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Epistemic Probabilities are Degrees of Support, not Degrees of (Rational) Belief 

Abstract I argue that when we use ‘probability’ language in epistemic contexts—

e.g., when we ask how probable some hypothesis is, given the evidence 

available to us—we are talking about degrees of support, rather than 

degrees of belief. The epistemic probability of A given B is the mind-

independent degree to which B supports A, not the degree to which 

someone with B as their evidence believes A, or the degree to which 

someone would or should believe A if they had B as their evidence. My 

central argument is that the degree-of-support interpretation lets us better 

model good reasoning in certain cases involving old evidence. Degree-of-

belief interpretations make the wrong predictions not only about whether 

old evidence confirms new hypotheses, but about the values of the 

probabilities that enter into Bayes’ Theorem when we calculate the 

probability of hypotheses conditional on old evidence and new 

background information. 

 

1. Introduction 

Orthodox Bayesianism is a theory about degrees of belief. Orthodox Bayesians say that 

degrees of belief should be probabilistically coherent, and perhaps obey other norms as well, 

such as diachronic conditionalization, the Principal Principle, and the Principle of Indifference. 

On standard presentations, the more of these norms you accept, the more objective a Bayesian 

you are, whereas the fewer you accept, the more subjective a Bayesian you are. But Bayesians of 

all these sorts share an assumption that degrees of belief, or ‘credences’, are the primary objects 

of interest to formal epistemology. Standard presentations call (coherent) credences “subjective 

probabilities,” suggesting that in epistemic contexts ‘probability’-language refers to these 

psychological entities.1 

 
1 The language of ‘subjective probability’ goes back to early Bayesians such as de Finetti (1931). The general 

presentation described above can be found in many contemporary philosophical presentations of Bayesianism. For 

example, Meacham (2014: 1185) follows the presentation above almost exactly, except that he uses the terms 

“permissive” and “impermissive” rather than “subjective” and “objective”; and Jon Williamson (2010: 15-16) 

delineates three different versions of Bayesianism (strictly subjective Bayesianism, empirically based subjective 

Bayesianism, and objective Bayesianism) based on how many constraints they put on rational credences. 
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 I seek to upend this orthodoxy. I will argue that the probabilities we reason about in 

epistemic contexts are degrees of support: mind-independent relations between propositions that 

determine what degrees of belief are rational, but are not themselves degrees of belief. By 

‘epistemic contexts’, I mean contexts in which we reason about things like how probable a 

scientific theory is, or how strongly a theory predicts some evidence, or to what degree some 

evidence confirms a theory. It is standard to distinguish between the “epistemic probabilities” 

reasoned about in these kinds of contexts and the “physical probabilities” theorized about in, e.g., 

quantum mechanics (see, e.g., Romeijn 2022: sec. 2). My thesis here is only about epistemic 

probabilities. The relation between epistemic and physical probabilities is an important question, 

but one beyond the scope of this essay. 

 To be clear, I do not deny that ‘probability’ can be used in a technical sense to refer to 

degree of (rational) belief. Some philosophers use the term in this way in particular formal 

contexts, just as some mathematicians use ‘probability’ in a technical sense to refer to any 

quantity that satisfies Kolmogorov’s axioms. But just as the latter technical usage does not show 

normalized areas (which satisfy Kolmogorov’s axioms) to be a referent of ‘probability’ in 

ordinary language, the former technical usage does not show degrees of (rational) belief to be a 

referent of ‘probability’ in ordinary language. My focus here is on the entities picked out by 

pretheoretic uses of ‘probability’-language in epistemic contexts. 

The main question that this paper addresses is a descriptive one: what are epistemic 

probabilities? However, I take the answer to this question to also have normative implications. If 

epistemic probabilities were degrees of support, but degrees of support were not that interesting, 

we might prefer to start using ‘probability’-language to pick out a different quantity (perhaps 

adopting the technical usage of personalist philosophers). But as I characterize degrees of 
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support, they are very important: they tell us what degrees of belief we ought to have. 

Consequently, we could not do epistemology without theorizing about them. As such, I take the 

argument of this paper to suggest, not only that we pretheoretically use ‘probability’-language to 

refer to degrees of support, but that we ought to continue to do so. 

 This paper proceeds as follows. In section 2, I explain what degrees of support are, and 

argue that debates among orthodox Bayesians about the norms governing rational degrees of 

belief can be recast as debates about the nature of degrees of support and the way in which they 

constrain rational degrees of belief. As such, commitment to a particular position in these debates 

is not a reason to favor a degree-of-belief interpretation of epistemic probability over a degree-

of-support interpretation. In section 3, I argue that natural probabilistic reasoning in certain cases 

involving old evidence is inconsistent with a degree-of-actual-belief interpretation of the 

probabilities reasoned about in those cases, but consistent with a degree-of-support interpretation 

of those probabilities. In section 4, I argue that natural probabilistic reasoning in two further old 

evidence cases is inconsistent with an interpretation of the relevant probabilities as rational initial 

degrees of belief, but consistent with a degree-of-support interpretation of those probabilities. In 

section 5, I argue that not only is the degree-of-support interpretation consistent with how we 

reason in these cases, it can also explain the propriety of that reasoning. Finally, in section 6, I 

give some reasons to extrapolate from the preliminary conclusion that the probabilities in these 

old evidence cases are degrees of support to the more general conclusion that all epistemic 

probabilities are degrees of support. 

2. Degrees of Support 

The degree-of-support interpretation of probability2 interprets probabilities as relations 

 
2 For ease of exposition, I mostly drop the qualifier ‘epistemic’ in the remainder of this paper. 
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between propositions. It understands the probability of A given B as the degree to which B 

supports A, and the unconditional probability of A as the degree to which A is supported by a 

priori truths or tautologies. Entailment is a limiting case of this support relationship: if B entails 

A, then B supports A to a maximal degree, and P(A|B) = 1.3 These support relations are not 

defined in terms of or reducible to degrees of belief. Instead, degrees of support rationally 

constrain degrees of belief. Below I discuss various possible bridge principles from the former to 

the latter; as a first pass, the idea is that, if P(A|B) = r, then someone with B as her evidence 

ought to be confident in A to degree r. 

The precise nature of probabilistic support relations is left open by this minimal 

characterization. For the purposes of this paper, the distinctive claims of the degree-of-support 

interpretation are that probabilities are mind-independent relations between propositions and that 

probabilities constrain rational degrees of belief.4 The key difference between the degree-of-

support interpretation and degree-of-belief interpretations is that the latter define probabilities in 

terms of (rational, counterfactual, or actual) degrees of belief, while the former takes 

probabilities to be fixed independently from degrees of belief and to determine what degrees of 

belief are rational.5 

I adopt this intentionally thin characterization of the degree-of-support interpretation 

 
3 Degree-of-support theorists who endorse the ratio analysis of conditional probabilities (see below) may wish to 

make an exception for contradictions, saying that, e.g., C&~C does not support everything maximally. This is 

because P(A|C&~C) = P(A&C&~C) / P(C&~C) = 0/0, and so the ratio analysis leaves P(A|C&~C) undefined. There 

are also hard questions about whether understanding entailment as maximal support makes degrees of support 

unable to guide the reasoning of non-logically omniscient agents—see, e.g., Swinburne 2001: ch. 3—but these 

issues are beyond the scope of this paper. 

4 So characterized, a number of philosophers have endorsed a degree-of-support interpretation of probability, or 

something very similar. These include Keynes (1921), Jeffreys (1939), Carnap (1950), Timothy Williamson (2000), 

Swinburne (2001), Franklin (2001), Jaynes (2003), Hawthorne (2005), and Maher (2006). 

5 Rowbottom (2008: 342) offers a similar characterization of the difference between Keynes’s (1921) “logical” 

interpretation and Jon Williamson’s (2005) “objective Bayesian” interpretation: “the former defines rational degrees 

of belief in terms of probabilities … whereas the latter interprets probabilities as rational degrees of belief.” 
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here, not because I have no further opinions about the nature of probabilistic support relations, 

but because I want to be as ecumenical as possible in defending the claim that probabilities are 

degrees of support. For example, the claim that the conditional probability of A given B is the 

degree to which B supports A is sometimes combined with a rejection of Kolmogorov’s ratio 

analysis of conditional probabilities, which defines P(A|B) as the ratio P(A&B) / P(B), and the 

adoption of a non-standard axiomatization of probability that instead takes conditional 

probabilities as primitive (e.g., Hawthorne 2005: 288n9; Jaynes 2003: ch. 1-2).6 However, one 

could endorse both the degree-of-support interpretation and the ratio analysis, as Timothy 

Williamson (2000: ch. 10) does.7 Williamson holds that the probability of a hypothesis on one’s 

evidence is the mind-independent degree to which “the evidence tells for or against the 

hypothesis” (209), rather than one’s actual or hypothetical degrees of belief, but also holds that 

this conditional probability is defined as a ratio of unconditional probabilities. These 

unconditional probabilities come from a mathematical probability distribution that “measures 

something like the intrinsic plausibility of hypotheses prior to investigation” (211).8 

 
6 It is somewhat unclear whether Jaynes understands probabilities to be degrees of support or rational degrees of 

belief. His main project is deriving objective probabilistic rules that an ideal reasoner should follow—suggesting a 

rational-degree-of-belief interpretation. And he cautions against projecting epistemology onto ontology (Jaynes 

2003: 22). But by ‘ontology’ here Jaynes may only mean physical reality, not abstract reality (cf. Rowbottom 2008: 

343). And Jaynes draws analogies with deductive logic that suggest he thinks his rules for ideal uncertain reasoning 

follow from logical or quasi-logical relations. 

7 There are also some philosophers who endorse the claim that conditional probabilities are primitive but do not 

endorse the degree-of-support interpretation. Hájek (2003) defends the former claim for probability understood as 

subjective degree of belief. And de Finetti claimed that all probabilities were conditional, but held that they were 

conditional partly on a person’s state of mind: “every prevision and, in particular, every evaluation of probability, is 

conditional; not only on the mentality or psychology of the individual involved, at the time in question, but also, and 

especially, on the state of information in which he finds himself at that moment” (de Finetti 1970: 113). The relata 

of support relations, by contrast, are mind-independent entities. The degree-of-support interpretation of probability 

holds that conditional probabilities are relations between the propositions on the left-hand and right-hand side of the 

conditionalization bar, |, rather than an agent’s (actual, hypothetical, counterfactual, or ideally rational) degrees of 

belief when (actually, hypothetically, counterfactually, or ideally rationally) in a state of mind. 

8 My thanks to an anonymous editor for pushing me to clarify the relation between the degree-of-support 

interpretation and the claim that conditional probabilities are primitive. I revisit the question of whether conditional 

probabilities are primitive in note 32. 
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In my view, both proponents and critics of the claim that probabilities are degrees of 

support have been too quick to combine this claim with logically independent assumptions about 

the nature of degrees of support. In particular, arguments for and against the degree-of-support 

interpretation have often assumed that degrees of support must be metaphysically necessary, 

knowable a priori, unique, and point-valued. That is, like the laws of logic and mathematics, 

degrees of support do not depend on contingent facts about the world, and are knowable apart 

from empirical investigation; and they can be precisely quantified, so that for any propositions A 

and B, B will support A to some precise degree r. 

Consider necessity and apriority. Carnap (1950) infamously held that the degree to which 

B supports A is purely a matter of syntax: the form of the propositions A and B is enough to 

determine the degree to which B supports A. Contemporary defenders of the degree-of-support 

interpretation, by contrast, tend to hold that support relations are semantic: the degree to which B 

supports A is determined by the content of A and B, and not merely their form. Support relations 

are then analogous to natural language entailments, which are a function of the content of the 

propositions involved, and not merely their logical form.9 

Both the syntactic and semantic conceptions of support relations take them to be 

necessary and a priori. But there are alternative conceptions available. For example, one could 

adopt a frequentist analysis of degrees of support, on which the degree to which B supports A is 

 
9 For example, according to Swinburne (2001: 64), the probability of q given r “has a value determined by the 

content of q and r, which measures the total force of r with respect to q; to which we try to conform our judgments 

of inductive probability on evidence but about the value of which we may make mistakes.” Hawthorne (2005: 285) 

writes that Keynes and Carnap tried to “logicize” probability “through syntactic versions of the principle of 

indifference. But logical form alone cannot determine reasonable values for prior probabilities, as examples 

employing Goodmanian grue-predicates illustrate.” Williamson (2000: 211) similarly asserts that, unlike Carnap, his 

probability measure “is not assumed to be syntactically definable. … The difference between green and grue is not a 

formal one.” For his part, Franklin (2001) characterizes support relations as “logical,” and uses the metaphor of 

“partial entailment,” but (contra Carnap) holds that logical relations in general are not purely syntactical, noting that 

this view “has enough difficulties even in deductive logic” (287)—for example, in showing the incompatibility of 

“this is red” and “this is blue” (290).  
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something like the frequency with which A is true when B is true, or propositions like A are true 

when propositions like B are true. This could be the frequency in the actual world, or in some 

subset of possible worlds. This frequency would be a contingent, empirical fact. It would be 

knowable either a posteriori or not at all. The possibility of such a conception shows that we 

need not assume that support relations are necessary or knowable a priori. 

There are philosophical objections that could be raised against this empirical conception 

of degrees of support. For example, one might worry that for one to be rationally required to 

conform one’s degrees of belief to degrees of support, one must be able to tell how much one’s 

current evidence supports any given proposition.10 But this objection relies on a philosophically 

controversial premise, one that some epistemic externalists might deny. My goal here is not to 

suggest that they would be correct in doing so. It is simply to point out that this dispute is 

downstream from the one about the proper interpretation of probability. If I am right, there are 

good reasons to take probabilities to be degrees of support whether we go on to characterize 

degrees of support as a priori/internalist or empirical/externalist. We should all understand 

probabilities to be relations between propositions; we can go on to debate the precise nature of 

those relations later. 

Similar remarks go for the assumption that degrees of support must be unique and point-

valued. Philosophers skeptical that all probabilities are point-valued could hold that some 

degrees of support are imprecise or spread out, as Keynes (1921) did. Philosophers inclined 

towards “permissivism” about rational degree of belief could hold that there is not one unique 

degree to which B supports A, but rather many degrees, and that agents are free to choose which 

 
10 Titelbaum (2022: sec. 5.1.2) suggests that if there is a unique “hypothetical prior” function to which agents are 

rationally required to conform, we must be able to determine what it is a priori. 
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degree of support to adopt as a guide to their degree of belief.11 

Indeed, the degree-of-support interpretation is compatible with a variety of different 

norms for degrees of belief.12 Let’s assume that degrees of support are point-valued, but may be 

non-unique. Here are some theories that imply progressively more demanding norms for rational 

degrees of belief. Note that in these claims ‘probability function’ means one of the degree-of-

support functions (from an ordered pair of propositions to a number representing the degree to 

which the latter supports the former), and not just a mathematical probability function. 

(i) There are multiple probability functions P1(.), P2(.), etc. An agent’s credence function at a 

time, Cr(.), is rational just in case there exists a probability function Pi(.) such that Cr(.) = 

Pi(.|X), where X is the agent’s evidence at that time. 

 

(ii) There are multiple probability functions P1(.), P2(.), etc. An agent’s credence function at a 

time, Cr(.), is rational just in case there exists a probability function Pi(.) such that (a) 

Cr(.) = Pi(.|X), where X is the agent’s evidence at that time and (b) at all earlier times, 

Crold(.) = Pi(.|Y), where Y was the agent’s evidence at that earlier time.13 

 

(iii)There are multiple probability functions P1(.), P2(.), etc., but they are indexed to agents, 

such that for any agent, there is some unique probability function Pi(.) such that that 

agent’s credence function at any time, Cr(.), is rational just in case Cr(.) = Pi(.|X), where 

X is the agent’s evidence at that time. 

 

(iv) There is one unique probability function P(.). An agent’s credence function at a time, 

Cr(.), is rational just in case Cr(.) = P(.|X), where X is the agent’s evidence at that time. 

 

Claim (i) implies a strong permissivism, on which your credences must conform to one of 

the probability functions, but which probability function you conform to is entirely up to you. 

 
11 The arguments given for the degree-of-support interpretation in sections 3–5 below appeal to the familiar kind of 

urn-sampling examples in which the probabilities have precise and unique values. But these arguments do not 

presuppose that all other probabilities are precise or unique. 

12 Titelbaum (2022: sec. 5.1.2) observes that the distinction between “objective” vs. “subjective” Bayesians 

crosscuts two different disputes: a normative disagreement over whether there is one uniquely rational credence 

distribution given a body of evidence, and a semantic disagreement over whether “‘probability’ talk expresses or 

reports the degrees of confidence of the individuals doing the talking” or has “truth-conditions independent of the 

attitudes of particular agents.” Put in these terms, the degree-of-support interpretation implies semantic objectivism, 

but is neutral on normative objectivism. 

13 If one’s credences in the past were not conformed to any of the probability functions, then (ii) implies that one 

cannot now be rational. This is a general problem for diachronic consistency principles: see Meacham 2016 for 

discussion. 
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Claim (ii) imposes a diachronic consistency requirement, on which the probability function you 

conform to now must be one you have conformed to in the past. This implies that a rational agent 

who does not lose evidence will satisfy the traditional Bayesian requirement of diachronic 

conditionalization. Claim (iii) implies intrapersonal uniqueness, on which, although different 

agents can rationally conform their credences to different probability functions, there is only one 

probability function that any particular agent can rationally conform her credences to.14 Finally, 

claim (iv) implies interpersonal uniqueness, on which all agents are rationally required to 

conform their credences to the one unique probability function.15 

These theories do not exhaust logical space. One could complicate matters further by 

varying how many degree-of-support functions there are,16 allowing agents to have imprecise 

credences (see, e.g., Moss 2015a), or by allowing agents to have gaps in their credences (see, 

e.g., Eder forthcoming: sec. 4). But the above claims illustrate how one could endorse common 

Bayesian commitments about rational degree of belief while interpreting probabilities as degrees 

of support, and interpreting reasoning about probabilities as reasoning about degrees of support. 

Adopting a degree-of-support interpretation of probability does not commit us to any particular 

position in recent debates about uniqueness,17 or about the existence of diachronic norms 

 
14 Kelly (2013), Meacham (2014), and Jackson (2021) distinguish between interpersonal and intrapersonal 

uniqueness. By relativizing to time, my formulations further distinguish intrapersonal uniqueness from diachronic 

consistency. Diachronic consistency requires you to conform to the same probability function at different times, but 

(unlike intrapersonal uniqueness) it leaves up to you which probability function that is. 

15 Claim (iv) is similar to Williamson’s (2000: 220) ECOND and Hedden’s (2015: 470) Synchronic 

Conditionalization. 

16 This is speaking a bit loosely. Plausibly, if there is more than one degree-of-support function, there are infinitely 

many, because for any distinct degree-of-support functions P1(.) and P2(.) and numbers m and n such that P1(A|B) = 

m and P2(A|B) = n, there must be another degree-of-support function and number r such that P3(A|B) = r and r is a 

number between m and n. But the set of degree-of-support functions could still be more or less expansive in that for 

any conditional probability P(A|B) on which the different support functions disagree, the conditional probabilities 

assigned by the different support functions could range over a more or less expansive subset of [0,1]—e.g., [0.45, 

0.5] vs. [0.35, 0.6]. 

17 For defenders of uniqueness theses, see White (2005, 2013), Christensen (2007), Moss (2015a), and Hedden 

(2015). For opponents, see Kelly (2013), Meacham (2014), Schoenfield (2014), and Jackson (2021). 
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governing rational credences.18 Because we can adopt any of the normative positions in these 

debates within a framework that takes degrees of support to constrain rational degrees of belief, 

supporters of these positions have no reason to reject a degree-of-support interpretation of 

probability on normative grounds. 

To reiterate: I am not claiming that conceptions of degrees of support as frequentist, 

subjectivist, imprecise, or derivative (from unconditional probabilities) are ultimately tenable. 

But we do not need to build in claims about primitiveness/derivativeness, necessity/contingency, 

aposteriority/apriority, precision/imprecision, or uniqueness/non-uniqueness into our initial 

concept of degrees of support. We can explore whether probabilities are degrees of support or 

degrees of belief without settling these further questions about the properties of degrees of 

support, leaving them as matters for future philosophical investigation and argumentation. 

The upshot of this is that skepticism about the existence of a support relation with 

particular properties (such as apriority or precision), or about a particular bridge principle from 

degree of support to degree of belief, is not good grounds for skepticism about the existence of 

any probabilistic support relation at all. For example, if one agrees with Ramsey’s (1926: 162-

63) famous criticism of Keynes “that if we take the two propositions ‘a is red’, ‘b is red’, we 

cannot really discern more than four simple logical relations between them,” and that none of 

these are degree of support, we should not immediately conclude that degree-of-support relations 

do not exist, for they may exist and simply not be logical in the sense Ramsey had in mind. 

Instead, if we find that positing degrees of support is necessary to explain the soundness of 

ordinary probabilistic reasoning, we should conclude that they do exist, but that, if Ramsey is 

 
18 Hedden (2015) and Moss (2015b) defend “time-slice rationality,” the thesis that there are only synchronic norms. 

Recent defenders of diachronic norms governing credences include Briggs (2009), Podgorski (2016), and Carr 

(2016). 
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right, they do not have all of the properties that (according to Ramsey, at least) Keynes ascribed 

to them. 

3. A New Old Evidence Problem 

This section proceeds as follows. First, I present a case—OLDEVIDENCE1—in which we 

naturally use Bayes’ Theorem to calculate the posterior probability of a hypothesis. I then argue 

that the probabilities that enter into this application of Bayes’ Theorem cannot be our actual 

degrees of belief, but can be degrees of support. 

Here is the case: 

OLDEVIDENCE1 

Clark is taken to a room with an urn. Upon entering the room at t1, Clark is told that the 

urn contains three balls, each of which is either black or white. Clark has not yet 

considered any hypotheses about the composition of the urn. At t2, he decides to draw a 

ball from the urn. He draws a white ball and then returns it to the urn. 

 

At t3, Clark is told more about the contents of the urn: this urn was selected by coin flip 

from two urns. The first urn contained 2 black balls and 1 white ball, while the second 

urn contained 1 black ball and 2 white balls. 

 

So, at t1, Clark learns K1: This urn contains three balls, each of which is either black or 

white.  

 

At t2, Clark learns W: The ball drawn out of the urn is white. 

 

At t3, Clark learns K2: The urn was selected by coin flip from U1 (2 black, 1 white) and U2 

(1 black, 2 white). 

 

After t3, having now learned that U1 or U2 are the only two possibilities for the urn’s 

contents, Clark wonders: how probable are U1 and U2? 

 

There is now a large literature on the so-called “old evidence problem” for Bayesianism. 

This literature goes back to Glymour (1980), who argued that on orthodox Bayesianism, facts 

learned some time ago are unable to confirm hypotheses formulated later, because after a fact is 

learned it has probability 1 conditional on anything. According to the standard Bayesian analysis 
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of confirmation, E confirms H relative to K iff P(H|E&K) > P(H|K). In OLDEVIDENCE1, it seems 

that W confirms U2, relative to K2 (which, since it entails K1, is logically equivalent to the 

conjunction K1&K2). The standard Bayesian analysis of confirmation will deliver this result just 

in case P(U2 | W&K2) > P(U2 | K2), which is true iff P(W | U2&K2) > P(W | U1&K2). However, if 

these last two probabilities are interpreted as Clark’s degrees of belief upon first entertaining U1 

and U2 at t3, then they should both be equal to 1, since at that time Clark had already learned W, 

and so his credence in it will be 1 conditional on anything. 

This creates a prima facie problem for the combination of the standard Bayesian analysis 

of confirmation with a degree-of-belief interpretation of probability, for together these appear to 

render the incorrect verdict that W does not confirm U2 relative to K2, when it clearly does. 

There are a number of proposed solutions to this and related problems for Bayesian confirmation 

theory in the literature, which I will not canvas here (though some will come up in the discussion 

below). For now, the important thing to note is that this classic problem is only a problem for 

orthodox Bayesians who interpret probabilities as degrees of belief and is not a problem for 

heterodox Bayesians who interpret probabilities as degrees of support (see Rosenkrantz 1983: 85 

and Hawthorne 2005). Degrees of support are atemporal: they are not affected by the order in 

which propositions conditioned on are learned. The value of P(A|B) stays constant regardless of 

when, or whether, A and B are learned. So there is no problem in assigning P(W | U2&K2) a 

higher value than P(W | U1&K2), on the degree-of-support interpretation. 

The problem I wish to focus on is different. I am concerned, not with whether W 

confirms U2, but with the posterior probability of U1 and U2, relative to W and Clark’s other 

background knowledge—and, crucially, on how Clark can figure out those probabilities. 

Let us continue the story above as follows: 
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OLDEVIDENCE1 (continued) 

 

Applying Bayes’ Theorem, Clark reasons as follows: 

 

𝑃(𝑈1│𝑊&𝐾1&𝐾2) = 𝑃(𝑈1│𝑊&𝐾2) =
𝑃(𝑈1│𝐾2)𝑃(𝑊│𝑈1&𝐾2)

𝑃(𝑈1│𝐾2)𝑃(𝑊│𝑈1&𝐾2) + 𝑃(𝑈2│𝐾2)𝑃(𝑊│𝑈2&𝐾2)

=
(1 2⁄ )(1 3⁄ )

(1 2⁄ )(1 3⁄ ) + (1 2⁄ )(2 3⁄ )
=
1
6⁄

1
2⁄
=
1

3
 

On the basis of this calculation, Clark concludes that the probability of U1 on his total 

evidence is 1/3, and the probability of U2 on his total evidence is 2/3. 

 

 Clark, it seems, has reasoned impeccably. I shall now argue that the propriety of Clark’s 

reasoning is easier to reconcile with the degree-of-support interpretation of probability than a 

degree-of-belief interpretation. My argument proceeds as follows: 

(1) The probabilities mentioned in Clark’s reasoning in OLDEVIDENCE1 have the values 

assigned to them in Clark’s application of Bayes’ Theorem. 

 

(2) If the probabilities in OLDEVIDENCE1 have these values, then these probabilities are 

degrees of support. 

 

(3) The probabilities in OLDEVIDENCE1 are degrees of support. [from (1)–(2)] 

 

I take premise (1) to be pretheoretically obvious—not pretheoretic in the sense that it 

does not rely on any knowledge of the mathematics of probability, but in the sense that it does 

not rely on any philosophical assumptions about the nature of probability. Clark’s application of 

Bayes’ Theorem is of the kind that might appear in an introductory textbook on probability, in 

which the given values of the probabilities would be assumed without argument. (1) is an 

intuitive datum that can be used to judge the adequacy of different interpretations of probability, 

but does not antecedently assume any interpretation. 

In the rest of this section I will present a preliminary argument for premise (2). Consider 

Clark’s application of Bayes’ Theorem above. If the values assigned to the probabilities on the 
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right-hand side of this equation are correct (that is, if (1) is true), then these probabilities cannot 

be interpreted as Clark’s degrees of belief upon considering U1. This is because W is old 

evidence: Clark did not just learn it, but instead knew it before learning K2, which prompted him 

to consider U1. As such, if we interpret the probabilities above as Clark’s conditional degrees of 

belief at t2 or t3, then they do not have the values given. Instead, the likelihoods all have 

probability 1, because Clark already knows W to be true. This further means that the priors 

cannot have probability 1/2, because if they did, this would wrongly imply that the posterior 

probability of U1 is 1/2, which it is not—it is 1/3. So, if the probabilities on the right-hand side of 

Bayes’ Theorem are Clark’s conditional degrees of belief at t2 or t3, they do not have the values 

given above. Hence, if they do have the values given above, they are not Clark’s conditional 

degrees of belief at t2 or t3.  

 Could these probabilities be Clark’s conditional degrees of belief at t1, or at some other 

earlier time?19 No. For we stipulated that Clark has not considered U1 or U2 before learning K2. 

As such, he has no degree of belief in them, either unconditional or conditional, nor does he have 

degrees of belief in other propositions conditional on them. But if these conditional degrees of 

belief are undefined, then they do not have the values given above. Hence, if the probabilities on 

the right-hand side of Bayes’ Theorem do have the values given above, they are not Clark’s 

 
19 “Backtracking” to earlier credences is one common solution to the classic old evidence problem for Bayesian 

confirmation theory. I consider another common solution, appealing to counterfactual credences, below. It is worth 

pausing here to note the inapplicability of two other proposed solutions to the classic old evidence problem to my 

old evidence problem. One of these is to model confirmation in cases of old evidence as based on learning logical or 

explanatory facts (Garber 1983, Jeffrey 1983a; see Sprenger 2015 for criticisms). Even if, in OLDEVIDENCE1, Clark 

learns some such fact (e.g., that U1 would, if true, explain W), adding this fact to Clark’s evidence at t3 would not 

change the conditional degrees of belief he has at that time, and so would not let us assign the intuitively correct 

values to the probabilities in Clark’s application of Bayes’ Theorem if we interpret those probabilities as Clark’s 

conditional degrees of belief at that time. Another solution, championed by Christensen (1999), involves employing 

a non-standard Bayesian measure of confirmation. (For criticisms of Christensen, see Eells and Fitelson 2000 and 

Climenhaga 2013.) This solution will not help here because my problem is not dependent on how we measure 

confirmation. 
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conditional degrees of belief at any time. 

 If, on the other hand, we interpret these probabilities as degrees of support, there is no 

problem in assigning them their natural values. Degrees of support are atemporal and not 

constrained by what a person knows at a given time. So a degree-of-support interpretation is 

consistent with Clark’s reasoning. 

 If the probabilities on the right-hand side of Bayes’ Theorem are degrees of support 

rather than degrees of belief, then so are the probabilities on the left-hand side. Bayes’ Theorem 

is only a theorem if the kinds of probabilities in the equation are held constant, so that they are 

relative to a single probability distribution. (If we interpreted the probabilities on the right-hand 

side of an instance of Bayes’ Theorem as your degrees of belief, and the probabilities on the left-

hand side as my degrees of belief, then there is no guarantee that the equality will or should 

hold.) So in order for Clark’s application of Bayes’ Theorem to make sense, the probabilities on 

the left- and right-hand side must be given the same interpretation. 

 But before reaching the heterodox conclusion that the probabilities in OLDEVIDENCE1 are 

degrees of support, we should consider alternative orthodox interpretations of these probabilities. 

One relatively minor way to amend degree-of-belief Bayesianism, in keeping with some 

solutions to the classic old evidence problem,20 is to interpret the probabilities in 

OLDEVIDENCE1, not as Clark’s actual degrees of belief, but as the conditional degrees of belief 

he would have had at some earlier time had he considered U1 or U2, or the probabilities that he 

should have had at that time.21 

 
20 See, e.g., Howson 1991 and Howson and Urbach 2006: 297-301. For criticisms, see Chihara 1987, Maher 1996, 

and Sprenger 2015. 

21 One might alternatively say that they are the degrees of belief that Clark would or should have now were his 

background evidence different (as opposed to the degrees of belief he would or should have had at a time when his 

background evidence was different). I discuss this view in note 23. 
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 Supposing that the probabilities in OLDEVIDENCE1 are the conditional degrees of belief 

that Clark would/should have had at some earlier time, what is that earlier time? t1? Some earlier 

time before Clark entered the room? The probabilities Clark is reasoning with do not come with 

“temporal tags” that tell him what times they are relative to. Moreover, are all the probabilities 

we reason with the conditional degrees of belief we would/should have had at some earlier time, 

or only some? If not, how do we tell when we are reasoning about current degrees of belief, and 

when we are reasoning about historical degrees of belief? 

The least arbitrary answer to these questions is that, in general, one’s epistemic 

probabilities are the credences one should have had or would have had had one considered all the 

possibilities at the beginning of one’s epistemic life—that is, at the moment at which one first 

had credences. Bayesians who have recognized the psychological implausibility of an agent who 

starts out with well-defined credences over all imaginable propositions have moved to talking of 

“hypothetical priors” here, which for our purposes we can understand as the credence 

distribution that one should have had or would have had upon considering all possibilities at the 

beginning of one’s epistemic life.22 

 In this section I have argued for the following three claims. First, the probabilities on the 

right-hand side of the above application of Bayes’ Theorem can be interpreted as degrees of 

 
22 Meacham (2016) helpfully distinguishes several different ways of understanding and conditionalizing on “ur-

priors.” In addition to interpreting them as initial credences (or the initial credences an agent ought to have had), he 

considers interpreting them purely functionally, as any probability function (in the mathematical sense) to which 

one’s credences conform over time, and interpreting them as an agent’s “evidential standards.” The purely 

functional interpretation is not sufficient to avoid the problems developed below, as there will be mathematical 

probability functions to which a coherent agent’s credences conform over time that assign probability 1 to evidence 

that the agent has possessed her whole life, and so those functions will not allow us to employ that evidence in 

Bayes’ Theorem in the way illustrated in section 4. Whether the evidential standards interpretation of ur-priors can 

avoid the problems I develop below depends on precisely what evidential standards are. The argument in section 4 

will imply that if one’s “evidential standards” do not assign probability 1 to evidence one has possessed one’s whole 

life, or to evidence that all agents necessarily possess, then these evidential standards cannot be actual, hypothetical, 

or counterfactual degrees of belief, and must instead be something like an agent’s beliefs about degrees of support. 

Consequently, if conditionalizing on “evidential standards” avoids the problems I go on to develop, it is only 

because these standards themselves presuppose the existence of a degree-of-support function. 
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support, and if they are, then we should interpret the probabilities on the left-hand side as degrees 

of support as well. Second, these probabilities cannot be interpreted as Clark’s actual degrees of 

belief at any time. Third, if they are interpreted as counterfactual or rationally required degrees 

of belief at some earlier time, they need to be the degrees of belief that Clark would or should 

have had at the beginning of his epistemic life. 

In what follows I will focus on the latter possibility (that probabilities are rational initial 

degrees of belief), but all of my criticisms apply to the former possibility (that probabilities are 

counterfactual initial degrees of belief) as well. In section 4, I will present two new cases, 

OLDEVIDENCE2 and OLDEVIDENCE3, involving permanently old evidence and necessarily old 

evidence, where we end up assigning the wrong values to the relevant probabilities if we 

interpret them as rational initial credences. 

4. Permanently Old Evidence and Necessarily Old Evidence 

I argued in section 3 that the probabilities in OLDEVIDENCE1 cannot be interpreted as 

Clark’s actual degrees of belief at any time, whereas they can be interpreted as degrees of 

support. In this section, I will present two cases in which the probabilities also cannot be 

interpreted as rational initial degrees of belief. Consider first: 

OLDEVIDENCE2 

As soon as he was born, Ernest was placed in a large urn. A short while later, at t1, Ernest 

was pulled out of the urn holding a white ball. The very first thing he learned, and the 

first thing he remembers, is that he was holding a white ball when drawn out of the urn. 

Call this proposition W'. Right after learning W', at t2, Ernest got his first credences.  

 

Later in his life, at t3, Ernest is told a bit about his origins. He learns that before he was 

born, a coin was flipped. If the coin landed heads, he would be placed in an urn with 2 

black balls and 1 white ball (U1). If it landed tails, he would be placed in an urn with 1 

black ball and 2 white balls (U2). Call this proposition K'. 

 

So, at t1, Ernest learns W': The ball drawn out of the urn is white. 
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At t2, Ernest gets his first credences. 

 

At t3, Ernest learns K': The urn was selected by coin flip from U1 (2 black, 1 white) and 

U2 (1 black, 2 white). 

 

After t3, Ernest wonders: how probable are U1 and U2? 

 

Ernest reasons as follows: 

 

𝑃(𝑈1│𝑊′&𝐾′) =
𝑃(𝑈1│𝐾′)𝑃(𝑊′│𝑈1&𝐾′)

𝑃(𝑈1│𝐾′)𝑃(𝑊′│𝑈1&𝐾′) + 𝑃(𝑈2│𝐾′)𝑃(𝑊′│𝑈2&𝐾′)

=
(1 2⁄ )(1 3⁄ )

(1 2⁄ )(1 3⁄ ) + (1 2⁄ )(2 3⁄ )
=
1
6⁄

1
2⁄
=
1

3
 

On the basis of this calculation, Ernest concludes that the probability of U1 on his total 

evidence is 1/3, and the probability of U2 on his total evidence is 2/3. 

 

Like Clark, Ernest has reasoned impeccably. Unlike in OLDEVIDENCE1, however, we 

cannot interpret the probabilities on the right-hand side of the application of Bayes’ Theorem in 

OLDEVIDENCE2 as the degrees of belief that Ernest should have had at the beginning of his 

epistemic life, because in this case the likelihoods all have probability 1, as Ernest already knew 

W to be true. This further means that the priors cannot have probability 1/2, because if they did, 

this would wrongly imply that the posterior probability of U1 is 1/2, which it is not—it is 1/3. So, 

if the probabilities on the right-hand side of Bayes’ Theorem are the conditional degrees of belief 

that Ernest should have had at the beginning of his life, then they do not have the values given 

above. Hence, since they do have the values given above, they are not the conditional degrees of 

belief that Ernest should have had at the beginning of his life. 

 In response to OLDEVIDENCE2, the orthodox Bayesian might idealize even further, and 

say that we should interpret the probabilities in our two problems, not as Ernest or Clark’s 

rational initial credences, but as the credences of some ideal agent who can stand in for Ernest 
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and Clark in some appropriate way.23 But there are further cases in which even the credences of 

such a hypothetical agent will not give us what we are looking for. For there are some contingent 

propositions that, necessarily, any rational agent has as evidence. For example, consider the 

proposition that conscious things exist—call this proposition Conscious. If there is anyone 

around to have Conscious as evidence, this proposition is true, and at least knowable by that 

person, so if that person is ideally rational, she does know it. (If you do not like this example, 

feel free to replace it with another proposition for which this seems more plausible: e.g., that 

there is something that has evidence, or that there is some concrete thing.) But Conscious, like 

W', can be relevant to the probability of other propositions. Now consider a third old evidence 

case: 

OLDEVIDENCE3 

Conrad receives the following revelation from God: at the beginning of the universe, God 

created two urns, one of which he would draw a ball out of. The color of the ball would 

determine whether or not God would create conscious life. God flipped a coin to choose 

between the urns. If the coin landed heads, he drew a ball out of the urn with 2 black balls 

and 1 white ball (U1). If it landed tails, he drew a ball out of the urn with 1 black ball and 

2 white balls (U2). If God then drew a white ball, he set things up so that conscious things 

would evolve. If he instead drew a black ball, he set things up so that nothing conscious 

would evolve.24 

 

Call the content of this revelation K''. In addition to K'', Conrad already knows that 

conscious things exists (Conscious). Conrad then wonders: given Conscious&K'', how 

probable are U1 and U2? He reasons using Bayes’ Theorem as follows: 

 

 
23 Eder (forthcoming) considers an argument of Williamson’s (2000) against this interpretation. Williamson asks us 

to consider evidence E that makes probable T&(no one has great credence in T), where T is a complex logical truth. 

Then the probability of this conjunction on E is high, but an ideal agent would never have high credence in a 

Moorean-paradoxical proposition such as this. So the ideal agent could not have E as her evidence, and so the 

probability of this conjunction given E cannot be an ideal agent’s credence. One response Eder suggests to this 

argument is that we instead adopt an interpretation of your epistemic probability of A given B as the credence you 

ought to have in A if you have B as your evidence. The arguments I go on to give against the ideal-agent’s-credence 

interpretation will apply equally well against this interpretation. 

24 If you are worried that God would himself be a conscious thing, imagine K'' describing purely naturalistic laws on 

which a similar urn drawing process determines whether there is anything conscious. 
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𝑃(𝑈1│𝐶𝑜𝑛𝑠𝑐𝑖𝑜𝑢𝑠&𝐾′′)

=
𝑃(𝑈1│𝐾′′)𝑃(𝐶𝑜𝑛𝑠𝑐𝑖𝑜𝑢𝑠│𝑈1&𝐾′′)

𝑃(𝑈1│𝐾′′)𝑃(𝐶𝑜𝑛𝑠𝑐𝑖𝑜𝑢𝑠│𝑈1&𝐾′′) + 𝑃(𝑈2│𝐾′′)𝑃(𝐶𝑜𝑛𝑠𝑐𝑖𝑜𝑢𝑠│𝑈2&𝐾′′)

=
(1 2⁄ )(1 3⁄ )

(1 2⁄ )(1 3⁄ ) + (1 2⁄ )(2 3⁄ )
=
1
6⁄

1
2⁄
=
1

3
 

On the basis of this calculation, Conrad concludes that the probability of U1 on his total 

evidence is 1/3, and the probability of U2 on his total evidence is 2/3. 

 

Like Clark and Ernest, Conrad has reasoned impeccably. Unlike in OLDEVIDENCE1 and 

OLDEVIDENCE2, however, we cannot interpret the probabilities on the right-hand side of the 

application of Bayes’ Theorem in OLDEVIDENCE3 as the hypothetical degrees of belief of some 

ideally rational agent. For such an agent would always have Conscious as evidence, and so the 

agent’s credence in Conscious conditional on anything would always be 1.25 

 It seems to me that the only response to OLDEVIDENCE3 available to the degree-of-belief 

theorist is to deny that there is any contingent proposition that our ideally rational agent must 

have as evidence. This is a strong commitment for the degree-of-belief Bayesian to take on. But 

perhaps we could motivate this response by arguing that we can “separate out” different aspects 

of rationality in the following way (cf. Eder forthcoming: sec. 2.3): distinguish ideal reflection 

from ideal reasoning, and hold that the former is relevant to what evidence an agent has, while 

the latter is relevant to what credences that agent has, given that evidence. We could then make 

our agent an ideal reasoner but not an ideal reflector, so that she can have ideal credences despite 

having no evidence. 

 
25 Some philosophers and physicists have endorsed “anthropic principles” on which propositions like Conscious 

cannot confirm anything, since they are inevitably old evidence, and so have probability 1 conditional on anything. 

(See, e.g., Monton 2006 and Pust 2007.) Since the claim that Conscious has probability 1 conditional on anything is 

inconsistent with the claims that P(Conscious | U1&K'') = 1/3 and P(Conscious | U2&K'') = 2/3, and these claims are 

obviously true, we should reject these anthropic principles. 
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Even if this move is tenable, there is still a serious problem in the neighborhood of 

OLDEVIDENCE3 facing an ideal-reasoner’s-credence-interpretation of probability. There are some 

propositions, such as ~Conscious, that are impossible to have as evidence. But just as Conrad can 

reason about P(U1 | Conscious&K''), he can also reason about P(U1 | ~Conscious&K''). This 

probability is calculable as a function of the same probabilities that are in OLDEVIDENCE3, and is 

equal to 2/3.26 But if the probability of X given Y were the credence that an ideal reasoner with 

Y as her only evidence would have in X, then this probability would be undefined, since no 

agent could have ~Conscious as evidence. 

In reply, the proponent of the ideal-reasoner’s-credence interpretation could identify the 

probability of X given Y with the conditional credence in X given Y of an ideal reasoner with no 

evidence, where that conditional credence is either reducible to unconditional credences in X&Y 

and Y or is taken as a primitive. This may not deal with all cases, though. For there may be some 

propositions that not only cannot be possessed as evidence, but cannot be thought at all. For 

example, perhaps there are propositions about a particular one of Max Black’s (1952) two 

identical spheres in an otherwise-empty universe, but these propositions are not thinkable, 

because neither of these spheres can be picked out in thought. But it seems that we can still say, 

for example, that P(X|X) = 1 for all propositions X,27 including any propositions that are not 

 
26 Proof: 

𝑃(𝑈1│~𝐶𝑜𝑛𝑠𝑐𝑖𝑜𝑢𝑠&𝐾′′) =
𝑃(𝑈1│𝐾′′)𝑃(~𝐶𝑜𝑛𝑠𝑐𝑖𝑜𝑢𝑠│𝑈1&𝐾′′)

𝑃(𝑈1│𝐾′′)𝑃(~𝐶𝑜𝑛𝑠𝑐𝑖𝑜𝑢𝑠│𝑈1&𝐾′′) + 𝑃(𝑈2│𝐾′′)𝑃(~𝐶𝑜𝑛𝑠𝑐𝑖𝑜𝑢𝑠│𝑈2&𝐾′′)

=
𝑃(𝑈1│𝐾′′)[1 − 𝑃(𝐶𝑜𝑛𝑠𝑐𝑖𝑜𝑢𝑠│𝑈1&𝐾′′)]

𝑃(𝑈1│𝐾′′)[1 − 𝑃(𝐶𝑜𝑛𝑠𝑐𝑖𝑜𝑢𝑠│𝑈1&𝐾′′)] + 𝑃(𝑈2│𝐾′′)[1 − 𝑃(𝐶𝑜𝑛𝑠𝑐𝑖𝑜𝑢𝑠│𝑈2&𝐾′′)]

=
(1 2⁄ )(2 3⁄ )

(1 2⁄ )(2 3⁄ ) + (1 2⁄ )(1 3⁄ )
=
1
3⁄

1
2⁄
=
2

3
 

27 Or all non-contradictory propositions: see note 3 above. 
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thinkable.28 

This version of the ideal-reasoner’s-credence interpretation also faces a problem the 

original version did not: there are plausibly some propositions that it is impossible to have any 

credence in without first having some other proposition as evidence. For example, perhaps an 

agent cannot have a credence that something is conscious without knowing that she is conscious, 

because being acquainted with one’s own consciousness is a necessary condition for possessing 

the concept of consciousness. Or perhaps an agent can only have thoughts about a concrete 

particular after first learning that that concrete particular exists. If there are any cases like this, 

we will not be able to identify all conditional probabilities with the conditional credences of an 

ideal reasoner with no evidence. 

There thus remain serious problems in the neighborhood of OLDEVIDENCE3 for any 

interpretation of probability as the credences of an ideal agent. At the least, these interpretations 

will be saddled with heavy metaphysical commitments about topics besides probability, such as 

the nature of ideal reasoning and the conditions under which various propositions can be thought.  

In addition to these problems, I have a more general concern with any form of the ideal-

agent’s-credence interpretation. It appears to me that when it comes to actually figuring out what 

the credences of this ideal agent would be, all our reasoning will be about the relations between 

the propositions themselves. For example, if we ask what the ideal reasoner’s credence in 

Conscious given U1&K'' would be, our reasoning will appeal solely to the fact that this urn has 2 

black balls and 1 white ball and that K'' says that conscious things will exist iff a white ball is 

drawn. It won’t appeal to anything particular about the agent. (If we think to ourselves, “well, an 

 
28 In section 6 below, I consider the possibility that in cases calling for Jeffrey conditionalization, we learn 

“ineffable” propositions that we cannot fully understand. Even if it is possible to have an unthinkable proposition as 

evidence, though, it is still impossible to have a degree of belief in it, and so we cannot identify its probability 

conditional on itself with any kind of degree of belief. 
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ideally rational agent ought to be somewhat confident that consciousness exists, since she would 

herself be conscious,” or anything of this sort, then we will get the wrong result.) Since the ideal 

agent and her characteristics are irrelevant to our actual reasoning about these probabilities, 

identifying these probabilities with this agent’s credences rather than relations between the 

propositions themselves seems unmotivated. 

 In the next section, I will offer further support for this final worry, by explaining why the 

degree-of-support interpretation provides a better explanation of the reasoning employed in the 

OLDEVIDENCE cases than does any degree-of-belief interpretation. 

5. The Order of Explanation and the Order of Learning 

In section 3 I gave a case in which a degree-of-actual-belief interpretation implies the 

intuitively wrong values for the probabilities an agent reasons about, and in section 4 I gave two 

more cases in which more idealized degree-of-belief interpretations appear to have the same 

implication. In this section I want to present an independent argument that the probabilities in 

our three cases are degrees of support, rather than degrees of belief. Focusing on 

OLDEVIDENCE1, I will argue that only the degree-of-support interpretation can explain why 

Clark reasons as he does. 

Call the application of a theorem of probability proper when the theorem expresses a 

probability as a function of other probabilities the values of which we can more easily see or 

determine. We can then ask: when is the application of a theorem of probability proper? For our 

purposes, we can focus on Bayes’ Theorem, which is often written more abstractly as follows: 

𝑃(𝐻│𝐸) =
𝑃(𝐻)𝑃(𝐸│𝐻)

𝑃(𝐻)𝑃(𝐸│𝐻) + 𝑃(~𝐻)𝑃(𝐸│~𝐻)
 

While the question of when Bayes’ Theorem is the proper theorem to apply is rarely explicitly 

raised in discussions of probability, there are two common answers to this question implicitly 
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given when Bayesian epistemologists introduce Bayes’ Theorem in their writings. 

 The first answer is that Bayes’ Theorem should be employed when H is a “hypothesis” or 

“theory” and E is some “empirical data” “predicted” to some degree by H (see, e.g., Howson & 

Urbach 2006: 20-22, Joyce 2021: sec. 1, Weisberg 2021: sec. 1.2.2). The basic idea of this 

advice is that we should apply Bayes’ Theorem when H is explanatorily prior to E.29 

The second answer is that Bayes’ Theorem should be employed when E is new evidence 

you are updating your credence distribution on. Degree-of-belief Bayesians implicitly suggest 

this answer when they introduce Bayes’ Theorem in the context of the proposed requirement of 

diachronic conditionalization (sometimes, tellingly, called “Bayes’ Rule”) that Crnew(H) = 

Crold(H|E), where Crnew is the agent’s new credence distribution after learning E and Crold is the 

agent’s old credence distribution before learning E (see, e.g., Hartmann and Sprenger 2010: 612, 

Strevens 2013: 307, Talbott 2016: sec. 2 and 4.1, Douven 2021: sec. 4). Occasionally this view is 

made explicit, as when Salmon (1990: 177) says that the “empirical data” E that enters into 

Bayes’ Theorem is “new evidence we have just acquired.” Bird and Ladyman (2013: 214-25) go 

so far as to write that “The first thing to note about Bayesian conditionalization is that a 

scientist's new credence in h, Pnew(h), is determined by her old credences Pold(e), Pold(h) and 

Pold(e|h)” (emphasis mine). 

Our OLDEVIDENCE cases make clear that these two answers are not equivalent, and that 

we should prefer the first to the second. That we have just acquired evidence E is neither 

 
29 See Climenhaga 2020: section 3.4 and forthcoming: section 4. This idea is also present in older Bayesian 

terminology. As I note in Climenhaga 2020: 3226n20: 

Whereas today philosophers and statisticians follow R.A. Fisher in speaking of posterior probabilities and 

likelihoods, older writers (e.g., Venn 1866: sec. VI.9) referred to these as “inverse probabilities” and “direct 

probabilities,” respectively. (These terms have occasionally survived, e.g., in [Joyce 2021: sec. 1].) The 

term “inverse probability” embodied the idea that in employing Bayes’ Theorem we are moving 

“backwards” from effects to causes (Fienberg 2006: 5), and the term “direct probability” connotes a 

probability the value of which we are able to directly see or determine. 
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necessary nor sufficient for it to be proper to apply Bayes’ Theorem in a way that “brings out” E 

on the right-hand side of the equation (as the proposition to the left of the conditionalization bar 

in the likelihoods). 

To see that is it not necessary, consider again Clark’s application of Bayes’ Theorem: 

𝑃(𝑈1│𝑊&𝐾1&𝐾2) = 𝑃(𝑈1│𝑊&𝐾2) =
𝑃(𝑈1│𝐾2)𝑃(𝑊│𝑈1&𝐾2)

𝑃(𝑈1│𝐾2)𝑃(𝑊│𝑈1&𝐾2) + 𝑃(𝑈2│𝐾2)𝑃(𝑊│𝑈2&𝐾2)

=
(1 2⁄ )(1 3⁄ )

(1 2⁄ )(1 3⁄ ) + (1 2⁄ )(2 3⁄ )
=
1
6⁄

1
2⁄
=
1

3
 

Clark’s application of Bayes’ Theorem was proper—it helped him to break down the value of 

P(U1 | W&K1&K2) into more tractable probabilities—but the evidence W was old evidence, not 

evidence he had just learned.  

To see that it is not sufficient, imagine that upon learning K2, Clark had followed the 

second group of authors’ advice to figure out the value of Crnew(U1), which, according to 

diachronic conditionalization, should be equal to Crold(U1|K2). He tries to expand this latter 

probability out through Bayes’ Theorem in the way suggested by these authors: 

𝑃(𝑈1│𝐾2) =
𝑃(𝑈1)𝑃(𝐾2│𝑈1)

𝑃(𝑈1)𝑃(𝐾2│𝑈1) + 𝑃(~𝑈1)𝑃(𝐾2│~𝑈1)

=
𝐶𝑟2(𝑈1)𝐶𝑟2(𝐾2│𝑈1)

𝐶𝑟2(𝑈1)𝐶𝑟2(𝐾2│𝑈1) + 𝐶𝑟2(~𝑈1)𝐶𝑟2(𝐾2│~𝑈1)
 

If he does this, Clark will be no closer to figuring out what the old probability he should have 

assigned to U1 conditional on K2 is. Even given values for P(U1) and P(~U1), Clark will have no 

idea how likely it is that the urn was selected by coin flip from two urns with compositions U1 

and U2, given U1 or given ~U1 (and given that he drew white earlier, which he learned prior to 
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K2).
30 

 The second answer is thus untenable. Contrariwise, the first answer is supported not only 

by our own cases but by the kinds of examples other writers standardly use to illustrate Bayes’ 

Theorem. Salmon (1990: 178) illustrates Bayes’ Theorem with an example in which H is the 

hypothesis that this can opener was produced by a machine with a certain propensity for 

producing defective can openers, and E is the (explanatorily downstream) proposition that this 

can opener is defective. All four examples (drawing balls from an urn, finding a spider in a batch 

of bananas, hearing a witness report the color of a taxi, and getting a positive result on a medical 

test) in the “Bayes’ Rule” chapter from Ian Hacking’s introductory textbook (2001: ch. 7) 

likewise conform to this pattern. When we reflect on examples like these, it is clear that, where K 

is background information in the problem, the order in which we learned E and K does not make 

a difference to how we should employ Bayes’ Theorem. This is just like our OLDEVIDENCE 

cases. All that matters is that E is explanatorily downstream from H and K is not; the order in 

which we learn E and K is irrelevant. 

 So far I have argued that the first answer to the question of when it is proper to employ 

Bayes’ Theorem is correct, and the second answer is incorrect. I will now argue that the first 

answer fits more naturally with the degree-of-support interpretation of probability, while the 

second fits more naturally with a degree-of-belief interpretation. 

 The second answer fits more naturally with a degree-of-belief interpretation of 

probability because it ties Bayes’ Theorem to an agent’s state of mind prior to the employment of 

 
30 This discussion illustrates another difference between my problem and the classic old evidence problem for 

Bayesian confirmation theory: the relevant sense in which W is old evidence in OLDEVIDENCE1 is not simply that it 

was learned some time ago, but that it was learned before evidence explanatorily prior to it (that is, K2). If, for 

example, instead of learning K2, Clark had learned that a white ball had been drawn out of the urn a second time, 

there would be no need to “backtrack.” 
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Bayes’ Theorem—what credences she has and whether she has just learned evidence E. Unlike 

the degree-of-belief theorist, the degree-of-support theorist has no antecedent reason to expect 

that an agent’s state of mind would be relevant to the proper application of Bayes’ Theorem. (On 

a degree-of-support interpretation of probability, it is not necessary that one have evidence to 

reason about probabilities conditional on that evidence, as shown by the fact that we can reason 

about the probabilities in the OLDEVIDENCE cases even though we do not have Clark, Ernest, or 

Conrad’s evidence.) 

 The first answer fits more naturally with the degree-of-support interpretation of 

probability because it ties Bayes’ Theorem to relations between the propositions in the 

probabilities in the equation. Degree-of-belief interpretations of probability give us no reason to 

think that these relations should matter to the proper application of Bayes’ Theorem. The degree-

of-support interpretation, by contrast, does give us such reason. On the degree-of-support 

interpretation, probability is itself a relation between propositions. This support relation may be 

partly dependent on other relations, such as explanatory relations. For example, here is a 

plausible idea open to the degree-of-support theorist:31 U1 directly gives a probability to W in 

virtue of its being the sole proposition influencing its truth. It directly makes W probable to 

degree 1/3 because of the role it plays in explaining the truth or falsity of W.32 

Philosophers have not clearly seen the objectivist implications of the way we employ 

Bayes’ Theorem partly because we use the term ‘prior probability’ to refer both to one of the 

 
31 In Climenhaga 2020, I develop this idea at greater length, and show in a more general way how explanatory 

priority relations determine when a theorem of probability is the proper one to apply. 

32 If the value of P(W|U1) is determined by the role U1 plays in explaining W, this suggests that it is not determined 

by the ratio P(W&U1) / P(U1), as on the ratio analysis of conditional probability. If this is right, this idea would then 

support versions of the degree-of-support interpretation that take conditional probabilities to be primitive (e.g., 

Jaynes 2003, Hawthorne 2005) over those that define them as ratios of unconditional probabilities (e.g., Williamson 

2000). By contrast, the arguments in sections 3–4 do not discriminate between these views, and are equally open to 

both versions of the degree-of-support view. 



28 

 

terms in Bayes’ Theorem—an explanatorily prior probability—and to the probability of a 

proposition for some agent prior to receiving some evidence—a temporally prior probability. 

The argument of this section suggests that what matters for the proper application of Bayes’ 

Theorem is the order of explanation, not the order of learning. Conflation of explanatorily prior 

probabilities with temporally prior probabilities has led to conflation of the order of explanation 

with the order of learning, and this has made the degree-of-belief understanding of probability 

appear more credible than it is. When we explicitly distinguish these, we see that in Bayesian 

reasoning we are thinking about relations between propositions, and not our credences before 

and after learning some evidence. 

There is much more to be said about the proper application of Bayes’ Theorem and other 

theorems of probability, but the foregoing suggests that a tenable solution to these problems will 

fit more naturally with the degree-of-support interpretation of probability than a (rational initial) 

degree-of-belief interpretation. We can accurately model reasoning in cases of old evidence 

using degrees of support, focusing on the explanatory order relating our propositions. We cannot 

accurately model reasoning in these cases using degrees of belief, focusing on the temporal order 

of our learning. 

6. Extrapolating to Other Cases 

 

In section 3, I presented the following argument: 

(1) The probabilities mentioned in Clark’s reasoning in OLDEVIDENCE1 have the values 

assigned to them in Clark’s application of Bayes’ Theorem. 

 

(2) If the probabilities in OLDEVIDENCE1 have these values, then these probabilities are 

degrees of support. 

 

(3) The probabilities in OLDEVIDENCE1 are degrees of support. [from (1)–(2)] 

 

In section 4 I considered an objection to premise (2), namely that the probabilities in Clark’s 



29 

 

reasoning could have the values he assigns to them if they are his counterfactual or rational 

initial credences. I presented two more cases in which the probabilities reasoned about cannot 

have the values assigned to them if they are credences of any kind—at least, not without 

substantial additional metaphysical commitments. Insofar as one is persuaded by these cases, 

they provide inductive support for (2). By considering the three cases in succession, we can see 

that reasoning with permanently and necessarily old evidence is structurally identical to 

reasoning with more familiar kinds of old evidence. This makes it plausible that Clark is 

reasoning about the same kinds of probabilities in OLDEVIDENCE1 as Ernest and Conrad are in 

OLDEVIDENCE2 and OLDEVIDENCE3—so that (2) is true. In section 5 I then gave an independent 

argument for (2), namely that the degree-of-support interpretation provides a better explanation 

of why the probabilities in OLDEVIDENCE1 have the values they do than any of the degree-of-

belief interpretations. 

 How far can we extrapolate from this? As stated, (3) only says that the probabilities in 

this one particular thought experiment are degrees of support. But old evidence of the kind 

present in OLDEVIDENCE1 is quite common. Scientists frequently get evidence relevant to a 

theory and then later get further evidence explanatorily prior to the earlier evidence—e.g., 

evidence about the experimental set-up that produced the earlier evidence. Doctors wondering 

whether a patient has a disease frequently learn things explanatorily prior to evidence they 

already had that helps them see how that evidence impacts their hypothesis—e.g., they learn 

about a patient’s exercise habits, which interact with the hypothesis of disease to make the 

observed symptoms probable to some degree. If a scientist or doctor is in such a case and talks 

about how probable H is on the total available evidence E, this will then need to be the degree to 

which E supports H, by the above arguments. 
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 Moreover, while OLDEVIDENCE2 and OLDEVIDENCE3 are exotic cases (devised to 

respond to increasingly idealized degree-of-belief interpretations), OLDEVIDENCE1 is a normal 

case of probabilistic reasoning. As I said in section 3, it’s a case that could appear in an 

introductory textbook. The order in which Clark learns the evidence was important in arguing for 

(2), but is not otherwise remarkable, or something that suggests that in asking what the 

probability of U1 is, Clark is talking about a different kind of probability from the probabilities 

we talk about in other epistemic contexts. 

In addition, I argued in section 5 that our application of Bayes’ Theorem ought to be 

guided by the explanatory relations among the propositions we are reasoning about, rather than 

the order in which we learned them, and that this is best explained by probabilities being 

relations between propositions. Hence, even when our evidence happens to have been learned in 

an order that makes degree-of-belief interpretations compatible with our applying Bayes’ 

Theorem in the natural way, only the degree-of-support interpretation can explain why we ought 

to apply Bayes’ Theorem in that way. 

These considerations give us some reason to infer from the specific claim that the 

probabilities in the OLDEVIDENCE cases are degrees of support to the more general claim that the 

probabilities we reason about in epistemic contexts more generally—whenever we do things like 

ask how probable a scientific theory is, or how strongly a theory predicts some evidence, or to 

what degree some evidence confirms a theory—are also degrees of support. This hypothesis is 

also simpler than the alternative possibility that some epistemic probabilities are degrees of 

support and others are not, and so arguably preferable on grounds of parsimony. 

Still, these pro tanto reasons in favor of a universal degree-of-support theory could be 

defeated if we could identify other epistemic probabilities that are not plausibly degrees of 
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support. I cannot consider all potential counterexamples to a universal degree-of-support 

interpretation here, but for illustrative purposes I will consider two particular kinds of 

probabilities that skeptics might maintain must be degrees of (rational) belief: prior probabilities 

and probabilities of uncertain evidence. 

Hawthorne (2005) argues that interpreting likelihoods as degrees of support solves the 

old evidence problem for confirmation and explains intersubjective agreement in scientific 

practice. He notes that one could accept an argument like this and still hold that the prior 

probabilities that enter into Bayes’ Theorem (what I called “explanatorily prior probabilities” in 

section 5) are degrees of belief, perhaps motivated by the greater extent of disagreement among 

scientists about prior probabilities. My argument, however, rules out this possibility: in the 

OLDEVIDENCE cases, both the likelihoods and prior probabilities are degrees of support. 

Consider, for example, P(U1 | K'') in OLDEVIDENCE3, which is equal to 1/2, and which Conrad 

uses to calculate that P(U1 | Conscious&K'') = 1/3. P(U1 | K'') cannot be Conrad’s actual degree 

of belief at any time, since Conrad’s current degree of belief in U1 is 1/3, and Conrad had not 

considered U1 in the past. And it cannot be the degree of belief Conrad should have had in U1 at 

some time, since Conrad has always known that he is conscious, and relative to Conscious&K'', 

the degree to which Conrad should believe U1 is 1/3, not 1/2. 

This example does not on its own show that all other prior probabilities are degrees of 

support as well. But it does show that one cannot defend the existence of degree-of-belief 

probabilities by distinguishing likelihoods from prior probabilities, and maintaining that while 

the former are degrees of support, the latter are degrees of belief. If some probabilities are 

degrees of belief, this distinction does not help us identify them. 

Hawthorne (2005) goes on to suggest that a different group of probabilities are degrees of 
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belief: the probabilities of uncertain evidential statements. In section 2 I considered several 

possible bridge principles from the degree to which a proposition is supported by one’s evidence 

to one’s degree of belief in that proposition. All these principles imply that if E is part of one’s 

evidence, then E is certain, in the sense that the rational credence to have in E is 1. This is 

because P(E|E&K) = 1, for any E and background K. But one might hold, with Jeffrey (1983b), 

that we sometimes have uncertain evidence, in the sense that our experience sometimes directly 

changes our credences over a partition of evidential propositions without making any of these 

propositions certain. Our credences in other hypotheses should then be updated by “Jeffrey 

conditionalization” to conform with these new credences. As Hawthorne (2005: 310) puts it, “To 

handle uncertain evidence … the agent’s belief strength for a hypothesis should be a weighted 

sum of the degrees to which each possible evidence sequence supports the hypothesis, weighted 

by the agent’s belief strengths for each of those possible evidence sequences.” Here the 

probabilities of the hypothesis on each evidence sequence are degrees of support, and the 

probabilities of the evidence sequences are degrees of belief. 

The universal degree-of-support theorist will maintain, contra Hawthorne, that the 

probabilities of the uncertain “evidential” propositions here are in fact the degree to which these 

propositions are supported by some further proposition, and identify that further proposition with 

our actual evidence. It is possible to do this while still being fairly concessive to proponents of 

Jeffrey conditionalization. Schwan and Stern (2017) note that while most discussions of Jeffrey 

conditionalizing assume that the agent becomes certain of nothing that she can express, they 

allow that she becomes certain of a “dummy proposition”—that is, a proposition about her 

experience that she cannot express. They argue that cases that call for Jeffrey conditionalization 

are not really instances of uncertain learning, but of ineffable learning: 
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[N]early every case that appears in the literature seems to be describable in terms of 

learning something ineffable with certainty. In Jeffrey’s classic candlelight cases, for 

example, the agent’s credence that some cloth is a particular color changes because of 

how the cloth appears in candlelight. The agent plausibly learns that the cloth appears 

that way with certainty (even though she cannot describe what she sees). (Schwan and 

Stern 2017: 5n8) 

 

 The universal degree-of-support theorist can plausibly maintain that it is because the 

agent learns the ineffable fact that the cloth appears that way, and because that fact supports the 

cloth’s being red to (say) degree 0.7, that the agent’s credence that the cloth is red ought to be 

0.7. More generally, we can still say that, in general, an agent’s degree of belief in any 

proposition ought to be equal to the degree to which that proposition is supported by her 

evidence—just now allowing that that evidence may include ineffable propositions. If we are 

unable to have any credence in ineffable propositions,33 and unable to tell how much ineffable 

propositions support or are supported by other propositions,34 then this just implies: first, that our 

bridge principle should allow for our agent to not have any credence in some propositions, so 

that she is not required to have any credence in her ineffable evidence; and second, that the facts 

that determine what degrees of belief our agent should have are in some sense inaccessible to 

her, so that a norm like Jeffrey conditionalization might still be useful in guiding conscious 

reasoning in cases where it delivers the same result as would conditionalizing on the dummy 

proposition (cf. Schwan and Stern 2017: 5, 13). 

Indeed, Schwan and Stern argue that utilizing the dummy proposition lets us characterize 

the cases in which Jeffrey conditionalization is warranted. (Most proponents of Jeffrey 

conditionalization, including Jeffrey himself, acknowledge that it delivers counterintuitive results 

 
33 This is most plausible if we understand an ineffable proposition to be one we cannot even think. We might instead 

understand an ineffable proposition to be one we can think, but not put into words, in which case it may be possible 

to have a credence in an ineffable proposition. 

34 As Schwan and Stern (2017: 6) note, this is compatible with our being able to make qualitative judgments about 

how dummy propositions causally relate to other propositions. 
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in some cases, and accordingly needs to be circumscribed in some way.) Roughly, their idea is 

that after learning a dummy proposition D that leads to an update over a partition, agents should 

update their credence in a hypothesis H using Jeffrey conditionalization just in case the already-

updated partition screens off the impact that D has on H, where the relation of screening off is 

formalized using causal graphs. 

 There is much more to be said about Jeffrey conditionalization and uncertain/ineffable 

learning. But the foregoing shows that it is possible for the universal degree-of-support theorist 

to interpret the probabilities of uncertain “evidential propositions” as the degree to which these 

propositions are supported by a dummy proposition, a proposition that arguably needs to be 

posited anyway to characterize when Jeffrey conditionalization is rational. This discussion also 

illustrates that while the universal degree-of-support interpretation of epistemic probability may 

be committed to our evidence being “known with certainty” in some sense, it is a fairly weak 

sense. What this interpretation is really committed to is the claim that if X is part of our 

evidence, then we ought to either have a credence of 1 in X or no credence at all in X. 

In this section I have argued that not only can the degree-of-support interpretation best 

account for probabilistic reasoning with certain kinds of old evidence, but old evidence of this 

kind is quite common, and the degree-of-support interpretation can best explain the propriety of 

our reasoning even in cases not involving old evidence. I also briefly considered two pluralist 

proposals on which some epistemic probabilities are degrees of support and others are degrees of 

belief. The main argument of this paper rules out the first proposal (that prior probabilities are 

degrees of belief), while the second proposal (that the probabilities of uncertain evidence are 

degrees of belief) arguably does a worse job of explaining the data than does a universal degree-

of-support interpretation. This suggests that it will be difficult to develop plausible pluralist 
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theories that accommodate the lessons of the OLDEVIDENCE cases while still allowing for some 

probabilities to be degrees of (rational) belief. While further work on the possibility of pluralism 

about epistemic probabilities is welcome, we can tentatively conclude that all epistemic 

probabilities are degrees of support, and not degrees of (rational) belief.35 
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