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With revisions for Philosophy & Phenomenological Research 

 
 

Number Nativism1  
 
 
 

Abstract: Number Nativism is the view that humans innately represent precise 
natural numbers. Despite a long and venerable history, it is often considered 
hopelessly out of touch with the empirical record. I argue that this is a mistake. 
After clarifying Number Nativism and distancing it from related conjectures, I 
distinguish three arguments which have been seen to refute the view. I argue 
that, while popular, two of these arguments miss the mark, and fail to place 
pressure on Number Nativism. Meanwhile, a third argument is best construed as 
a challenge: rather than refuting Number Nativism, it challenges its proponents 
to provide positive evidence for their thesis and show that this can be squared 
with apparent counterevidence. In response, I introduce psycholinguistic work 
on The Tolerance Principle (not yet considered in this context), propose that it 
is hard to make sense of without positing precise and innate representations of 
natural numbers, and argue that there is no obvious reason why these innate 
representations couldn’t serve as the basis for mature numeric conception. 

 
 
 
 

You don’t have to be a mathematician to have a feel for numbers. 
John Nash 

 
 

How do humans acquire the capacity to represent precise natural numbers, like SEVEN, ELEVEN, 

or SIXTY-TWO? That they do is uncontentious. Natural numbers may be our best understood 

abstract objects. Axioms have been formulated from which their properties can be deduced (Peano 

1908). Even primary-school children gain an appreciation for mathematical inferences they permit 

(Butterworth 1999). Yet, no less obviously, numbers are weird things. You can’t point at the number 

seven, or bump into the number eleven, since entities of this sort are not located in space and time. 

Consequently, it’s been hard to see how we could first learn of natural numbers, or come to manipulate 

them precisely, such that consensus would emerge on their basic structural properties (e.g., that each 

natural number is exactly one greater than its predecessor, or that any two collections of N objects 

stand in a relation of 1:1 correspondence). In short: This would involve us forming an exact and shared 

conception of entities that exist outside the physical world with which we interact.  

 
1 For comments on earlier drafts and/or helpful discussion, I’d like to thank Sami Yousif, Charles Yang, Alexis Wellwood, 
Tom Walton, Nick Shea, Andrea Rivadulla-Duró, Jake Quilty-Dunn, Chuyan Qu, Eric Mandelbaum, Alex Kerr, Ben 
Henke, Victor Gomes, Laurenz Casser, Brian Butterworth, Steve Butterfill, Liz Brannon, Jake Beck, and Luca Barlassina. 
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Number Nativism helps defuse these concerns. For Nativists, our capacity to represent precise natural 

numbers is not learnt – it’s part of our innate biological endowment. This leaves untouched vexed 

issues concerning the representation of numbers. For instance, one might wonder how a 

representation, learnt or innate, could refer to numbers if they’re located off in Plato’s heaven 

(Benacerraf 1965). Regardless, it’s a virtue of the Nativist proposal that it avoids the abovementioned 

problem of how our internal states might first support precise numerical inferences, given that 

numbers are entities with which we lack material acquaintance – this is because Nativists deny that 

our initial capacity to represent and process natural numbers results from learning through observation 

or acquaintance. And since Nativists deem this innate endowment common to all neurotypical 

individuals, it’s not hard to see why consensus emerges on many of the natural numbers’ structural 

properties – this is akin to the way an innate and biologically endowed universal grammar constrains 

and ensures commonalities among the structural features of all natural languages (Chomsky 1986). 

 

Despite these virtues, Number Nativism is an unpopular view. A long and venerable history in the 

work of Plato to Chomsky notwithstanding, contemporary theories of cognitive development share 

in the assumption that our capacity to represent precise natural numbers is learnt (Bloom 2000; 

Dehaene 1997; Hurford 1987), and leading theories of concept learning take the acquisition of precise 

number concepts to be their central target (Carey 2009; Spelke 2017; Lee & Sarnecka 2010). Indeed, 

the suggestion that our capacity to represent precise natural numbers is not innate is often deemed 

non-negotiable – as dictated by “unambiguous evidence” that the acquisition of precise numerical 

representations is a product of culture and learning environment (Pitt et al. 2022: 371).  

 

I think Number Nativism is in considerably better standing than this modern consensus recommends. 

After clarifying Number Nativism and distancing it from related conjectures (Section 1), I’ll distinguish 

three arguments which have been seen to refute the view (Section 2). I argue that, while popular, two 

of these arguments miss the mark, and fail to place pressure on Number Nativism. Meanwhile, a third 

argument is best conceived of as a challenge: rather than refuting Number Nativism, it challenges its 

proponents to provide positive evidence for their thesis and show that this can be squared with 

apparent evidence to the contrary. In response, I’ll introduce psycholinguistic work on The Tolerance 

Principle (not yet considered in this context), note that it’s hard to make sense of without positing 
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innate representations of precise natural numbers, and argue that there’s no obvious reason why these 

representations couldn’t serve as an innate basis for mature numeric conception (Section 3).  

 

1. What is Number Nativism? 

1.1 Number Nativism 

Number Nativism is the view that humans innately represent specific natural numbers, such as SIX, 

SEVEN, and TWENTY-THREE. Specifically, these representations are innate in the sense that they 

are biologically endowed, and not acquired through a psychological process of learning (Shea 2011).  

 

This does not tie Nativists to the view that these innate resources are present at birth, much as an 

innate and unlearnt capacity to grow pubic hair does not imply its presence at birth. Nor does it require 

that they are evolutionarily ancient and/or shared with other animals, much as positing an innate 

language faculty does not require that chimpanzees can talk. Finally, it does not imply that humans are 

innately endowed with an indefinitely large number of syntactically atomic symbols, each of which 

represents a distinct natural number distinctly – i.e., one atomic symbol for 62, another atomic symbol 

for 63, and so forth, perhaps ad infinitum. More plausibly, Nativists allow that humans have an unlearnt 

capacity to represent a small range of natural numbers (say, ONE, TWO, and THREE – Margolis 

2020) plus the representational resources needed to combine these such that larger natural numbers 

can be expressed in terms of these more basic resources (Chomsky 1988; Leslie et al. 2008). This latter 

possibility – sometimes labelled ‘the building blocks model’ (Margolis & Laurence 2011) – would, 

thus, allow humans to represent arbitrarily large natural numbers in terms of their initial unlearnt 

repertoire (Fodor 1980; Pinker 1994). It thereby contrasts with anti-nativist proposals according to 

which our first representations of precise natural numbers are discontinuous with the expressive 

potential of our innate mental representations (Carey 2009; Spelke 2017), at least when these precise 

natural numbers are larger than ~3 and fall outside the subitizing range (Margolis 2020).  

 

1.2 Number Nativism and Core Cognition 

To better understand Number Nativism’s claim that humans innately represent precise natural numbers, 

it’s instructive to contrast it with a more popular suggestion: that humans are innately endowed with 

‘core systems’, like an approximate and/or small number system, which facilitate basic numerical 

computations in circumscribed ways.  
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1.2.1 The Approximate Number System 

The approximate number system (ANS) is a psychological system which facilitates numerical 

discriminations among relatively large collections of items throughout the lifespan (Barth et al. 2003; 

Izard et al. 2009). While there’s disagreement over the system’s architecture and algorithms (Dehaene 

& Changeux 1993; Yousif & Keil 2021) a defining feature of the ANS is that its numerical 

discriminations are imprecise and conform to Weber’s Law. Thus, accuracy is predicted by the ratio 

between the numerical quantities in question, rather than their absolute difference (Libertus & 

Brannon 2010). As such, 9 is better discriminated from 10 than 10 is from 11 even though 9 differs 

from 10 by the same amount as 10 does from 11. What matters is the ratio between these values – the 

further from 1:1 the better (Figure 1).  

 
Figure 1. The ANS conforms to Weber’s Law in its discriminations: As the magnitude (specified along the 

x-axis) increases, values which differ by the same absolute amount will be discriminated less-reliably (as 

illustrated on the y-axis). 

 

The precise natural number representations that Number Nativism posits are quite different. Precise 

natural number representations represent natural numbers as categorically distinct: e.g., TEN as 

categorically different from NINE, ELEVEN, or any other determinately specified number. By 

contrast, the ANS’s conformity to Weber’s Law is typically seen to reflect indeterminacy and 

imprecision in the content of its representations. One reason to say this is that adult humans will often 

estimate that collections, which are discriminably different for their ANS, contain identical numbers 

of elements, under different conditions – thus, they might guess that a collection of 40 dots contains 

forty dots in one context and that a collection of 20 dots also contains forty dots in another context, even 
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though collections of 20 and 40 are easily discriminable for them using their ANS (Sullivan & Barner 

2013). This indicates that the ANS attributes indeterminate values to the collections it enumerates – 

for instance, it might attribute to these a numerical range (Ball 2017), a “blur on the number line” 

(Spelke & Tsivikn 2001), or a probability distribution (Halberda 2016). And since the range of 

acceptable values that it attributes to a collection increases with collection size (Izard & Dehaene 

2008), it seems that the ANS’s conformity to Weber’s Law results (at least in part) from imprecision 

or indeterminacy in the content of its representations increasing as values get bigger. In this way, 

accurately discriminated collections of ten are represented as more different from accurately 

discriminated collections of nine than accurately discriminated collections of eleven, obscuring the 

categorical distinctness of each natural number. 

 

This has downstream consequences. Beyond licensing categorical discriminations, precise natural 

number representations license precise judgements of equinumerosity. If two collections are 

represented as containing precisely N items, this licenses the deductively valid conclusion that they are 

equinumerous, irrespective of the number N concerns. Again, ANS representations fall short in this 

regard, owing to their imprecision (Carey & Barner 2019). Just as representing two collections as 

roughly 7 (but perhaps 6 or 8) in number fails to establish that they are identical in number, the 

apparent imprecision of the ANS’s representations renders it incapable of establishing 1:1 

correspondence among collections. For both reasons, the precise natural number representations 

Number Nativists posit should be distinguished from innate ANS representations, which represent 

numbers, but only imprecisely (Clarke & Beck 2021a). 

 

1.2.2 The Small Number System 

Beyond an ANS, many theorists posit an innate small number system (SNS). Unlike the ANS, this 

system facilitates precise numerical discriminations. However, it only does so among small collections, 

containing <3-4 items.  

 

One reason for positing an SNS is that human adults are highly accurate when perceptually 

discriminating/enumerating collections containing 4 items or less (Mandler & Shebo 1982; Trick & 

Pylyshyn 1994). Thus, their small number discriminations, within this subitizing range, show no sign 

of the ratio dependence that’s characteristic of the ANS. Similar results are found in babies. Classic 

work with 10-month-olds found that (on certain tasks) they would readily distinguish 2 items from 3 
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items while remaining at chance discriminating 3 items from 6 items (Feigenson et al. 2002). Since the 

ratio among these latter quantities is larger, it appears that performance was not underwritten by an 

ANS, whose discriminations conform to Weber’s Law. Rather, infants are seen to possess a separate 

SNS, which facilitates precise discriminations, but only among collections containing <3-4 items.  

 

What’s crucial to note is that, while the precision of the SNS evades certain shortcomings of the ANS, 

its postulation must still be distinguished from Number Nativism. For a start, most characterisations 

of the SNS deny that it represents any numerical content whatsoever. Rather, vision scientists propose 

that its numerical discriminations are implemented by a system of visual indexes, which pick out seen 

items like a series of pointing fingers implemented in the visual system (Scholl & Leslie 1999). 

Meanwhile, developmentalists often hold that the SNS employs a system of mental models, or 

representations of individual items, which are not proprietarily visual and can be flexibly stored in 

working memory (Simon 1997; Le Corre & Carey 2007). Despite marked differences, these accounts 

hold that the set size limit of the SNS is implied by the number of visual indexes available to the visual 

system or the number of mental models that can be stored in working memory. But on neither account 

does this involve the SNS representing numbers. When two items disappear behind a screen, and 

infants are surprised when the screen is removed to reveal just one object (Wynn 1992), these 

proposals explain infants’ surprise by suggesting that they have tracked or represented two 

individuals/items behind the screen when only one individual/item was found. In other words, they 

appeal to the tracking or representation of items/individuals, rather than those items’/individuals’ 

numerical quantity. In this way, the postulation of an SNS, thus construed, differs dramatically from 

Number Nativism – a thesis which posits innate representations of number. 

 

Admittedly, some defend a richer interpretation of the SNS, arguing that it produces a small stock of 

precise number representations, pertaining to subitizable values – ONE, TWO, and THREE (Hurford 

1987; Wynn 1992; Margolis 2020). On these accounts, the SNS’s inability to discriminate larger 

quantities does not directly result from working memory limitations, or a fixed number of visual 

indexes.2 More fundamentally, it results from the SNS’s inability to represent values >3. Even so, the 

existence of an innate SNS still falls short of Number Nativism. This is because it does not imply a 

capacity to represent larger natural numbers precisely, such as SEVEN, ELEVEN, or SIXTY-TWO. 

 
2 Although working memory might still constrain the SNS’s performance in other ways – e.g. by restricting the number of 
sets that can be enumerated in parallel (see: Feigenson 2011). 
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If nothing else, additional resources are needed to enable these smaller values, encoded by the SNS, 

to be summed or recombined (Chomsky 1988; Leslie et al. 2008a), such that the summing and 

recombination of these representations enables larger values to be represented without expanding on 

the expressive capacities of our innate representational repertoire (Fodor 1975; 1980; 2008). Suffice 

to say, the acquisition of these additional resources – for instance, grasp of the successor function, 

enabling ONE to be added to any successive value – is typically considered a hard-won developmental 

milestone (Carey & Barner 2019). So, while Number Nativism is consistent with holding that precise 

natural number representations of SEVEN, ELEVEN, and SIXTY-TWO, are constructed out of the 

small number representations an SNS produces (plus additional resources – e.g., SUCCESSOR 

FUNCTION – as in the building blocks model of number concept construction described in Section 

1.1), it’s agnostic on this and would go beyond the postulation of an SNS, regardless.  

 

2. Arguments Against Number Nativism 

I’m not the first to distinguish Number Nativism from the postulation of an ANS and/or SNS. 

Proponents of these ‘core systems’ typically distance themselves from Number Nativism, 

recommending that these enable large and precise natural number concepts (e.g., SEVEN) to be learnt 

(Carey 2009; Spelke 2017). Whether or not this is correct (Fodor 2010; Rey 2014), there’s a widespread 

assumption that our initial capacity to represent precise natural numbers outside the subitizing range 

is not innate, given strong (Spelke 2017) or “unambiguous evidence” (Pitt et al. 2022: 371) that our 

capacity to do so depends on culture and learning environment. Hence, while there are strong reasons 

to posit an innate ANS and SNS, there is supposed to be similarly strong reason to deny that humans 

are innately equipped to represent large natural numbers precisely. 

 

This is a mistake. To see why, I’ll now distinguish three arguments which have motivated these anti-

nativist conclusions. While two of these arguments feature prominently in the literature, they miss the 

mark, and fail to undermine Number Nativism. Meanwhile, a third argument is best understood as a 

challenge – rather than showing Number Nativism to be false, it challenges the Nativist to provide 

positive evidence for their hypothesis and show that this evidence can be squared with apparent 

evidence to the contrary. This challenge will be considered in Sections 3, where I introduce 

psycholinguistic research on The Tolerance Principle and argue that it is hard to make sense of without 

positing innate representations of large and precise natural numbers.  
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2.1 The Argument from Anthropology  

One argument, which is often said to refute Number Nativism, concerns cross-cultural work. Here, 

it’s claimed that monolingual speakers of languages which lack precise number words – such as Pirahã, 

which simply contains words for one, two, and many, or Munduruku, which lacks words for numbers 

bigger than 5 – remain systematically incapable of representing precise natural numbers outside their 

linguistic count range (Gordon 2004; Pica et al. 2004). Indeed, it is work of this sort which provides 

the “unambiguous evidence”, mentioned above, that our capacity to represent precise natural numbers 

is dependent on culture and learning environment and, hence, not innate (Pitt et al. 2022: 371).  

 

Take Pica and colleagues’ (2004) pioneering work with the Munduruku. These researchers reported 

that monolingual speakers of Munduruku were in possession of an intact ANS but remained 

systematically incapable of counting collections of dots outside their linguistic count-range; at best, 

they could rely on heuristic strategies such as “matching their fingers and toes to the sets of dots” 

(500). Around the same time, Gordon (2004) reported similar findings with the Pirahã, motivating his 

Whorfian hypothesis that the ability to conceive of precise number depends on one’s native language.  

 

More recently, Pitt and colleagues (2022) reported converging evidence with speakers of Tsimane. 

Unlike Munduruku and Pirahã, Tsimane has a fully productive system of number words. Nevertheless, 

Tsimane individuals’ education and knowledge of these number words varies considerably. Taking 

this into account, Pitt and colleagues tested participants on “a simple numerical matching task” and 

reported that their discrimination of “exact cardinalities” was “limited to the number words [each 

participant] knew” (371). For instance, participants who only knew words for 1-7 only made accurate 

and precise discriminations among these values. So, unlike the ANS, and its representations of 

approximate number (which these researchers consider an innate human universal), this was seen to 

provide “unambiguous evidence that large exact number concepts are enabled by language” and 

therefore emerge as a complex product of one’s culture and learning environment. But, if our initial 

acquisition of precise natural number representations is a result of culture and learning environment, 

rather than innate biological endowment, Number Nativism is false. This is The Argument from 

Anthropology. 

 

How convincing is this argument? Despite its prominence in the literature, I’m not convinced. It’s 

been questioned whether the abovementioned groups are truly bereft of the precise number words 
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these Whorfian conclusions assume (Nevins et al. 2008). Moreover, the argument may be criticised 

for conflating numerical performance (or lack thereof) with numerical (in)competence (more on this 

below). But even putting these issues aside, the conclusion that our capacity to represent precise 

natural numbers depends on language/culture neglects straightforward evidence to the contrary. 

 

In one study, Butterworth et al. (2008) tested indigenous children from the Walpiri and Anindilyakwa 

communities of Northern Australia. Like Munduruku and Pirahã, Walpiri and Anindilyakwa are 

limited in the precise number words they contain (roughly speaking, they only have words for one two 

and many, and one two three and many, respectively). Even so, Butterworth and colleagues found that 

monolingual children from both communities would succeed in accurately identifying quantities up to 

9 (the largest value tested) and be able to later recall these quantities in a memory task. They were also 

found able to accurately perform a cross-modal matching task, matching a precise number of seen 

counters to a precise number of tones in a heard sequence, and to correctly answer simple addition 

and division tasks concerning precise quantities. Importantly, these children performed no worse than 

English speaking children, and their performance showed no discontinuity at or around the subitizing 

threshold, indicating that performance was not the result of their SNS or ANS. These results would, 

thus, seem to contradict Pitt and colleagues’ assertion that precise numeric conception depends on 

one’s possession of precise number words.  

 

Related results are not hard to find. Follow up studies with the Walpiri and Anindilyakwa, replicated 

Butterworth et al.’s findings. Indeed, Reeve et al. (2018) found that language failed to predict 

performance on a novel addition task and, further, showed that residual differences in performance 

between English speaking children and members of the above communities were better predicted by 

differences in visuo-spatial working memory than numerical understanding. Similar results have also 

emerged in the Amazonian communities which originally motivated The Argument from 

Anthropology. In one study, Frank et al. (2008) found that monolingual speakers of Pirahã could 

perform precise numerical discriminations when the tasks used did not require participants to remember 

numerical quantities (pace Gordon 2004). For instance, they found that performance on a “one-to-one 

matching task was nearly perfect, and performance on [an] uneven match task was close to ceiling as 

well” (822). Likewise, Izard et al. (2008) found that monolingual speakers of Munduruku would 

succeed in making precise numerical discriminations when tasks were simplified or appropriately 

framed. For instance, where Pica et al.’s (2004) study tested the Munduruku’s capacity for precise 
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enumeration using a subtraction task, wherein large numbers were subtracted from one another to 

produce values under five (i.e., values that could be stated using the Munduruku’s limited number 

vocabulary), participants in Izard et al.’s task were simply asked to match the number of seeds in a 

collection to the number of dots on a screen. In this simpler task, they “spontaneously” succeeded, 

answering accurately and precisely, with occasional errors poorly predicted by the acuity of their ANS 

(Izard et al. 2008: 501).  

 

What, then, should make of The Argument from Anthropology? At the very least, we should recognise 

that the evidence cited in its support provides no straightforward reason to reject Number Nativism. 

But, putting things more tentatively, the conflicting findings described in this section plausibly go 

further, by positively evincing Number Nativism: For if an absence of precise enumeration is hard to 

find, even in isolated communities with few number words and little in the way of formal mathematical 

education, this motivates thinking that the acquisition of precise natural number concepts is probably 

a human universal, just as Number Nativism boldly predicts.  

 

2.2 The Argument from Linguistic Development 

The Argument from Anthropology does not warrant the rejection of Number Nativism it is 

sometimes claimed to mandate. Indeed, cross-cultural work may ultimately evince Number Nativism. 

Nevertheless, The Argument from Anthropology is not the only reason Number Nativism is rejected. 

A similarly popular Argument from Linguistic Development is also advanced in this connection. While 

this argument has a similar flavour to the Argument from Anthropology, it appeals to an independent 

body of research, concerning children’s protracted development on number discrimination tasks.  

 

To this end, proponents of the Argument from Linguistic Development often emphasise the Give-N 

task in which children, who have begun to utter some portion of the count-list in their native language 

(‘one, two, three, four…’), are asked to give an experimenter or puppet a specific number of items 

(e.g., six toys). A robust result is that children’s performance on this task proceeds slowly in stages. 

First, children become “one-knowers” who reliably give one item when asked but randomly produce 

>1items when asked for any larger number of items. Next, children become “two-knowers” who 

reliably pass one item when asked or two items when asked but randomly produce >2 items when 

asked for larger quantities. Eventually, after passing through several such stages (e.g., becoming “three-

knowers” etc.), children become “cardinal-principle knowers” who appreciate that each successive 
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value in their count list refers to a number that is one greater than its predecessor (Wynn 1990; 1992; 

Lee & Sarnecka 2010). Since performance on this task predicts performance on other numerical 

comprehension tasks, like the “What’s on this card?” task, in which children are asked to report the 

number of items seen on a card (Le Corre et al. 2007), a standard interpretation is that each knower-

level reflects mastery of a new natural number. One-knowers have learnt to represent ONE precisely 

but lack the capacity to represent TWO, while two-knowers have learnt to represent ONE and TWO 

precisely but lack the capacity to represent THREE, etc. Thus, performance on the Give-N task is 

taken to show that the count list “is first mastered much as children learn to recite the alphabet, that 

is, without attributing any significance to the order” (a bit like the ordered, but meaningless, rhyme 

“eenie-meanie-miney-mo”) and “that knowledge of the counting principles is not innate, but rather 

constructed as a result of children’s attempt to make sense of the verbal count list” (Le Corre & Carey 

2008: 651).  

 

The problem with this assessment is that the argument (as formulated) conflates the comprehension 

of precise number words with the acquisition of precise number concepts (Margolis 2020). The above 

results show that children enjoy a slow and protracted development learning to use and respond to 

number labels in natural language – e.g., the word ‘seven’, such that they can reliably produce seven 

items when asked. However, this is something on which Number Nativism is silent. A child in 

possession of an innately endowed concept SEVEN might simply struggle to match this up with a 

precise number word. Thus, “children’s slow, step-by-step learning of number words could reflect 

their difficulty mapping their number concepts onto language, rather than limitations to the number 

concepts themselves” (Spelke 2017: 151). Indeed, this is more than a possibility. After all, we have just 

found reason to posit a disconnect between precise number language and precise numeric conception. 

For instance, the studies cited in the previous sub-section (e.g., Butterworth et al. 2008; Frank et al. 

2008) provided us with evidence that individuals can conceive of precise numerical quantities even 

when they lack the ability to express these linguistically. Such a disconnect can even be independently 

motivated, e.g., by research finding that certain autistic individuals, whose acquisition of language is 

severely impaired, nevertheless succeed in learning mathematics and often develop superior 

calculation skills to neurotypicals (Cowan & Frith 2009).   

 

It will be replied that these suggestions fail to explain why children are quite so slow to acquire number 

words, given evidence that other word meanings are acquired rapidly (Carey 2009; Samuels & Snyder 
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2024: Ch.3.3). For instance, two-year-olds can learn novel nouns from “a single ambiguous exposure” 

(Spiegel & Halberda 2011), while the learning of number words takes years. If children were already 

in possession of the relevant number concepts, shouldn’t the comprehension of number words 

emerge quicker than that?  

 

I think not. The reason is that word-referents are not created equal. Rather, the ‘fast mapping’ of novel 

words onto concepts is subject to independently supported constraints (Medina et al. 2010), like a 

‘whole object bias’ which disposes children to assume that novel words label whole observable objects 

(Markman 1991). The upshot is that children are slow to learn the meanings of words referring to the 

parts, predicates, and properties of objects, even after concerted teaching efforts (Hansen & Markman 

2009), especially when these properties and predicates are abstract. Accordingly, 3-year-old children 

struggle to acquire words for categorical colours, when these are used to describe objects (Landau & 

Gleitman 1985), even though young infants possess a well-established capacity to discriminate colour 

categories (Bornstein 1976).  

 

What’s important to note is that we should expect the same points to apply to number words. The 

whole (abstract) object, six, is not something we can point at when we teach children the referent of 

‘six’. What we can do is point at collections containing six items and state of each collection that ‘the 

items are six in number’. But when we do ‘six’ is used to describe rather than label the collection. 

Thus, it functions like the colour terms children are so slow to acquire (owing to, e.g., the whole object 

bias).3 Consistent with this suggestion, children grasp precise number words at around the same time 

they grasp categorical colour words (~4 years of age – Landau & Gleitman 1985), even though number 

is less visibly salient than colour. It is also consistent with the fact that prior to fully grasping the 

meanings of colour words, children behave like subset knowers: For instance, three-year olds use the 

word ‘blue’ in grammatically and semantically apt ways (e.g., in sentences like “The cup is blue”) but 

apply it to red and blue items with equal likelihood (Rice 1980). Thus, Number Nativists find 

independent reason to reject the assumed connection between numerical language and numerical 

 
3 This predicts that if children were not subject to the hypothesized word-learning biases, learning number words would 
come quickly. It is notable, therefore, that isolated adult populations do seem to learn (first) number words rather quickly. 
For instance, Ken Hale, the great documenter of Warlpiri and other Australian languages, wrote that “the English counting 
system is almost instantly mastered by Warlpiris who enter into situations where money is important” (Dixon 1980: 107-8, 
my emphasis). 
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conception implied by the Argument from Linguistic Development, and the implication that innate 

or early emerging number concepts would facilitate a fast mapping of these onto number words. 

 

2.3 The Argument from (Non-Linguistic) Performance 

The Arguments from Anthropology and Linguistic Development are unconvincing. This is significant, 

since they’re probably the most common reasons for thinking Number Nativism implausible. Even 

so, it might be replied that their failings serve to highlight the real reason Number Nativism is falsified: 

that children also fail to perform precise numerical discriminations in non-linguistic tasks.  

 

This is the conclusion drawn by Spelke (2017). To make her point, Spelke emphasises a study by Izard 

et al. (2014). In an initial experiment, children (just under three-years-old) were presented with a tree 

containing 6 branches – they were then presented with either 5 or 6 puppets, each of which was placed 

on an independent branch of the tree. The experimenter proceeded to emphasise that each puppet 

only occupied one branch and that one branch was empty if and when it was (i.e., in the 5-puppet 

condition). They then asked each child to help place the puppets into an opaque box and “rock them 

to sleep”. Finally, the children “woke the puppets up” and placed them back on the branches of the 

tree. Importantly, however, when the experimenter secretly removed the sixth puppet from the 

container in the 6-puppet condition (leaving just 5 puppets in the box, when the children should have 

expected 6) the children spent considerably longer rechecking the box for a final puppet than in a 5-

puppet condition (where they shouldn’t have expected an additional sixth puppet). It was as if children 

had enumerated the puppets at the beginning of the experiment, represented them as being exactly 5 

or exactly 6 in number (depending on the condition), and were then surprised to find a different 

number of items returned from the opaque container.  

 

Spelke rejects this numerical interpretation. She considers a subsequent manipulation on the above 

task. In this manipulation, half the children saw one puppet being removed from the container and 

then returned to it. Having done so, children who were assigned to a 6-puppet condition continued 

searching for a sixth puppet when one had been secretly removed from the container (leaving just 5 

items). This is as we would expect if children were representing and keeping track of the precise 

number of puppets observed (and, hence, that the 5 puppets produced ≠ the 6 puppets in the box). 

However, when one puppet was removed from the container and replaced by a featurally 

indistinguishable (yet numerically distinct) doppelganger, in full view of the children, children failed 
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to search longer for a missing sixth puppet in the 6-puppet condition than in an otherwise identical 5-

puppet condition. In other words, children’s ability to track the number of puppets went away. To 

make sense of this result, Spelke proposes that children were not considering the number of puppets 

on the tree or in the box at all; rather, they had simply remembered the specific individuals originally 

located on the tree and were subsequently seeking to place those individuals back on the tree.  

 

My own view is that Spelke’s explanation of this result is, itself, problematic. Wouldn’t remembering 

6 distinct individuals exceed 3-year-olds’ working memory limit? After all, Spelke has herself proposed 

that working memory limitations explain why children fail catastrophically on subitizing tasks 

involving >3 items belonging to the same set (Feigenson et al. 2004). Indeed, this strikes me as 

plausible since this was clearly a pretty complicated task for the children. I’ll put all of this to one side. 

Suppose we accept Spelke’s interpretation of Izard et al.’s result: What would this show? It would 

show that children neglect to represent or use precise numerical information in a task where adults 

might. But plainly, this would not show that they lack the competence to do so.  

 

Consider the experiments described in Section 1. When describing the empirical evidence for an SNS, 

we noted Feigenson et al.’s (2002) study in which 10-month-old infants accurately discriminated 2:3 

items but were at chance discriminating 3:6. This is striking since 3:6 differs by a larger absolute 

amount and a larger Weber fraction. Indeed, it differs by a ratio which younger infants are known to 

reliably discriminate using their ANS, even when tested on a small number of trials (Libertus & 

Brannon 2010). Thus, children in Feigenson et al.’s task failed to discriminate 3 from 6 (i.e., exhibited 

a failure of performance in this task) even though they possess a well-established competence to do 

so using their ANS. For everything that has been said, we should recognise that the same might apply 

to the study Spelke emphasises when arguing that precise representations of natural numbers are 

lacking in young children; even if children did not represent or make use of precise numerical 

information this does not show that they lack the competence to do so. 

 

This is not to suggest that Spelke’s argument (which I’ll now call The Argument from Performance) 

holds no weight. My point is that it must not be treated as a deductive proof that number 

representations are absent in the children tested, let alone a deductively valid refutation of Number 

Nativism. It’s best construed as a challenge. Spelke is not confusing absence of evidence for evidence 

of absence. Her point is that we seem to lack positive reasons for thinking precise natural number 
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representations present in young human children, even when we go looking for these and design tasks 

to avoid taxing language and other extraneous resources. Pending positive reasons of this sort, the 

postulation of innate natural number representations could then seem extravagant. Much as we should 

not posit innate knowledge of quarks, carburettors, or (Plato notwithstanding) the Pythagorean 

theorem if we have no evidence or reason to do so, a persistent failure to find evidence of the capacity 

to represent precise natural numbers in young children should increase our confidence that this much 

is lacking in the organisms with which we’re concerned. 

 

However, far from providing “unambiguous evidence” against Number Nativism, which mandates an 

account on which our initial capacity for precise natural number representation is learnt, this Argument 

from Performance is straightforwardly defeasible. Really, it just challenges Nativists to identify positive 

evidence that humans innately represent precise natural numbers and show that this can be squared 

with the above results. In response to this challenge, I’ll now consider recent work in psycholinguistics, 

which has not yet been discussed in this context.  

 

3. The Tolerance Principle and Number Nativism 

The preceding arguments are something of a grab-bag, but there’s a common thread. Each argument 

highlights an absence of numerical performance where Number Nativists, or some caricature thereof, 

might expect to find this. But while these claims are often overblown (as in The Argument from 

Anthropology) or problematically conflate the mental representation of numerical quantities with their 

linguistic expression (as in The Argument from Linguistic Development), it’s true that they present 

Number Nativists with a challenge. The challenge is to provide positive evidence for innate 

representations of precise natural numbers and show that this evidence can be squared with the 

failures of numerical performance described above.  

 

To this end, I’ll now introduce psycholinguistic research on The Tolerance Principle (3.1). I’ll argue 

that this is hard to make sense of unless young human infants have an innate (and heretofore 

unacknowledged) capacity to represent large natural numbers precisely (3.2). I’ll then argue that there 

is no obvious reason why these innate representations couldn’t form the innate basis of mature 

numeric conception (3.3).  
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3.1 The Tolerance Principle 

‘The Tolerance Principle’ (TP) is a theorem which purports to specify when children will and won’t 

endorse rule-like generalizations in language, treating these as productive rules to be generalized to 

new cases.  

 

Consider the “add ‘-ed’ to make verbs past tense” rule in English. This rule applies to many cases: if 

we add ‘ed’ to verbs such as ‘stop’, ‘crouch’, ‘berate’, and ‘manage’ we correctly produce their past-

tense counterparts, ‘stopped’, ‘crouched’, ‘berated’, and ‘managed’. And, sure enough, this is 

something young children readily appreciate, productively applying “add ‘-ed’” to novel cases.  

 

A problem arises when we note that such rules admit exceptions: ‘hold’ becomes ‘held’ (not ‘holded’), 

‘go’ becomes ‘went’ (not ‘goed’), etc. Irregular transformations of this sort are found in all natural 

languages (Sapir 1928) and often concern some of the most common words therein (Pinker 1999). 

Yet, despite their token frequency, young children draw a categorical distinction between these (type 

infrequent) irregular transformations and the (type frequent) regular transformations they observe. So, 

while overgeneralizations from (relatively common) regular transformations are among the most 

frequently documented errors in child morphology (Yang 2002), overgeneralisations from (type 

infrequent) irregular transformations are virtually absent (Yang 2016a). Thus, it is only when a 

rule/generalization applies to a sufficiently large proportion of types within the target domain that it 

“earns” its productive keep (Aronoff 1976; Plunkett & Marchman 1993; Bybee 1995).  

 

This raises the question: How common must these generalizations be? When does a linguistic 

regularity hold sufficiently often that it is something from which children productively generalize? 

 

Many answers to this question seem possible. We could imagine that rule-like generalizations are 

treated as productive iff they apply to >50% of cases in the target domain, or just in case they apply 

more often than chance. TP recommends a more nuanced answer: It proposes that a rule is treated as 

productive iff its treatment as such speeds up the average time with which it is accessed given two 

independently motivated background assumptions: The Elsewhere Condition and Zipf’s Law.  

 

The Elsewhere Condition states that for a productive rule (e.g., “add ‘-ed’”) to be applied to 

a given token (e.g., a given verb), exceptions to the rule must be considered and rejected as 
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irrelevant, in series, and in rank order of frequency. Accordingly, the Elsewhere Condition 

states that entries in the target domain are processed one-by-one, as follows: 

 

If A then B 

If C then D 

… 

Otherwise: Apply the productive rule-like generalisation 

 

where ‘A’ and ‘B’ refer to transformations of the most common irregular in the target domain, 

‘C’ and ‘D’ refer to transformations of the second most common irregular in the target domain, 

and so forth, and where it is only after all such irregulars have been considered and ruled out 

in series that the productive rule is applied. (This may sound like a bold conjecture. However, 

the Elsewhere Condition has been widely supposed in linguistic theorising [Anderson 1969; 

Halle 1997; Brown & Hippisley 2012] and it is supported by a host of empirical considerations. 

For instance, it is supported by the fact that the speed with which irregular transformation 

rules are processed, in both linguistic production and comprehension tasks, is inversely 

proportional to their rank-order frequency in the language [Marlsen-Wilson & Tyler 1997; 

Clahsen 1999; Pinker & Ullman 2002] and by the observation that irregulars, which do not 

permit productive generalisation, are processed faster than regulars [Yang 2016a: Section 

3.3.2]. Moreover, it is worth noting that while the implementation of The Elsewhere Condition 

strikes critics as cumbersome, requiring that we laboriously represent the number of times 

each word in the lexicon has been tokened, efficient algorithms have been posited, showing 

how simple heuristics yield similar results [Rivest 1976; Sleator & Tarjan 1985; Yang 2016a].) 

 

Zipf’s Law refers to the (rather more mysterious) fact that when measured values in a target 

domain are sorted in decreasing order, the value of the nth entry is often inversely proportional 

to n, such that: The most common type in the target domain appears roughly twice as often 

as the second most common type in the target domain, three-times as often as the second 

most common type in the target domain, and so forth (Zipf 1949). While Zipfian distributions 

pop up in surprising places (e.g., predicting city size in many countries) they are best 

established in the case of language. Thus, in the Brown Corpus for American English, the 

most commonly appearing word “the” accounts for roughly 7% of all word occurrences, while 



18 
 

the second-most-common word “of” applies to roughly 3.5% of word occurrences, and so on 

(Fagan & Gençay 2010). In other words, the second most common word appears roughly half 

as often as the first, and the third most common word appears roughly a third as often as the 

first, etc. 

 

Of course, Zipf’s Law is an approximation – albeit an approximation that holds across frequency 

distributions of many kinds, including countless sub-domains of language (ibid.). What matters here 

is that it enabled Charles Yang (with help from Sam Guttman) to formulate TP: proving that if 

linguistic rules are processed in accord with The Elsewhere Condition, and entry types follow a Zipfian 

distribution in their token frequency, then the encoding of the productive rule will increase the mean 

speed with which entries are processed just in case: 

 

E  ≤ ØN where ØN:= N/log N 

 

where ‘E’ refers to the number of exceptions to the rule-like generalisation and ‘N’ refers to the total 

number of entry types known in the target domain. Put differently, TP proposes that a rule-like 

generalisation should be treated as productive iff the number of exceptions to the generalization does 

not exceed the total number of types encountered in that domain divided by the natural logarithm of 

that total (Yang 2018). Conformity to this rule ensures that (on average) entries are processed quicker, 

if we assume the Elsewhere Condition and a Zipfian distribution. 

 

Working through the details of Yang’s proof lies beyond the scope of this paper (see Yang 2016a or 

2018 for details). What matters here is that TP makes precise predictions about when children should 

productively generalise rules they have encountered. For instance, given a rule R that applies to a target 

domain with 9 items, TP predicts that 4 (or 4.096 or Ø9=9/ln9) exceptions can be tolerated before 

its treatment as a productive rule becomes less efficient than storing individual items on a case-by-

case basis in one long look-up table. Thus, strict adherence to TP implies that only when the number 

of exceptions sits below this threshold will the rule be deemed productive, and categorically so (i.e., 

generalized to 100% of novel cases). Meanwhile, a larger target domain containing 20 types will allow 

that more of these (up to 6) might violate a productive rule therein. In any case, TP predicts that the 

relative proportion of tolerable violations will decrease as domain size gets bigger (Figure 2). This has 
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the intriguing consequence that productive rules are easier to learn when one knows less words in a 

language (Yang 2016a: 66). 

 

N of 10 Allows 4 tolerable exceptions 40% 

N of 20 Allows 6 tolerable exceptions 30% 

N of 50 Allows 12 tolerable exceptions 24% 

…   

N of 1,000 Allows 144 tolerable exceptions 14.4% 

 

Figure 2: The proportion of tolerable exceptions the Tolerance Principle permits decreases with 

the number of types within the domain. 

 

So far, TP might sound like a normative thesis, about when children should deem linguistic rules 

productive (given certain background assumptions). Thus, it might seem orthogonal to the project of 

describing actual human psychology. What’s remarkable, is that TP has been found to predict actual 

patterns of productive generalization with astonishing accuracy.  

 

Demonstrations of this astonishing accuracy take several forms. An initial indication that TP may be 

descriptively adequate is that it predicts the frequency with which regular and irregular word types 

appear in corpus data, across many languages, including Polish, Russian, German, North American 

English (Yang 2016a), Cree (Henke 2022), and Early Modern English (Ringe & Yang 2022). TP is also 

found to explain otherwise puzzling discrepancies in cross-cultural linguistics. For example, it’s been 

noted that children begin productively applying the rules of their native languages’ count lists at 

different points. Thus, children do not begin to productively apply the rules of the English count list 

until they have learnt to count to 72 (at which point they have a eureka moment: “the next number 

must be ‘seventy-three’, just like how ‘sixty-three’ followed ‘sixty-two’!” – Fuson et al. 1982). In a 

stunning vindication of his theory, Yang (2016b) showed that, given the number of exceptions to the 

productive rules governing the English count list, this is the threshold at which TP predicts productive 

generalization to obtain. He also noted that the threshold is lower in Mandarin – where productive 

generalisation takes off at 40 – and again showed that this is what TP predicts. 
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More relevant for us are a suite of carefully controlled developmental studies. In one study, Schuler et 

al. (forthcoming, Exp.1) presented children, aged 5-7, with 9 noun types from one of two artificial 

languages. In either case, the experimenter produced both the “singular” and “plural” form for each 

entry. In one language, 5 of the nouns shared a plural suffix (‘ka’) while 4 did not. In this condition, 

TP predicts that children should productively generalize the regularity, since it predicts an allowance 

of 4.096 (Ø9=9/ln9) exceptions before productivity breaks down. Meanwhile, the second language 

contained just 3 nouns with the shared suffix ‘ka’ – while this made ‘ka’ more common than any other 

suffix, it left 6 exceptions to the rule (well above the threshold of 4.096). Sure enough, when children 

were exposed to the first language, they applied the “add ‘-ka’” rule to novel nouns 92% of the time 

(which was not significantly different from 100%, indicating categorical application). Meanwhile, in 

the second language, children applied the “add ‘-ka’” rule just 16.9% of the time (which was not 

significantly different from chance, despite ‘ka’ appearing 3x more than any other suffix encountered).  

 

The fact that children productively generalised, categorically, and in line with the thresholds predicted 

by TP, bears out bold predictions of Yang’s theory. However, a second experiment from Schuler et 

al.’s paper was even more telling. This second experiment was identical to the first except the token 

frequency of nouns in the artificial languages varied dramatically. This allowed that regular nouns 

could appear with low frequency and irregular nouns could appear with high frequency, making for a 

more ecologically valid test set which closely resembles the frequency distributions found in (some) 

natural language domains (Pinker 1999; Yang 2016a).  

 

Under these conditions, it initially appeared that TP was falsified. Specifically, it was found that 

children tested on a language with 5 regular nouns and 4 exceptions applied the regular form just 

54.63% of the time (significantly less than 100%, as TP predicts). However, the standard deviation of 

this result was large, and when results were analysed at the level of individual children, the categorical 

nature of their responses remained apparent: 16 of 20 children’s responses were categorical, with 5 

children effectively generalising the “add ‘-ka’” rule 100% of the time, and 11 failing to apply any 

observed suffix more often than chance.  

 

This prompted the experimenters to consider the number of noun-types that each child had actually 

remembered (based on a rating test that was conducted after all trials). Taking this into account, the 

results proved to align with TP after all. For instance, children who only remembered 8 of the 9 noun-
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pairings, including all 4 exceptions, did not productively generalise the regular rule significantly more 

often than chance. This is what TP predicts, since the tolerance threshold for a domain with 8 noun 

types is 3.85 (and thus <4), not the 4.096 exceptions tolerated in a domain with 9 types. Indeed, TP’s 

predictions bore out in this way in 15 of the 16 children whose behaviour was categorical. So, when 

children’s word retention was taken into consideration, categorical generalisations conformed to TP, 

with 15 of 20 children effectively and categorically distinguishing (e.g.,) sets with 9 types and 4 

exceptions from sets with 8 types and 4 exceptions. 

 

Of course, this study probed 5–7-year-olds – children who have had plenty of time to learn stuff. 

However, similar results are found in young infants (Gómez & Lakusta 2004; Koulaguina & Shi 2013; 

Koulaguina & Shi 2019). Perhaps most dramatically, Shi and Emond (2023) tested non-Russian-

speaking 14-month-olds. These infants were exposed to 16 three-word sentences of Russian, which 

either conformed or failed to conform to a movement rule (ABC → BAC vs. ABC → ACB). In a 

domain containing 16 types, TP predicts that productive generalisation should occur if there are <5.77 

exceptions. Thus, in a first experiment, where 11 sentences conformed to a movement rule and 5 did 

not, TP predicts that generalisation would occur. Sure enough, infants in this experiment looked 

significantly longer when a subsequent test stimulus failed to follow the rule that was implicit in 11 of 

the 16 exemplars. A second experiment then tested 14-month-olds on an identical training set 

comprising 16 sentence types, except that here only 10 sentences conformed to the rule, leaving 6 

exceptions (i.e., a number now exceeding the TP threshold). Under these conditions, infants did not 

look significantly longer when the subsequent test item failed to conform to the rule than when it did 

not. Thus, looking behaviour implied that 14month-olds distinguish collections containing 11 regulars 

and 5 exceptions from collections containing 10regulars and 6 exceptions, in harmony with the 

predictions of TP, given a common set size of 16. 

 

3.2 From TP to natural number 

Work from various laboratories, utilising various experimental methods, bears out fine-grained 

predictions of TP. Most importantly, work with young children suggests that their tendency to treat 

linguistic generalisations as productive conforms to the categorical thresholds predicted by TP. I’ll 

now argue that this is hard to make sense of unless these children possess a facility representing precise 

natural numbers, in a manner that is almost certainly innate. My argument for this claim proceeds in 
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four steps. After making this argument, I’ll explain how and why these innate representations could 

serve as an innate basis for mature numeric conception (Section 3.3). 

 

Step 1: TP requires representing absolute quantities  

Recall that TP thresholds are not a constant ratio of rule-conforming to rule-violating types. Thus, TP 

does not predict that children will treat a rule or generalization as productive iff it applies to (e.g.) ½, 

or ¾, of types within the target domain. Rather, TP predicts that the proportion of tolerable violations 

to a productive rule decreases with domain size. For instance, in a domain with 10-word-types, 4 (i.e., 

40%) of these may violate a rule that is treated as productive; meanwhile a domain of 20-word-types 

can tolerate 6 (i.e., just 30%) exceptions, with larger domains tolerating a smaller proportion of 

exceptions still (Figure 2).  

 

This raises the question: how could these precise thresholds be identified without first representing 

the quantity of word types in the domain? Since TP thresholds are not a constant ratio but are, instead, 

specified by a computational operation over the total (ever evolving) quantity of types encountered 

within the target domain, it’s hard to see how the threshold could be identified without explicitly 

encoding the total quantity of types in that domain. And once the TP threshold has been identified, 

it’s hard to see how one could identify whether a rule has/has not exceeded this threshold, such that 

productivity will/won’t ensue, unless the absolute quantity of types that do/don’t violate the rule are 

encoded. Prima facie, these quantities must be stored and represented. 

 

Admittedly, this modest suggestion might be resisted by those advocating associationist theories of 

productivity (Goldberg 2019; Rummelhart & McClelland 1986). On these accounts, thresholds for 

productivity are set by associative mechanisms which eschew the need to represent quantities entirely. 

Instead, linguistic rules become more strongly associated with entries in the target domain following 

exposure to these. And when associations become suitably strong, productive generalization ensues. 

But not because the system has kept a record of the total quantity of types within the target domain, 

or the total quantity of rule-conforming/rule-violating types therein.  

 

The trouble is: associative models fail to capture the thresholds for productivity observed in children 

(i.e., that predicted by TP). Associative models do explain how children might apply productive rules 

categorically. However, they overgeneralise from irregular forms inordinately more often than children 
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(Marcus 1995; Yang 2016a; Yang 2018). In this way, associative models do not provide an empirically 

adequate alternative to a model on which TP thresholds are identified (and compared to quantities of 

rule-conforming and/or rule-violating types within the domain) via explicit representations of domain 

size and quantities of rule-conforming/rule-violating types therein.  

 

Step 2: These quantities include natural numbers 

If absolute quantities are represented in the service of implementing TP, which types of quantity? If 

TP requires representing the absolute quantity of types in the domain, and the absolute quantity of 

rule-conforming and/or rule-violating types therein, such that these representations can inform 

downstream computations, to which quantities do these representations refer? My suggestion is that, 

minimally, these quantities include natural numbers. 

 

Firstly, it’s unclear what non-numerical quantities could support implementation of TP. As we’ve seen, 

TP identifies a threshold which is determined by the number of types in the target domain, and a rule 

is treated as productive just in case the number of rule-conforming types fails to exceed this threshold. 

To implement TP, such that these predictions are borne out, therefore requires that these numbers 

are tracked in some non-accidental way.  

 

Tracking numbers is not the same as representing them, however (Butterfill 2018). To illustrate, 

consider a situation in which TP thresholds are identified by a module which uses non-numerical 

quantities as a proxy for number. For instance, the module might represent the total amount of time 

spent encountering word types in a domain and use this as a stand-in for number. Provided that each 

word type is encountered roughly as often and is tokened for roughly the same duration as any other, 

a system which merely represents duration might effectively track the relevant numbers, enabling it to 

implement TP without representing these; after all, represented duration would hereby vary as a linear 

function of the numbers in question.  

 

The trouble is: this heuristic strategy won’t work in scenarios where TP succeeds. For one thing, we 

have seen that word frequencies follow Zipf’s Law, such that common words appear exponentially 

more often than uncommon words. A system which merely uses total word duration as a proxy for 

number would, thus, be poorly modelled by TP. And indeed, duration and other potential confounds 

(e.g., cumulative loudness[?]) were effectively controlled for in the experiments described in Section 
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3.1. For instance, Schuler et al.’s second experiment manipulated token frequency such that regular 

types could appear with low frequency and irregular types could appear with high frequency. This 

ensured that the time spent encountering word types (or, e.g., their cumulative loudness?) could not 

be used as a proxy for number in the abovementioned ways. Conformity to TP obtained, nonetheless. 

 

This brings me to my second point: Beyond the fact that it’s unclear how performance in the 

abovementioned experiments would be explained by a system which simply represented non-

numerical quantities, the implementation of TP involves representing quantities with properties that 

are unique to discrete numbers.  

 

Consider Frege’s (1884) insight that numbers differ from other quantities in their second-order 

character (i.e., in that they can only be assigned relative to a sortal). If I point at the boots in my closet 

and ask “How many?” Frege would note that this question is ill-posed. To answer it, we need to decide 

if we’re interested in enumerating the individual boots in the closet, the pairs of boots in the closet, or 

the different boot types contained in the collection. In any case, the sortal needs specified since 16 

individual boots might only amount to 8 pairs of boots, or 1 type of boot. Thus, the way in which we 

individuate the items has an impact on the number we attribute to the collection. What Frege observed 

is that non-numerical quantities are not like this. If we want to know how much the boots weigh, or 

what their volume is, it won’t make any difference how the collection is carved up: irrespective of 

whether the collection is thought of as constituting a bunch of individual boots, pairs of boots, or 

types of boots it will take up the same amount of space in my closet and register the same weight on 

my scales. Numbers are, thus, distinctive among quantities for having a second-order character. 

 

Frege’s observation is pertinent in the current context since the quantities that are tracked and 

represented when implementing TP have a second-order character. The threshold specified by TP is 

set by the (whole) number of types in the domain, rather than their token frequency. Indeed, this is 

illustrated in the above experiments which control for this latter variable. This suggests that 

implementing TP involves tracking and representing quantities of words relative to the sortal linguistic 

(e.g., word) type, and this proceeds in abstraction from quantities assigned via the deployment of other 
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sortals, like linguistic (e.g., word) token. Echoing Frege, this is tantamount to saying that the quantities 

being represented include numbers (including whole or natural numbers) of linguistic types.4  

 

Step 3: Natural numbers are represented precisely 

Implementing TP involves representing absolute (natural) numbers of types within a target domain 

and absolute (natural) numbers of types which do/don’t violate a rule-like generalisation. 

Nevertheless, this is consistent with these representations representing numbers imprecisely. For 

instance, it’s been argued that the ANS represents natural numbers because non-numerical confounds 

fail to explain its performance, and because ANS representations track quantities with a second-order 

character (Clarke & Beck 2021a). Even so, this is consistent with the claim that the ANS represents 

natural numbers imprecisely (Clarke & Beck 2021b). Since the tasks described in Section 3.1 involve 

children (even young infants) keeping track of quantities outside the subitizing range, you might think 

performance was underwritten by an innate ANS, representing natural numbers imprecisely. 

 

This would be a mistake. The tasks described in Section 3.1 involved children discriminating numbers 

of linguistic types with a level of precision that’s unheard of in ANS tasks, despite hundreds (if not 

thousands) of papers probing ANS acuity. Consider Schuler et al.’s finding that, when memory 

retention was considered, 15/20 children performed productive generalizations in line with TP, even 

when frequency distributions made (token) irregular transformations more frequent. As noted, this 

involved children discriminating domains containing 8 types (of which 4 were rule-violating) from 

domains containing 9 types. Similarly, Shi and Emond found that 14-month-olds were sensitive to the 

difference between 10 rule-conforming and 6 rule-violating types and 11 rule-conforming and 5 rule-

violating types in a domain with 16 types. Indeed, this latter result is particularly impressive since it 

didn’t take account of individual variations in sentence retention (something Schuler et al. showed to 

be relevant), suggesting that – if anything – these results underestimated numerical competence.  

 

Either way, ANS acuity lags way behind these thresholds for discrimination. Until recently, many 

claimed the hardest ratio an adult human’s ANS could discriminate is 7:8 (Carey 2009: 295). While 

these claims are overblown – recent studies show that adults can distinguish 50:51 ratios above chance, 

 
4 TP could also implicate representations of rational numbers. For instance, in a domain with 9 types, the relevant 
mechanisms might represent the TP threshold as 4.096. I simply take this to be an open possibility, however: In principle, 
a psychological system might round down to the nearest whole number (i.e., 4) and use this whole number to specify the 
discrete quantity of violations that can be tolerated.  
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given an enormous number (e.g., 400) of trials (Sanford & Halberda 2023) – children in the 

abovementioned studies were effectively tested on a single trial. For instance, in Shi and Emond’s 

(2023), 14-month-olds encountered one collection of 16 Russian sentence transformations and 

effectively discriminated a case in which 10 conformed to a rule from a case in which 11 did. In other 

words, they performed better than adults have ever been observed to perform using their ANS, even 

though ANS acuity is considerably lower in children (Libertus & Brannon 2010).  

 

It might be replied that this falls short of establishing that the representations implicated in TP 

represent specific natural numbers precisely – perhaps they still represent numbers imprecisely, just less 

imprecisely than the ANS. I’d counter that this reflects an unwarranted scepticism which is 

undermined by reflection on the abovementioned tasks. As we saw in Section 1, precise 

representations of specific natural numbers bear hallmarks that approximate number representations 

lack. For instance, they license robust judgements of equinumerosity. The abovementioned work on 

TP supports thinking the representations in question meet this criterion. Experiments such as Schuler 

et al.’s and Shi and Emond’s contrasted performance across conditions in which domain size was held 

constant while the number of rule-violating/conforming types varied. Using this methodology, 

Schuler et al.’s Experiment 1 found that productive generalisation would ensue when the quantity of 

rule-violating types was even marginally below the threshold set by TP (e.g., 4 exceptions in a domain 

with 9 types and 4.096 legal exceptions) but not if this threshold was crossed. This is consistent with 

thinking that a common threshold was identified across both conditions, irrespective of the number 

of rule-conforming/rule-violating types in the domain, and that domains were thus represented as 

equinumerous. Similar points apply to Shi and Emond’s work with 14-month-olds on a domain size 

of 16 types. And this seems particularly compelling when we note that modest changes to the 

represented domain size affected these results dramatically, precisely as we would expect if different 

quantities were treated as categorically distinct. For instance, in Schuler et al.’s second experiment, 

children who simply remembered 8 tokens in a target domain of 9 behaved as if there was a tolerance 

threshold of 3.85 (in line with the predictions of TP). This highlights the fact that small differences in 

domain size, yielding small differences in TP threshold, impact children’s behaviour markedly and 

categorically. It would be miraculous that these fine-grained predictions were robustly borne out, if 

children weren’t representing exact numbers precisely in the first place. 
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Step 4: This is innate 

Finally, these representations are almost certainly innate. For a start, TP seems to be a human universal. 

It predicts patterns of linguistic development across languages – e.g., points in the English and 

Mandarin count list where productive generalisation ensues, owing to the idiosyncratic quantity of 

rule-violating number words in either language (Yang 2016b). Similarly, corpus data suggests that it 

governs languages like Polish, North American English and German (Yang 2016a), extinct languages 

like Early Modern English (Ringe & Yang 2022), and Indigenous languages like Cree (Henke 2022). 

For this reason, TP is not some curiosity of anglophone children, or WEIRD communities (Henrich 

et al. 2010) – it emerges irrespective of culture and learning environment. And while this insensitivity 

to culture and learning environment would be surprising on the view that TP is learnt, it’s precisely 

what nativism predicts. Just as an innate and biologically endowed universal grammar constrains (and 

ensures commonalities among) the structural features of all natural languages (Chomsky 1986), the 

innate implementation of TP predicts that it be a human universal.  

 

This brings me to my second point: It’s just very hard to see how TP could be learnt by young children, 

especially if children lack the resources required to represent precise numbers. In a standard poverty 

of the stimulus argument, the nativist argues that some psychological competence is innate on the 

grounds that there was not enough data in the environment for it to have been learnt. For instance, it 

is argued that certain ‘deep’ grammatical principles are innate because children essentially never violate 

these, despite having not been exposed to enough well-formed strings (or enough guidance as to what 

constitutes an ill-formed string) to distinguish these from scratch (Chomsky 1965). Such conclusions 

are, of course, disputed, owing to controversies concerning the amount of data grammatical learning 

requires (Perfors et al. 2011) or the amount of data children are exposed to in development (Butterfill 

2020: 97-100). Regardless, the underlying reasoning seems particularly solid in the case at hand. 

Children do learn the superficial grammatical principles of their natural language through observation, 

and subsequently perform generalisations from what they have observed (e.g., overgeneralising the 

“add ‘-ed’” rule in English). This is what TP helps to explain. These overgeneralisations might even 

get corrected, e.g., by a benevolent pedant who tells them not to say ‘holded’. But what seems grossly 

non-obvious, is what would even serve as available evidence to the child that TP itself reflects a 

maximally efficient principle by which to store lexical entries such that these inductive generalisations 

would be made (or not) to begin with; not least because TP emerges in young infants, seems to be 

applied categorically without any discernible process of trial and error, and goes largely unnoticed by 
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adults – i.e., it’s the sort of thing whose unpacking required careful mathematical analysis by university 

professors. For these reasons, it seems far-fetched to suppose that TP, and the precise representations 

of natural number that are needed for its implementation, are learnt – a point which is, of course, 

consistent with the principle’s genesis in the context of generative linguistics where it is expected to 

guide the child’s search through an innately constrained hypothesis space (Yang 2016a). 

 

3.3 From TP to Numeric Conception? 

Summarizing the discussion so far: Number Nativism is an unpopular view. But objections to it are 

unpersuasive (Section 2) and received theories of development seem to underestimate our innate 

numerical competences. For when we consider work on TP (Section 3.1), we find reason to posit 

innate representations of precise natural numbers, which cannot be assimilated to the representations 

of an ANS and/or SNS (Section 3.2).  

 

In this final subsection, my (modest) suggestion is that there is simply no obvious reason why these innate 

representations could not form the innate basis of mature numeric conception. If true, we not only 

lack reason to reject Number Nativism; we also possess evidence for the innate resources from which 

a plausible Number Nativism might be developed.   

 

To some ears, this final suggestion will sound odd. Just consider how we might square the results of 

Section 3.2, evincing innate natural number representations, with the results described in Section 2, 

concerning children’s protracted failures to precisely enumerate. Prima facie, the answer could seem 

straightforward. The tasks described in Section 3.2 involved children discriminating precise numbers 

of linguistic types. They, thus, arose in the domain of language acquisition. We might, then, suppose that 

the precise natural number representations involved in TP are proprietary to the language faculty. 

Since none of the tasks described in Section 2 involved enumerating word or sentence types, it’s 

plausible to think they employed different cognitive resources entirely.  

 

So far so good. But here’s the worry: If TP and its associated numerical resources are proprietary to 

the language faculty, how could they form a basis for the natural number concepts we employ in 

flexible thought?  
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In framing this worry, my interlocutors have tended to stress that the proprietary representations and 

processes of the language faculty are sub-personal (see Drayson 2014). Hence, when one learns a 

grammatical rule in natural language, their language faculty extracts the natural number of types in the 

target domain, and divides that number by its natural logarithm, all in the service of TP (Section 3.2). 

But this is not something the person does, nor something they possess any awareness of. But if the person 

is oblivious to these sub-personal states and happenings, how could they provide them with a basic 

conception of the contents being manipulated (precise natural numbers)? 

 

This is a common worry, but it’s a red herring. Let us suppose, if only for the sake of argument, that 

the innate representations of precise natural number, implicated in TP, are purely sub-personal – states 

that can, in no way, be attributed to the person. This need not render them irrelevant to the emergence 

of person-level natural number concepts. For the crux of the issue is not whether these innate 

representations are person level; it’s whether these innate representations are, or could become, 

accessible to systems involved in concept use and formation in relevant ways, such that our mature 

number concepts might be grounded in these (see Section 1.1).  

 

On this point, Nativists find reason to be optimistic. For a start, closer inspection reveals that TP is 

probably not proprietary to the language faculty. Rather, TP is probably employed by a relatively wide 

range of consumer systems, including systems associated with central cognition and our conceptual 

grasp of the world.5 One reason to say this is that TP isn’t really a theorem about language acquisition. 

It’s a theorem which specifies when rules, in general, should be treated as productive when access is 

governed by The Elsewhere Condition and frequency distributions conform to Zipf’s Law. This is 

important, since Zipfian distributions pop-up all over the place, not just in language (Auerbach 1913), 

and The Elsewhere Condition specifies a general processing architecture, apt whenever exceptions 

must be ruled out before productive rules are applied.  

 

Of course, the extent to which TP applies outside of language is an empirical question. Nonetheless, 

extant results suggest its generality. Yang (2016b) reports that TP makes accurate, quantitative 

predictions about numerical understanding (e.g., children’s explicit grasp of numerical succession). 

 
5 This is not to assume that there is a single TP module or system. There might be, but there might also be distinct systems 
in the human mind implementing TP. 
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Moreover, it’s been noted that TP can explain puzzling effects in the heuristics and biases literature.6 

For example: since TP tolerates a larger proportion of exceptions (and thus predicts more productive 

generalization) when domain size is small, it can account for classic small sample biases in decision 

making – e.g., why it is that humans overestimate the likelihood that a tossed coin is biased, when they 

observe a small sample of trials, and see it land one way >50% of the time (Tversky & Kahneman 

1974). It also explains why biases would emerge most readily when one has limited experience with a 

group (Bohnet & Chilazi 2019). While these connections are currently the subject of investigation (C. 

Yang, pers. comm.), they motivate the possibility that TP does not simply govern the processing of 

regularities within the language faculty’s proprietary domain (e.g., regularities in morphology or 

sentence structure). Rather, it governs the assessment of productive regularities, quite generally, as 

when one is predicting whether subsequent coin tosses will land heads/tails or whether a stereotyped 

minority job candidate will perform well. If true, this suggests that TP and the associated numerical 

representations used to implement this can come to interact with a wide range of systems and 

representations, including those involved in domain general cognition and conceptual thought. 

 

Admittedly, this falls short of showing that the innate representations of natural number involved in 

TP serve as the basis of our mature number concepts. But if it is acknowledged that TP and its 

associated machinery interact with a wide range of consumer systems, and the representations 

involved interact with a myriad of systems beyond the language faculty (including systems involved in 

conceptual thought, e.g., about coin tosses), it is hard to see any straightforward reason why its 

representations could not, potentially, be used by conceptual systems to ground number concepts, 

irrespective of their status as sub-personal. Which is simply to say: This possibility deserves further 

consideration.  

 

Of course, specifying how TP’s numerical representations would ground mature number conception 

is a big question; one which lies beyond the scope of the paper, turning as it does on vexed issues 

concerning the nature and structure of concepts. Nevertheless, there are several plausible ways of 

spelling this suggestion out. One possibility is that the mechanisms of concept formation map number 

concepts (symbols in a language of thought) onto the precise number representations I’ve postulated. 

 
6 Consistent with this, it’s worth noting that TP does not simply characterise children’s learning – it is also evident in adults. 
For while adults typically engage in probability matching in tasks of the sort described in Section 3.1, researchers have 
tended to find that a subset of adults always behave in accord with TP during these tasks (Schuller et al. forthcoming). This 
suggests that TP continues to influence learning and generalization throughout the lifespan. 
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This would be akin to the way Gallistel and Gelman (1976) once proposed that mature number 

concepts are mapped onto ANS representations, except it avoids the worry that ANS representations 

are fuzzy and imprecise in a way mature number concepts are not – a worry which has led many 

theorists to reject Gallistel and Gelman’s account entirely (Carey & Barner 2019).  

 

This general suggestion might even find a natural alliance with recent, empirically motivated, accounts 

of concepts. For instance, Quilty-Dunn (2021) follows Fodor in positing that concepts are atomic 

(unstructured) symbols. However, he conjectures that these “point to memory locations where 

cognitively useful bodies of information are stored” (158). This allows for a theory which 

straightforwardly inherits the virtues of Fodorian atomism, while avoiding prominent objections to 

this thesis and accommodating results concerning the specific kinds of information structures that are 

used in conceptual deployment (e.g., prototypes, exemplars, and more). What’s crucial for our 

purposes is that, on such an account, atomic symbols in the language of thought might initially inherit 

their content as natural number concepts by pointing at the precise natural number representations 

implicated in TP (e.g., through an asymmetric dependence relation). Indeed, this is worth taking 

seriously. As Quilty-Dunn notes “There are no a priori restrictions on what representations can be 

stored at a memory location pointed to by a concept” (174) and we have just found reason to suppose 

that TP and its associated representations might interact with a relatively wide-range of consumer 

systems, including those associated with conceptual thought. Such a suggestion could even offer to 

make straightforward sense of the fact that children initially fail to deploy and successfully utilize their 

number concepts outside of certain contexts (see Section 2.2-3). This is because, on such an account, 

number concepts would initially ground numerical discriminations via specific data structures, such as 

those involved in TP, which have a circumscribed domain of applicability, despite allowing the concept 

itself (the atom which points at these) to freely compose with other concepts in highly general ways. 

 

In saying this, it’s important to note that there is no comparable reason to suppose that the internal 

operations of our language faculty would ground an innate conceptual grasp of other abstract 

principles of generative grammar. Unlike the numerical representations involved in TP, there’s no 

reason to suppose that these principles are accessible to (or used by) conceptual subsystems, and there 

is little plausibility to the idea that a conceptual grasp of these principles emerges independently of 

culture and learning environment (compare Section 2.1). Similar points apply to the proprietary states 

of other domain-specific faculties and algorithms, like those comprising the visual system.  
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We also shouldn’t assume that the above considerations overgeneralize, showing that since TP is 

employed by myriad psychological faculties it could ground conceptual knowledge of our DIVIDING 

QUANTITIES BY THEIR NATURAL LOGARITHM (i.e., of the TP theorem itself). For while TP 

implicates representations of natural number (Section 3.2), many faculty psychologists would urge that 

the inflexible transformations such representations drive will tend to be built into the architecture of 

the faculties themselves (Pylyshyn 2003; Quilty-Dunn & Mandelbaum 2018). If true of TP, the 

transformation algorithm in question will not be explicitly represented and will thus be unable to 

ground concepts of natural logarithms (or the like), even in principle.  

 

4. Conclusion 

I have argued for a modest conclusion, but one with the potential to radically reorient thinking on 

numerical development. Number Nativism is often considered hopelessly out of touch with the 

empirical record. However, I hope to have made room for its consideration. Objections to Number 

Nativism are unpersuasive, the innate numerical competences of young children are richer than 

current theories recognize, and these competences implicate precise representations of natural number 

which could (potentially) serve as a basis for mature numeric conception. Add to this the fact that the 

seeming ubiquity of precise enumeration across cultures is straightforwardly explained by the Nativist 

(Butterworth 1999), coupled with the fact that Nativism explains why broad consensus emerges on 

basic structural properties of the natural numbers (e.g., that each natural number is exactly one greater 

than its predecessor – something which learning accounts have been criticised for not even trying to 

explain [Rey 2014]), it’s hard to shake the feeling that Number Nativism remains a leading account of 

numerical development. 
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