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Abstract
Number Nativism is the view that humans innately
represent precise natural numbers. Despite a long and
venerable history, it is often considered hopelessly out of
touchwith the empirical record. I argue that this is amis-
take. After clarifying Number Nativism and distancing
it from related conjectures, I distinguish three argu-
ments which have been seen to refute the view. I argue
that, while popular, two of these arguments miss the
mark, and fail to place pressure on Number Nativism.
Meanwhile, a third argument is best construed as a
challenge: rather than refuting Number Nativism, it
challenges its proponents to provide positive evidence
for their thesis and show that this can be squared with
apparent counterevidence. In response, I introduce
psycholinguistic work on The Tolerance Principle (not
yet considered in this context), propose that it is hard to
make sense of without positing precise and innate rep-
resentations of natural numbers, and argue that there
is no obvious reason why these innate representations
couldn’t serve as a basis for mature numeric conception.

You don’t have to be a mathematician to have a feel for numbers.
John Nash
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2 CLARKE

How do humans acquire the capacity to represent precise natural numbers, like SEVEN,
ELEVEN, or SIXTY-TWO? That they do is uncontentious. Natural numbers may be our best
understood abstract objects. Axioms have been formulated from which their properties can be
deduced (Peano 1908). Even primary-school children gain an appreciation formathematical infer-
ences they permit (Butterworth 1999). Yet, no less obviously, numbers are weird things. You can’t
point at the number seven, or bump into the number eleven, since entities of this sort are not
located in space and time. Consequently, it’s been hard to see how we could first learn of natural
numbers, or come tomanipulate them precisely, such that consensus would emerge on their basic
structural properties (e.g., that each natural number is exactly one greater than its predecessor,
or that any two collections of N objects stand in a relation of 1:1 correspondence). In short: This
would involve us forming an exact and shared conception of entities that exist outside the physical
world with which we interact.
Number Nativism helps defuse these concerns. For the Nativist, our capacity to represent

precise natural numbers is not learnt – it’s part of our innate biological endowment. This leaves
untouched vexed issues concerning the representation of numbers. For instance, one might
wonder how a representation, learnt or innate, could refer to numbers if they’re located off in
Plato’s heaven (Benacerraf 1973). Regardless, it’s a virtue of the Nativist proposal that it avoids
the abovementioned problem of how our internal states might first support precise numerical
inferences, given that numbers are entities with which we lack material acquaintance – this
is because Nativists deny that our initial capacity to represent and process natural numbers
results from learning through observation or acquaintance. And since Nativists deem this innate
endowment common to all neurotypical individuals, it’s not hard to see why consensus emerges
on many of the natural numbers’ structural properties – this is akin to the way an innate and
biologically endowed universal grammar constrains and ensures commonalities among the
structural features of all natural languages (Chomsky 1986).
Despite these virtues, Number Nativism is an unpopular view. A long and venerable history

in the work of Plato to Chomsky notwithstanding, contemporary theories of cognitive develop-
ment share in the assumption that our capacity to represent precise natural numbers is learnt
(Bloom 2000; Dehaene 1997; Hurford 1987), and leading theories of concept learning take the
acquisition of precise number concepts to be their central target (Carey 2009; Spelke 2017; Lee
& Sarnecka 2010). Indeed, the suggestion that our capacity to represent precise natural numbers
is not innate is often deemed non-negotiable – as dictated by “unambiguous evidence” that the
acquisition of precise numerical representations is a product of culture and learning environment
(Pitt et al. 2022: 371).
I think Number Nativism is in considerably better standing than this modern consensus

recommends. After clarifying Number Nativism and distancing it from related conjec-
tures (Section 1), I’ll distinguish three arguments which have been seen to refute the view
(Section 2). I argue that, while popular, two of these arguments miss the mark, and fail to
place pressure on Number Nativism. Meanwhile, a third argument is best conceived of as
a challenge: rather than refuting Number Nativism, it challenges its proponents to provide
positive evidence for their thesis and show that this can be squared with apparent evidence
to the contrary. In response, I’ll introduce psycholinguistic work on The Tolerance Principle
(not yet considered in this context), note that it’s hard to make sense of without positing
innate representations of precise natural numbers, and argue that there’s no obvious reason
why these representations couldn’t serve as an innate basis for mature numeric conception
(Section 3).
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CLARKE 3

1 WHAT IS NUMBER NATIVISM?

1.1 Number nativism

Number Nativism is the view that humans innately represent exact natural numbers, such as
SIX, SEVEN, and TWENTY-THREE. Specifically, these representations are innate in the sense
that they are biologically endowed, and not acquired through a psychological process of learning
(Shea 2011).
This does not tie Nativists to the view that these innate resources are present at birth, much as

an innate and unlearnt capacity to grow pubic hair does not imply its presence at birth. Nor does
it require that they are evolutionarily ancient and/or shared with other animals, much as positing
an innate language faculty does not require that chimpanzees can talk. Finally, it does not imply
that humans are innately endowedwith an indefinitely large number of syntactically atomic sym-
bols, each of which represents a distinct natural number distinctly – i.e., one atomic symbol for
62, another atomic symbol for 63, and so forth, perhaps ad infinitum. More plausibly, Nativists
allow that humans have an unlearnt capacity to represent a small range of natural numbers (say,
ONE, TWO, and THREE –Margolis 2020) plus the representational resources needed to combine
these such that larger natural numbers can be expressed in terms of these more basic resources
(Chomsky 1988; Leslie et al. 2008). This latter possibility – sometimes labelled ‘the building blocks
model’ (Margolis & Laurence 2011) – would, thus, allow humans to represent arbitrarily large
natural numbers in terms of their initial unlearnt repertoire (Fodor 1980; Pinker 1994). It thereby
contrasts with anti-nativist proposals according to which our first representations of precise natu-
ral numbers are discontinuous with the expressive potential of our innate mental representations
(Carey 2009; Spelke 2017), at least when these precise natural numbers are larger than ∼3 and fall
outside the subitizing range (Margolis 2020).

1.2 Number nativism and core cognition

To better understand Number Nativism’s claim that humans innately represent precise natural
numbers, it’s instructive to contrast it with a more popular suggestion: that humans are innately
endowed with ‘core systems’, like an approximate and/or small number system, which facilitate
basic numerical computations in circumscribed ways.

1.2.1 The approximate number system

The approximate number system (ANS) is a psychological system which facilitates numerical
discriminations among relatively large collections of items throughout the lifespan (Barth et al.
2003; Izard et al. 2009). While there’s disagreement over the system’s architecture and algorithms
(Dehaene&Changeux 1993; Yousif &Keil 2020) a defining feature of the ANS is that its numerical
discriminations are imprecise and conform to Weber’s Law. Thus, accuracy is predicted by the
ratio between the numerical quantities in question, rather than their absolute difference (Libertus
&Brannon 2010). As such, 9 is better discriminated from 10 than 10 is from 11 even though 9 differs
from 10 by the same amount as 10 does from 11. What matters is the ratio between these values –
the further from 1:1 the better (Figure 1).
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4 CLARKE

F IGURE 1 The ANS conforms to Weber’s Law in its discriminations: As the magnitude (specified along the
x-axis) increases, values which differ by the same absolute amount will be discriminated less-reliably (as
illustrated on the y-axis).

The precise natural number representations that Number Nativism posits are quite different.
Precise natural number representations represent natural numbers as categorically distinct: e.g.,
TEN as categorically different from NINE, ELEVEN, or any other determinately specified num-
ber. By contrast, the ANS’s conformity to Weber’s Law is typically seen to reflect indeterminacy
and imprecision in the content of its representations. One reason to say this is that adult humans
will often estimate that collections, which are discriminably different for their ANS, contain iden-
tical numbers of elements, under different conditions – thus, they might guess that a collection
of 40 dots contains forty dots in one context and that a collection of 20 dots also contains forty dots
in another context, even though collections of 20 and 40 are easily discriminable for them using
their ANS (Sullivan & Barner 2013). This indicates that the ANS attributes indeterminate values
to the collections it enumerates – for instance, it might attribute to these a numerical range (Ball
2017), a “blur on the number line” (Spelke & Tsivikn 2001), or a probability distribution (Halberda
2016). And since the range of acceptable values that it attributes to a collection increases with
collection size (Izard & Dehaene 2008), it seems that the ANS’s conformity toWeber’s Law results
(at least in part) from imprecision or indeterminacy in the content of its representations increas-
ing as values get bigger. In this way, accurately discriminated collections of ten are represented as
more different from accurately discriminated collections of nine than accurately discriminated
collections of eleven, obscuring the categorical distinctness of each natural number.
This has downstream consequences. Beyond licensing categorical discriminations, precise nat-

ural number representations license precise judgements of equinumerosity. If two collections
are represented as containing precisely N items, this licenses the deductively valid conclusion
that they are equinumerous, irrespective of the number N concerns. Again, ANS representations
fall short in this regard, owing to their imprecision (Carey & Barner 2019). Just as representing
two collections as roughly 7 (but perhaps 6 or 8) in number fails to establish that they are iden-
tical in number, the apparent imprecision of the ANS’s representations renders it incapable of
establishing 1:1 correspondence among collections. For both reasons, the precise natural number
representationsNumberNativists posit should be distinguished from innateANS representations,
which represent numbers, but only imprecisely (Clarke & Beck 2021a).

1.2.2 The small number system

Beyond an ANS, many theorists posit an innate small number system (SNS). Unlike the ANS,
this system facilitates precise numerical discriminations. However, it only does so among small
collections, containing <3-4 items.
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CLARKE 5

One reason for positing an SNS is that human adults are highly accurate when perceptually
discriminating/enumerating collections containing 4 items or less (Mandler & Shebo 1982; Trick
& Pylyshyn 1994). Thus, their small number discriminations, within this subitizing range, show
no sign of the ratio dependence that’s characteristic of theANS. Similar results are found in babies.
Classic work with 10-month-olds found that (on certain tasks) they would readily distinguish 2
items from3 itemswhile remaining at chance discriminating 3 items from6 items (Feigenson et al.
2002). Since the ratio among these latter quantities is larger, it appears that performance was not
underwritten by an ANS, whose discriminations conform toWeber’s Law. Rather, infants are seen
to possess a separate SNS, which facilitates precise discriminations, but only among collections
containing <3-4 items.
What’s crucial to note is that, while the precision of the SNS evades certain shortcomings

of the ANS, its postulation must still be distinguished from Number Nativism. For a start,
most characterisations of the SNS deny that it represents any numerical content whatsoever.
Rather, vision scientists propose that its numerical discriminations are implemented by a system
of visual indexes, which pick out seen items like a series of pointing fingers implemented
in the visual system (Scholl & Leslie 1999). Meanwhile, developmentalists often hold that
the SNS employs a system of mental models, or representations of individual items, which
are not proprietarily visual and can be flexibly stored in working memory (Simon 1997; Le
Corre & Carey 2007). Despite marked differences, these accounts hold that the set size limit
of the SNS is implied by the number of visual indexes available to the visual system or the
number of mental models that can be stored in working memory. But on neither account
does this involve the SNS representing numbers. When two items disappear behind a screen,
and infants are surprised when the screen is removed to reveal just one object (Wynn 1992),
these proposals explain infants’ surprise by suggesting that they have tracked or represented
two individuals/items behind the screen when only one individual/item was found. In other
words, they appeal to the tracking or representation of items/individuals, rather than those
items’/individuals’ numerical quantity. In this way, the postulation of an SNS, thus construed,
differs dramatically from Number Nativism – a thesis which posits innate representations of
number.
Admittedly, some defend a richer interpretation of the SNS, arguing that it produces a small

stock of precise number representations, pertaining to subitizable values – ONE, TWO, and
THREE (Hurford 1987; Wynn 1992; Margolis 2020). On these accounts, the SNS’s inability to
discriminate larger quantities does not directly result from working memory limitations, or
a fixed number of visual indexes.2 More fundamentally, it results from the SNS’s inability to
represent values >3. Even so, the existence of an innate SNS still falls short of Number Nativism.
This is because it does not imply a capacity to represent larger natural numbers precisely,
such as SEVEN, ELEVEN, or SIXTY-TWO. If nothing else, additional resources are needed
to enable these smaller values, encoded by the SNS, to be summed or recombined (Chomsky
1988; Leslie et al. 2008a), such that the summing and recombination of these representations
enables larger values to be represented without expanding on the expressive capacities of our
innate representational repertoire (Fodor 1975; 1980; 2008). Suffice to say, the acquisition of these
additional resources – for instance, grasp of the successor function, enabling ONE to be added
to any successive value – is typically considered a hard-won developmental milestone (Carey &
Barner 2019). So, while Number Nativism is consistent with holding that precise natural number

2 Although working memory might still constrain the SNS’s performance in other ways – e.g. by restricting the number of
sets that can be enumerated in parallel (see: Feigenson 2011).

 19331592, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/phpr.13107 by Sam

 C
larke - U

niversity O
f Southern C

alifornia , W
iley O

nline L
ibrary on [01/09/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



6 CLARKE

representations of SEVEN, ELEVEN, and SIXTY-TWO, are constructed out of the small number
representations an SNS produces (plus additional resources – e.g., SUCCESSOR FUNCTION –
as in the building blocks model of number concept construction described in Section 1.1), it’s
agnostic on this and would go beyond the postulation of an SNS, regardless.

2 ARGUMENTS AGAINST NUMBER NATIVISM

I’m not the first to distinguish Number Nativism from the postulation of an ANS and/or SNS.
Proponents of these ‘core systems’ typically distance themselves from Number Nativism, recom-
mending that these systems enable large and precise natural number concepts (e.g., SEVEN) to
be learnt (e.g. Carey 2009, 2017). Whether or not this is correct (Fodor 2010; Rey 2014), there’s a
widespread assumption that our initial capacity to represent precise natural numbers outside the
subitizing range is not innate, given strong (Spelke 2017) or “unambiguous evidence” (Pitt et al.
2022: 371) that our capacity to do so depends on culture and learning environment. Hence, while
there are strong reasons to posit an innate ANS and SNS, there is supposed to be similarly strong
reason to deny that humans are innately equipped to represent large natural numbers precisely.
This is a mistake. To see why, I’ll now distinguish three arguments which have motivated these

anti-nativist conclusions. While two of these arguments feature prominently in the literature,
they miss the mark, and fail to undermine Number Nativism. Meanwhile, a third argument is
best understood as a challenge – rather than showing Number Nativism to be false, it challenges
the Nativist to provide positive evidence for their hypothesis and show that this evidence can be
squared with apparent evidence to the contrary. This challenge will be considered in Sections 3,
where I introduce psycholinguistic research on The Tolerance Principle and argue that it is hard
to make sense of without positing innate representations of large and precise natural numbers.

2.1 The argument from anthropology

One argument, which is often said to refute Number Nativism, concerns cross-cultural work.
Here, it’s claimed that monolingual speakers of languages which lack precise number words –
such as Pirahã, which simply contains words for one, two, andmany, or Munduruku, which lacks
words for numbers bigger than 5 – remain systematically incapable of representing precise natu-
ral numbers outside their linguistic count range (Gordon 2004; Pica et al. 2004). Indeed, it is work
of this sort which provides the “unambiguous evidence”, mentioned above, that our capacity to
represent precise natural numbers is dependent on culture and learning environment and, hence,
not innate (Pitt et al. 2022: 371).
Take Pica and colleagues’ (2004) pioneering work with the Munduruku. These researchers

reported that monolingual speakers of Munduruku were in possession of an intact ANS but
remained systematically incapable of counting collections of dots outside their linguistic count-
range; at best, they could rely on heuristic strategies such as “matching their fingers and toes to
the sets of dots” (500). Around the same time, Gordon (2004) reported similar findings with the
Pirahã,motivating hisWhorfian hypothesis that the ability to conceive of precise number depends
on one’s native language.
More recently, Pitt and colleagues (2022) reported converging evidence with speakers of

Tsimane. Unlike Munduruku and Pirahã, Tsimane has a fully productive system of number
words. Nevertheless, Tsimane individuals’ education and knowledge of these number words
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CLARKE 7

varies considerably. Taking this into account, Pitt and colleagues tested participants on “a simple
numerical matching task” and reported that their discrimination of “exact cardinalities” was
“limited to the number words [each participant] knew” (371). For instance, participants who
only knew words for 1–7 only made accurate and precise discriminations among these values.
So, unlike the ANS, and its representations of approximate number (which these researchers
consider an innate human universal), this was seen to provide “unambiguous evidence that large
exact number concepts are enabled by language” and therefore emerge as a complex product of
one’s culture and learning environment. But, if our initial acquisition of precise natural number
representations is a result of culture and learning environment, rather than innate biological
endowment, Number Nativism is false. This is The Argument from Anthropology.
How convincing is this argument? Despite its prominence in the literature, I’m not convinced.

It’s been questioned whether the abovementioned groups are truly bereft of the precise number
words these Whorfian conclusions assume (Nevins et al. 2008). Moreover, the argument may be
criticised for conflating numerical performance (or lack thereof) with numerical (in)competence
(more on this below). But even putting these issues aside, the conclusion that our capacity to rep-
resent precise natural numbers depends on language/culture neglects straightforward evidence
to the contrary.
In one study, Butterworth et al. (2008) tested indigenous children from the Walpiri and

Anindilyakwa communities of Northern Australia. Like Munduruku and Pirahã, Walpiri and
Anindilyakwa are limited in the precise number words they contain (roughly speaking, they
only have words for one two and many, and one two three and many, respectively). Even so,
Butterworth and colleagues found that monolingual children from both communities would
succeed in accurately identifying quantities up to 9 (the largest value tested) and were able to
later recall these quantities in a memory task. They were also found able to accurately perform a
cross-modal matching task, matching a precise number of seen counters to a precise number of
tones in a heard sequence, and to correctly answer simple addition and division tasks concerning
precise quantities. Importantly, these children performed no worse than English speaking
children, and their performance showed no discontinuity at or around the subitizing threshold,
indicating that performance was not the result of their SNS or ANS. These results would, thus,
seem to contradict Pitt and colleagues’ assertion that precise numeric conception depends on
one’s possession of precise number words.
Related results are not hard to find. Follow up studies with the Walpiri and Anindilyakwa,

replicated Butterworth et al.’s findings. Indeed, Reeve et al. (2018) found that language failed to
predict performance on a novel addition task and, further, showed that residual differences in
performance between English speaking children and members of the above communities were
better predicted by differences in visuo-spatial working memory than numerical understanding.
Similar results have also emerged in the Amazonian communities which originally motivated
The Argument from Anthropology. In one study, Frank et al. (2008) found that monolingual
speakers of Pirahã could perform precise numerical discriminations when the tasks used did not
require participants to remember numerical quantities (pace Gordon 2004). For instance, they
found that performance on a “one-to-one matching task was nearly perfect, and performance on
[an] uneven match task was close to ceiling as well” (822). Likewise, Izard et al. (2008) found that
monolingual speakers of Munduruku would succeed in making precise numerical discrimina-
tions when tasks were simplified or appropriately framed. For instance, where Pica et al.’s (2004)
study tested theMunduruku’s capacity for precise enumeration using a subtraction task, wherein
large numbers were subtracted from one another to produce values under five (i.e., values that
could be stated using the Munduruku’s limited number vocabulary), participants in Izard et al.’s
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8 CLARKE

task were simply asked to match the number of seeds in a collection to the number of dots on a
screen. In this simpler task, they “spontaneously” succeeded, answering accurately and precisely,
with occasional errors poorly predicted by the acuity of their ANS (Izard et al. 2008: 501).
What, then, shouldwemake of TheArgument fromAnthropology? At the very least, we should

recognise that the evidence cited in its support provides no straightforward reason to reject Num-
ber Nativism. But, putting thingsmore forcefully, the conflicting findings described in this section
plausibly go further, positively evincing Number Nativism: For if an absence of precise enumer-
ation is hard to find, even in isolated communities with few number words and little in the way
of formal mathematical education, this motivates thinking that the acquisition of precise natural
number concepts is probably a human universal, just as Number Nativism boldly predicts.

2.2 The argument from linguistic development

The Argument fromAnthropology does not warrant the rejection of Number Nativism it is some-
times claimed to mandate. Indeed, cross-cultural work may ultimately evince Number Nativism.
Nevertheless, The Argument from Anthropology is not the only reason Number Nativism is
rejected. A similarly popular Argument from Linguistic Development is also advanced in this
connection. While this argument has a similar flavour to the Argument from Anthropology, it
appeals to an independent body of research, concerning children’s protracted development on
number discrimination tasks.
To this end, proponents of the Argument from Linguistic Development often emphasise the

Give-N task in which children, who have begun to utter some portion of the count-list in their
native language (‘one, two, three, four. . . ’), are asked to give an experimenter or puppet a specific
number of items (e.g., six toys). A robust result is that children’s performance on this task proceeds
slowly in stages. First, children become “one-knowers”who reliably give one itemwhen asked but
randomly produce >1items when asked for any larger number of items. Next, children become
“two-knowers” who reliably pass one item when asked or two items when asked but randomly
produce>2 items when asked for larger quantities. Eventually, after passing through several such
stages (e.g., becoming “three-knowers” etc.), children become “cardinal-principle knowers” who
appreciate that each successive value in their count list refers to a number that is one greater than
its predecessor (Wynn 1990; 1992; Lee & Sarnecka 2010). Since performance on this task predicts
performance on other numerical comprehension tasks, like the “What’s on this card?” task, in
which children are asked to report the number of items seen on a card (Le Corre et al. 2006),
a standard interpretation is that each knower-level reflects mastery of a new natural number.
One-knowers have learnt to represent ONE precisely but lack the capacity to represent TWO,
while two-knowers have learnt to represent ONE and TWO precisely but lack the capacity to
represent THREE, etc. Thus, performance on the Give-N task is taken to show that the count list
“is first mastered much as children learn to recite the alphabet, that is, without attributing any
significance to the order” (a bit like the ordered, but meaningless, rhyme “eenie-meanie-miney-
mo”) and “that knowledge of the counting principles is not innate, but rather constructed as a
result of children’s attempt to make sense of the verbal count list” (Le Corre & Carey 2008: 651).
The problem with this assessment is that the argument (as formulated) conflates the com-

prehension of precise number words with the acquisition of precise number concepts (Margolis
2020). The above results show that children enjoy a slow and protracted development learning to
use and respond to number labels in natural language – e.g., the word ‘seven’, such that they can
reliably produce seven itemswhen asked. However, this is something onwhichNumber Nativism
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CLARKE 9

is silent. A child in possession of an innately endowed concept SEVEN might simply struggle to
match this up with a precise number word. Thus, “children’s slow, step-by-step learning of num-
ber words could reflect their difficultymapping their number concepts onto language, rather than
limitations to the number concepts themselves” (Spelke 2017: 151). Indeed, this is more than a pos-
sibility. After all, wehave just found reason to posit a disconnect betweenprecise number language
and precise numeric conception. For instance, the studies cited in the previous sub-section (e.g.,
Butterworth et al. 2008; Frank et al. 2008) provided us with evidence that individuals can conceive
of precise numerical quantities evenwhen they lack the ability to express these linguistically. Such
a disconnect can even be independently motivated, e.g., by research finding that certain autistic
individuals, whose acquisition of language is severely impaired, nevertheless succeed in learning
mathematics and often develop superior calculation skills to neurotypicals (Cowan& Frith 2009).
It will be replied that these suggestions fail to explain why children are quite so slow to

acquire number words, given evidence that other word meanings are acquired rapidly (Carey
2009; Samuels & Snyder 2023: Ch.3.3). For instance, two-year-olds can learn novel nouns from
“a single ambiguous exposure” (Spiegel & Halberda 2011), while the learning of number words
takes years. If children were already in possession of the relevant number concepts, shouldn’t the
comprehension of number words emerge quicker than that?
I think not. The reason is that word-referents are not created equal. Rather, the ‘fast mapping’

of novel words onto concepts is subject to independently supported constraints (Medina et al.
2010), like a ‘whole object bias’ which disposes children to assume that novel words label whole
observable objects (Markman 1991). The upshot is that children are often slow to learn the mean-
ings of words referring to the parts, predicates, and properties of objects, even after concerted
teaching efforts (Hansen & Markman 2009), especially when these properties and predicates are
abstract. Accordingly, 3-year-old children struggle to acquire words for categorical colours, when
these are used to describe objects (Landau & Gleitman 1985), even though young infants possess
a well-established capacity to discriminate colour categories (Bornstein 1976).
What’s important to note is that we should expect the same points to apply to number words.

The whole (abstract) object, six, is not something we can point at when we teach children the
referent of ‘six’. What we can do is point at collections containing six items and state of each
collection that ‘the items are six in number’. But when we do ‘six’ is used to describe rather than
label the collection. Thus, it functions like the colour terms children are so slow to acquire (owing
to, e.g., the whole object bias).3 Consistent with this suggestion, children grasp precise number
words at around the same time they fully grasp categorical colour words (∼4 years of age – Landau
&Gleitman 1985), even though number is less visibly salient than colour. It is also consistent with
the fact that prior to fully grasping the meanings of colour words, children behave like subset
knowers: For instance, three-year olds use the word ‘blue’ in grammatically and semantically
apt ways (e.g., in sentences like “The cup is blue”) but apply it to red and blue items with equal
likelihood (Rice 1980). Thus, Number Nativists find independent reason to reject the assumed
connection between numerical language and numerical conception implied by the Argument
fromLinguistic Development, and the implication that innate or early emerging number concepts
would facilitate a fast mapping of these onto number words.

3 This predicts that if children were not subject to the hypothesized word-learning biases, learning number words would
come quickly. It is notable, therefore, that isolated adult populations do seem to learn (first) number words rather quickly.
For instance, KenHale, the great documenter ofWarlpiri and otherAustralian languages, wrote that “the English counting
system is almost instantlymastered byWarlpiris who enter into situations where money is important” (Dixon 1980: 107-8,
my emphasis). I thank Brian Butterworth for bringing this to my attention.
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10 CLARKE

2.3 The argument from (Non-Linguistic) performance

The Arguments from Anthropology and Linguistic Development are unconvincing. This is
significant, since they’re probably the most common reasons for thinking Number Nativism
implausible. Even so, it might be replied that their failings serve to highlight the real reason
Number Nativism is falsified: that children also fail to perform precise numerical discriminations
in non-linguistic tasks.
This is the conclusion drawn by Spelke (2017). Tomake her point, Spelke emphasises a study by

Izard et al. (2014). In an initial experiment, children (just under three-years-old) were presented
with a tree containing 6 branches – they were then presented with either 5 or 6 puppets, each of
which was placed on an independent branch of the tree. The experimenter proceeded to empha-
sise that each puppet only occupied one branch and that one branch was empty if and when it
was (i.e., in the 5-puppet condition). They then asked each child to help place the puppets into
an opaque box and “rock them to sleep”. Finally, the children “woke the puppets up” and placed
them back on the branches of the tree. However, when the experimenter secretly removed the
sixth puppet from the container in the 6-puppet condition (leaving just 5 puppets in the box, when
the children should have expected 6) the children spent considerably longer rechecking the box
for a final puppet than in a 5-puppet condition (where they shouldn’t have expected an additional
sixth puppet). It was as if children had enumerated the puppets at the beginning of the experi-
ment, represented them as being exactly 5 or exactly 6 in number (depending on the condition),
and were then surprised to find a different number of items returned from the opaque container.
Spelke rejects this numerical interpretation. She considers a subsequent manipulation on the

above task. In this manipulation, half the children saw one puppet being removed from the con-
tainer and then returned to it. Having done so, childrenwhowere assigned to a 6-puppet condition
continued searching for a sixth puppet when one had been secretly removed from the container
(leaving just 5 items). This is as we would expect if children were representing and keeping track
of the precise number of puppets observed (and, hence, that the 5 puppets produced ≠ the 6 pup-
pets in the box). However, when one puppet was removed from the container and replaced by a
featurally indistinguishable (yet numerically distinct) doppelganger, in full view of the children,
children failed to search longer for a missing sixth puppet in the 6-puppet condition than in an
otherwise identical 5-puppet condition. In other words, children’s ability to track the number of
puppets went away. Tomake sense of this result, Spelke proposes that children were not consider-
ing the number of puppets on the tree or in the box at all; rather, they had simply remembered the
specific individuals originally located on the tree and were subsequently seeking to place those
individuals back on the tree.
My own view is that Spelke’s explanation of this result is, itself, problematic. Wouldn’t remem-

bering 6 distinct individuals exceed 3-year-olds’ working memory limit? After all, Spelke has
herself proposed that working memory limitations explain why children fail catastrophically on
subitizing tasks involving >3 items belonging to the same set (Feigenson et al. 2002). I’ll put all of
this to one side. Suppose we accept Spelke’s interpretation of Izard et al.’s result: What would this
show? It would show that children neglect to represent or use precise numerical information in a
task where adults might. But plainly, this would not show that they lack the competence to do so.
Consider the experiments described in Section 1. When describing the empirical evidence

for an SNS, we noted Feigenson et al.’s (2002) study in which 10-month-old infants accurately
discriminated 2:3 items but were at chance discriminating 3:6. This is striking since 3:6 differs
by a larger absolute amount and a larger Weber fraction. Indeed, it differs by a ratio which
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CLARKE 11

younger infants are known to reliably discriminate using their ANS, even when tested on a
small number of trials (Libertus & Brannon 2010). Thus, children in Feigenson et al.’s task
failed to discriminate 3 from 6 (i.e., exhibited a failure of performance in this task) even though
they possess a well-established competence to do so using their ANS. For everything that has
been said, we should recognise that the same might apply to the study Spelke emphasises when
arguing that precise representations of natural numbers are lacking in young children; even if
children did not represent or make use of precise numerical information this does not show that
they lack the competence to do so.
This is not to suggest that Spelke’s argument (which I’ll now call The Argument from Perfor-

mance) holds no weight. My point is that it must not be treated as a deductive proof that number
representations are absent in the children tested, let alone a deductively valid refutation of
Number Nativism. It’s best construed as a challenge. Spelke is not confusing absence of evidence
for evidence of absence. Her point is that we seem to lack positive reasons for thinking precise
natural number representations present in young human children, even when we go looking for
these and design tasks to avoid taxing language and other extraneous resources. Pending positive
reasons of this sort, the postulation of innate natural number representations could then seem
extravagant. Much as we should not posit innate knowledge of quarks, carburettors, or (Plato
notwithstanding) the Pythagorean theorem if we have no evidence or reason to do so, a persistent
failure to find evidence of the capacity to represent precise natural numbers in young children
should increase our confidence that this much is lacking in the organisms with which we’re
concerned.
However, far from providing “unambiguous evidence” against Number Nativism, which man-

dates an account onwhich our initial capacity for precise natural number representation is learnt,
this Argument fromPerformance is straightforwardly defeasible. Really, it just challengesNativists
to identify positive evidence that humans innately represent precise natural numbers and show
that this can be squared with the above results. In response to this challenge, I’ll now consider
recent work in psycholinguistics, which has not yet been discussed in this context.

3 THE TOLERANCE PRINCIPLE AND NUMBER NATIVISM

The preceding arguments are something of a grab-bag, but there’s a common thread. Each
argument highlights an absence of numerical performance where Number Nativists, or some car-
icature thereof, might expect to find this. But while these claims are often overblown (as in The
Argument from Anthropology) or problematically conflate the mental representation of numeri-
cal quantities with their linguistic expression (as in TheArgument fromLinguistic Development),
it’s true that they present Number Nativists with a challenge. The challenge is to provide positive
evidence for innate representations of precise natural numbers and show that this evidence can
be squared with the failures of numerical performance described above.
To this end, I’ll now introduce psycholinguistic research on The Tolerance Principle (3.1). I’ll

argue that this is hard tomake sense of unless younghuman infants have an innate (andheretofore
unacknowledged) capacity to represent large natural numbers precisely (3.2). I’ll then argue that
there is no obvious reason why these innate representations couldn’t form an innate basis for
mature numeric conception (3.3).
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12 CLARKE

3.1 The tolerance principle

‘TheTolerance Principle’ (TP) is a theoremwhich purports to specifywhen childrenwill andwon’t
endorse rule-like generalizations in language, treating these as productive rules to be generalized
to new cases.
Consider the “add ‘-ed’ to make verbs past tense” rule in English. This rule applies to many

cases: if we add ‘ed’ to verbs such as ‘stop’, ‘crouch’, ‘berate’, and ‘manage’ we correctly produce
their past-tense counterparts, ‘stopped’, ‘crouched’, ‘berated’, and ‘managed’. And, sure enough,
this is something young children readily appreciate, productively applying “add ‘-ed’” to novel
cases.
A problem arises when we note that such rules admit exceptions: ‘hold’ becomes ‘held’ (not

‘holded’), ‘go’ becomes ‘went’ (not ‘goed’), etc. Irregular transformations of this sort are found in
all natural languages (Sapir 1928) and often concern some of the most common words therein
(Pinker 1999). Yet, despite their token frequency, young children draw a categorical distinc-
tion between these (type infrequent) irregular transformations and the (type frequent) regular
transformations they observe. So, while overgeneralizations from (relatively common) regular
transformations are among the most frequently documented errors in child morphology (Yang
2002), overgeneralisations from (type infrequent) irregular transformations are virtually absent
(Yang 2016a). Thus, it is only when a rule/generalization applies to a sufficiently large proportion
of types within the target domain that it “earns” its productive keep (Aronoff 1976; Plunkett &
Marchman 1993; Bybee 1995).
This raises the question: How common must these generalizations be? When does a linguistic

regularity hold sufficiently often that it is something fromwhich children productively generalize?
Many answers to this question seem possible. We could imagine that rule-like generalizations

are treated as productive iff they apply to >50% of cases in the target domain, or just in case
they apply more often than chance. TP recommends a more nuanced answer: It proposes that a
rule is treated as productive iff its treatment as such speeds up the average time with which it is
accessed given two independently motivated background assumptions: The Elsewhere Condition
and Zipf’s Law.

The Elsewhere Condition states that for a productive rule (e.g., “add ‘-ed’”) to be
applied to a given token (e.g., a given verb), exceptions to the rule must be considered
and rejected as irrelevant, in series, and in rank order of frequency. Accordingly, the
Elsewhere Condition states that entries in the target domain are processed one-by-
one, as follows:

If A then B

If C then D

. . .

Otherwise: Apply the productive rule-like generalisation

where ‘A’ and ‘B’ refer to transformations of the most common irregular in the target
domain, ‘C’ and ‘D’ refer to transformations of the second most common irregular
in the target domain, and so forth, and where it is only after all such irregulars have
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CLARKE 13

been considered and ruled out in series that the productive rule is applied. (This may
sound like a bold conjecture.However, the ElsewhereCondition has beenwidely sup-
posed in linguistic theorising [Anderson 1969; Halle 1997; Brown & Hippisley 2012]
and it is supported by a host of empirical considerations. For instance, it is supported
by the fact that the speed with which irregular transformation rules are processed,
in both linguistic production and comprehension tasks, is inversely proportional to
their rank-order frequency in the language [Marlsen-Wilson & Tyler 1997; Clahsen
1999; Pinker &Ullman 2002] and by the observation that irregulars, which do not per-
mit productive generalisation, are processed faster than regulars [Yang 2016a: Section
3.3.2]. Moreover, it is worth noting that while the implementation of The Elsewhere
Condition strikes critics as cumbersome, requiring that we laboriously represent the
number of times eachword in the lexicon has been tokened, efficient algorithms have
been posited, showing how simple heuristics yield similar results [Rivest 1976; Sleator
& Tarjan 1985; Yang 2016a].)

Zipf’s Law refers to the (rather more mysterious) fact that when measured values
in a target domain are sorted in decreasing order, the value of the nth entry is often
inversely proportional to n, such that: The most common type in the target domain
appears roughly twice as often as the secondmost common type in the target domain,
three-times as often as the second most common type in the target domain, and so
forth (Zipf 1949). While Zipfian distributions pop up in surprising places (e.g., pre-
dicting city sizes in many countries) they are best established in the case of language.
Thus, in the Brown Corpus for American English, the most commonly appearing
word “the” accounts for roughly 7% of all word occurrences, while the second-most-
common word “of” applies to roughly 3.5% of word occurrences, and so on (Fagan &
Gençay 2010). In other words, the second most common word appears roughly half
as often as the first, and the thirdmost commonword appears roughly a third as often
as the first, etc.

Of course, Zipf’s Law is an approximation – albeit an approximation that holds across frequency
distributions of many kinds, including countless sub-domains of language (ibid.). What matters
here is that it enabled Charles Yang (with help from Sam Guttman) to formulate TP: proving
that if linguistic rules are processed in accord with The Elsewhere Condition, and entry types
follow a Zipfian distribution in their token frequency, then the encoding of the productive rule
will increase the mean speed with which entries are processed just in case:

E ≤ ∅Nwhere ∅N≔ N∕logN

where ‘E’ refers to the number of exceptions to the rule-like generalisation and ‘N’ refers to
the total number of entry types known in the target domain. Put differently, TP proposes that
a rule-like generalisation should be treated as productive iff the number of exceptions to the
generalization does not exceed the total number of types encountered in that domain divided
by the natural logarithm of that total (Yang 2018). Conformity to this rule ensures that (on
average) entries are processed quicker, if we assume the Elsewhere Condition and a Zipfian
distribution.
Working through the details of Yang’s proof lies beyond the scope of this paper (see Yang

2016a or 2018 for details). What matters here is that TP makes precise predictions about when
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14 CLARKE

F IGURE 2 The proportion of tolerable exceptions the Tolerance Principle permits decreases with the
number of types within the domain.

children should productively generalise rules they have encountered. For instance, given a
rule R that applies to a target domain with 9 items, TP predicts that 4 (or 4.096 or Ø9 = 9/ln9)
exceptions can be tolerated before its treatment as a productive rule becomes less efficient
than storing individual items on a case-by-case basis in one long look-up table. Thus, strict
adherence to TP implies that only when the number of exceptions sits below this threshold will
the rule be deemed productive, and categorically so (i.e., generalized to 100% of novel cases).
Meanwhile, a larger target domain containing 20 types will allow that more of these (up to 6)
might violate a productive rule therein. In any case, TP predicts that the relative proportion of
tolerable violations will decrease as domain size gets bigger (Figure 2). This has the intriguing
consequence that productive rules are easier to learn when one knows less words in a language
(Yang 2016a: 66).
So far, TP might sound like a normative thesis, about when children should deem linguistic

rules productive (given certain background assumptions). Thus, it might seem orthogonal to the
project of describing actual human psychology. What’s remarkable, is that TP has been found to
predict actual patterns of productive generalization with astonishing accuracy.
Demonstrations of this astonishing accuracy take several forms. An initial indication that TP

may be descriptively adequate is that it predicts the frequency with which regular and irregular
word types appear in corpus data, across many languages, including Polish, Russian, German,
North American English (Yang 2016a), Cree (Henke 2022), and Early Modern English (Ringe
& Yang 2022). TP is also found to explain otherwise puzzling discrepancies in cross-cultural
linguistics. For example, it’s been noted that children begin productively applying the rules of
their native languages’ count lists at different points. Thus, children do not begin to productively
apply the rules of the English count list until they have learnt to count to 72 (at which point
they have a eureka moment: “the next number must be ‘seventy-three’, just like how ‘sixty-three’
followed ‘sixty-two’!” – Fuson et al. 1982). In a stunning vindication of his theory, Yang (2016b)
showed that, given the number of exceptions to the productive rules governing the English count
list, this is the threshold at which TP predicts productive generalization to obtain. He also noted
that the threshold is lower in Mandarin – where productive generalisation takes off at 40 – and
again showed that this is what TP predicts.
More relevant for us are a suite of carefully controlled developmental studies. In one study,

Schuler et al. (forthcoming, Exp.1) presented children, aged 5–7, with 9 noun types from one
of two artificial languages. In either case, the experimenter produced both the “singular” and
“plural” form for each entry. In one language, 5 of the nouns shared a plural suffix (‘ka’) while 4
did not. In this condition, TP predicts that children should productively generalize the regularity,
since it predicts an allowance of 4.096 (Ø9 = 9/ln9) exceptions before productivity breaks down.
Meanwhile, the second language contained just 3 nouns with the shared suffix ‘ka’ – while this
made ‘ka’ more common than any other suffix, it left 6 exceptions to the rule (well above the
threshold of 4.096). Sure enough, when children were exposed to the first language, they applied
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CLARKE 15

the “add ‘-ka’” rule to novel nouns 92% of the time (which was not significantly different from
100%, indicating categorical application). Meanwhile, in the second language, children applied
the “add ‘-ka’” rule just 16.9% of the time (which was not significantly different from chance,
despite ‘ka’ appearing 3x more than any other suffix encountered).
The fact that children productively generalised, categorically, and in line with the thresholds

predicted by TP, bears out bold predictions of Yang’s theory. However, a second experiment from
Schuler et al.’s paper was even more telling. This second experiment was identical to the first
except the token frequency of nouns in the artificial languages varied dramatically. This allowed
that regular nouns could appear with low frequency and irregular nouns could appear with high
frequency, making for a more ecologically valid test set which closely resembles the frequency
distributions found in (some) natural language domains (Pinker 1999; Yang 2016a).
Under these conditions, it initially appeared that TPwas falsified. Specifically, it was found that

children tested on a language with 5 regular nouns and 4 exceptions applied the regular form just
54.63% of the time (significantly less than 100%, as TP predicts). However, the standard deviation
of this result was large, and when results were analysed at the level of individual children, the
categorical nature of their responses remained apparent: 16 of 20 children’s responses were cate-
gorical, with 5 children effectively generalising the “add ‘-ka’” rule 100% of the time, and 11 failing
to apply any observed suffix more often than chance.
This prompted the experimenters to consider the number of noun-types that each child had

actually remembered (based on a rating test that was conducted after all trials). Taking this into
account, the results proved to align with TP after all. For instance, children who only remem-
bered 8 of the 9 noun-pairings, including all 4 exceptions, did not productively generalise the
regular rule significantly more often than chance. This is what TP predicts, since the tolerance
threshold for a domain with 8 noun types is 3.85 (and thus <4), not the 4.096 exceptions tol-
erated in a domain with 9 types. Indeed, TP’s predictions bore out in this way in 15 of the 16
children whose behaviour was categorical. So, when children’s word retention was taken into
consideration, categorical generalisations conformed to TP, with 15 of 20 children effectively and
categorically distinguishing (e.g.,) sets with 9 types and 4 exceptions from sets with 8 types and 4
exceptions.
Of course, this study probed 5–7-year-olds – children who have had plenty of time to learn

stuff. However, similar results are found in young infants (Gómez & Lakusta 2004; Koulaguina
& Shi 2013; Koulaguina & Shi 2019). Perhaps most dramatically, Shi and Emond (2023) tested
non-Russian-speaking 14-month-olds. These infants were exposed to 16 three-word sentences of
Russian, which either conformed or failed to conform to a movement rule (ABC→ BAC vs. ABC
→ACB). In a domain containing 16 types, TP predicts that productive generalisation should occur
if there are<5.77 exceptions. Thus, in a first experiment, where 11 sentences conformed to amove-
ment rule and 5 did not, TP predicts that generalisation would occur. Sure enough, infants in this
experiment looked significantly longer when a subsequent test stimulus failed to follow the rule
that was implicit in 11 of the 16 exemplars. A second experiment then tested 14-month-olds on
an identical training set comprising 16 sentence types, except that here only 10 sentences con-
formed to the rule, leaving 6 exceptions (i.e., a number now exceeding the TP threshold). Under
these conditions, infants did not look significantly longer when the subsequent test item failed
to conform to the rule than when it did not. Thus, looking behaviour implied that 14month-
olds distinguish collections containing 11 regulars and 5 exceptions from collections containing
10regulars and 6 exceptions, in harmony with the predictions of TP, given a common set size
of 16.
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16 CLARKE

3.2 From TP to natural number

Work from various laboratories, utilising various experimental methods, bears out fine-grained
predictions of TP. Most importantly, work with young children suggests that their tendency to
treat linguistic generalisations as productive conforms to the categorical thresholds predicted
by TP. I’ll now argue that this is hard to make sense of unless these children possess a facility
representing precise natural numbers, in a manner that is almost certainly innate. My argu-
ment for this claim proceeds in four steps. After making this argument, I’ll explain how these
innate representations could, potentially, serve as an innate basis for mature numeric conception
(Section 3.3).

3.2.1 Step 1: TP requires representing absolute quantities

Recall that TP thresholds are not a constant ratio of rule-conforming to rule-violating types. Thus,
TP does not predict that children will treat a rule or generalization as productive iff it applies to
(e.g.)½, or¾, of typeswithin the target domain. Rather, TP predicts that the proportion of tolerable
violations to a productive rule decreaseswith domain size. For instance, in a domainwith 10-word-
types, 4 (i.e., 40%) of these may violate a rule that is treated as productive; meanwhile a domain of
20-word-types can tolerate 6 (i.e., just 30%) exceptions, with larger domains tolerating a smaller
proportion of exceptions still (Figure 2).
This raises the question: how could these precise thresholds be identified without first repre-

senting the quantity of word types in the domain? Since TP thresholds are not a constant ratio
but are, instead, specified by a computational operation over the total (ever evolving) quantity
of types encountered within the target domain, it’s hard to see how the threshold could be iden-
tified without explicitly encoding the total quantity of types in that domain. And once the TP
threshold has been identified, it’s hard to see how one could identify whether a rule has/has not
exceeded this threshold, such that productivity will/won’t ensue, unless the absolute quantity of
types that do/don’t violate the rule are encoded. Prima facie, these quantities must be stored and
represented.
Admittedly, thismodest suggestionmight be resisted by those advocating associationist theories

of productivity (Goldberg 2019; Rummelhart & McClelland 1986). On these accounts, thresholds
for productivity are set by associative mechanisms which eschew the need to represent quanti-
ties entirely. Instead, linguistic rules become more strongly associated with entries in the target
domain following exposure to these. And when associations become suitably strong, produc-
tive generalization ensues. But not because the system has kept a record of the total quantity
of types within the target domain, or the total quantity of rule-conforming/rule-violating types
therein.
The trouble is: associative models fail to capture the thresholds for productivity observed in

children (i.e., that predicted by TP). Associative models do explain how children might apply
productive rules categorically. However, they overgeneralise from irregular forms inordinately
more often than children (Marcus 1995; Yang 2016a; Yang 2018). In this way, associative models do
not provide an empirically adequate alternative to a model on which TP thresholds are identified
(and compared to quantities of rule-conforming and/or rule-violating types within the domain)
via explicit representations of domain size and quantities of rule-conforming/rule-violating types
therein.
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CLARKE 17

3.2.2 Step 2: These quantities include natural numbers

If absolute quantities are represented in the service of implementing TP, which types of quantity?
If TP requires representing the absolute quantity of types in the domain, and the absolute quantity
of rule-conforming and/or rule-violating types therein, such that these representations can inform
downstream computations, to which quantities do these representations refer? My suggestion is
that, minimally, these quantities include natural numbers.
Firstly, it’s unclear what non-numerical quantities could support implementation of TP. As

we’ve seen, TP identifies a threshold which is determined by the number of types in the target
domain, and a rule is treated as productive just in case the number of rule-conforming types fails
to exceed this threshold. To implement TP, such that these predictions are borne out, therefore
requires that these numbers are tracked in some non-accidental way.
Tracking numbers is not the same as representing them, however (Butterfill 2018). To illustrate,

consider a situation in which TP thresholds are identified by amodule which uses non-numerical
quantities as a proxy for number. For instance, the module might represent the total amount of
time spent encountering word types in a domain and use this as a stand-in for number. Provided
that each word type is encountered roughly as often and is tokened for roughly the same dura-
tion as any other, a system which merely represents duration might effectively track the relevant
numbers, enabling it to implement TP without representing these; after all, represented duration
would hereby vary as a linear function of the numbers in question.
The trouble is: this heuristic strategywon’t work in scenarios where TP succeeds. For one thing,

we have seen that word frequencies follow Zipf’s Law, such that common words appear exponen-
tially more often than uncommon words. A system which merely uses total word duration as a
proxy for number would, thus, be poorly modelled by TP. And indeed, duration and other poten-
tial confounds (e.g., cumulative loudness[?]) were effectively controlled for in the experiments
described in Section 3.1. For instance, Schuler et al.’s second experiment manipulated token fre-
quency such that regular types could appear with low frequency and irregular types could appear
with high frequency. This ensured that the time spent encountering word types (or, e.g., their
cumulative loudness?) could not be used as a proxy for number in the abovementioned ways.
Conformity to TP obtained, nonetheless.
This brings me to my second point: Beyond the fact that it’s unclear how performance in the

abovementioned experiments would be explained by a system which simply represented non-
numerical quantities, the implementation of TP involves representing quantities with properties
that are unique to discrete numbers.
Consider Frege’s (1884) insight that numbers differ from other quantities in their second-order

character (i.e., in that they can only be assigned relative to a sortal). If I point at the boots in my
closet and ask “How many?” Frege would note that this question is ill-posed. To answer it, we
need to decide if we’re interested in enumerating the individual boots in the closet, the pairs of
boots in the closet, or the different boot types contained in the collection. In any case, the sortal
needs specified since 16 individual boots might only amount to 8 pairs of boots, or 1 type of boot.
Thus, the way in which we individuate the items has an impact on the number we attribute to the
collection. What Frege observed is that non-numerical quantities are not like this. If we want to
know how much the boots weigh, or what their volume is, it won’t make any difference how the
collection is carved up: irrespective of whether the collection is thought of as constituting a bunch
of individual boots, pairs of boots, or types of boots it will take up the same amount of space in my
closet and register the sameweight onmy scales. Numbers are, thus, distinctive among quantities
for having a second-order character.
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18 CLARKE

Frege’s observation is pertinent in the current context since the quantities that are tracked and
represented when implementing TP have a second-order character. The threshold specified by TP
is set by the (whole) number of types in the domain, rather than their token frequency. Indeed,
this is illustrated in the above experiments which control for this latter variable. This suggests
that implementing TP involves tracking and representing quantities of words relative to the sortal
linguistic (e.g., word) type, and this proceeds in abstraction fromquantities assigned via the deploy-
ment of other sortals, like linguistic (e.g., word) token. Echoing Frege, this is tantamount to saying
that the quantities being represented include numbers (including whole or natural numbers) of
linguistic types.4

3.2.3 Step 3: Natural numbers are represented precisely

Implementing TP involves representing absolute (natural) numbers of types within a target
domain and absolute (natural) numbers of types which do/don’t violate a rule-like generalisation.
Nevertheless, this is consistent with these representations representing numbers imprecisely. For
instance, it’s been argued that the ANS represents natural numbers because non-numerical con-
founds fail to explain its performance, and because ANS representations track quantities with a
second-order character (Clarke & Beck 2021a). Even so, this is consistent with the claim that the
ANS represents natural numbers imprecisely (Clarke & Beck 2021b). Since the tasks described in
Section 3.1 involve children (even young infants) keeping track of quantities outside the subitiz-
ing range, youmight think performancewas underwritten by an innateANS, representing natural
numbers imprecisely.
This would be a mistake. The tasks described in Section 3.1 involved children discriminating

numbers of linguistic types with a level of precision that’s unheard of in ANS tasks, despite hun-
dreds (if not thousands) of papers probing ANS acuity. Consider Schuler et al.’s finding that, when
memory retention was considered, 15/20 children performed productive generalizations in line
with TP, even when frequency distributions made (token) irregular transformations more fre-
quent. As noted, this involved children discriminating domains containing 8 types (of which 4
were rule-violating) from domains containing 9 types. Similarly, Shi and Emond found that 14-
month-olds were sensitive to the difference between 10 rule-conforming and 6 rule-violating types
and 11 rule-conforming and 5 rule-violating types in a domain with 16 types. Indeed, this latter
result is particularly impressive since it didn’t take account of individual variations in sentence
retention (something Schuler et al. showed to be relevant), suggesting that – if anything – these
results underestimated numerical competence.
Either way, ANS acuity lags way behind these thresholds for discrimination. Until recently,

many claimed the hardest ratio an adult human’s ANS could discriminate is 7:8 (Carey 2009: 295).
While these claims are overblown – recent studies show that adults can distinguish 50:51 ratios
above chance, given an enormous number (e.g., 400) of trials (Sanford & Halberda 2023) – chil-
dren in the abovementioned studies were effectively tested on a single trial. For instance, in Shi
and Emond’s (2023), 14-month-olds encountered one collection of 16 Russian sentence transfor-
mations and effectively discriminated a case in which 10 conformed to a rule from a case in which

4 TP could also implicate representations of rational numbers. For instance, in a domain with 9 types, the relevant mech-
anisms might represent the TP threshold as 4.096. I simply take this to be an open possibility, however: In principle, a
psychological system might round down to the nearest whole number (i.e., 4) and use this whole number to specify the
discrete quantity of violations that can be tolerated.
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CLARKE 19

11 did. In otherwords, they performed better than adults have ever been observed to performusing
their ANS, even though ANS acuity is considerably lower in children (Libertus & Brannon 2010).
It might be replied that this falls short of establishing that the representations implicated in TP

represent specific natural numbers precisely – perhaps they still represent numbers imprecisely,
just less imprecisely than the ANS. I’d counter that this reflects an unwarranted scepticism which
is undermined by reflection on the abovementioned tasks. As we saw in Section 1, precise repre-
sentations of specific natural numbers bear hallmarks that approximate number representations
lack. For instance, they license robust judgements of equinumerosity. The abovementioned work
on TP supports thinking the representations in question meet this criterion. Experiments such
as Schuler et al.’s and Shi and Emond’s contrasted performance across conditions in which
domain size was held constant while the number of rule-violating/conforming types varied.
Using this methodology, Schuler et al.’s Experiment 1 found that productive generalisation would
ensue when the quantity of rule-violating types was even marginally below the threshold set
by TP (e.g., 4 exceptions in a domain with 9 types and 4.096 legal exceptions) but not if this
threshold was crossed. This is consistent with thinking that a common threshold was identified
across both conditions, irrespective of the number of rule-conforming/rule-violating types in
the domain, and that domains were thus represented as equinumerous. Similar points apply
to Shi and Emond’s work with 14-month-olds on a domain size of 16 types. And this seems
particularly compelling when we note that modest changes to the represented domain size
affected these results dramatically, precisely as we would expect if different quantities were
treated as categorically distinct. For instance, in Schuler et al.’s second experiment, children who
simply remembered 8 tokens in a target domain of 9 behaved as if there was a tolerance threshold
of 3.85 (in line with the predictions of TP). This highlights the fact that small differences in
domain size, yielding small differences in TP threshold, impact children’s behaviour markedly
and categorically. It would be miraculous that these fine-grained predictions were robustly borne
out, if children weren’t representing exact numbers precisely in the first place.

3.2.4 Step 4: This is innate

Finally, these representations are almost certainly innate. For a start, TP seems to be a human
universal. It predicts patterns of linguistic development across languages – e.g., points in the
English and Mandarin count list where productive generalisation ensues, owing to the idiosyn-
cratic quantity of rule-violating number words in either language (Yang 2016b). Similarly, corpus
data suggests that it governs languages like Polish, North American English and German (Yang
2016a), extinct languages like Early Modern English (Ringe & Yang 2022), and Indigenous lan-
guages like Cree (Henke 2022). For this reason, TP is not some curiosity of anglophone children, or
WEIRD communities (Henrich et al. 2010) – it emerges irrespective of culture and learning envi-
ronment. And while this insensitivity to culture and learning environment would be surprising
on the view that TP is learnt, it’s precisely what nativism predicts. Just as an innate and biologi-
cally endowed universal grammar constrains (and ensures commonalities among) the structural
features of all natural languages (Chomsky 1986), the innate implementation of TP predicts that
it be a human universal.
This brings me to my second point: It’s just very hard to see how TP could be learnt by young

children, especially if children lack the resources required to represent precise numbers. In a stan-
dard poverty of the stimulus argument, the nativist argues that some psychological competence is
innate on the grounds that therewas not enough data in the environment for it to have been learnt.
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20 CLARKE

For instance, it is argued that certain ‘deep’ grammatical principles are innate because children
essentially never violate these, despite having not been exposed to enough well-formed strings
(or enough guidance as to what constitutes an ill-formed string) to distinguish these from scratch
(Chomsky 1965). Such conclusions are, of course, disputed, owing to controversies concerning the
amount of data grammatical learning requires (Perfors et al. 2011) or the amount of data children
are exposed to in development (Butterfill 2020: 97–100). Regardless, the underlying reasoning
seems particularly solid in the case at hand. Children do learn the superficial grammatical
principles of their natural language through observation, and subsequently perform generalisa-
tions from what they have observed (e.g., overgeneralising the “add ‘-ed’” rule in English). This is
what TP helps to explain. These overgeneralisations might even get corrected, e.g., by a benevo-
lent pedant who tells them not to say ‘holded’. But what seems grossly non-obvious, is what would
even serve as available evidence to the child that TP itself reflects a maximally efficient principle
by which to store lexical entries such that these inductive generalisations would be made (or not)
to begin with; not least because TP emerges in young infants, seems to be applied categorically
without any discernible process of trial and error, and goes largely unnoticed by adults – i.e., it’s
the sort of thing whose unpacking required careful mathematical analysis by university profes-
sors. For these reasons, it seems far-fetched to suppose that TP, and the precise representations of
natural number that are needed for its implementation, are learnt – a point which is, of course,
consistent with the principle’s genesis in the context of generative linguistics where it is expected
to guide the child’s search through an innately constrained hypothesis space (Yang 2016a).

3.3 From TP to numeric conception?

Summarizing the discussion so far: Number Nativism is an unpopular view. But objections to it
are unpersuasive (Section 2) and received theories of development seem to underestimate our
innate numerical competences. For when we consider work on TP (Section 3.1), we find rea-
son to posit innate representations of precise natural numbers, which cannot be reduced to the
representations of an ANS and/or SNS (Section 3.2).
In this final subsection, my (modest) suggestion is that there is simply no obvious reason why

these innate representations could not form an innate basis for mature numeric conception. If
true, we not only lack reason to reject Number Nativism; we also possess evidence for the innate
resources from which a plausible Number Nativism might be developed.
To some ears, this final suggestion will sound odd. Just consider how we might square the

results of Section 3.2, evincing innate natural number representations, with the results described
in Section 2, concerning children’s protracted failures to precisely enumerate. Prima facie,
the answer could seem straightforward. The tasks described in Section 3.2 involved children
discriminating precise numbers of linguistic types. They, thus, arose in the domain of language
acquisition. Wemight, then, suppose that the precise natural number representations involved in
TP are proprietary to the language faculty. Since none of the tasks described in Section 2 involved
enumerating word or sentence types, it’s plausible to think they employed different cognitive
resources entirely.
So far so good. But here’s theworry: If TP and its associated numerical resources are proprietary

to the language faculty, how could they form a basis for the natural number concepts we employ
in flexible thought?
In framing this worry, my interlocutors have tended to stress that the proprietary representa-

tions and processes of the language faculty are sub-personal (see Drayson 2014). Hence, when
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CLARKE 21

one learns a grammatical rule in natural language, their language faculty extracts the natural
number of types in the target domain, and divides that number by its natural logarithm, all in the
service of TP (Section 3.2). But this is not something the person does, nor something they possess
any awareness of. But if the person is oblivious to these sub-personal states and happenings,
how could they provide them with a basic conception of the contents being manipulated (precise
natural numbers)?
This is a common worry, but it’s a red herring. Let us suppose, if only for the sake of argu-

ment, that the innate representations of precise natural number, implicated in TP, are purely
sub-personal – states that can, in no way, be attributed to the person. This need not render them
irrelevant to the emergence of person-level natural number concepts. For the crux of the issue is
not whether these innate representations are person level; it’s whether these innate representa-
tions are, or could become, accessible to systems involved in concept use and formation in relevant
ways, such that our mature number concepts might be grounded in these (see Section 1.1).
On this point, Nativists find reason to be optimistic. For a start, closer inspection reveals that

TP is probably not proprietary to the language faculty. Rather, TP is probably employed by a
relatively wide range of consumer systems, including systems associated with central cognition
and our conceptual grasp of the world.5 One reason to say this is that TP isn’t really a theo-
rem about language acquisition. It’s a theorem which specifies when rules, in general, should
be treated as productive when access is governed by The Elsewhere Condition and frequency dis-
tributions conform to Zipf’s Law. This is important, since Zipfian distributions pop-up all over
the place, not just in language (Auerbach 1913), and The Elsewhere Condition specifies a general
processing architecture, apt whenever exceptions must be ruled out before productive rules are
applied.
Of course, the extent towhichTP applies outside of language is an empirical question.Nonethe-

less, extant results suggest its generality. Yang (2016b) reports that TPmakes accurate, quantitative
predictions about numerical understanding (e.g., children’s explicit grasp of numerical succes-
sion). Meanwhile, Caplan et al. (2024) provide evidence that TP governs the emergence of certain
norms. Moreover, it’s been noted that TP can explain puzzling effects in the heuristics and biases
literature.6 For example: since TP tolerates a larger proportion of exceptions (and thus predicts
more productive generalization) when domain size is small, it can account for classic small sam-
ple biases in decisionmaking – e.g., why it is that humans overestimate the likelihood that a tossed
coin is biased, when they observe a small sample of trials, and see it land one way >50% of the
time (Tversky & Kahneman 1974). It also explains why biases would emerge most readily when
one has limited experience with a group (Bohnet & Chilazi 2019). While these connections are
currently the subject of investigation (C. Yang, pers. comm.), they motivate the possibility that
TP does not simply govern the processing of regularities within the language faculty’s proprietary
domain (e.g., regularities in morphology or sentence structure). Rather, it governs the assessment
of productive regularities, quite generally, as when one is predicting whether subsequent coin
tosses will land heads/tails or whether a stereotyped minority job candidate will perform well. If
true, this suggests that TP and the associated numerical representations used to implement this

5 This is not to assume that there is a single TP module or system. There might be, but there might also be multiple
independent systems in the human mind, each implementing TP.
6 Consistent with this, it’s worth noting that TP does not simply characterise children’s learning – it is also evident in
adults. For while adults typically engage in probability matching in tasks of the sort described in Section 3.1, researchers
have tended to find that a subset of adults always behave in accordwith TP during these tasks (Schuller et al. forthcoming).
This suggests that TP continues to influence learning and generalization throughout the lifespan.

 19331592, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/phpr.13107 by Sam

 C
larke - U

niversity O
f Southern C

alifornia , W
iley O

nline L
ibrary on [01/09/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



22 CLARKE

can come to interact with a wide range of systems and representations, including those involved
in domain general cognition and conceptual thought.
Admittedly, this falls short of showing that the innate representations of natural number

involved in TP serve as a basis for mature number concepts. But if it is acknowledged that TP
and its associatedmachinery interact with a wide range of consumer systems, and the representa-
tions involved interact with a myriad of systems beyond the language faculty (including systems
involved in conceptual thought, e.g., about coin tosses), it is hard to see any straightforward reason
why its representations could not, potentially, be used by conceptual systems to ground num-
ber concepts, irrespective of their status as sub-personal. Which is simply to say: This possibility
deserves further consideration.
Of course, specifying how TP’s numerical representations would ground mature number con-

ception is a big question; one which lies beyond the scope of the paper, turning as it does on vexed
issues concerning the nature and structure of concepts. Nevertheless, there are several plausible
ways of spelling this suggestion out. One possibility is that the mechanisms of concept formation
map number concepts (symbols in a language of thought) onto the precise number representa-
tions I’ve postulated. This would be akin to the way Gallistel and Gelman (1978) once proposed
that numberwords aremapped ontoANS representations, except it avoids theworry thatANS rep-
resentations are fuzzy and imprecise in a way mature number words/concepts are not – a worry
which has led many theorists to reject Gallistel and Gelman’s account as inadequate (Carey &
Barner 2019).
This general suggestion might even find a natural alliance with recent, empirically motivated,

accounts of concepts. For instance, Quilty-Dunn (2021) follows Fodor in positing that concepts are
atomic (unstructured) symbols. However, he conjectures that these “point to memory locations
where cognitively useful bodies of information are stored” (158). This allows for a theory which
straightforwardly inherits the virtues of Fodorian atomism, while avoiding prominent objections
to this thesis and accommodating results concerning the specific kinds of information structures
that are used in conceptual deployment (e.g., prototypes, exemplars, and more). What’s crucial
for our purposes is that, on such an account, atomic symbols in the language of thought might
initially inherit their content as natural number concepts by pointing at the precise natural num-
ber representations implicated in TP (e.g., establishing an asymmetric dependence relation with
quantities in the world). Indeed, this is worth taking seriously. As Quilty-Dunn notes “There are
no a priori restrictions on what representations can be stored at a memory location pointed to
by a concept” (174) and we have just found reason to suppose that TP and its associated rep-
resentations might interact with a relatively wide-range of consumer systems, including those
associated with conceptual thought. Such a suggestion could even offer to make straightforward
sense of the fact that children initially fail to deploy and successfully utilize their number concepts
outside of certain contexts (see Section 2.2-3). This is because, on such an account, number con-
cepts would initially ground numerical discriminations via specific data structures, such as those
involved in TP, which have a circumscribed domain of applicability, despite allowing the concept
itself (the atom which points at these) to freely compose with other concepts in highly general
ways.
In saying this, it’s important to note that there is no comparable reason to suppose that the

internal operations of our language faculty would ground an innate conceptual grasp of other
abstract principles of generative grammar. Unlike the numerical representations involved in TP,
there’s no reason to suppose that these principles are accessed (or used) by conceptual subsys-
tems, and there is little plausibility to the idea that a conceptual grasp of these principles emerges
independently of culture and learning environment (compare Section 2.1). Similar points apply
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CLARKE 23

to the proprietary states of other domain-specific faculties and algorithms, like those comprising
the visual system.
We also shouldn’t assume that the above considerations overgeneralize, showing that since

TP is employed by myriad psychological faculties it could ground conceptual knowledge of our
DIVIDINGQUANTITIESBYTHEIRNATURALLOGARITHM(i.e., of the TP theorem itself). For
while TP implicates representations of natural number (Section 3.2), many faculty psychologists
would urge that the inflexible transformations such representations drive will tend to be built into
the architecture of the faculties themselves (Pylyshyn 2003; Quilty-Dunn & Mandelbaum 2018).
If true of TP, the transformation algorithm in question will not be explicitly represented and will
thus be unable to ground concepts of natural logarithms (or the like), even in principle.

4 CONCLUSION

I have argued for a modest conclusion, but one with the potential to reorient thinking on numeri-
cal development. Number Nativism is often considered hopelessly out of touchwith the empirical
record. However, I hope to have made room for its consideration. Objections to Number Nativism
are unpersuasive, the innate numerical competences of young children are richer than current
theories recognize, and these competences implicate precise representations of natural number
which could (potentially) serve as a basis for mature numeric conception. Add to this that the
seeming ubiquity of precise enumeration across cultures is straightforwardly explained by the
Nativist (Butterworth 1999), coupled with the fact that Nativism explains why broad consensus
emerges on basic structural properties of the natural numbers (e.g., that each natural number
is exactly one greater than its predecessor – something which learning accounts have been criti-
cised for not even trying to explain [Rey 2014]), it’s hard to shake the feeling that NumberNativism
remains a leading account of numerical development.
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