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Abstract: In this paper, we extend the expressive power of the logics K3, LP
and FDE with a normality operator, which is able to express whether a for-
mula is assigned a classical truth value or not. We then establish classical
recapture theorems for the resulting logics. Finally, we compare the ap-
proach via normality operator with the classical collapse approach devised
by Jc Beall.
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Introduction

Theories of classical recapture (Beall, 2011, 2013; Priest, 1979, 1991) spec-
ify at which conditions we can safely draw classically valid inferences while
having a (subclassical) many-valued logic as our reasoning tool of choice.
For instance, if we use Strong Kleene logic K3 (Kleene, 1952), a theory of
classical recapture will specify at which conditions we can assert an instance
� ∨ ¬� of the Law of Excluded Middle—a principle that fails in the logic.
Similarly, if we use the Logic of Paradox LP by Priest (1979, 2006), the the-
ory will specify at which conditions we can apply Modus Ponens and infer
 from �,� ⊃  , or apply Ex Contradictione Quodlibet and infer  from
�∧¬� — again, the logic fails the rules in question. Something along these
lines would be done also for the four-valued FDE (Belnap, 1977).

This endeavor is motivated by a philosophical background that is shared
by a number of many-valued logicians: use of a many-valued reasoning tool
is necessary because we may face a number of ‘abnormal phenomena’ that
allegedly cannot be treated classically (logical paradoxes, partial informa-
tion, vagueness, denotational failure), but as long as these phenomena are
not at stake, classical logic is perfectly in order as it is.

In this paper, we generalize the expressive power of the Logic of For-
mal Inconsistency (Carnielli, Coniglio, & Marcos, 2007; Carnielli, Marcos,
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& De Amo, 2000; da Costa, 1974; Marcos, 2005) and the Logic of Formal
Undeterminedness (Corbalan, 2012) in order to specify at which conditions
we can reason classically when deploying some given many-valued reason-
ing tools. In particular, we present the many-valued logics K3

�, LP�, and
FDE�, which increase the expressive power of K3, LP and FDE, respec-
tively, and we establish classical recapture results for these logics. Finally,
we compare our approach with the classical recapture strategy provided by
the classical collapse approach by (Beall, 2011, 2013).

The paper proceeds as follows. In the remainder of this Introduction,
we provide some background on the Logic of Formal Inconsistency (LFI),
the Logic of Formal Undeterminedness (LFU), and the normality operator
that we use in the paper. In Section 1, we introduce the logics K3, LP and
FDE, which provide the basic many-valued reasoning tools of the paper. In
Section 2, we augment the three logics with the normality operator �, thus
obtaining systems in the LFI and LFU tradition, and we establish our main
results: Theorem 1 and Theorem 2. Interestingly, FDE� requires a slightly
different recapture strategy than K3

� and LP�. Section 3 introduces the ap-
proach by (Beall, 2011, 2013), and Section 4 compares our ‘recapture via
normality’ and classical collapse. Finally, Section 5 summarizes the content
of the paper and presents some conclusions.

Background. LFI is a family of systems originating in da Costa (1974). Sys-
tems in this family control the behavior of inconsistency by internalizing the
notion in the object language. This is done by a consistency operator—see
end of Section 2. LFI includes a huge variety of formalisms, which may
receive highly diversified semantical treatments. Here, we follow Carnielli
et al. (2000) in focusing on a formalism that has a straightforward truth-
functional semantics (see Sections 1 and 2). LFU dualizes da Costa’s project
and includes systems controlling the behavior of undeterminedness (fail-
ure of Excluded Middle). This is done by an determinedness operator that,
together with negation, internalizes the notion in the object language.

The normality operator from this paper generalizes the operators from
LFI and LFU. While the consistency (determinedness) operator expresses
that a formula � is consistent (determined), the normality operator expresses
the stricter notion that a formula � has a classical truth value (or ‘is normal’).
While the operators of normality and consistency (determinedness) coincide
in a paraconsistent (paracomplete) three-valued logic, they are in principle
distinct in a four-valued logic that is both paraconsistent and paracomplete,
such as logic FDE� from Section 2.
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1 Preliminaries

Given an infinitely denumerable set P of propositional variables, standard
propositional language L1(P) is defined by the following Backus-Naur
Form (BNF):

� ∶∶= p � ¬� � � ∨  � � ∧  
where p ∈ P and ¬,∨,∧ are negation, disjunction, conjunction, respectively.
As usual, we define � ⊃  = ¬� ∨  . We denote sets of arbitrary formulas
by ⌃,�,�, . . . , and we omit reference to P when possible. We interpret the
formulas in L1 via valuation functions:

Definition 1 (Valuations) We let V be the class of all functions
⌫ ∶ ��→ {0, 12 ,1} that satisfy the following clauses:

● ⌫(¬�) = 1 − ⌫(�)● ⌫(� ∨ ) = max(⌫(�), ⌫( ))● ⌫(� ∧ ) = min(⌫(�), ⌫( ))
We denote by VCL the set of valuations ⌫ ∈ V such that ⌫(p) ∈ {0,1} for
every p ∈ P .1 We define a logic S semantically as a pair �L,�S�, where L
is a language and �S is a relation of logical consequence—from now on,
we will often talk about S-consequence, depending on the system we are
focusing on. For every logic S, we define a set DS ⊆ T of designated values
of S. We define S-consequence as preservation of designated values in S:

Definition 2 (S-consequence) For every logic S, S-consequence is a rela-
tion �S ⊆ 2� ×� such that:

⌃ �S  ⇔ ⌫( ) ∈ DS if ⌫(�) ∈ DS for every � ∈ ⌃
The following is a useful notation: var(⌃) is the set of variables p that

occur in some � ∈ ⌃. We write var( ) instead of var({ }). We call a
tautology any formula that follows from the empty set of premises.

1.1 Strong Kleene Logic and the Logic of Paradox

Strong Kleene Logic K3 (Kleene, 1952) and the Logic of Paradox LP (Priest,
1979, 2006) have found prominent applications in philosophical logic, es-
pecially with respect to logical paradoxes and truth theory (Field, 2008;

1We believe the reason for the label is clear: the valid rules and principles of Classical Logic
CL are determined by these valuations.
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Kripke, 1975; Priest, 1979, 2006).2 Their interpretation is based on the val-
uation functions from Definition 1. The difference between the two logics
is in their designated values: DK3 = {1}, while DLP = {12 ,1}.

A straightforward consequence of Definition 1 and DK3 = {1} is that no
formula � ∈ �L1 is a tautology in K3: we have ⌫(�) = 1

2 if ⌫(p) = 1
2 for

every p ∈ var(�). A fortiori, the Law of Excluded Middle fails:

� ��K3 � ∨ ¬� (Failure of LEM)

According to standard terminology, this makes K3 a paracomplete logic.
Another consequence of K3 having no tautology is failure of the Law of
Identity (LI) � ⊃ �. Definition 1 and DLP = {12 ,1} imply that Ex Contradic-
tione Quodlibet fails:

� ∧ ¬� ��LP  (Failure of ECQ)

Any v ∈ V such that ⌫(p) = 1
2 and ⌫(q) = f provides a countermodel. Also,

notice that every formula � ∈ �L1 is satisfiable in LP: ⌫(�) = 1
2 whenever

⌫(p) = 1
2 for every p ∈ var(�). Finally, all tautologies from Classical Logic

CL are LP-tautologies, and vice versa. We refer the reader to Priest (1979)
for this.

More in general, presence of the third value implies departure from clas-
sical consequence �CL, to the effect that some classically valid inferences
fail in K3 and LP. The following observation details some validities and the
most notable failures of K3 and LP:3

Observation 1 K3-consequence and LP-consequence satisfy:

1a  ��K3 � 1b  �LP �
for � a classical tautology for � a classical tautology

2a �,¬� �K3  2b �,¬� ��LP  
3a � ⊃ ( ∧ ¬ ) �K3 ¬� 3b � ⊃ ( ∧ ¬ ) ��LP ¬�
4a �,� ⊃  �K3  4b �,� ⊃  ��LP  
5a ¬ ,� ⊃  �K3 ¬� 5b ¬ ,� ⊃  ��LP ¬�
6a � ⊃  , ⊃ ⇣ �K3 � ⊃ ⇣ 6b � ⊃  , ⊃ ⇣ ��LP � ⊃ ⇣

2Other applications include partial functions (Kleene, 1938, 1952), partial information
(Abdallah, 1995), logic programs (Fitting, 1985) (K3), and vagueness (Priest, 2013; Ripley,
2013; Shapiro, 2006) (K3 and LP).

3We refer the reader to (Beall 2011, 2013; Priest 1979, 2006) for these failures and validi-
ties.
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As is well known, departure from classical reasoning is the key of K3

and LP’s success in approaching the logical paradoxes. However, this suc-
cess comes at a cost: LP fails Modus Ponens (MP)—failure 4b above—and
K3 fails LI, which are crucial in our understanding of a conditional. This
suffices to explain why we may want to reason classically when we are sure
that no abnormal phenomenon is around. In Sections 2 and Sections 3, we
approach two different ways to recapture classical reasoning in K3 and LP.

Remark 1 (Reading of the third value) Third value 1
2 has two natural in-

formal readings in K3 and LP, respectively. Failure of LEM in K3 suggests
that 1

2 is read as ‘neither true nor false’, or ‘undetermined’, or ‘undefined’.
Failure of ECQ in LP suggests that 1

2 is read as ‘both true and false’, or
‘overdetermined’, or ‘inconsistent’. These readings will help in what fol-
lows.

1.2 First-degree entailment

The logic FDE has been first introduced by Anderson and Belnap (1962),
and it has been later generalized to a ‘useful four-valued logic’ by Belnap
(1977). In FDE, formulas from L1 are interpreted by adjusting Definition 1
to a poset {0,n,b,1} of truth values,4 whose weak partial order � is defined
as follows:5

● 0 � n � 1● 0 � b � 1● n �� b and b �� n
Definition 3 (Valuations, 2) We let U be the class of all functions
u ∶ ��→ {0,n,b,1} that satisfy the following clauses:

● u(¬�) = �������
1 − u(�) if u(�) ∈ {0,1}
x if u(�) = x for x ∉ {0,1}

● u(� ∨  ) = glb(u(�), u( ))
● u(� ∧  ) = lub(u(�), u( ))

4The usual notation for the truth values of FDE is f ,n,b, t. However, f and t behave
exactly as 0 and 1 in K3 and LP, and we keep the numerical notation here, for the sake
of uniformity.

5A weak partial order is any reflextive and transitive relationR on a domain D that obeys∀x, y ∈D ∶R(x, y) andR(y, x)⇒ x = y.

5



Roberto Ciuni and Massimiliano Carrara

Besides, we have DFDE = {b,1}. From the specification of the order and
the definition of DFDE, it is easy to see that, if we restrict valuations in U to{0,b,1}, we obtain LP. Dually, if we restrict valuations in U to {0,n,1},
we obtain K3. This suffices to understand that FDE is a sublogic of both K3

and LP. The following failure guarantees that FDE is a proper sublogic of
the two formalisms:

� ∧ ¬� ��FDE  ∨ ¬ (Failure of Confusion)

2 Recapture via normality

In this section, we propose to recapture classical reasoning by improving
the expressive power of K3 and LP by devices that tell apart the situations
where a formula � has a classical truth value (‘is normal’) from the situations
where � has some non-classical value (‘is abnormal’). In particular, the
logics K3

�, LP� and FDE� that we introduce in this section are obtained by
extending K3, LP and FDE, respectively, with a normality operator �. The
following is a semantic definition of a normality operator:

Definition 4 (Normality operator) Given a language L, a set T of truth
values including 0 and 1, and valuation functions v ∶ �L �→ T, a unary
connective k is a normality operator iff, for every � ∈ �L :

v(k�) = 1 ⇔ v(�) ∈ {0,1} and v(k�) = 0 ⇔ v(�) ∉ {0,1}
The logic LP� is a LFI along the tradition of da Costa (1974), Carnielli
et al. (2007), and Marcos (2005). The logic K3

� is a LFU along the lines
of Corbalan (2012). We come back to the connections between normality
operators and the two families of logics at the end of this section.

2.1 Normality operator

Given an infinitely denumerable set P of propositional variables, the lan-
guage L2(P) is defined by the following BNF:

� ∶∶= p � ¬� � � ∨ � � ∧  � ��
where p ∈ P and � is a normality operator, with �� reading ‘� has a clas-
sical truth value’. We generalize the definition of valuation functions from
Section 1:
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Definition 5 (Valuations, 3) We let V+ be the class of all functions
⌫ ∶ �L2 �→ {0, 12 ,1} that satisfy the clauses from Definition 1 together
with:

⌫(��) = �������
1 if ⌫(�) ∈ {0,1}
0 if ⌫(�) ∉ {0,1}

We define K3
� = �L2,�K3

�� as the extension of K3 with �. K3
�-

consequence �K3
� is defined according to Definition 2 by assuming DK3

� =DK3 = {1}. We define LP� = �L2,�LP�� as the extension of LP with �.
LP�-consequence �LP� is defined according to Definition 2 by assumingDLP� = DLP = {12 ,1}.

Given the clause from Definition 5 and DK3
� = {1}, we have ⌫(��) ∈DK3

� iff ⌫(� ∨ ¬�) = 1: in the logic, �� states that � is determined—it
verifies its corresponding instance of LEM. In turn, this equates with stating
that � has a classical value. Dually, given the clause from Definition 5
and DLP� = {12 ,1}, we have ⌫(��) ∈ DLP� iff ⌫(� ∧ ¬�) = 0: in the
logic, �� states that � is consistent—it does not satisfy the corresponding
contradiction. Again, this means that � has a classical value. The following
observation details some validities for the two logics:

Observation 2 K3
�-consequence and LP�-consequence satisfy:

1a. � �S� �� � 1b. � �S� �¬� �
2a. �� �K3

� � ∨ ¬� 2b. � ∨ ¬� �K3
� ��

3a. ¬� � �LP� � ∧ ¬� 3b. � ∧ ¬� �LP� ¬� �
4a. ¬� � �S� ¬� ¬� 4b. ¬� ¬� �S� ¬� �
5a. �(� ∧ ) �S� �� ∧� 5b. �� ∧� �S� �(� ∧  )
6a. �(� ∨ ) �S� �� ∨ � 6b. �� ∧� �S� �(� ∨  )

where S� ∈ {K3
�,LP�}

In particular, 1a and 1b states that, in K3
� (LP�), talk about determinedness

(consistency) and undeterminedness (inconsistency) are themselves deter-
mined (consistent). 2a and 2b state the above equivalence between ‘� has a
classical truth value’ and ‘� is determined’ in K3

�. Dually, 3a and 3b state
the equivalence between ‘� does not have a classical truth value’ and ‘� is
inconsistent’ in LP�. The remaining items detail how � interacts with the
other connectives.
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2.2 Normality operators and classical recapture

We need some preliminaries before we establish our classical recapture the-
orems from K3

�, LP� and FDE�. First, we need an auxiliary notion:

Definition 6 (Normal counterpart) Given a set ⌃ ⊆ �L1 , we say that the
set ⌃� = {�� ∈ �L2 � � ∈ ⌃} is the normal counterpart of ⌃.

Second, the following observation will prove useful in the next theorem:

Observation 3 For every ⌫ ∈ V, there exists a ⌫′ ∈ VCL such that (1)
⌫′(p) = ⌫(p) if ⌫(p) ∈ {0,1}, and (2) ⌫′(p) = 1 if ⌫(p) = 1

2 . By the clauses
on ⌫ by Definition 1, it follows that:

1. ⌫′(�) = 0 if ⌫(�) = 0
2. ⌫′(�) = 1 if ⌫(�) = 1

Now we can establish our classical recapture theorem:6

Theorem 1 (Recapture via normality) If ⌃, ⊆ �L1 , then:

⌃ �CL  ⇔
�������
⌃,� �K3

�  
⌃,⌃� �LP�  

Proof. We start with K3
�: (⇒) Assume ⌃ �CL  . Now suppose that

⌃,� ��S+  . This implies that there is a ⌫ ∈ V such that ⌫[⌃] = {1}
and ⌫( ) = 0, which in turn contradicts the initial assumption.
(⇐) Suppose ⌃,� �K3

�  . Since ⌃, ⊆ �L1 , this equates with the fact
that, for every ⌫ ∈ V, ⌫( ) = 1 if ⌫[⌃] = {1} and ⌫( ) ≠ 1

2 . Thus, the
supposition that there is a classical valuation ⌫ ∈ VCL such that ⌫( ) = 0
and ⌫[⌃] = {1} would contradict the initial hypothesis. As as consequence,
we have ⌫( ) = 1 for every ⌫ ∈ VCL such that ⌫[⌃] = {1}; but this implies
⌃ �CL  .

As for LP�: (⇒) Assume ⌃ �CL  . If VCL(⌃) = �, then by Observa-
tion 3.2, {⌫ ∈ V � ⌫[⌃] = 1} = �. This in turn implies ⌃,⌃� �LP�  . IfVCL(⌃) ≠ �, then {⌫ ∈ V � ⌫[⌃] = 1} ≠ �. Now suppose that ⌫[⌃] = {1}
and ⌫( ) = 0 for some ⌫ ∈ V. Take a valuation ⌫′ ∈ VCL such that:
(1) ⌫′(p) ∈ {0,1} for every p ∈ P , (2) ⌫′(p) = 1 if ⌫(p) ∈ {12 ,1}, (3)
⌫′[⌃] = {1}. By Observation 3.1, ⌫′( ) = 0. Since ⌫′ is classical, this

6In what follows, we abuse notation a bit and write ⌃, ⊆ � instead of ⌃ ∪ { } ⊆ �.
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contradicts the initial assumption. Thus, ⌫( ) = 1 for every ⌫ ∈ VLP such
that ⌫[⌃] = {1}. This in turn implies that ⌃,⌃� �LP�  .(⇐) Suppose ⌃,⌃� �LP�  . Since ⌃, ⊆ �L1 , this equates with the fact
that ⌫( ) ∈ {12 ,1} if ⌫[⌃] = {1}. Since VCL(⌃) ⊆ {⌫ ∈ V � ⌫[⌃] ={1}}, this implies that ⌫( ) = 1 for every ⌫ ∈ VCL(⌃). But this implies
⌃ �CL  .

Let us see how recapture via normality recovers the classical inferences
or laws that fail in K3 and LP—see Section 1:

(� ∧ ¬�),�(� ∧ ¬�) �LP�  (Recapture of ECQ)

Similarly, LEM and LI can be recaptured in K3
�:

�� �K3
� � ∨ ¬� (Recapture of LEM)�� �K3
� � ⊃ � (Recapture of LI)

More in general, all classical tautologies can be recaptured in K3
� as fol-

lows: �� �K3
� � for � a classical tautology.

Observation 4 K3
�-consequence and LP�-consequence satisfy:

 ,�� �K3
� � for � a classical tautology

� ⊃ ( ∧ ¬ ),�(� ⊃ ( ∧ ¬ )) �LP� ¬�
�,� ⊃  ,{�,� ⊃  }� �LP�  ¬ ,� ⊃  ,{¬ ,� ⊃  }� �LP� ¬�
� ⊃  , ⊃ ⇣,{� ⊃  , ⊃ ⇣}� �LP� � ⊃ ⇣

2.3 Recapture via normality in FDE�
In order to develop a ‘recapture via normality’ strategy for FDE�, we con-
sider once again languageL2, which we interpret via the following valuation
functions:

Definition 7 (Valuations, 4) We let U+ be the class of all functions
u ∶ �L2 �→ {0,n,b,1} that satisfy the clauses from Definition 3 together
with:

⌫(��) = �������
1 if ⌫(�) ∈ {0,1}
0 if ⌫(�) ∉ {0,1}
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The above definition qualifies FDE� as the extension of FDE with normality
operator �. Notice that FDE does not obey Observation 3. In order to see
this, take a valuation u ∈ U such that u(p) = n, and u(q) = b. Since
glb(n,b) = 1, we have u((p ∧ ¬p) ∨ (q ∧ ¬q)) = 1. This in turn implies
that the recapture recipe from Thoerem 1 does not apply to FDE. Take
again the example above, and suppose that, additionally, u(r) = 0. Since
u((p ∧ ¬p) ∨ (q ∧ ¬q)) = 1, this suffices to falsify(p ∧ ¬p) ∨ (q ∧ ¬q),�((p ∧ ¬p) ∨ (q ∧ ¬q)),�r ��FDE� r. However,(p ∧ ¬p) ∨ (q ∧ ¬q) �CL r. We deploy a stronger recapture strategy, that
requires all variables from premises and conclusion to have a classical value:

Theorem 2 (Recapture via normality in FDE�) If ⌃, ⊆ �L1 , then:

⌃ �CL  ⇔ ⌃, (var(⌃))�, (var( ))� �FDE�  

Proof. (⇒) Assume ⌃ �CL  . For every valuation u ∈ U such that (1)
u[⌃] = {1} and (2) u(p) ∈ {0,1} for every p ∈ var(⌃) ∪ var( ), there
is a corresponding classical valuation u′ ∈ U. This implies that u( ) =
1. Otherwise, we would have u′( ) = 0, which just contradicts the initial
hypothesis. Since ⌃, ⊆ �L1 , this implies ⌃, (var(⌃))�, (var( ))� �S�
 .(⇐) Assume ⌃, (var(⌃))�, (var( ))� �FDE�  . Since ⌃, ⊆ �L1 , this
implies that u( ) = {1} for every u ∈ U such that (1) u[⌃] = {1}, and
(2) u(p) ∈ {0,1} for every p ∈ var(⌃) ∪ var( ). Every such valuation
u can be turned into a corresponding classical valuation u′ ∈ U where, by
construction, u′[⌃] = {1} and u′( ) = 1. Since these exhaust the classical
models of ⌃, we can conclude that ⌃ �CL  .

Notice, however, that the rule of Confusion � ∧ ¬� �  ∨ ¬ can be re-
captured by just imposing that the formulas in the premises and conclusion
have a classical truth value. Indeed, it is easy to check that:

� ∧ ¬�,{� ∧ ¬�}�,� �FDE�  ∨ ¬ (Recapture of Confusion)

2.4 Normality operators and logics of formal inconsistency and unde-

terminedness

The normality operator is a generalization of the consistency and deter-
minedness operators from LFI and LFU, respectively. These families of
systems are defined as follows:
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Definition 8 (Logic of Formal Inconsistency, Carnielli et al., 2007) A logic
S is a Logic of Formal Inconsistency if and only if it satisfies the following,
for some connective k:

● �,¬� ��S  (Failure of ECQ)● �,¬�, k� �S  (Principle of Gentle Explosion)

Definition 9 (Logic of Formal Undeterminedness, Corbalan, 2012) A logic
S is a Logic of Formal Undeterminedness if and only if it satisfies the fol-
lowing, for some connective k:

● � ��S � ∨ ¬� (Failure of LEM)● � �S � ∨ ¬� ∨ k� (Principle of Gentle Implosion)

Any operator k obeying the criteria from Definition 8 works as a consistency
operator: the Principle of Gentle Explosion (PGE) implies that k� will be
designated if and only if � does not verify a contradiction.7 By contrast,
if k obeys the criteria from Definition 9, it will work as a determinedness
operator: the Principle of Gentle Implosion (PGI) implies that k� will be
designated if and only if � verifies the corresponding instance of LEM.8

This suffices to understand that the normality operator � collapses on
a consistency operator in LP� and any logic that is paraconsistent but not
paracomplete. Dually, � collapses on a determinedness operator in K3

� and
any logic that is paracomplete but not paraconsistent.

However, FDE� makes it clear that the normality operator is more gen-
eral than its kins from LFI and LFU. Definition 4 implies that the normality
operator satisfies the criteria from both Definition 8 and Definition 9 in a
logic that is both paraconsistent and paracomplete, like FDE�. By contrast,
if we extend FDE with an operator ○ such that u(○�) = 1 ⇔ u(�) ≠ b
and u(○�) = 0 ⇔ u(�) = b, then we will have a consistency operator—
that is, an operator satisfying the conditions from Definition 8. Dually, if
we extend FDE with an operator � such that u(��) = 1 ⇔ u(�) ≠ n and
u(��) = 0⇔ u(�) = n, then we will have a determinedness operator—that
is, an operator satisfying the conditions from Definition 8. Neither of them,
however, satisfy Definition 4.

Remark 2 K3
� and LP� have already appeared in the literature under dif-

ferent names. In particular, K3
� has been first discussed by Gupta and Bel-

nap (1993). As for LP�, this is equivalent with the logic LFI1 by Carnielli et
7Notice that what we call recapture of ECQ is equivalent to PGE.
8What we call recapture of LEM is equivalent to PGI.
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al. (2000). In particular, the latter extends L2 with a strong negation connec-
tive ∼ and a detachable conditional →,9 and it can be obtained from LP� by
defining ∼ � = �¬� and � →  = ∼ � ∨  . On the other hand, LP� obtains
from LFI1 since, in that very logic, the consistency operator is definable:�� = ∼ � ∨ ∼∼ �.

3 Classical collapse

Classical collapse is an approach to classical recapture that has been de-
veloped by Jc Beall (2011, 2013). This approach is cast against a twofold
background: (1) a philosophical view that sees classical logic as our default
reasoning tool—a view known as default classicality—and (2) a distinction
between logical principles, which codify a more or less fine-grained rea-
soning tool, and extra-logical principles. The technical results in classical
collapse give formal expression to the first background, while the philosoph-
ical interpretation of Beall’s approach rely on the second background. We
start with the formal results.

Default classicality and classical collapse. Default classicality is the view
that ‘classical logic is the default logic, and the weaker logic kicks into when
necessary’ (Beall, 2011, p. 326). This view prompts the familiar question—
‘How can we recapture classical reasoning in our weaker logic?’ Beall’s
reply to it is classical collapse.

In order to deploy classical collapse, we need to upgrade standard single-
conclusion consequence to multiple-conclusion consequence:

Definition 10 For every logic S, S+-consequence is a relation �S+⊆ 2� × 2�
such that:

⌃ �S+ � ⇔ VS(⌃) ⊆ � ∈� VS( )
with the proviso that, if ⌃ �S+ �, then ⌃ and � have finitely many elements.
As usual, if � = { }, we will write ⌃ �S+  instead of ⌃ �S+ { }.10

Beside, we need the following:
9Remember that, in a paraconsistent and not paracomplete logic,� turns to be a consistency

operator. We follow standard terminology and say that a conditional is detachable if it obeys
MP.

10Beall (2011, 2013) does not impose the finiteness requirement in its definition of LP+ and
similar multiple-conclusion reasoning tools. However, the restriction is standard, and so we
will follow it here.
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Definition 11 (Auxiliary definitions)

◆(⌃) = {p ∧ ¬p ∈ �L � p ∈ var(⌃)}
(⌃) = {p ∨ ¬p ∈ �L � p ∈ var(⌃)}

◆(⌃) is the set of the contradictions that can be formed out of the variables
from ⌃. Thus, if var(⌃) = {p, q, r}, then ◆(⌃) = {p ∧ ¬p, q ∧ ¬q, r ∧ ¬r}.
(⌃) is the set of the instances of LEM that can be formed from variables
from ⌃. Again, if var(⌃) = {p, q, r}, then (⌃) = {p∨¬p, q ∨¬q, r ∨¬r}.
We write ◆( ) and ( ) instead of ◆({ }) and ({ }). Beall (2011,2013)
proves the following recapture result for K3

+ and LP+:

Proposition 1 (Beall, 2013, Theorem 4.2 and Beall, 2011, Theorem 3.7)

⌃ �CL � ⇔
�����������
⌃,(�) �K3

+ �
⌃ �LP+ �, ◆(⌃)
⌃,(�) �FDE+ �, ◆(⌃)

The proposition states that, when it comes to K3
+, we can draw the classi-

cal conclusions of a given premise-set ⌃ if all variables in the conclusion
verify LEM. Dually, when it comes to LP+, from a given premise-set we can
conclude either the classical conclusions of the premise-set, or that ‘there
is something inconsistent in the premise-set.’ As for FDE+, it combines the
conditions for the other two logics.

Default classicality as an extra-logical principle. So far so good. But of
course, when it comes to LP-reasoning (and its multiple-conclusion ver-
sion), classical collapse cannot tell us, case by case, whether we are in an
abnormal situation, or in a perfectly classical one: no formula from �L can
express that ‘� has a classical value’. Thus, there is no way for LP (and
LP+) to express that we are in a normal situation.

In sum, LP and LP+ leave us with a choice between classical reason-
ing and the weaker reasoning tool that is crafted for abnormal situations.
In order to make a choice, we need to appeal to extra-logical principles
(Beall, 2011, p. 331)—principles of rationality, pragmatic principles, epis-
temic principles, and so on. Default classicality can be read as a principle
of this sort, stating: as a first go, reject the inconsistent options Beall (2011,
p. 332)—or, more in general, the abnormal options. However, if we face an
abnormal case, we switch to the appropriate weaker reasoning tool (Beall,
2011, p. 332).11

11This combination of logical and extra-logical principles explains how Beall can insist on
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4 Comparing the two approaches

Proposition 1, Theorem 1, and Theorem 2 together imply that recapture by
normality and classical collapse are equivalent:

Corollary 1 If ⌃, ⊆ �L , we have:

⌃�,⌃ �LP� � ∈�  ⇔ ⌃ �LP+ �, ◆(⌃)
⌃,�� �K3

� � ∈�  ⇔ ⌃,(�) �K3
+ �

⌃, (var(⌃))�, (var(�))� �FDE� � ∈�  ⇔ ⌃,(�) �FDE+ �, ◆(⌃)
This is expected: all the methods of classical recapture do exactly the same
thing—namely, they establish some kind of equivalence with classical rea-
soning. From a logical point of view, then, the two methods are on a par.
However, the two approaches can be compared on a number of extra-logical
features.

Semantically closed languages. One virtue of classical collapse over recap-
ture via normality is that Beall’s approach can be applied to a semantically
closed extension of K3

+, LP+ and FDE+, while recapture via normality can-
not apply to semantically closed versions of K3

�, LP�, FDE�. A semanti-
cally closed language L is a language that can express its own concept of
truth. This is done by expressions of the form Tr(�), where Tr is a truth
predicate and � is the name of formula �. Gupta and Belnap (1993) proved
that a semantically closed extension of K3

� is trivial, and Barrio, Pailos, and
Szmuc (2016) proved a similar result for LP�. By contrast, the semantically
closed extensions of K3

+ and LP+ are not trivial, exactly as those of K3 and
LP.

Informational reading of the many-valued setting. Truth theory and log-
ical paradoxes aren’t the only applications of many-valued logic. A con-
sistent track of research applies K3 and other paracomplete logics to the
issue of reasoning with partial information (see especially Abdallah, 1995;
D’Agostino, 2014; D’Agostino, Finger, & Gabbay, 2013). On the paracon-
sistent camp, the informational focus is receiving growing attention: Mares
(2002); Priest (2001); Restall and Slaney (1995) present theories of belief
revision that accommodate the presence of inconsistent information.

default reasoning without dropping monotonicity: the logic is monotonic, our choices are de-
feasible (Beall, 2011, p. 332).
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If we adopt an informational reading of many-valued reasoning, recap-
ture via normality has some virtues over classical collapse. Indeed, classical
collapse for K3

+ requires the information that all variables in the conclusion-
set � have a classical truth value. From an informational point of view,
this is more demanding than the condition provided by Theorem 1 for K3

�,
where we just need the conclusion to have a classical value. 12

As for the paraconsistent case, the classical collapse strategy turns not to
be much informative. Indeed, it states what we know from the start: either
we can reason classically, or there is some inconsistency around. This is
not much of a limit if classical collapse is complemented by the philosophy
of choice in reasoning that is endorsed by Beall (2011, 2013)—indeed, in
this case we can opt for the extra-logical principle of default classicality and
choose one of the two options available. However, the relevance of classical
collapse for LP+ seems to be somewhat smaller out of this philosophical
background. By contrast, recapture via normality for LP� is able to secure
that we are in a consistent (classical, normal) situation, thus providing more
information than its classical collapse kin. Also, the relevance of this feature
does not depend, at least apparently, on a given philosophical background,
and it applies to different philosophies of reasoning that one may want to
couple with the formal techniques that we have presented in Section 2.

5 Conclusions

In this paper, we have introduced a normality operator, which is a linguis-
tic device allowing to distinguish ‘normal situations’ (where a formula �
has a classical value) from ‘abnormal situations’ (where a formula � has a
non-classical value). We have applied the operator in order to build systems
of Logic of Formal Inconsistency and Undeterminedness from the many-
valued logics K3, LP and FDE, and we have established classical recapture
theorems for the resulting logics K3

�,LP�,FDE� (Theorem 1 and Theo-
rem 2). Finally, we have compared recapture via normality with another
approach to classical recapture, namely classical collapse by Beall (2011,
2013).

12Notice that, in K3, some formula can have a classical value even when some of its variables
have a non classical one. For instance, ⌫(p ∨ q) = 1 if ⌫(p) = 1

2
and ⌫(q) = 1.
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