′ to an
LK[σ] proof of Γ,Σ ⇒i ∆,Ξ, as desired.

• The second case is largely dual to the first, and we break up subcases in which ϕ /∈ Σ′ and
ϕ ∈ Σ′. If ϕ /∈ Σ′, then, as before, we have an LK[σ] proof Π of the sequent Σ′ ⇒i−1 Ξ.
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Because [AscensionRi−1] is a rule of LK[σ], by Definition 20, either [WeakRi−1] or Weakening
without qualification are valid as well, from which we may turn Π into a proof of the sequent
Σ′ ⇒i−1 ∆,Ξ. Again, the hypothesis tells us that V ar(Σ′) ⊆ V ar(∆ ∪ Ξ), on which basis we
may apply [AscensionRi−1] to get a proof of Σ′ ⇒i ∆,Ξ, and a further application of [WeakLi]
converts Π into a LK[σ] proof of Γ,Σ ⇒i ∆,Ξ.

When ϕ ∈ Σ′, then our proofs Π and Π ′ have LK[σ] subproofs of the sequents Γ ′ ⇒i−1 ∆,ϕ
and Σ′ r {ϕ}, ϕ ⇒i−1 Ξ, respectively. By hypothesis, [Cut] holds for ⇒i−1, whence we are
guaranteed that there exists an LK[σ] proof of the sequent Γ ′, Σ′r{ϕ} ⇒i−1 ∆,Ξ. In this case,
V ar(Γ ′) ⊆ V ar(∆ ∪ {ϕ}), and V ar(Σ′) ⊆ V ar(Ξ); again, because ϕ ∈ Σ′, V ar(ϕ) ⊆ V ar(Ξ),
the set V ar(∆ ∪ Ξ ∪ {ϕ}) may be simplified to V ar(∆ ∪ Ξ). Putting this together, then, we
conclude that V ar(Γ ′ ∪ (Σ′ r {ϕ})) ⊆ V ar(∆ ∪Ξ). This satisfies the proviso required to apply
[AscensionRi−1] to yield a proof of Γ ′, Σ′r{ϕ} ⇒i ∆,Ξ. To this proof, we may apply [WeakLi]
to yield an LK[σ] proof of Γ,Σ ⇒i ∆,Ξ, as we had needed. �.

We plan to revisit these calculi and variants of them in future work.

7 Concluding Remarks

In this paper, we have identified a countably infinite family of subsystems of classical logic among
which are weak Kleene logic and its paraconsistent dual. We have provided characterizations of
each of the corresponding consequence relations and provided for each a sound and complete
two-sided sequent calculus. These results are exceedingly general and cover a host of very natural
many-valued matrices that have both historical and practical relevance. As any logician familiar
with Hilbert’s Grand Hotel knows, however, the mere fact that one has proven an infinite number
of results does not entail that the work has been completed. With this in mind, we end the paper
by describing several avenues in which this work can be directed.

One project that springs to mind is an investigation into the utility of these systems. As we
have suggested, the current state of the art in applied computer science frequently encounters
programs running in a cascade virtual machines nested in one another. This fact suggests room
for applicability of our results to this field, but much of this hinges on the matter of interpreting
a contaminating value as designated. We plan to devote future work to an investigation into the
matter of designation (or not) of these truth-values.

One formal matter that is entwined with the question of how to best provide a generalization
of the calculi HYB1 and HYB2 is the matter of proof complexity. One way to look at the trade-off
between the calculi that we have described and the method of many-sided sequent calculi is that
our presentation has limited the number of additional rules at the cost of a possibly exponential
increase of the search space. On its face, verifying that Γ ⇒ ∆ is provable seems to require
a back-and-forth procedure grabbing subsets of Γ and ∆ with appropriate variable-inclusion
properties until landing on Γ ′ ⊆ Γ and ∆′ ⊆ ∆ for which we can confirm that Γ ′ ⇒ ∆′ is
classically provable. This seems to indicate a worst-case complexity of verifying provability of
a sequent as being in EXPTIME, but we set aside the investigation into proof complexity for
future work.

Finally, in a more theoretical vein, although we have out of convenience interpreted the
matrix MCL as classical logic, our results make clear that many of the characterization results
apply mutatis mutandis to any many-valued logic. (Indeed, the general method for constructing
two-sided sequent calculi ought to carry over in many cases as well.) Investigating the landscape
of logics with linearly ordered contaminating values in more generality would lead to studying
appropriate subsystems of a broad field of many-valued logics. Families of systems like the four-
valued logic of first-degree entailment and its cousins or fuzzy logics suggest that it would be
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interesting to study how contaminating values interact with other logical properties, such as rel-
evance, non-determinism, fuzziness, and so forth (some initial steps with respect to investigating
contaminating values in relevance logics can be found in [8]).
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