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Abstract 
 

Visual illusions of number provide a means of investigating the rules and 
principles through which approximate number representations are 
formed. Here, we investigated the developmental trajectory of an 
important numerical illusion – the connectedness illusion, wherein 
connecting pairs of items with thin lines reduces their perceived number 
without altering continuous attributes of the collections. We found that 
children as young as 5 years of age are affected by the illusion and that 
the magnitude of the effect increased into adulthood. Moreover, 
individuals with greater numerical acuity exhibited stronger 
connectedness illusions after controlling for age. Overall, these results 
suggest the approximate number system expects to enumerate over 
bounded wholes and doing so is a signature of its optimal functioning. 
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1. Introduction 
Visual illusions provide a non-invasive means of investigating the rules and assumptions 
guiding our visual systems’ computations (Eagleman, 2001). For instance, a visual system 
which assumes that light comes from above will systematically misrepresent shape under 
atypical lighting conditions, resulting in a host of familiar shape-from-shading illusions 
(Ramachandran, 1988; Johnston & Curran, 1996). Meanwhile, a visual system which 
updates its assumptions based on experience, or general maturation, will prove 
differentially sensitive to such illusions at different stages of development (Tsurumi et 
al., 2023). Accordingly, visual illusions have offered a window into the rules and 
assumptions used by human visual systems in their computational inferences, and the 
contexts under which those rules and assumptions emerge or develop over time. In the 
present study, we investigated the developmental trajectory of an important numerical 
illusion – the connectedness illusion (Franconeri et al., 2009; He et al., 2009).  

Humans possess a well-known ability to visually discriminate approximate 
numerical quantities (e.g., Dehaene, 2001; Clarke & Beck, 2021a). For instance, adult 
humans can quickly compare or estimate the approximate number of seen dots in an 
array, even when they are prevented from explicitly counting these (Barth et al., 2003; 
Cordes et al., 2001). Infants (e.g., Xu & Spelke, 2000), who have not yet learnt to count, 
and even newborns (Izard et al., 2009) discriminate collections based on number, and 
studies using diverse brain imaging methods suggest that the same neural systems are 
recruited to do so throughout development (e.g., Cantlon et al., 2006, Hyde et al, 2010). 
But, like all visual attributes, perceived number is subject to systematic distortion (Frith 
& Frith, 1972; Ginsburg, 1976; DeWind et al., 2020; Qu et al., 2022; Burr & Ross, 2008, c.f. 
Yousif et al., 2024).  In the connectedness illusion, arrays of dots that are connected into 
pairs by task-irrelevant lines (effectively turning pairs of items into single dumbbell-
shaped objects) are perceived as less numerous than otherwise identical arrays of 
unconnected dots (Franconeri et al., 2009; He et al., 2009). Remarkably, thin or even 
illusory lines suffice to elicit this effect (Adriano et al., 2021), and the introduction of small 
breaks in these lines can eliminate it entirely (Franconeri et al., 2009). Indeed, the 
connectedness illusion is robust across a range of experimental paradigms, including 
simultaneous ordinal comparisons (e.g., He et al., 2009; Qu et al., 2024), sequential ordinal 
comparisons (e.g. Franconeri et al., 2009; Fornaciai et al., 2016), and estimation tasks (e.g. 
He et al., 2015). In each case, the illusion persists even when subjects are explicitly told to 
ignore the connecting lines entirely, suggesting that the underlying mechanisms function 
to enumerate bounded objects by default (Clarke & Beck, 2021b). As such, the persistence 
of the connectedness illusion has served as a crucial piece of evidence that approximate 
enumeration relies upon an initial stage of ‘normalization’, whereby bounded 
individuals are identified independently of their low-level properties, allowing these 
bounded individuals to then be tallied up or ‘directly enumerated’ irrespective of their 
confounding variables (Franconeri et al., 2009; Dehaene & Changeux, 1993). 
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Despite its theoretical significance, little is known about the developmental origins 
of the connectedness illusion. Previous work has yielded mixed results about the 
influence of development on the strength of other visual illusions. For instance, Hadad 
(2018) found that while four-year-old children were susceptible to the Ponzo and 
Ebbinghaus illusions, they were fully immune to other illusions that required greater 
levels of visual integration, such as the rectangle and 3D-cube illusions. Consistent with 
these observations, some have found that the strength of other visual illusions increases 
with age, failing to reach adult levels until somewhere between 6 (Weintraub, 1979; 
Zannuttini, 1996) and 15 years of age (Bondarko & Seminov, 2004; Brosvic et al., 2002), 
perhaps because these effects result from the visual system’s optimization to statistical 
regularities in the environment (Weiss et al., 2002). In the case of the Ebbinghaus illusion, 
however, some have argued that the strength of the effect is identical in children and 
adults (Duemmler et al., 2008; Hanisch et al., 2001; but see Doherty, Campbell, Tsuji, & 
Phillips, 2010), although this finding is complicated by the suggestion that the illusion 
results from multiple mechanisms, developing along distinct trajectories (Porac & Coren, 
1981; Doherty et al., 2010). Meanwhile, other visual illusions, such as the Muller-Lyer 
illusion, have been reported to be stronger in children, and to decrease in strength 
throughout development (e.g., Binet, 1895; Pintner & Anderson, 1916; Werner, 1957; Sun, 
1964). 

Since the connectedness illusion remains unexplored in children, all of these 
developmental trajectories are hypothetically viable. If the connectedness illusion 
increases in strength over development, this would parallel other numerical illusions 
such as the regular-random illusion (Ginsburg & Deluco, 1979) and the coherence illusion 
(DeWind et al., 2020; Qu et al., 2022). For instance, Qu et al. (2022) found that the 
coherence illusion was present in children as young as five but increased in strength 
throughout development and into adulthood. If instead the magnitude of the 
connectedness illusion decreases over development this might reflect maturation in 
executive functioning skills which allows inhibition of the irrelevant lines (e.g., Gilmore 
et al., 2013). Finally, the strength of the connectedness illusion could prove stable 
throughout development. To adjudicate these possibilities, we quantified the strength of 
the connectedness illusion in children, aged 5- 12 years, and in adults.  
 
2. Methods  
Our hypotheses, procedures, and main analyses for this experiment were pre-registered 
at https://osf.io/d7k6e (for both children and adults). All data and materials can be located 
at https://osf.io/rydvx/?view_only=e236b6aea32b412dab25d82a5e2fb45f. (Note that this 
is an anonymous link for peer review.) 
2.1 Participants 
Forty-three children aged from 5.1 to 12.0 years old (Mage = 7.9 years; 25 female 
participants, 18 male participants, 0 non-binary participants) and fifty-seven adults (Mage 

https://osf.io/d7k6e
https://osf.io/rydvx/?view_only=e236b6aea32b412dab25d82a5e2fb45f
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= 20.17 years; 33 female participants, 24 male participants, 0 non-binary participants) 
completed the online experiment via Pavlovia. One child and six adults were excluded 
due to their mean accuracy falling more than 1.5 interquartile ranges below the first 
quartile (Q1) of the overall sample distribution. All participants reported normal or 
corrected-to-normal visual acuity and normal color vision. Children were recruited via 
the XXXXXXXX developmental database and compensated with Amazon gift cards. 
Adults were recruited from a large university community in exchange for course credit. 
Adult participants and parents of children participants provided informed consent to a 
protocol approved by the XXXXXXX Institutional Review Board before starting the 
experiment.  
 
2.2 Stimuli and Design  
This experiment utilized an online PsychoPy routine (Peirce, 2007). Due to the online 
nature of the study, we were unable to control monitor sizes and screen resolutions. 
PsychoPy software packages offer diverse device-independent units for stimuli 
description (Peirce, 2007). We utilized the 'height' units in PsychoPy builder to specify 
stimulus units relative to the window's height. This ensured that stimuli scaled naturally 
with the window size, allowing participants using different browsers to view the full-
screen window with an appropriate pixel size for the display. 

Each stimulus array was composed of 8-32 blue [RGB: 66, 133, 244] dots on a 
white background with slender lines that either connected pairs of dots or did not. Lines 
were generated with random orientations and spatial positions and matched the colors 
of the dots. Figure 1 displays the two types of stimuli. In unconnected stimuli, the lines 
of adjacent dots did not converge and were oriented in distinct directions, forming 
isolated lollipop-shaped configurations. In connected stimuli, pairwise dots were 
connected, merging the lines of adjacent dots into unified, continuous, and straight lines, 
which thereby resulted in dumbbell-shaped configurations. If a stimulus had an odd 
number of dots to be connected, one lollipop-shaped object remained unconnected. For 
instance, a connected stimulus with 11 blue dots would result in five dumbbell-shaped 
objects and one lollipop-shaped object. We ensured that lines, whether connected or 
unconnected, did not cross each other or extend beyond the boundaries of the array.   

There were three different trial types presented with equal frequency: (1) two 
unconnected arrays, (2) a connected array on the left side and an unconnected array on 
the right side, (3) an unconnected array on the left side and a connected array on the 
right side.  

Following previous research using numerical discrimination tasks, the numerical 
values ranged from 8-32 and were approximately evenly spaced on a log scale (8, 10, 11, 
13, 16, 19, 23, 27, 32) (DeWind et al., 2020; Qu et al., 2022). The log scale ensured a 
uniform ratio between any two adjacent numerical values. To illustrate, the ratio 
between arrays of 10 and 13 dots mirrored that between arrays with 16 and 23 dots, both 
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pairs being two units apart on the log scale. The numerical ratios between the two arrays 
were evenly distributed in a base-2 log space, spanning from 0 to 1 and produced 5 
distinct ratio values: 1, 1.19, 1.41, 1.68, and 2. Each participant was tested with 450 trials 
divided into three 150-trial blocks. There were approximately 150 trials for each of the 
three trial types, and there were approximately 90 trials for each of the five ratios. 

 
Figure 1. Examples of stimulus arrays. The connected array (left side) with 27 dots has 13 
dumbbell-shaped connected pairs and one lollipop-shaped object. The unconnected array (right 
side) with 27 dots has 27 lollipop-shaped objects.  
 
2.3 Procedure 
At the beginning of the experiment, all participants were given the following child-
friendly instructions: 

Help Whiskers the cat collect as many blueberries as possible! In each trial, Whiskers has 
two piles of blueberries to pick from. We need to decide which pile has more!  

Sometimes, the stems of two blueberries will be touching. Ignore the stems! Even when the 
stems (lines) are touching each other, the amount of blueberries (blue circles) remains the same! 
All we care about is which pile has more blueberries, regardless of what the stems do.  

After the instructions, participants were given three practice trials with feedback 
to ensure that they understood that their task was to decide whether the left or right pile 
had more blueberries (dots) while ignoring the stems (lines). Participants were then 
tested with three 150-trial blocks which took approximately 15-30 minutes to complete. 
Participants were reminded of the instructions before the start of the second and third 
blocks.  

Each experimental trial began with a 500ms central fixation cross followed by two 
arrays presented simultaneously for 750ms. Participants were then presented with a 
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response cue that instructed them to press “f” if the left array had more dots and “j” if 
the right array had more dots. Participants were given unlimited time to respond but 
were instructed to respond as quickly and accurately as possible. Responses during the 
presentation of the stimulus arrays were permitted and aborted the stimulus 
presentations. 

 
2.4 Data analyses – generalized linear model (GLM) 
To quantify the effect of connectedness on participants’ number judgments, we employed 
a Generalized Linear Model (GLM) and modeled each participant’s response data 
separately. This model was fitted to each participant’s binary response data using a probit 
link function and a binomial error distribution. The GLM incorporated a constant term 
and regressors for the logarithm of the numerical ratio and the difference in 
connectedness between the two arrays. Derived from prior research on numerical 
illusions, this GLM enables the dissection of trial-level choice data into acuity and bias 
(DeWind et al., 2020; Qu, Bonner, DeWind, & Brannon, 2023; Qu et al., 2022). This 
modeling approach provides a numerical estimate of the degree to which connectedness 
influenced numerical judgments for each individual that is independent from all other 
factors influencing accuracy.  
 

𝑝(𝑐ℎ𝑜𝑜𝑠𝑒	𝑟𝑖𝑔ℎ𝑡) = 	𝛷(𝛽!"#$ +	𝛽%&'𝑙𝑜𝑔((𝑟%&') +	𝛽)*%%$)+𝐷𝑖𝑓𝑓𝐶𝑜𝑛𝑛𝑒𝑐𝑡) (1)	
 

In the given formula, 𝑝(𝑐ℎ𝑜𝑜𝑠𝑒	𝑟𝑖𝑔ℎ𝑡) represents the proportion of trials where 
participants selected the right side. Φ denotes the cumulative normal distribution, and 
𝛽!"#$ is a constant indicating the side bias of participants toward choosing one side over 
the other. The variable 𝑟%&'	is the ratio of the number of elements on the right array to the 
number on the left array. The 𝐷𝑖𝑓𝑓𝐶𝑜𝑛𝑛𝑒𝑐𝑡 regressor signifies the difference in 
connectedness between the two arrays, with three possible values (-1, 0, and 1). These 
values are coded as follows: 1 if the right side is connected and the left side is 
unconnected, -1 if the left side is connected while the right side is unconnected, or 0 if 
both sides are unconnected. 

The coefficients 𝛽%&' and 𝛽)*%%$)+, fitted to the numerical ratio and the difference 
in connectedness regressors for each participant, serve as indicators of participants’ 
numerical discrimination acuity and the effect of connectedness on their number 
judgments. The magnitude of 𝛽%&' quantifies numerical discrimination acuity. If 
participants were completely insensitive to connectedness, the 𝛽)*%%$)+ fitted to the 
𝐷𝑖𝑓𝑓𝐶𝑜𝑛𝑛𝑒𝑐𝑡 regressor would be zero. Conversely, any consistent effect of connectedness 
on number perception would result in a non-zero 𝛽)*%%$)+. A negative 𝛽)*%%$)+ would 
indicate that the side with connected elements is perceived as less numerous than the side 
with no connections whereas a positive value would indicate the reverse. 
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To better illustrate the magnitude of the connectedness effect, we calculated the 
numerical ratio required to offset the difference in perceived number between connected 
and unconnected arrays. Specifically, we solved Equation 2 to determine  𝑟!"# using the 
average coefficient estimates (𝛽!"# and 𝛽$%!!&$' ) from the regression model (Equation 1) 
across all participants, for children and adults respectively. The ratio 𝑟!"# was converted 
to a percentage for easier interpretation. 

 
𝛽%&'𝑙𝑜𝑔((𝑟%&') = 	𝛽)*%%$)+𝐷𝑖𝑓𝑓𝐶𝑜𝑛𝑛𝑒𝑐𝑡 (2) 

 
3. Results 
3.1 Choice data  
In the final samples, 42 children (Accuracy M = 83.6%, SD = 0.10, 95% CI [0.80, 0.87], t(41) 
= 21.48, p < 0.001; One sample t-test) and 51 adults (Accuracy M = 93.3%, SD = 0.05, 95% 
CI [0.93, 0.94], t(50) = 112.44, p < 0.001; One-sample t-test) completed the tasks with above-
chance accuracy. The binary response data of each participant was fit to a generalized 
linear model (Equation 1). The psychometric curves in Figure 2 represent the smooth fit 
of the regression model to the pooled data, which depict the proportion of trials that 
participants chose the right side as a function of the logarithm of the numerical ratio at 
different connectedness conditions for both children and adults. We then ran a one-
sample t-test for each of the three regression coefficients (𝛽!"#$,  𝛽%&', 𝛽)*%%$)+) to 
determine if the regression coefficients were significantly different from zero.  

𝛽!"#$ was significantly greater than zero for children (𝛽!"#$ M = 0.084, SEM = 0.02, 
95% CI [0.04, 0.13], t(41) = 3.82, p < 0.001) but not for adults (𝛽!"#$M = 0.041, SEM = 0.03, 
95% CI [-0.02, 0.11], t(50) = 1.28, p = 0.21), indicating that children showed a very slight 
preference for the right side (the mean proportion of choosing right is 51.3%), whereas 
adults did not show a bias for selecting one side over the other. Note that no participants 
met the pre-registered exclusion criterion for an extreme side bias (greater than 65% of 
responses to one side).        

𝛽%&'was significantly greater than zero for both children (𝛽%&' M = 1.998, SD = 
0.16, 95% CI [1.68, 2.32], t(41) = 12.67, p < 0.001) and adults (𝛽%&' M = 3.44, SD = 0.15, 95% 
CI [3.13, 3.75], t(50) = 22.58, p < 0.001) indicating that both age groups reliably chose the 
larger numerical value. 𝛽%&' was significantly greater in adults compared to children 
(t(91) = -6.53, 95% CI [-1.88, -1.00], p < 0.001). As depicted in Figure 3a, further analysis 
collapsing the two age groups revealed a positive correlation between age and 𝛽%&' (r = 
0.59, t(91) = 6.90, 95% CI [0.43, 0.71], p < .001) consistent with prior literature 
demonstrating improvements in numerical acuity with age (Halberda & Feigenson, 2008; 
Halberda, Ly, Wilmer, Naiman, & Germine, 2012). 
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Figure 2. Connectedness reduces perceived number for both adults and children. The 
psychometric curves represent the smooth fit of the regression model (Equation 1) to the pooled 
data. The squares represent the mean proportion of choosing the right at each combination of left-
to-right numerical ratios and connectedness conditions across participants. The clear distinction 
between the curves under different connectedness conditions indicates that participants more 
often chose the right side when the left side was connected and the right side was unconnected. 

 
𝛽)*%%$)+ was significantly less than zero for both children (𝛽)*%%$)+  M = -0.099, SD 

= 0.04, 95% CI [-0.18, -0.02], t(41) = -2.52, p = 0.016) and adults (𝛽)*%%$)+  M = -0.36, SD = 
0.04, 95% CI [-0.44, -0.28], t(50) = -8.98, p < 0.001), indicating that for both age groups 
connectedness yielded a reduction in perceived number. According to the GLM 
(Equation 1), a negative value of 𝛽)*%%$)+ indicates that the side with connected objects is 
perceived as less numerous than the side with unconnected objects. As shown in Figure 
2, there was distinct separation of the psychometric curves based on connectedness 
conditions whereby participants tended to choose the right side more frequently when 
the left side was connected, and the right side was unconnected, and this separation was 
more pronounced for adults (Figure 2a) than children (Figure 2b). According to Equation 
2, on average children perceived unconnected arrays as 3.36% more numerous than 
connected arrays, while for adults unconnected arrays were perceived as 7.01% more 
numerous than connected arrays. 

In order to more intuitively gauge the magnitude of the connectedness illusion, 
we inverted the value of 𝛽)*%%$)+, so that larger values (-𝛽)*%%$)+)	reflected a greater 
magnitude of the connectedness effect. The effect of connectedness was statistically larger 
in adults compared to children (U = 460, p < 0.001, Mann-Whitney U test), demonstrating 
that adults were more strongly influenced by the presence of connections between dots 
compared to children. Further analysis combining both age groups revealed a positive 
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correlation between age and connectedness (r = 0.44, t(91) = 4.61, 95% CI [0.25, 0.59], p < 
.001), indicating that the strength of the connectedness illusion increases into adulthood 
(see Figure 3b).  

 
Figure 3. Scatter plots of age effect. (a) The precision of numerical discrimination, quantified as 
𝛽%&', was positively correlated with age. The grey band region represents 95% confidence 
intervals. (b) The strength of the connectedness effect (quantified as -𝛽)*%%$)+) was positively 
correlated with age, indicating that the magnitude of the connectedness illusion increased into 
adulthood. The grey dashed line denotes the baseline where there was no effect of connectedness.  
 
 We next examined the relationship between numerical discrimination acuity and 
the magnitude of the connectedness illusion controlling for age. As depicted in Figure 4, 
after partialling out the variance related to age, the partial correlation between 𝛽%&' and 
the strength of the connectedness effect remained significantly positive (r = 0.34, t(91) = 
3.47, 95% CI [0.15, 0.51], p < .001). This indicates that individuals with sharper ANS acuity 
exhibited a greater susceptibility to the connectedness illusion independent of age.   
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Figure 4. Partial correlation between numerical discrimination precision and the strength of 
the connectedness illusion when controlling for age. The grey band region represents 95% 
confidence intervals. 

 
3.2 Exploratory analyses on inspection time and reaction time 
Although we did not pre-register analyses on reaction-time, we conducted exploratory 
analyses to assess whether differences in inspection time might account for 
developmental differences in the magnitude of the connectedness illusion. We first 
eliminated outliers by excluding reaction times that exceeded or fell below three standard 
deviations from each participant's median reaction time (Leys, Ley, Klein, Bernard, & 
Licata, 2013). Following this procedure, 1,455 out of the total 22,950 trials (6.34%) were 
excluded in adults, and 1,348 out of the total 16,200 trials (8.32%) were excluded in 
children. Figure 5a displays a frequency distribution of reaction time for children and 
adults. The median reaction time for children was significantly longer than that of adults 
(Mdnchildren = 0.835s, Mdnadults = 0.535s, U = 1493, p < .0001, Mann-Whitney U test).  
 To examine whether reaction-time was ratio dependent, we first calculated the 
median reaction time at each numerical ratio for each individual. We then fit the median 
reaction times by a linear mixed model with numerical ratio entered as a fixed effect and 
participants treated as a random effect. As shown in Figure 5b, the fixed effect of the 
numerical ratio on median reaction times was significant for both children (β = -0.195, SE 
= 0.02, t(143) = -8.23, p < .0001) and adults (β = -0.13, SE = 0.01, t(203) = -18.08, p < .0001).  
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Figure 5. Reaction time analyses. (a) Frequency distribution of reaction time for children and 
adults. The dashed line represents the presentation time of the stimuli (750 ms). (b) The ratio 
effect on reaction time for both children and adults. The dots represent the mean reaction time 
averaging across participants’ median reaction time at each numerical ratio. All error bars are 
SEM. 
 

Given that the stimuli were presented for a maximum of 750-ms but early 
responses aborted the stimulus presentation, we conducted a few additional analyses to 
compare inspection time for children and adults. Overall, 14 out of 36 children (38.9%) 
and 42 out of 51 adults (82.4%) exhibited a median reaction time less than the presentation 
time of the stimuli (750-ms), which indicates that adults and to a lesser extent children 
often responded before the offset of the stimuli presentation. To compare the time 
children and adults spent inspecting the stimuli, we set inspection time to 750ms for any 
trial for which responses occurred after 750ms and set inspection time equal to reaction-
time for any trial that ended with a response before the maximum 750ms. stimulus 
presentation time.  The mean inspection time for children was significantly longer than 
that of adults (Mchildren = 0.663s, Madults = 0.572s, U = 1372, p < .0001, Mann-Whitney U test). 
Furthermore, there was no correlation between the magnitude of the connectedness 
illusion and the average inspection time among participants (r = -0.07, t(85) = -0.62, p = 
0.54). This indicates that variations in inspection time do not explain the individual 
differences observed in the connectedness illusion. 

 
4. Discussion 
We found that children as young as 5 years of age are susceptible to the connectedness 
illusion and that the illusion increases in strength during development. This 
developmental trend parallels prior work on other numerical illusions (Ginsburg & 
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Deluco, 1979; Qu et al., 2022) and contrasts with the influence of continuous variables, 
such as surface area and perimeter on numerical judgments which declines from 4-6 years 
of age and remains stable from 6 years into adulthood (Starr et al., 2017).   

The connectedness illusion sheds light on the controversy over whether nonverbal 
number representations are indirectly or directly perceived.  Direct models of number 
extraction posit that the visual system performs an initial stage of ‘normalization’ 
wherein bounded objects are individuated independently of confounding variables such 
that they can then be tallied up by a secondary ‘accumulator’ stage of processing 
(Dehaene & Changeux, 1993). By contrast, indirect models posit that number is 
secondarily calculated from representations of continuous variables (e.g., Leibovich et al., 
2017).  Despite having an identical surface area or pixel number, arrays with connected 
pairs are judged as less numerous than arrays with free floating lines, presenting a 
problem for indirect models of numerical perception which posit that number is 
computed from continuous variables like area and density.  

What remains puzzling, is that strictly speaking, direct models of visual numerical      
estimation seemingly predict that connections among dots should approximately half 
their perceived number, yet the effects of the connectedness illusion are far weaker than 
this. For instance, in our study we observed a mean 7.01% reduction in perceived number 
in adults as a function of connecting all the dots in an array into pairs. Future work should 
seek an explanation for the relatively weak effect of connectedness. One possibility would 
be to appeal to some capacity-limited role for attention in the integration of features into 
dumbbell-shaped wholes (see Pomé et al. 2021). Alternatively, an impure model of visual 
number estimation might rely on both direct and indirect mechanisms of enumeration or 
posit distinct direct mechanisms which individuate items according to principles of their 
own. This would liken number perception to the perception of other magnitudes, like 
distance, which involve myriad mechanisms, operating according to idiosyncratic 
principles of their own, before being integrated and/or weighted against one another, 
perhaps in a Bayes optimal manner (Ernst 2006). 

Previous work has found that other visual illusions result from myriad 
mechanisms, working in tandem, each of which develop along their own independent 
trajectories (Porac & Coren 1981). This raises the possibility that the strength of a visual 
illusion at a given stage of development will vary depending on the context under which 
it is investigated and depending on subtle details of the stimuli used. Consistent with this 
possibility, Bressan and Kramer (2013, 2021) demonstrated that group differences in the 
strength of visual illusions can often be attributed to differences in stimulus inspection 
time (Bressan & Kramer 2021). However, our post-hoc analyses indicate that inspection 
time cannot account for the increase in the strength of the illusion over development. 
Nevertheless, this does not preclude the possibility that future work will uncover other 
important variables which affect the strength of the illusion in a given population.  
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Developmental changes in the connectedness illusion may reflect maturation of the visual 
system, maturation of the ANS, or an interaction between the two.   

Like many classic visual illusions, there is considerable inter-individual variation 
in the magnitude of the connectedness illusion at all ages. What predicts and explains 
this variability? Individual differences in classic visual illusions are generally not 
predicted by differences in visual acuity (Cretenoud et al., 2021) but are sometimes 
predicted by other cognitive variables (e.g., Binet, 1985). For instance, Coren and Porac 
(1987) found that illusions of linear extent (e.g., the Muller-Lyer illusion) and illusions of 
direction and area (e.g., the Delboeuf illusion) showed distinct relationships with spatial 
ability. Higher levels of spatial ability predicted lower strengths of visual illusions of 
direction and area, but the reverse relationship held for illusions of linear extent. That 
individuals with better ANS acuity exhibit stronger connectedness illusions speaks to the 
importance of bounded wholes in number perception. The reduction in perceived 
number as a function of connectedness may best be thought of as a feature rather than a 
glitch of the ANS. 
 
5. Conclusion 
Helmholtz (1896) argued that “It is especially those cases in which our impressions evoke 
in us representations which do not correspond to reality that are particularly informative 
for finding the laws of processes and ways through which normal percepts are 
established” (p. 96; quoted in Todorovic 2020, p.1192).  Our findings that children as 
young as 5 years of age exhibit the connectedness effect, that the effect increases in 
magnitude with age, and that it is positively correlated with the precision with which 
participants make numerical discriminations collectively suggest that the visual system 
expects to enumerate over bounded wholes and doing so is a signature of its optimal 
functioning.   
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