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1. Introduction

Throughout development, humans seem to undergo radical changes to many concepts that are

central to our understanding of the world: number, causation, agency, and basic physical properties.

These conceptual revisions are so great that they allow us to think thoughts that were previously

unavailable to us. They involve “discontinuities, resulting in systems of representation that are more

powerful than, and sometimes incommensurable with, those from which they are built” (Carey 2009,

113). This view of development draws inspiration from radical theory change in scientific history, where

new concepts have been developed (e.g. electron, market efficiency) and old concepts significantly

overhauled (Kuhn 1962).

Understanding when and how these changes can occur has been a central focus of cognitive

science in recent decades. This project faces a fundamental challenge: if all learning processes are

operations on existing concepts, how could they possibly generate concepts that are genuinely different

from the ones they started with? How is it possible to learn something that you don’t already, in a sense,

know?

The challenge for explaining radical concept change has been particularly acute in the classical

paradigm, which views concepts as mental symbols that are manipulated in accordance with syntactical

rules. The existence and meaning of such symbols are taken as a given. However,

a successful system must be able to learn radically new properties from its interactions with the

world and not only form new combinations of the given predicates. This has turned out to be an

enigma for symbolic representations. This gives rise to an essential question for a theory of

cognitive representations: where do new predicates come from? (Gärdenfors 2000, 38).

Those who have taken up the challenge of answering this question have focused on two main strategies.

First, some in the symbolic tradition have offered accounts of learning processes beyond mere

recombination, including bootstrapping and learning by analogy, that can introduce new symbols and
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radically reconfigure the meanings of old ones (e.g. Carey 2009). Second, some have argued that we

must reject the symbolic account of concepts in order to show how conceptual change is possible (e.g.

Quine 1969, Gärdenfors 2000, Laurence and Margolis 2012).

We will argue that each of these approaches contains important insights but has serious

limitations. First, accounts of alternative learning processes often suffer from a lack of detail, opening

them up to allegations of circularity and imprecision. Second, non-symbolic theories often have difficulty

capturing the stability and discreteness of many of our concepts and explaining how learning interfaces

with language. Further, one of the most promising such theories, Gärdenfors’ conceptual space theory,

has little to say about how genuinely new concepts are formed.

Fortunately, algorithms developed in the fields of data analysis and machine learning provide us

with helpful models of tractable learning processes that can result in radical concept change.

Furthermore, while the basic representational format of such processes is non-symbolic, they allow us to

see how continuous, non-symbolic representations interface with discrete, symbolic linguistic ones. Not

only do these models allow us to provide detail to existing accounts, they yield a picture of how learning

can radically reconfigure the conceptual landscape, in a way that changes subsequent concept learning.

In Section 2, we present Fodor’s challenge, and in section 3, two neo-Quinean responses. In

Section 4, we present a conceptual space framework for thinking about conceptual change. In Sections 5

and 6, we present several learning processes that can yield radically new concepts. In Sections 7 and 8,

we present Carey’s (2009) explanation of the bootstrapping process by which children learn the integers

and our alternative, conceptual space account.

2. Arguments against radical concept change

Puzzles about how it is possible to learn something genuinely new have been with us for a long

time. A learner’s paradox has a general form: in modeling the process by which an individual could learn
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X, we discover that the individual must already have known X. We will focus here on the learning of

concepts that are genuinely new; in order to learn some new concept, one must already possess that

concept or concepts from which it can be readily expressed, in which case it is not genuinely new.

Fleshing out the general argument against radical concept change1 involves three pieces:

(a) a specification of concept identity conditions, what it takes for new concepts to be different

from the ones from which a learning process began

(b) a specification of the available learning processes (including their inputs and outputs), and

(c) an argument showing that the learning processes described in stage (b) cannot result in the

differences described in stage (a).

For example, Kuhn argues that (a) concepts in different scientific paradigms are incommensurate

with one another. Since (b), a scientific change is only rational relative to the principles of a paradigm,

there can be no rational scientific change across paradigms. Another example: the British empiricists

argue that (a) ideas are individuated by their corresponding sense impressions. Since (b) learning can

only preserve and recombine the ideas arising from sense impressions, it cannot result in abstract

concepts that are irreducible to perceptual features or regularities (Berkeley 1710/1975, Hume

1739/1978).

Most of the current debate about radical concept change is posed as a response to Fodor’s

(1981, 1990, 1998) formulation of the challenge. First, Fodor holds that (a) complex concepts have

definitional structure; a concept C is identified by the set of necessary and sufficient conditions for

something to fall under the extension of C. On this view of concepts, definitions can be formed only by

1 Following Beck’s (2017) analysis of bootstrapping, cases of modest concept learning are those in which new
concepts are fully expressible in terms of existing concepts; learning need only prompt one to combine existing
representations in a novel way. In cases of radical concept learning, new concepts are not fully expressible in terms
of existing ones, so the transition results in an increase in expressive power.
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logical combinations of more basic lexical concepts2, and a radically new concept is one that cannot be

defined in terms of the other concepts that a learner possesses. Second, Fodor holds that (b) all learning

proceeds via hypothesis confirmation (Fodor 1975, 95). In order to learn something, one must be able to

confirm a hypothesis about it, which in turn requires that one be able to form an antecedent

representation of that hypothesis.

His argument (c) against learning radically new concepts proceeds as follows. Consider a set of

concepts at t1 (CS1) and a set at t2 (CS2).

1. Assume for reductio: a concept, C, of CS2 is not definable in terms of concepts in CS1.

2. All learning is hypothesis confirmation.

3. To learn C is to confirm a hypothesis about the meaning of C.

4. In order to confirm a hypothesis about the meaning of C, one must be able to represent that

hypothesis.

5. If C is not definable in terms of representations in CS1, then the subject cannot represent that

hypothesis.

6. From (1,4,5), the subject cannot learn C.

C: If the meaning of a concept C of CS2 is not definable in terms of representations in CS1, then

the subject cannot learn it.

Since radically new concepts are ones that cannot be defined in terms of previously available concepts,

radical concept learning is impossible.3

3. Neo-Quinean responses

3 To arrive at Fodor’s notorious “mad dog nativism” - the view that concepts such as AVOCADO or DOORKNOB or
ELECTRON are innate - we need a few additional premises. First, Fodor maintains that these concepts, like most
monomorphemic concepts, cannot be defined in terms of other concepts (indeed, they may lack internal structure
entirely). Hence, from the above argument, they cannot be learned. Second, since these concepts cannot have
been learned, they must either be innate or acquired through some other non-rational process.

2 These concepts are word-like, in that they are symbolic, have stable meanings, they contribute to the meaning of
thoughts via syntactic combination with other concepts, etc.
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Fodor’s challenge rests on two key assumptions: the only structure concepts could have is

definitional structure and hypothesis confirmation is the only available learning process. The most

prominent, and promising, attempts to tackle Fodor’s problem head-on take inspiration from Quine

(Quine 1969; Carey 2009; Margolis 1998; Laurence and Margolis 2002, 2012; Strevens 2012) and reject

one or both of these assumptions. If there are learning processes that are sensitive to non-definitional

(or, more broadly, any non-language-like) structure4, or if there are learning processes that can recover

linguistic structure through routes other than logical combination of existing representations, then they

might be able to generate radically new concepts. Here, we will give a brief summary of the neo-Quinean

responses and their shortcomings, though we should note that our proposal will fall within the general

spirit of the neo-Quinean approach.

3.1. Rejecting hypothesis testing

As Weiskopf (2008) notes, the assumption that learning proceeds via recombination and

hypothesis testing seems sufficient to rule out radical concept change: “Whatever the initial primitive

concepts that are given to us happen to be, it seems that it must be possible to extend this endowment

somehow. But this is impossible if recombination is the only available method of arriving at new

concepts” (361). This has spurred investigations of other kinds of learning processes, such as learning by

analogy (Gentner and Markman 1997, Holyoak and Thagard 1997), the triggering of domain-specific

concept generating modules (Margolis 1998, Strevens 2012, Weiskopf 2008), and linguistic bootstrapping

(Carey 2009).

We will focus on Carey’s view as a test case. For the most part, Carey seems to retain Fodor’s

assumption that new concepts have lexical structure. However, she argues that you need not learn new

4 Where language-like structure involves discrete symbols with stable meanings that contribute semantic content to
thoughts via syntactic combination. We don’t intend to take a strong stand on how best to distinguish linguistic and
non-linguistic thought.

6



lexical concepts bottom-up by recombining existing concepts. Instead, you can learn new lexical

primitives top-down, first learning a new lexical structure and then learning the primitives that comprise

it. It is like “scrambling up a chimney supporting oneself by pressing against the sides one is building as

one goes along… the aspect of the bootstrapping metaphor that consists of building a structure while

not grounded is applied as the learner initially learns the relations of the system of symbols to one

another, directly, rather than by mapping each symbol onto pre-existing concepts” (Carey 2009, 306).

In broad strokes, an episode of radical bootstrapping from CS1 to an incommensurate CS2

proceeds as follows (Carey 2009, Beck 2017). At CS1, the learner has a suite of represented concepts, as

well as computational constraints on how her concepts are utilized, altered, and combined; these

computational constraints are not themselves represented. The subject learns a linguistic placeholder, a

structured natural language item that starts off at least partially meaningless. The computational

constraints present in CS1 concepts and external constraints imposed by the placeholder itself provide

necessary structure and are used to partially interpret the placeholder. Then the learner undergoes

various modeling processes – structure mapping, analogy, induction, etc. – to fully interpret the new

conceptual structure.

An example from Block (1986) will help to illustrate the process5:

When I took my first physics course, I was confronted with quite a bit of new terminology all at

once: ‘energy, momentum, acceleration, mass’ and the like… I never learned any definitions of

these new terms in terms I already knew. Rather, what I learned was how to use the new

terminology—I learned certain relations among the new terms themselves… , some relations

between the new and the old terms, and, most importantly, how to generate the right numbers

in answers to questions posed in the new terminology (648).

5 Though Carey does not think that this is a genuine case of linguistic bootstrapping, it still provides a helpful
illustration of at least one part of it.
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Consider Block who at CS1 first learns “force = mass x acceleration” but has, at best, an inchoate grasp of

the terms related by that equation. At CS2, he has somehow arrived at a much fuller interpretation of

these physical magnitudes, perhaps one that fundamentally restructures the understanding of MASS

that he had at CS1 (e.g. from a concept of MASS as “total volume taken up by an object” to a concept of

MASS as “resistance to acceleration”). How is this possible?

Fodor assumes that conceptual structure must be built from the bottom up, from pieces that

you already represent. Block’s example suggests that we can sometimes grasp the higher-order structure

of a new concept first. The constraints provided by “F=ma” plausibly include things like: whatever F is,

it’s different from m and from a; if F stays the same and m increases, a goes down; and so on. Block is

then free to sift among his existing concepts to see which of them obey these higher-order relations, to

modify existing concepts to make them obey these constraints, and perhaps to start fleshing out brand

new concepts introduced by the placeholder terms.6 In brief, (i) a new word spurs the creation of a new

concept, (ii) the relations that word enters into provide constraints, things that must be true of the newly

learned concept, and (iii) the learner uses various processes to construct or adapt a new concept that

obeys the constraints in (ii).

Block’s case nicely illustrates how new linguistic input can provide constraints on conceptual

learning, but it doesn’t address the more puzzling question of how these constraints prompt radical

conceptual revisions (Carey 2009, 219). In particular, Block’s case focuses on one element of the

bootstrapping process, the constraints provided by language, but omits the other key elements: existing

mental resources and how they are modified to create new concepts. The bootstrapping examples that

Carey provides, particularly the case of integer learning in early childhood, are far more detailed and

make more sense of the roles played by existing conceptual resources and modeling processes. However,

as Beck (2017) notes, critics have alleged that the account is still too underspecified:

6 Another possibility is that the new input triggers an innate module that creates new natural kind concepts
(Margolis 1998, Strevens 2012).
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While it purports to explain how important new concepts are learned, many commentators

complain that it is unclear just what bootstrapping is supposed to be or how it is supposed to

work… others allege that bootstrapping falls prey to the circularity challenge: it cannot explain

how new concepts are learned without presupposing that learners already have those very

concepts. (111)

As an example of the latter criticism, Rey (2014) objects that learning new concepts via analogy

is impossible. In order to restructure your existing concepts so that they obey the relational constraints

inherent in the placeholder, you must already represent the relation exhibited by the placeholder. That

is, in order to form an analogy between two domains, one must already represent what it is they have in

common in virtue of which they are alike. But if the child already represents the common structure, then

she has nothing left to learn.

With respect to learning by analogy, the challenge is to identify a process by which two domains

can be aligned and generate a new representation of shared structure without an antecedent

representation of that target structure (Gentner 2010; Holyoak and Thagard 1995, 1997). In general, the

challenge is to show how existing conceptual resources are adjusted to conform to new conceptual roles,

especially in light of linguistic input.

3.2. Rejecting linguistic structure

A second strain of neo-Quinean views identifies Fodor’s language-like approach to concepts as

the chief impediment for understanding conceptual change. For Fodor (at least in some works), primitive

concepts are atomic, with no internal structure. The vehicle of a concept – a symbol – does not represent

intrinsically; that is, the symbol does not bear any resemblance to what it represents. Therefore, there is

no internal similarity structure for learning processes to grab hold of. Neo-Quineans argue that concepts
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can have other sorts of structure –such as perceptual similarity (Quine 1969, Laurence and Margolis

2012), prototypicality7 (Hampton 2006), or kind syndromes (Strevens 2012, Margolis 1998) –that can be

exploited to learn new concepts.

Quine’s own (1969) account preserves the assumption that learning proceeds via hypothesis

testing while rejecting that natural kinds are linguistically defined. Consider a learner who attempts to

learn the extension of a novel word, “yellow”. She first encounters the word paired with a yellow object

and proceeds by entertaining various hypotheses about the extension of the word. If unconstrained, the

hypothesis space she considers will be enormous; “yellow” might pick out {all yellow objects}, {just this

banana}, {this banana and that blue car}, {yellow objects observed before t and blue objects thereafter}8,

etc.

In order to provide the necessary constraints on learning, Quine posits that there is an innate

similarity ordering among colors. The individual doesn’t have to learn that yellow is more similar to

orange than it is to blue – that’s built in.9 We can represent this innate ordering via a similarity space that

has dimensions corresponding to features that are discriminated in the input, and geometric distances in

the space reflect relative similarity.10

10 This similarity metric need not reflect the actual similarity among the things in the world, see Gallistel (1990) and
Gärdenfors (2004).

9 For example, it is “a commonplace of behavioral psychology” that “a response to a red circle, if it is rewarded, will
be elicited again by a pink ellipse more readily than by a blue triangle; the red circle resembles the pink ellipse
more than the blue triangle” (Quine 1969, 46)

8 Quine’s (1969) account is presented as an attempted solution to Goodman’s (1955) grue paradox. For a diagnosis
of why the grue paradox arises for propositional representations and why similarity orderings can solve the
problem, see Gärdenfors (1990). For discussions of how the grue problem relates to bootstrapping, see Rey (2014)
and Beck (2017).

7 Fodor (1998) argues that so-called concepts without definitional structure, such as prototypes, fail to be genuine
concepts because they don’t classically compose. See Laurence and Margolis (1999) for a discussion.
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Figure 1 –The International Commission on Illumination 1976 Chromaticity Diagram, a similarity space in which the distance

between two points represents perceived color difference (Blaise 1976).

We can reframe our “yellow” learner’s task as trying to find the region of her innate similarity

space that captures the extension of “yellow”. According to Quine, her hypothesis space is constrained

by the fact that kinds (at least initially) are comprised of objects that are similar, that is, that are located

in contiguous regions of this similarity space. The set of possible concepts is the set of contiguous

regions of the space which encompass the objects known to be yellow. The learner’s task, then, is to find

its boundaries (e.g. just how green can something be before it is no longer yellow?).

Through this process, our learner can come to possess a new primitive concept, YELLOW. In

contrast to Fodor’s “building blocks” model, this process does not require that the learner had an

antecedent representation of the relation that all yellow things bear to one another. For Quine, neither

the relations captured in the innate similarity space nor the space itself are represented. Instead, the

learner has a disposition to treat yellow things as more similar to each other than to non-category

members, and a representation of similarity is a result rather than an input to the process.
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This account promises to explain how non-lexically structured concepts are learned in a way that

evades the circularity challenge. However, we doubt that it can provide a full account of how genuinely

incommensurate concepts can be learned, for it falls prey to a reformulation of Fodor’s argument.

If the similarity space is to do any inductive work, then learning processes must exploit

geometric properties of the space. That is, there must be geometric constraints on the possible concepts

to be learned. Following Quine, let us assume for the moment that it is a computational constraint on

the learning mechanism that concepts be convex regions of the similarity space.11 Convexity allows the

implicit geometric structure of the space to do the inductive work of categorizing new instances; if you

know that two points are members of a category, you can infer that all points lying between them are as

well. Even if convexity isn’t the right constraint, the Quinean has to posit some constraint or other. If

learning were unconstrained, then concepts would be neither learnable nor inferentially robust.12

However, if learning processes are restricted to learning concepts that are, say, convex regions of

perceptual similarity space, then it will only be possible to learn concepts that correspond to neat,

simple perceptual regularities. Hence, the similarity space view, as stated, could not explain how radically

new concepts could be learned, let alone abstract concepts whose instances are not linked by perceptual

similarity.13

If the similarity space framework is to explain radical concept change, then it must be possible to

extend or change the similarity space itself. As Laurence and Margolis (2012) note:

The innate quality space might not be developmentally fixed. The size or dimensions of this

space might be altered. Relational parameters within a quality space might also be altered, or

new relations superimposed onto the space. There could also be multiple distinct quality spaces

13 See Smith and Heise (1992) for a defense of the claim that learning over perceptual similarity spaces can yield
higher-level, theoretical concepts.

12 Take, for example, Beck’s (2017, 113) case of learning the concept BURSE, where something is burse if it is either
green and circular or blue and enclosed by a prime number of sides, or red and preceded in presentation by a
yellow triangle.

11 That is, concepts pick out contiguous regions, such that for any points X and Y that fall within the concept C, an
individual Z that is on the straight line connecting X and Y will also be a member of C.
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and quality spaces that stand in different relations of psychological accessibility to one another

(12).

In Sections 4-6, we will show how techniques from machine learning allow us to more precisely develop

the similarity space metaphor and to see how simple learning processes can yield significant

transformations of existing similarity spaces and radically new concepts. Then, we will evaluate whether

we can use these techniques to model the kinds of learning processes going on in bootstrapping.

4. A framework for thinking about conceptual change

4.1. The conceptual space framework

While we have no doubt that investigations into more complicated AIs and their

implementations will be helpful in understanding conceptual change (Buckner 2024), we will focus on

very simple learning algorithms. We also acknowledge that there are important questions to be asked

about whether various machine learning techniques are of a kind with human learning and whether

their utility in cognitive science depends on such similarity (Weiskopf 2011; Buckner 2015, 2018). We will

treat them as a helpful explication of the similarity space model and a “how possibly” story about the

functional organization of human concept learning and the kinds of representational vehicles it involves.

The algorithms that we will discuss start by mapping data points onto an n-dimensional feature

space, where each of the n recorded features forms an axis of the space. The dimensions and choice of

scale give the space geometric structure, and similarity between objects is measured by the distance

between their data points relative to this underlying geometry. Machine learning algorithms exploit the

geometric relations inherent in the feature-space representation of the data in order to achieve various

epistemic goals. Before examining specific examples, we will first present a framework, based on

Gärdenfors’s (1990, 2000, 2004) conceptual space theory.14

14 For similar accounts, see also Shepard (1987) and Churchland (1995, 1998). For analysis and criticisms of the
view, see Gauker (2011).
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A conceptual space consists of quality dimensions, such as color or weight, and a data point’s

position in the space is represented by a vector specifying its value for each dimension. Dimensions of a

space are assumed to be logically independent of one another. The structure of the conceptual space

may vary depending on whether the qualities that define it are continuous or discrete, on a quotient or

logarithmic scale, etc. The similarity between two individuals corresponds to the distance between the

two points that they occupy in the space.15

For example, suppose that only the height and weight of objects are recorded, so the feature

space is two-dimensional. Height and weight are logically distinct; assigning an individual a height value

of, say, 1 meter does not entail that its weight must take any particular value. If we adopt a Euclidean

distance metric, the similarity between two objects is given by the length of the straight line connecting

them (Gärdenfors 1990, 84).

Figure 2 – A 2-dimensional plot of the height and weight of individuals.

4.2. Learning processes over conceptual spaces

It is common to distinguish between two basic types of learning goals. In classification, the goal

is to infer groups in the data and then to classify new instances into groups based on a similarity metric

to existing group members. In regression, on the other hand, the goal is to learn the mathematical

15 See Gärdenfors (2000, 18-20) for a discussion of alternative non-Euclidian distance measures.
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function that captures a trend in the data and then use that function to predict the value of a response

variable. For illustration, return to the feature space in Figure 2. A regression analysis might find the

curve that best represents the correlation between height and weight in the data and then predict the

probable weight of a new object given its height.

Figure 3 – Linear regression capturing relationship between height and weight in the sample.

In classification, the goal is to infer groups in the data and then to classify new instances into

groups based on a similarity metric to existing group members. A classifier will find groups in the data

and predict the probable species membership of a new data point given its height and weight. Among

classifiers (especially), another key distinction is between supervised and unsupervised learning

processes. In supervised learning, the data that is used to train the algorithm is labeled, and the

algorithm learns a rule for accurately predicting the label of new items. It is supervised in the sense that

we stipulate which features or labels “X in the dataset constitute the ‘ground truth’ values for learning;

that is, the supervised learning algorithms use the known values of X to determine what should be

learned” (Danks 2014, 154). In our example, in addition to inputting the feature values of our data, we

would label points as belonging to the category “human” (blue dots) or “giraffe” (red). The algorithm’s

task is to predict whether a new object is a giraffe or a human. In unsupervised learning, there are no

category labels provided, so the algorithm first has to discover groupings based on structural information

alone.
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Figure 4 – A supervised learning task, with humans labeled blue and giraffes labeled red. A novel point is to be classified from

the rule inferred from the labeled data.

Figure 5 – An unsupervised learning task, in which groups would have to be inferred from geometric features of unlabeled data.

4.3. Concepts in the conceptual space framework

What is a concept, according to this framework? We distinguish between two kinds of

representations that correspond to different kinds of concepts. First, some concepts correspond to

regions of the conceptual space. For example, the bottom-left region of the space in Figure 2 might pick
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out the concept {humans} and top-right {giraffes}.16 We’ll call these categorizations, though

“conceptualizations” or “groupings”, or “manifolds” might do the job (DiCarlo and Cox 2007). Second,

some concepts correspond to dimensions of the space itself, such as {height} and {weight}. We will call

these framework concepts. The difference between these types of concepts should be intuitive enough,

corresponding to a rough distinction between kinds and properties.17

In some cases of modest concept learning, the individual learns to form new categorizations in

the existing similarity space. For example, you might learn that there is a region in the bottom-right of

the space in Figure 2 that picks out {soaring birds}. In other cases, you might make modest changes to

the conceptual space, such as adding dimensions (e.g. adding {color} as a third dimension) or slightly

changing the scale of existing ones. In cases of radical concept learning, changes to the framework

concepts lead to such significant changes in the underlying similarity space that the subsequent

categorizations formed against this new space are very different from the ones formed on the previous

one.18

Recall that in order for a similarity space to do inductive work, there must be geometric

constraints on the kinds of regions of the space picked out by our categorization concepts. While we

might form the occasional gerrymandered grouping, we expect most of our inductively-rich concepts to

encompass regular regions of the similarity space. Gärdenfors, like Quine, defines natural concepts as

18 Gärdenfors and Zenker (2013) model paradigm shifts in science in this way. For example, there may be changes in
the scale or metric of existing dimensions, as when an ordinal scale (e.g. warmer or colder) was replaced with a
ratio scale (e.g. degrees Celsius). The relative importance of dimensions may change, as when color was dethroned
as a key feature of chemical theories (ibid., 1046). Theory change may involve the addition or deletion of
dimensions of physical reality, such as with energy or the ether, respectively, or distinct theories may become
combined, as when distinct Newtonian dimensions of space and time became relativistic spacetime (ibid., 1047).

17 Gauker (2011, esp. Ch. 3) presents several arguments for why concepts should not be identified with regions of
similarity space and that judgments, concepts, and kind-thinking only arise with language. We disagree, but full
engagement with his arguments is not possible here. In later sections, we will discuss how language interfaces with
perceptual spaces, making categorizations more discrete, salient, and available for reasoning. If one wants to follow
Gauker and reserve “concepts” for just this stage, we will not object.

16 Of course, one’s full concept of humans or giraffes would involve many more dimensions than this.
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encompassing convex regions of a conceptual space19 (2004, 18). We will proceed with convexity as a

working example of a requirement on concepts, though it is not the only such candidate. Carnap, for

example, preferred “to take as primitive predicates… only those with a connected region” (1980, 21).

The condition of connectedness is weaker than convexity but would do non-trivial inductive work.

Gauker (2011, 234) discusses clustered representations, where every member of a concept is between at

least two other members. For many learning processes, we might want to place more stringent

conditions, requiring that well-formed concepts be of a certain shape, size, density, or cohesiveness. The

stronger these restrictions are, the faster and more constrained the resultant concept learning will be

(Griffiths and Tenenbaum 2009).

Figure 6 – A region that violates the convexity condition.

19 A concept C is a natural concept relative to a conceptual space only if C encompasses a convex region in it. As
Gärdenfors notes, GREEN but not GRUE is convex with respect to the innate quality spaces that probably all
humans possess, but one could construct a conceptual space on which GRUE but not GREEN is convex.
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Figure 7 – Regions that violate the connectedness condition.

The goal of many learning algorithms is to find meaningful groups in the data. What happens

when these meaningful groups do not obey the geometric requirements on natural concepts, e.g. when

the group does not comprise a convex region?20 The two options are: adopt a more complex geometric

rule for picking out groupings or maintain the existing requirement and transform the underlying space

so that the grouping now obeys it. Interestingly, in many machine learning applications, the latter

(geometrically simple geometric concepts and complex transformations to the space) are preferred over

the former (geometrically complex concepts that keep the space as is) (Buckner 2018, 5348). Instead of

changing our requirements on groupings, we prefer to adjust our framework concepts so that the

groupings make more sense. Why might one favor this approach? Recall the lesson from Section 3 that

similarity spaces only do inductive work if concept learning can exploit their geometric structure. If

concepts can be concave, discontinuous, or otherwise gerrymandered regions, then the geometry is of

little assistance in making inferences about new data points. We transform the space so that it can

support future inductions.

To contrast these two approaches, consider an example using support vector machines (SVMs).

SVMs are a popular classification algorithm that uses labeled training data to find the hyperplane that

best divides the known categories, which can then be used to classify new data points. SVMs work by

20 We will later return to the question of how one could know that is a relevant group, given that it looks
gerrymandered.
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maximizing the distance between the classification boundary and the points closest to it. Suppose that

you were attempting to find a linear separation rule that separates the blue As from the red Bs in the

space below:

Figure 8 – A supervised learning task where the groups are not linearly separable.

There is no such rule (and no way to separate these into two convex groupings). One option would be to

hold the underlying space fixed and find a complex function that separates the two groups; here, the

separation rule could be circular, classifying everything within the circle as an A and everything outside

as a B.

Alternatively, you could insist on finding a simple, linear separation in the data and transform the

feature space so that the As and the Bs become linearly separable. Here’s one way to do it: define a new

feature, Z, such that an object’s value of z = x2+ y2. Then, replace the existing y-axis with the z-axis and

re-map the points against the X, Z space. In the resulting space, the groups are linearly separable.
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Figure 9 – A transformation of the feature space in Figure 5 such that the two groups are now linearly separable

One might object that, mathematically, there is no real difference between discovering a

complex separation rule and transforming the underlying space. This might be correct, but the

downstream consequences of the two may differ significantly. Since the feature space is treated as

primitive, new inductive tasks formulated against a new space will be beholden to the transformations

that have been made and may be radically different from ones in the previous space. Hence, if one wants

a classification to preserve existing similarity orderings, one should opt for a complex separation

function. However, for classifications that fundamentally change one’s ontology, the latter is more

appropriate.

In what follows, we will explore various techniques for transforming similarity spaces and their

effects on conceptual development. For now, we can use the notion of a space transformation to

characterize radical conceptual change. This occurs when changes to the dimensions of the underlying

space (the framework concepts) result in spaces with very different similarity structures, and as a result,

the natural groupings that are formed on top of these spaces are very different as well. On this account,

two conceptual systems are incommensurate when the natural concepts (e.g. the convex regions) of the

first system are not the natural concepts of the second system (or vice versa). The more stringent the
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geometric constraints on concepts, the less likely they are to be preserved across transformations. For

example, a transformation might preserve the connectedness of groupings but not their convexity.21

Next, we will present several machine learning processes that transform underlying feature

spaces in ways that permit radical concept change. Then, we will put them to use to explain examples of

radical concept learning through linguistic bootstrapping. To recall, bootstrapping involves: learning a

linguistic placeholder structure; using the computational constraints of the placeholder and existing

representations to partially interpret the placeholder; and using learning processes, such as modeling or

analogy, to fully interpret the placeholder. To model bootstrapping in the conceptual space framework,

we will present processes that: use labels to mark category members; transform spaces to accord with

the groupings provided by labels; and use dimension reduction to “lock in” those changes to dimension

spaces and form new fundamental concepts. We will present the latter dimension reduction techniques

first, then move to learning processes operating over linguistic labels.

5. Dimension reduction techniques

As we noted, a conceptual space has dimensions corresponding to each of the recorded features

in the data. However, in most inference problems, many or most of these dimensions will be

unimportant; some dimensions will be strongly correlated with one another, and some dimensions will

be irrelevant to the trends in the data that we are trying to capture. Dimension reduction techniques

allow us to distill out just those dimensions that capture meaningful (non-redundant, non-noise)

patterns in our data. Sometimes this may involve selecting a subset of the original dimensions of the

21 We can cash out the degree or ways in which two spaces are incommensurable in terms of the geometric
transformations that preserve the natural concepts in those spaces. For example, spaces D1 and D2 are
topologically transformable if every continuous set of points in D1 is continuous in D2; topological transformations
are permitted to stretch or expand the space, they cannot tear or paste it. So two spaces are topologically
incommensurate if transforming one to the other fails to preserve the continuity, e.g. if a continuous region in D1
becomes a gerrymandered archipelago of regions in D2. Here, we take inspiration from Maudlin (2012) who argues
that significant revisions to our understanding of the geometry of space yielded radically different results about
motion, time, and fundamental physical symmetries.
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space. In many others, it will involve the construction of new dimensions–new framework concepts–that

replace the old ones and now constitute the fundamental ontology of the space.22 We will present a

couple of dimension reduction techniques, and consider how they can help us explain radical concept

learning.

5.1. Principal Component Analysis

PCA is a simple example of a larger family of dimension reduction algorithms that, as the name

suggests, serve to reduce the number of dimensions in the underlying feature space. It is often used in

tasks in which perceptual input is many-dimensional but the true signal is much simpler. It allows us to

find correlations in the data (features that “march together”) and to collapse correlated dimensions to a

single dimension which characterizes the trend.23

Consider again the plot of human and giraffe data from Figure 2. It has two dimensions, height

and weight. Because height and weight “march together” in this plot, we could predict the species of a

new data point via a single dimension that combines height and weight (call it “bulk”). To perform PCA

on this data set, we perform a simple linear regression to find the “principal component”, the line of

greatest variance in the data which minimizes the least squared distance from the data points. This

regression line will become our new x-axis24, and our data points are now collapsed to it. The result is

that we can represent the trend in the data using fewer dimensions, though we will lose information

(proportional to how much the data points deviated from the regression line).

24 Typically, the orthogonal to the regression line will become the new y-axis, but since there is only one remaining
dimension, we’ll ignore it for now.

23 PCA cannot be said to uncover true latent common cause variables. Other processes, like factor analysis, can.

22 Recall the example from Gärdenfors and Zenker (2013) of spacetime. While space and time were separate
dimensions of the Newtonian conceptual space, they were collapsed into a single dimension in the relativistic
conceptual space.
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Figure 10 - PCA dimension reduction from space D1, with dimensions weight and height, to D2, with a single dimension, bulk.

The transformed space places new constraints and new inductive support for subsequent

concepts formed against it. In the transformed space, weight and height are no longer distinct

dimensions that can vary independently. This has significant upshots for induction based on single

features. Suppose we are using the original 2-D space and observe only the height of a new individual.

While we could make an inference about its weight, this inference wouldn’t be entailed by the similarity

space itself. However, plotting height on the regression line that defines bulk does entail a value for

weight. Hence, dimension reduction collapses two variables such that they are now, for better or worse,

tied together by something stronger than inferred correlation. In this way, the resulting conceptual space

treats bulk as a primitive that is not decomposable into more basic constituents of height and weight.

Granted, a user that is aware of the previous space might recall that bulk is a function of height and

weight, but this unpacking is not necessarily recoverable by a user who starts with the new, 1-D space.

Notice that PCA uses a general learning algorithm (linear regression) that does not require that

we first postulate or define the latent dimension that will be discovered. Indeed, while PCA may find

trends in the data that correspond to some intuitive latent variable (like “bulk”), it may uncover trends

that are surprising. These new framework concepts are not added and then related to existing concepts;

rather, the variables and expressive vocabulary of the theory are changed (contra Rey 2014).
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The geometric readjustments resulting from PCA are quite modest. Since PCA re-aligns state

spaces to linear trends in the data, it can only yield translations and rotations of the original data. It will

not, for example, turn a convex grouping into a non-convex one in the transformed space. Other

dimension-reduction techniques can yield spaces that can yield these more radical changes to concepts

formed against them.

Figure 11 – PCA used to reduce the 3-dimensional feature space on the left to the 2-dimensional feature space on the right. From

Géron (2019).

5.2. Non-linear dimension reduction techniques

Most astonishing here are the Deep Convolutional Neural Networks that have achieved

superhuman performance in tasks like Go and image recognition; a helpful explanation of how these

work is found in Buckner (2018). A simpler illustration, provided by Tenenbaum et al. (2000), will suffice

for our purposes. Suppose that the central trend in the data lies on the “Swiss roll” manifold in Figure 13.

This is a manifold “whose intrinsic geometry is that of a convex region of Euclidean space, but whose

ambient geometry in the high-dimensional input space may be highly folded, twisted, or curved”

(2321).25

25 DiCarlo and colleagues (DiCarlo and Cox 2007, DiCarlo et al., 2012, 417) use a similar metaphor to describe the
task of object recognition in naturalistic perceptual experience. Indeed, PCA-like dimensionality reduction has been
implicated as the mechanism by which face and object recognition tasks are neurally executed (Tsao and
Livingstone 2008) and amodal magnitude representations are formed (Bonn and Cantlon 2012, 161).
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Figure 12 – From Tenenbaum, et al. (2000, 2321).

The Isomap technique for nonlinear dimensionality reduction collapses high dimensional data

onto a lower dimension which captures the geodesic (not necessarily linear) line of greatest variance in

the data. It unfurls the Swiss roll manifold, resulting in a two-dimensional space where Euclidean

distance captures overall similarity. Concepts defined by this Euclidean distance in the new space will be

incommensurate from those in the original space since “points far apart on the underlying manifold, as

measured by their geodesic, or shortest path distances, may appear deceptively close in the

high-dimensional input space, as measured by their straight-line Euclidean distance” (ibid., 2319). Many

convex groupings defined on the original curved space will not be convex on the transformed flat space;

notice that in the above diagram, there are points that lie on the dotted line between the two

highlighted points that no longer lie on a straight line between the two points in the transformed space.

5.3. Upshots for radical concept learning

Already, these dimension-reduction techniques illustrate several components of radical concept

change. The geometry of a conceptual space embodies the system’s notions of similarity; similarity is

packed into the vehicle of representation itself. When the space is transformed, these similarity

judgments change with it. Since similarity is the basis for future categorization behavior, the effects on

26



the system’s future behavior can be profound. Further, we do not need to think about the new

framework concepts as hypotheses that are tested. The principal components that serve as new

framework concepts are learned from the data itself and need not have been represented prior to the

learning process.

Dimension-reduction also suggests a framework for thinking about learning by analogy. Analogy

involves the alignment of two distinct domains and the extraction of structural similarities between

them, permitting the projection of features of one domain to the other. Dimension reduction takes this

to the extreme, since the two domains are not just compared but are collapsed together into

representation of that shared structure. The resulting similarity space can be more inductively rich than

either of the distinct spaces that the learner began with.

6. Supervised learning processes

Dimension-reduction techniques like PCA distill regularities (relative to a conceptual space)

already present in the data. To fully characterize radical bootstrapping, we need to understand how

language can create new regularities. Here, we look at supervised learning processes that show how

language can interface with conceptual spaces and how this permits even more radical conceptual

change.

6.1. Learning from labels

As an unsupervised learning process, PCA does not utilize labeled data. More precisely, it does

not use labels as labels; rather, labels are treated as just another feature. Linguistic input can play what

Dove (2019, 9) calls a scaffolding role, helping “learners become attuned to perceptual commonalities

and overcome the inherent complexity and noisiness of perceptual inputs”. In contrast, in a supervised
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process, labels serve as meta-features that designate points as members of certain categories, where

these categories serve as “ground truths” for subsequent modeling (Danks 2014, 154).26

There are significant limitations to unsupervised processes. For example, PCA will find labeled

categories only if the distinction between them happens to be the line of greatest overall variance.

Compare PCA to a related supervised learning algorithm, Linear Discriminant Analysis, which finds the

line of maximum distance between the means of two groups and reduces the dimensions to the

orthogonal to this line:

Figure 13 –Comparison of results of PCA and LDA on the same data set. Figure from Malakar (2017).

As Figure 13 illustrates, labels allow us to “break up” global trends in the data and find groupings

that are more specific than the principal component, whereas unsupervised processes have to take all

relevant features into account. This accords with data about human category learning in the presence or

absence of labels. Adult humans performing categorization tasks without the aid of labels (aphasic

subjects and subjects in verbal interference conditions) had difficulty learning “low-dimensional”

categories, categories for which membership is based on single features like green or square. They had

26 We do not give an account of how labels come to be attached to individuals or groupings. For an account of how
language connects with perceptual similarity spaces, see Gauker (2011).

28



less difficulty with “high-dimensional” categories with more gradual and global membership conditions

(Lupyan 2009, Lupyan and Mirman 2013, Dove 2019).

Labels also allow us to form groupings of perceptually heterogeneous objects. When labels are

treated as labels rather than mere features, they can cause more radical permutations of underlying

conceptual spaces. To explore these permutations, consider again the SVM task discussed in Section 4

(Figures 5 and 6). Since there is no hyperplane that divides the two categories, we need to transform the

space to make it so divisible. The solution is to transform the space by adding new dimensions.

Figure 14 – A supervised learning task where the groups are not linearly separable.

There are two main procedures for dimension expansion: the first replaces an existing dimension

with another (thus maintaining the overall dimensionality of the space), and the second introduces a

hyper-dimension, which maintains the original dimensions and adds one on top. As we have seen, the

first process might proceed by defining a new feature, z = x2+ y2 and replacing the existing y-axis with a

z-axis so that the groups are linearly separable. This process may result in some loss of information about

the original dimensions of the data. Notice that while there is a unique value of Z given the values of X

and Y, one cannot necessarily reverse the process to uncover a unique function of X and Y.
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Figure 15 – A transformation of the feature space in Figure 13 such that the two groups are now linearly separable.

An alternative approach is to maintain the existing dimensions and add more; the observations

are continuously projected into higher and higher dimensions until an n-1 dimensional hyperplane can

linearly separate the now n-dimensional space. Consider the XOR plot in Figure 16, for which there is no

possible linear separation. Instead of finding a concave separation rule, “the data in the XOR problem

might be mapped into a three-dimensional space in such a way that each point F1, F2 is mapped onto F1,

F2, F3 where F3= F1 F2” (Harman and Kulkarni 2007, 43). In effect, this dimension transformation grabs the

blue dots and pulls them up and grabs the green dots and pulls them down. Now, a hyperplane can

separate the two groups in the new 3-dimensional space.
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Figure 16 – Left: 2-dimensional XOR plot. Right: projection of the data into a 3-dimensional space in which groups are linearly

separable (reproduced from Harman and Kulkarni 2007, 43).

6.2. How language transforms conceptual spaces

The learning process that we’ve been considering demands that we be able to linearly separate

the two categories. As the above examples illustrate, this functions to pull categories apart from one

another, turning fuzzy, overlapping categories into more categorical ones. This can have significant

effects on subsequent categorizations.

First, it results in better categorization performance. Lupyan et al. (2007) conducted a landmark

study on categorization of novel stimuli with nonsense labels. The authors trained subjects to associate

two categories of “aliens” with either of two behavioral responses: approach or flee. The distinction

between the two kinds of aliens was subtle; one kind had flatter bases with a ridge on the head, while

the other had rounder bases with no ridge. There were two different training conditions, one with labels

for the two categories of aliens (‘leebish’ and ‘grecious’), and one with no labels. Subjects were given

feedback after each answer. After training, subjects were tested on how well they learned the

associations. The results showed that subjects in the label condition, despite having the same amount of

experience with the stimuli as subjects in the no-label condition, were faster and more accurate in both
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the training phase and at test. The authors concluded that having access to nonsense verbal labels

enhanced performance compared to performance with nonverbal associations.

This effect is known as the label superiority effect27 (Russell and Widen 2002). Lupyan et al.

argue that the label superiority effect is explained by verbal labels modulating representational space:

[R]ather than being fixed features, category names modulate item representations on-line

through top-down feedback. According to this account, as a label is paired with individual

exemplars, it becomes associated with features most reliably associated with the category. When

activated, it then dynamically creates a more robust category attractor (2007, 1082).

In later work, Lupyan (2012) argues that the modulation of representational space consists in labels

“pull[ing] apart [exemplar] representations [which results] in decreased representational overlap

between the two classes of stimuli” (4).

Second, these new categorizations may come to serve as new framework concepts. Consider, for

example, how one might start learning the concept MAMMAL. To start, suppose that animals are

arranged by perceptual similarity. Then, one starts assigning the label “mammal” to various species. The

resulting grouping will not be somewhat gerrymandered in the original space; for instance, the fish and

the whales will be close together but labeled differently. As in the XOR example in Figure 16, we

transform the space by adding a dimension in which the mammals are separated from the

non-mammals. Indeed, that dimension can be interpreted as encoding the framework concept

MAMMAL. Unlike the more continuous similarity dimensions in the initial space, it is a binary classifier.

Finally, suppose (unrealistically) that MAMMAL became the only relevant dimension for categorizing

animals. Now, you could use dimension reduction to collapse the space into a one-dimensional space

that simply classifies individuals as mammal or non-mammal.

27 We also find a label superiority effect in emotional recognition (Gentry forthcoming; Russell and Widen 2002;
Widen 2013), taxonomic categorization (Markman 1990), and various other domains (Lupyan 2012; Lupyan and
Lewis 2019; Lupyan et al. 2020).
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For illustration, consider once more the results of the supervised LDA classification method,

which finds the dimension of greatest separation between the two groups. We could take this line of

greatest separation as our new y-axis and its orthogonal as our new x-axis. This would turn these

groupings into a new framework concept, turning the distinction between 1-ness and 2-ness into a

fundamental part of our ontology.

Figure 17 Comparison of results of PCA and LDA on the same data set. Figure from Malakar

(2017).

There is evidence that category learning with labels can turn continuous concepts into discrete

ones. Russian divides blue into two different categories (with no superordinate label corresponding to

English “Blue”)– “goluboy” for lighter blues and “siniy” for darker blues. In a now classic, cross-linguistic

study on English and Russian color discrimination, Winawer et al. (2007) showed that in comparison with

English speakers, Russian speakers were faster and more accurate at discriminating between darker and

lighter shades of blue, but slower when the two shades were both dark or both light. Just like with
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Lupyan et al.’s alien study, having access to labels for categories seems to facilitate performance by

making the between-category differences more salient through warping of representational space. If

labels work by warping representational space (by pulling between-category exemplars apart), and the

color representational space is continuous, it’s plausible that what was once continuous variation within

the blue category, is now discrete.

Regier and Kay (2009) suggest that the initial color similarity space is warped (rather than fully

continuous) but that this warping underdetermines the discrete categories that we seem to traffic in.

Here, the authors suggest, is where linguistic intervention gets its hold. Learning color labels (in your

native language) “finishes the job” by discretizing the already warped color space—by making

continuous, albeit protruding, variation into discrete variation (see also Cibelli et al. 2016; Gleitman and

Papafragou 2013; Holmes and Regier 2017; Regier and Xu 2017). Whatever the correct, precise account

of color is, the moral of the story is that the data on labeling seems to suggest a role for language in

shaping category representations. In particular, labels seem to pull apart category exemplars, descresing

representational overlap in continuous space, and at least in some cases, this results in discretizing the

categories—transforming representational space into discrete partitions.

6.3. Upshots for radical concept learning

In dimension expansion, a new framework concept is introduced to the fundamental ontology,

spurred by an anomalous data set. Labels function as indications that disparate items nevertheless form

a real kind; as Waxman puts it, “words are invitations to form categories” (1999, 269). If your data is

telling you that there are two natural groupings here but you can’t make sense of these groupings with

your original conceptual space, you must come up with new framework concepts that do make sense of

them. In effect, you ask, “if these are the natural kinds, what must the world be like?”. Note that the

choice of a new dimension is more unconstrained than in PCA-like dimension reduction; there are many
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new features and dimensions you could add that would separate groups A and B. However, we do not

need to think of these new dimensions as hypotheses that were represented prior to the learning

process; they are instead generated from the data in the learning task at hand.

Compared to something like PCA, supervised learning processes allow for more flexible and

radical transformations of the underlying space, as they are not beholden to global trends in the data.

Instead, they treat labels as a “fixed” point and can amend the space to achieve a separation among any

possible groupings one might encounter. The unlimited transformability yielded by supervised learning

suggests one way that language enables humans’ uniquely flexible cognition. While unsupervised

dimension reduction techniques can find signals among the noise, supervised techniques can create

genuinely new signals. Extended periods of cultural innovation have yielded new pieces of cognitive

technology, linguistic constructions that exhibit kinds of structure very different from the ones given by

our innate similarity space. If one’s conceptual spaces are transformed in accordance with these new

signals, then learning new categories through language can have drastic effects on one’s subsequent

cognition.

These supervised learning processes that transform conceptual spaces are a helpful illustration

of the role of placeholders in linguistic bootstrapping. In Carey’s view, linguistic placeholder structures

“provide constraints, some only implicit and instantiated in the computations defined over the

representations. These constraints are respected as much as possible in the course of the modeling

activities, which include analogy construction” (2014, 152). To us, this sounds similar to a supervised

learning process that takes labels to be constraints to be obeyed in permuting the conceptual space. The

labeled groupings provide structure within a conceptual space, which spurs the creation of a new

conceptual space that has that structure intrinsically.
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7. Bootstrapping: the case of integer learning

We have presented a framework for thinking about radical concept change, involving

transformations to conceptual spaces, and we have hinted at ways that this could be used to analyze

aspects of linguistic bootstrapping. Here, we apply the framework to Carey’s (2009) account of integer

learning.28

According to Carey, core cognition starts with two systems for tracking numerosity. The object

file system can track distinct objects, up to sets of 3 or 4. It is precise, but it has severe capacity limits.

The analog magnitude system tracks the numerical size of sets (“how much”). It is subject to Weber’s

law, wherein the subject’s ability to distinguish between two quantities depends on their ratio, not their

absolute difference. For example, it is easier to discriminate between 5 and 6 than between 6 and 7 and

far, far easier than between 25 and 26 (Dehaene 1997).29 Initially, subjects have difficulty integrating the

two systems in a single task (e.g. when choosing between two cookies and five cookies).

At the end of the learning process, the subject arrives at a concept of numbers that bridges

these two systems: it tracks precise numbers like the object file system, and it can be extended beyond 4

like the analog magnitude system. It is characterized by the successor function: for any symbol in the

numeral list that represents cardinal value n, the next symbol on the list represents cardinal value n+1.30

How do children learn this concept of numbers? Simplifying greatly31, Carey’s story goes like this.

In the placeholder stage, children start by memorizing the count list (“one, two, three, four”). While the

child can reproduce the order of the number labels, the list is initially meaningless. Next, the child starts

to flesh out the placeholder, using two kinds of evidence. They receive information about various

31 For example, Carey details the development of natural language quantifiers (“a”, “some”, “many”, etc.) and the
support this provides in the child’s numeral learning.

30 The successor function is entailed by the stable order principle, cardinality, and one-to-one correspondence of
numerals to set sizes (Gelman and Gallistel 1978).

29 It is controversial whether the analog magnitude system represents magnitude linearly but with increasing error
in discrimination or whether it represents magnitude logarithmically (Cantlon, et al. 2009, Dehaene et al. 2008).
We’ll return to this point in the next section.

28 While this may not be the best illustration of our framework, it is the most detailed example of bootstrapping on
offer.
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features of counting: the count list ends as you point to the final item in a set, you use one word for each

object pointed to, etc. The child also learns to associate number words with sets of particular sizes (the

“subset knower” stage). This process draws on the structure of the object file system. Between 24 and

30 months, children learn that “one” corresponds to sets of single objects.32 They can pass Wynn’s (1990,

1992) “Give 1” task, retrieving a single object if asked to give “1”. If asked to give a number other than

“1”, they will bring more than one object, but their choice is at random; when asked to bring “2”, they

are equally likely to retrieve two, three, or four objects. This stage persists for six months to a year until

children become “two knowers” who can discriminate “1” and “2” from each other and from other

numerals but perform at chance for all other numerals. Likewise, they then become “three knowers” and

remain so for some months.

This pattern changes dramatically around the age of 3 ½ after children have become “three

knowers” (or occasionally, “four knowers”). To learn “5”, children no longer need extensive experience of

the contingency between “5” and sets of five objects. They spontaneously match higher numerals to the

appropriate set size, as far as the child’s knowledge of the numeral line extends. At this point, children

have completed the last stage of bootstrapping, using learning processes (like analogy) to fully interpret

the placeholder:

The critical analogy that provides the key to understanding how the count list represents number

is between order on the list and order in a series of sets related by an additional individual. This

analogy supports the induction that any two successive numerals will refer to sets such that the

numeral further along in the list picks out a set that is one greater than that earlier in the list.

(Carey 2009, 477).

32 This way of putting it undersells the complexity involved since they need to associate the numeral not with any
particular set of a single item but singleton sets in general. As Beck describes it, “the meaning of the word ‘one’
could be subserved by a mental model of a set of a single individual {i}, along with a procedure that determines
that the word ‘one’ can be applied to any set that can be put in 1-1 correspondence with this model” (2017, 476).
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They now have number concepts that obey the successor function, in which the digitality of the object

file system is extended to arbitrarily large numbers.

There are a few challenges for Carey’s account. First, there is no specific learning process

postulated for the crucial analogy. Second, absent this, the account is threatened by the circularity

challenge. For instance, Rey (2014) argues that in the hypothesized step in which the child notices the

analogy between one greater in the count list and one greater in set size, ‘‘here ‘is one greater than’

expresses the very concept of SUCCESSOR whose acquisition Carey is trying to explain” (117).

Beck (2017) responds to Rey by arguing that the learning process exploits computational

constraints that are implicit, rather than explicitly represented. During the subset knower phase, the

child develops a procedure for putting “one” sets in one-to-one correspondence with models of a single

item, “two” models of two items, etc., but the child need not represent what this procedure involves.

However, at some point, “the child notices that when a collection with ‘one’ F is combined with another

collection with ‘one’ F, the result is a collection with ‘two’ Fs; that when a collection with ‘two’ Fs is

combined with another collection with ’one’ F, the result is a collection with ‘three’ Fs” and so on (119).

They reason that the labels in the counting list are also separated by this same kind of interval. The

successor function emerges from the analogy process, rather than being explicitly present at the start.

8. A conceptual spaces account of bootstrapping the integers

Here, we explore how the conceptual spaces account could model this paradigm case of

bootstrapping. To appreciate the way that this account will depart from the one above, notice that the

analog magnitude system does not seem to play any significant role in the bootstrapping accounts of

Carey (2009) and Beck (2017). The object file and parallel individuation mechanisms are doing all of the

work. Numeral labels are associated with sets of individuals (as represented via this mechanism), and the

ordering between set sizes/ successive numerals is computed by adding one individual object (as
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represented via this mechanism). On the conceptual spaces account, the intrinsic ordering of the analog

magnitude system plays much more of a role. Computational constraints are inherent in the geometry of

conceptual spaces and the (geometric) category formation mechanisms that operate on them.

We suspect that the reason that Carey and Beck don’t rely on the analog magnitude system is

that its intrinsic ordering does not have the properties–namely, precision, discreteness, and linearity–of

the numerical concept that is ultimately learned. How could it supply the properties that we’re trying to

explain? The answer, on the conceptual spaces account, is that the intrinsic ordering of the analog

magnitude system becomes discrete and linear when associated with numerical labels (as discussed in

Section 6).

Interestingly, this alternative path to integer learning is suggested by Carey’s (2014) discussion of

bootstrapping in animals, which draws on work from Livingstone, et al. (2009). They trained rhesus

macaques on two initially distinct tasks. In the dot array task, they were rewarded for choosing the larger

of two arrays of dots on a screen, with arrays ranging from 1-21, by receiving as many pulses of juice as

there were dots in the larger array; e.g. if they chose 7 over 5 dots, they would receive 7 rather than 5

pulses of juice. Likewise, the monkeys were taught an arbitrary sequence of 21 symbols (1- 9, X, Y, W, C,

H, U, T, F, K, L, N, R) and were rewarded for selecting the symbol that came later by receiving juice pulses

corresponding to the symbol’s position on the list; e.g. if they chose F over X, they would receive 17

rather than 10 pulses of juice.

Livingstone, et al. made three discoveries that will be important here. First, they found that the

“monkeys could easily learn dot-array numerosity and abstract symbolic representations of surprisingly

high numerosities when we directly associated the symbols or the numerosities with reward amounts”

(ibid., 713). Their ability to associate labels with set sizes was not constrained by the limits of the parallel

individuation system, suggesting that learning these associations did not (solely) utilize that system.
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Second, they found that when the monkeys were using the dot arrays to compare magnitudes,

their choices showed scalar variability. This is what we would expect from the analog magnitude system.

However, when the monkeys performed the task using symbols, “although they still tended to make

more errors for small numerical divergences, their accuracy did not scale with choice magnitude (ibid.,

714). They displayed “linear discrimination when using symbolic representations (ibid., 718).

Third, when the macaques were first asked to select between a set of dots and a symbol in the

list - e.g. to pick between seven dots and the symbol W – they succeeded immediately. This suggests that

the monkeys took both the dot arrays and the symbols to represent orderings of magnitude and could

integrate them in a single task.

Putting this together, there is evidence that the monkeys (a) associated symbols with set sizes up

to 21, (b) mapped the dots and numerals to the same scale and (c) that this scale was precise, linear, and

discrete. Granted, when the monkeys used perceptually complicated dot arrays, they had trouble

mapping particular sets of dots to this scale. Linear discrimination is easier when reasoning with labels

because of the “equal distinguishability of one symbol from another” (ibid., 719). This is precisely what

the label superiority effect would predict. Labels pull apart different categories, making them easier to

distinguish. This also turns continuously varying dimensions into discrete ones. In this case, numbers

established a linear scale and provided the cognitive scaffolding to locate observed sets on this scale.33

On the conceptual space hypothesis, children (like monkeys) emerge from the subset knower

stage having aligned the system of numeral labels (“one” - “two” - “three”) with sets of increasing

(analog) magnitudes. This alignment creates a dimension of numerosity that is linear and discrete. How?

33 Exactly what the numeral symbols are doing here depends on what the starting state of the analog magnitude
system is like (Cantlon, et al., 2009, Dehaene, et al. 2008). On one hypothesis, it has a logarithmic scale, meaning
that the similarity space itself represents 5 and 6 as further apart (more dissimilar) than 6 and 7 are. If that’s
correct, then the association between set sizes and labels must radically re-scale the magnitude dimension from a
logarithmic to a linear one. On a second hypothesis, the analog magnitude scale is linear, meaning that the space
represents 5 and 6 as the same distance apart (as dissimilar) as 6 and 7 are. It is the ability to accurately locate a
set’s position in this scale that decreases as the magnitude increases. Here, labels would simply have to increase
the distinguishability of sets by creating a “more robust category attractor” (Lupyan, et al. 2007).
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The discussion in Sections 5 and 6 is instructive. When two dimensions “march together”, we can create

a new dimension that characterizes this trend.34 This dimension can take on the linear, discrete scale of

the symbolic number line. As Dretske (1981, 215) puts it, when two properties are made equivalent to

one another, “if a structure constitutes a complete digitalization of the one piece of information, it also

constitutes a complete digitalization of the other”.

How do we explain how the child extrapolates what is learned from the subset knower phase (of

one through three)? We don’t need to posit, as Carey and Beck do, that the child notices that you reach

successive numbers by adding one individual to the previous number. Instead, this induction is

supported by the intrinsic scale and directionality of the new number dimension. The line keeps going,

step-wise and linearly, in the direction of greater and greater numbers.

We have not argued that the conceptual space hypothesis of integer learning is in fact how

children learn the integers. As Carey (2009, 2014) is quick to point out, we need to look at the

developmental data and the initial representational endowment to settle these questions. In this case,

it’s quite possible that human children learn number words in a way very different from macaques.

Nevertheless, we think that it’s instructive to draw out the differences between her account and one

using conceptual spaces.

9. Conclusion

How is it possible to learn radically new concepts? Fodor’s argument assumes that new

experience can only confirm or recombine what you already know. We have argued that while

experience does lead us to form new concepts against the background of one’s fundamental

ontology—the similarity spaces at the start of the learning process—experience can also reform that

34 In dimension reduction, we found the line of greatest variance (the principal component) and then reduced the
original two dimensions to this one. However, it’s unclear whether the analog magnitude dimension is reduced to
this new, linear, discrete dimension or whether we have an instance of dimension expansion where the precise
number dimension exists alongside the earlier, imprecise one.
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fundamental ontology. When faced with categories that are quite strange relative to what we think

about the world, we can reconceive how nature must be such that these are its joints. The result is a

terraforming of the conceptual landscape which fundamentally changes what will be built on top.

Automating concept learning promises to demystify this process, showing how incommensurabilities can

be crossed via small, yet far-reaching, steps.
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