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Abstract 

Within psychology, philosophy, and cognitive science, theory of mind refers to the 
cognitive ability to reason about the mental states of other people, thus recognizing 
them as having beliefs, knowledge, intentions and emotions of their own. In 
this project, we construct a natural language inference (NLD) dataset that tests 
the ability of a state of the art language model, RoBERTa-large finetuned on 
the MNLI dataset, to make theory of mind inferences related to knowledge and 
belief. Experimental results suggest that the model struggles with such inferences, 
including after attempts for further finetuning. 

1 Introduction 

In this project, we examine to what extent the language model RoBERTa-large [1] finetuned on the 
MNLI dataset [2] can recognize inferences that involve theory of mind. The NLP task of natural 
language inference (NLI) is the task of predicting, given two sentences, a premise X and a hypothesis 
Y, whether X implies Y, contradicts Y or is neutral with respect to Y [3]. Theory of mind, also 
known as folk psychology within philosophy [4] or intuitive psychology in artificial intelligence [3], is 
a term that describes the human ability to reason about other humans’ mental states, thus recognizing 
them as having beliefs, knowledge, intentions and emotions of their own. Our theory of mind allows 
us to intuitively recognize entailments related to human mental states. Within theory of mind, our 
focus here is on verbs that describe epistemic mental states, like to know, to think, and to see. For an 

example of a theory of mind inference, note that the sentence John knows that Ann thinks that there 
is milk in the fridge entails that Ann thinks that there is milk in the fridge but not that John thinks that 
there is milk in the fridge. However, the sentence John thinks that Ann knows that there is milk in the 
fridge does imply John thinks that there is milk in the fridge. See Figure 1 for a graphical illustration. 

Recent large transformer based language models have achieved impressive results in benchmarks like 
GLUE [5] and SuperGLUE [6], which aim to test natural language understanding, suggesting that 
larger models have an improved language understanding capacity. At the same time, recent work 
has exposed the limitations of such models on specially constructed NLI datasets [7, 8, 9, 10]. This 
project continues the latter line of work by introducing a new, automatically generated, dataset that 
tests language models understanding in theory of mind reasoning. Beyond offering a novel type 
of NLI test, we believe that the dataset offers an interesting challenge of linguistic understanding 
and reasoning. Theory of mind reasoning is considered an important developmental test within 
cognitive science and philosophy of mind, used for evaluating the cognitive capacities of young 
children and non-human animals [4]. According to this line of research, the ability of a thinking 
system to accurately represent the thoughts of a different system (which might deviate from the first 
system’s ‘world knowledge’) is an important mark of intelligence. 

Our dataset contains three types of tests: the first type, intra-personal tests, involves reasoning about 
the mental states of a single agent. The second type, inter-personal tests, involves the mental states of 
multiple agents. Examples of such tests are given in Figure 1. The third type, inference reasoning, 
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v = entailment 

X = non-entailment 

Figure 1: Theory of mind entailments and non-entailments involving two agents and the epistemic 
states know and think 

involves the ability to recognize other agents as making inferences. If X entails Y, and you know that 
Bob believes that X, then (all things held equal), it is reasonable to conclude that Bob believes Y. 

An important semantic distinction that any theory of mind reasoner (whether human or not) has to 
internalize is the distinction between factive mental state verbs and non-factive ones [11]. Factive 
verbs, like to know and to see are assumed to accurately represent the facts in common use, or, to 
use linguistic terms, are assumed to presuppose their complements: if you know X, then X is true. 
Non-factive verbs, like to think and to believe, do not come with such a presupposition: if you believe 
X, it does not imply that X is true. Factivity plays an important role in the first two types of theory 
of mind reasoning tasks. The entailments and non-entailments in Figure | are largely explained by 
the factivity of the verb to know and the non-factivity of to think, respectively. 

2 Related Work 

Work on theory of mind inferences in language models builds on a diverse family of existing research 
fields: 

Cognitive Science. Within cognitive science and philosophy of mind, the ability to ascribe beliefs 
to others, including false beliefs (requiring the awareness that agents can misrepresent reality) is seen 
as an important mark for developmental mental capacities [4]. Starting with [12], a large literature 
examines the ability of young children (years 3-5) in tasks that involve ascribing beliefs to others 
(the false belief task), and even ascribing beliefs among non-human animals, including primates [13] 
and corvids [14] . Within the intersection of cognitive science and NLP, [15] and [16] explore the 

ability of language models to do theory of mind reasoning through the task of question answering 
(QA). In particular, [16] argue that state of the art models for QA fail on carefully structured theory 

of mind tests, a result that is consistent with our results. In this project, we focus on the task of textual 
entailment, not QA. 

Symbolic AI. Historically, work related to reasoning about the epistemic state of multiple agents 
has played an important role within symbolic artificial intelligence. In particular, epistemic logic is 
a formal system that logically allows to represent and reason about the knowledge states of agents 
[17, 18]. Epistemic logic contains the operator K,(p), representing the fact that agent a knows 
the proposition p. Applications of epistemic logic include game theory [19], distributed computer 
systems [18] and AI planning [20] . Epistemic logic will be used in this project to schematize theory 
of mind inferences.



Linguistics and NLP. Within semantics, pragmatics, and philosophy of language, the ability 
to track the mental states of the participants of a conversation is assumed as a key ingredient in 
meaningful linguistic communication [21, 22, 23]. Theory of mind reasoning is therefore presupposed 
in those fields. 

More specifically, the question we focus on is related to the NLP task known as speaker commitment 
or event factuality. In that task, an NLP model has to predict to what extent a speaker is committed 
to the complement of a sentence [24, 25]. For example, the model has to predict that the speaker 
of the sentence Michael knows that there is milk in the fridge is committed to the claim that there 
is milk in the fridge. The task of speaker commitment builds on extensive work in linguistics and 
formal semantics studying the presupposition behaviour of certain predicates, including epistemic 
verbs like to know [26, 11, 27]. Speaker commitment is related both to the task of presupposition 
inference (see [7]) and to theory of mind inferences, since it includes mental state verbs (like to 

know and to believe.) However, existing datasets used for speaker commitment tend to focus on 
complicated linguistic structures (involving negations, conditionals, and modals) with an emphasis 
on presupposition behaviour (see [24, 25]). Our dataset, on the other hand, involves simple linguistic 
structures, with a focus on complicated multi-agent scenarios. 

Stress testing NLI models. Finally, this project is related to a recently growing literature that 
stress tests state of the art natural language inference models, using out of domain data and small 
manipulation on existing datasets. Manipulations include testing NLI models only on hypotheses [9], 
making small lexical changes on a single word in the example [28], and inducing spelling errors [29]. 
NLI tasks on specific out-of-domain datasets include datasets for defeasible reasoning [30], sentences 
with multiple quantifiers [31], entailment with conjunctions [32], the transitivity of the entailment 
relation [33], entailments involving event veridicality [24], and inferences involving presuppositions 
and implicatures [7]. An interrelated important line of work involves constructing NLI datasets that 
challenge the proposed entailment heuristics that state of the art models employ [29, 8]. In particular, 
the word overlap or subsequence heuristic (predict entailment if the hypothesis is a subsequence of 
the premise), which [29, 8] explore, will be relevant to our tests as well. Our dataset is generated 
by a very simple syntactic manipulation that can be easily reproduced for any type of dataset with 
minimal effort. 

3 Approach 

To evaluate our theory of mind dataset, we use the model RoBERTa-large finetuned on the MNLI 
dataset, available via Huggingface.! The MNLI dataset contains 433K crowd-sourced and labeled 
examples of premise hypothesis pairs, from multiple genres, including examples from written and 
spoken sources [2]. RoBERTa-large finetuned on the MNLI dataset achieves a score of 0.908 on the 
MNLI test set [1]. 

The epistemic verbs that appear in the dataset are the factive verbs {know, understand, recognize, 
see, remember, learn} and the non-factives { believe, think, suspect, assume}. Since we are going to 
evaluate the model on examples containing these verbs, it is worth checking how much exposure the 
model had to them. Figure 2 plots the occurrences of these verbs in the MNLI training set (393K pairs 
of premise-hypothesis). The distribution ordinally matches the general frequency of these verbs in 
English, according to the Oxford English Corpus,” with significant representation of both the factives 
know (& 50K examples) and see (~ 30K), and the non-factive think (+ 251’). We note, however, 

that the high occurrence of the verb know may arise from its use as a discourse marker in English, 
and not necessarily from a strict epistemic use (see [34] for discussion). 

Another possible worry is that the MNLI training dataset is skewed towards a particular label given 
a particular type of verb. Table 1, which compares the labels of MNLI training examples with the 
occurrences of factive and non-factive verbs in those examples, suggests that the training set is 
balanced. Given the above information, we hypothesize that the MNLI training dataset contains 
enough data to learn the basic semantic function of the verbs know, see and think and that therefore it 
  

'See https://huggingface.co/transformers/ for the package and https://huggingface.co/roberta-large-MNLI for 
the model. 

>See here https://web.archive.org/web/201 1 1226085859/http://oxforddictionaries.com/words/the-oec-facts- 

about-the-language
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Figure 2: verb count in the MNLI dataset examples (393K premise-hypothesis pairs) 

  

entailment contradiction neutral 

Factive verbs 11972 12702 12829 

Non-factive verbs 5617 5630 5982 

Table 1: Distribution of MNLI epistemic verb examples according to labels 

  

  

is meaningful to ask whether the model learns the function of these verbs (and similar verbs) in more 

complicated, theory of mind, inferences. 

The new dataset only contains the labels entailment (label 1) and non-entailment (label 0), since 

the distinction between neutral and contradiction can be sometimes more difficult to draw. In what 

follows, we combine the labels contradiction and neutral to the single label non-entailment. 

3.1 Dataset 

For the purpose of describing the dataset we created, we follow the notation of epistemic logic and 
use IC, (a knows that...) for an arbitrary factive verb from the set { knows, sees, learns, understands, 
recognizes, remembers}, B, (a believes that...) for an arbitrary non-factive verb from the set { 
believes, thinks, assumes, suspects}, and V,, (a [some epistemic verb] that...) for an arbitrary (factive 

or not) epistemic verb. The subscript a stands for a name a taken randomly from a set of most common 
male and female names in the USA.’ All epistemic verbs are in singular, present, third-person form, 
unless stated otherwise. 

To automatically create examples, we follow the following procedure. We randomly pick a premise 
X from the SNLI dataset [35]. We then generate a new sentence by appending a given premise X to 
a construction like Michael sees that or Ann thinks that (lower-casing the appropriate letters in X). 
For example, given the SNLI premise: 
A black race car starts up in front of a crowd of people. 

We generate the sentence: 
Michael knows that a black race car starts up in front of a crowd of people. 

The latter sentence is schematized as K(X). In the same fashion, more complicated sentences can 
be constructed, such as K,,B,,(X). Linguistically, a sentence of the form K,,,(X) is grammatically 
acceptable iff X is a grammatically acceptable declarative sentence. 

Each example in the dataset is a tuple of the form (premise, hypothesis, label), where either the 
premise or the hypothesis (or both) were manipulated according to the above mentioned procedure. 
To determine the label, we follow the following widely accepted principles in epistemology and 
formal semantics: 

  

3Source https://www.ssa.gov/OACT/babynames/decades/names 1990s.html



F: K,(X) > X Factive verbs imply their complements 
NF: By(X) + X Non-Factive verbs do not imply their complement 
C: ((X > Y) and V,(X)) > V,(Y) Closure under entailment 

The principle C encodes the assumption that epistemic verbs are closed under entailments: agents 
are rational and make inference of their own [36]. All three principles are regularly assumed in the 
semantics of epistemic verbs (see e.g. [37]). These rules imply, for example, the label entailment 
in the tuple (B, K,(X), Ba(X), entailment).* These principles are not meant to represent logical 
or scientific truths, rather intuitive, or folk, assumptions. After all, Bob might believe X without 

realizing that _X implies Y, and John might have a false memory that X, even though to remember 
is a factive verb. Nevertheless, since the task of NLI aims to represent commonsense, and not just 
logical inference, we can expect a competent model to learn and follow these principles. 

The dataset is divided into three theory of mind test categories: intra-personal reasoning, inter- 
personal reasoning, and inference reasoning. Each category includes several templates, and each 
template includes 300 examples. 

Intra-personal theory of mind reasoning involves the mental states of a single person. The premise 
Michael thinks he knows that there is milk in the fridge does not entail the hypothesis Michael knows 
that there is milk in the fridge, since, as part of our intuitive theory of mind reasoning, thinking that 
you know does not mean that you actually know. To generate the special construction B,, Kin(X), 
we randomly pick an element from the set { believes he knows, thinks he knows, thinks he remembers, 

thinks he saw, believes he saw} (for male names). This category also includes the simple control tests 
tuples (K,,X, X, entailment) and (B,,X, X,non-entailment) to test the model’s base understanding 
of factivity. The templates are: 

(K,,X, X, entailment) (B,,X, X, no-entailment) 
(B,K,X, K,X, no-entailment) (K,B,X, X, no-entailment) 
(K,B,X, B,X, entailment) 

Inter-personal theory of mind reasoning involves the mental states of multiple persons. Examples 
are provided in Figure 1. The inter-personal templates include: 

(Ba By(X), Ba(X), no-entailment) (Ba By(X), Bo(X), no-entailment) 
(Ba Kp(X), p(X), no-entailment) (KKo(X), Ky(X), entailment) 
(Ky Ka(X), Ka(X), entailment) 

By inference reasoning, we mean the ability of recognizing others as able to make inferences. If we 
recognize that premise X entails hypothesis Y, we should also recognize that Michael believes X 
entails Michael believes Y. This is the tuple (Bm(X), Bm(Y), entailment) (where X entails Y). At 
the same time, the premise Michael believes X does not entail that Ann believes Y, even if X entails 

Y. Unlike the former categories, which are related to the task of speaker commitment (see [24], [25]), 

this kind of test, as far as we know, is novel in the NLI literature. The inference reasoning templates 

(Ba(X), Ba(Y), entailment) (Ka(X), Ka(Y), entailment) 
(B,(X), By(Y), no-entailment) (K,(X), K,(Y), no-entailment) 
(Forgeta(X), Forgeta(Y ), no-entailment) (Seeg(X), Know,(Y), entailment) 

The tuple (For get,(X), Forgeta(Y), 0), which we call Forget non-closure, tests the special non- 
closure of forgetting: forgetting X does not imply forgetting Y, even if X implies Y. The tuple 
((Seeg(X), Know ,(Y), 1)) which we call Sensory closure, tests the intuition that knowledge is the 
most general factive state : if you see/recognize/realize X and X implies Y, you (generally) know 
Y (see [38]). In this category, we pulled (X, Y, entailment) examples from the SNLI dataset. This 

category therefore also includes the control test (X, Y,entailment) to make sure that the model reliably 
recognizes X as entailing Y. 

  

“Formal reason: by combining F and C we get ((K,X — X) and By(K,X)) + Ba(X). Therefore, the 
premise B, ky X, implies BX



4 Experiments 

We feed the examples into three models: the ROBERTa-large finetuned on the MNLI dataset, and two 
further finetuned models on custom datasets we create, using the Huggingface transformers package.” 
We use accuracy as an evaluation method. All results are in tables 2-5. 

4.1 RoBERTa-Large-MNLI without further finetuning 

We start by testing the dataset on the ROoBERTa-large-MNLI model, as is from Huggingface. We 
tested this particular model on two types of source sentences X: X taken from SNLI premises (called 
in the tables RoBERTa-large-MNLI SNLI premises) and X taken for a list of shorter sentences (called 
in the tables RoBERTa-large-MNLI short sentences). 

Results. The first two control columns of table 2 suggest that the model treats all verbs as factive 
verbs. The control test accuracy for non-factive mental states is 0.006. A possible explanation is 
that the model uses a word overlap heuristic predicting entailment (recognizing the overlap between 
B,X and X), while ignoring the preceding verb (B,). All high accuracy results are compatible with 
this heuristic. To test the assumption that the model is sensitive to the amount of word overlap, we 
further tested the templates on 400 shorter sentences (average length of 6 words, compared to 13 of 
the SNLI premises), taken from an ESL resources website.° The model’s accuracy improves, but 
not significantly. Furthermore, we add another template, explicitly adding a defeater modifier to 
non-factive verbs (i.e. wrongly, falsely, incorrectly thinks that X), creating the Anti-factive test (in 
table 2). Surprisingly, even here, the model performed below chance for the SNLI premises. Since 
the accuracy on the non-factive control is so low, the more complicated tests in tables 2 and 3 are 
uninformative for this model. 

For the inference reasoning task (table 4), as expected, the model is performing well on the control 
(acc. 0.923), but remaining results show that the model treats modified (X,Y) pairs as entailments 

under all modifications, thus failing to recognize that the verbs refer to different agents. For instance, 
the template (B,.X, By Y,0) has 0.27 accuracy. 

4.2 RoBERTa-Large-MNLI with finetuning training set 1 

Since the available RoBERTa-large-MNLI model performs poorly on the control tests (the template 
BX, X,0 in table 2), we try two approaches for further finetuning the model. Instead of randomly 
dividing the dataset into training, evaluation and tests sets, we create new custom training and 
evaluation sets. The idea behind this approach is to train the model on simple examples, and to 
see whether it improves on more complicated, held-out, ones. The first training set (training set 1) 
contained 3000 examples, with 1000 further examples for validation. Training set 1 had the following 
distribution of templates: 
50%: (BX, X,0) 
27%: unchanged SNLI examples 
23%: (KX, X,1) 
We finetune the model using the Trainer method of the Huggingface transformers package.’ We 
hypothesize that by learning the simple distinction between factive and non-factive verbs the model 
will improve performance on more complicated cases. 

Results. The results of finetuning with training set 1 appear in the table rows RoBERTa-large-MNLI 
finetune training set 1. The hypothesis was mistaken. The results show that the finetuned model 
internalized that non-factive verbs are non factive (with acc. 1.0 in the control tests of table 2). 

However, the model just seems to use the heuristic: 
if the premise or the hypothesis contain a non-factive verb, predict non-entailment; if they contain a 
factive verb, predict entailment. 
  

>See the supplementary code. 

®Source: https://7esl.com/english-verbs/ 

7See https://huggingface.co/transformers/training.html#trainer for that method. We finetune for 5 epochs, 

evaluating each epoch on the accuracy of the evaluation set, and using the AdamW optimizer and its default 
hyper-parameters. The model reached above 0.94 accuracy on the evaluation set during training for both 

finetuning set 1 and set 2.



  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

training set 2 

KX BX  Anti-FactiveX B,K,X K,B xX 
X X X KX BOX 

1 0 0 0 1 

RoBERTeMNLL 9 8 G06 046 0.0 1.0 
SNLI premises 

ROBERTHIBEGMNEL 49 9254 0.882 0.024 1.0 
short sentences 

ROBERT large-MNL 10 10 10 0.133 1.0 
netune training set 1 

eae Ny 10 «101.0 1.0 0.006 
netune training set 2 

Table 2: Intra-personal tests 

BBX B,ByX K,kKyX K Ky x Bi KyxX 
BX ByoX Aknows X BknowsX K,X 

0 0 1 1 0 

RoBERT#laye-MNLL 9143 00 0.873 0.993 0.023 
SNLI premises 

RoBERTalayeMNIT 152 9.002 0970 0.995 0.039 
short sentences 

ROBE RTe large NT 1.0 1.0 1.0 1.0 0.333 
netune training set 1 

ROBERT a large MNT 1.0 1.0 0.0 0.0 1.0 
netune training set 2 

Table 3: Inter-personal tests 

SNLI BuX KyX BaX KX Forset Sens 

Control BaY KieY BY Key nom closure slosure 
(X,Y,1) 1 1 0 0 

RoBERTa-large-MNLI 0.923 0.936 0.926 0.27 0.283 0.066 0.943 

ROBERTA large MNT 0.933 (0.003 0.933 0.996 0.013 0.006 0.993 
netune training set | 

ROBERT large MNT 0.89 00 00 10 10 10 0.0 
netune training set 2 

Table 4: Inference reasoning tests 

X BuKkypX KaKyX BaBX VaVnX 
KX BX kykagX ByBuX ViVaX 

0 1 0 0 0 

RoBERTa-Large-MNLI 0.53 1.0 0.463 0.826 0.4333 

RoBERTa-large-MNLI 9g) 94 0.0 1.0 0.3333 
training set 1 

RoBERTa-large-MNLI 1.0 0.0 1.0 1.0 1.0 

  

Table 5: Additional tests, all models



This heuristic explains the high and low accuracies the model is getting. For instance, the template 
(Ba By X, Ba X, 0) in table 3 gets full accuracy presumably just because it involves non-factive verbs, 
not because of the interpersonal structure. This explains the failure of the template (B, K,.X, K,X, 0), 
with acc. of 0.333, since it involves both factive and non factive verbs. Moreover, this finetuned model 

fails on the inference reasoning tasks that involve non-factive verbs (the template (B,X, B,Y,1 has 

0.003 accuracy and (KX, K,Y,0) has 0.013 accuracy). These low results are explained by the 
above heuristic. To further test this heuristic, we created additional templates (table 5). The finetuned 

model on training set 1 has 0 accuracy on the template (X, K,X,0): the model seems to predict 
entailment just because there is a factive verb in the hypothesis. The further tests in table 5 show that 
the model cannot handle multi-agent examples. The template (V,ViX, V,V.X, 0), in which the order 

of the verbs is swapped, receives low accuracy on the original model and the first finetuned model. 

4.3, RoBERTa-Large-MNLI with finetuning training set 2 

In the second fine tuning set (training set 2), we try to teach the model both to distinguish between 
factive and non-factive mental states and between the mental states of different agents. We hypothesize 
that this will result in abandoning the simple heuristic that emerged from training set 1. We finetune 
the original ROBERTa-large-MNLI on training set 2, with the same finetuning approach and setting 
as the first finetuning (see footnote 7), but with the following distribution of examples: 

33.3%: (BX, X,0) 33.3%: unchanged SNLI examples 
12%: (KX,X,1) 10%: (X, VX, 0) 
5%: (VaX,Vi,X,0) 5%: (VaV,X, VbVaX, 0) 
The last two templates aim to teach the model the difference between the mental states of different 
agents. 

Results. The results of the second finetuning appear in table rows ROBERTa-large-MNLI training 
set 2. Like in the first finetuning, the second finetuned model internalizes the simple difference 
between factive and non factive verbs (see the first three columns of table 2). Further, as expected, 

the model receives a perfect score on the template (V,V,X, V,V,X, 0) in table 5, which the model 

was trained on. However, the model still struggles with intra-personal combinations of factive and 
non factive verbs (acc. of 0.006 on the template (K,B,X,B,X,1)). With respect to inter-personal 
and inference tests, the model now seems to follow the simple heuristic predict non-entailment if two 
agents are mentioned. This heuristic explains the perfect scores of this model in tables 3,4 and 5, as 
well as the perfect failure (acc. 0) in templates like (B, A,X, B,X,1) (table 5) and (K,X, KyY, 1) 
(table 4) which require predicting entailments. 

5 Analysis 

All the tested models seem to resort to simple heuristics in order to make theory of mind inferences. 
This observation is consistent with recent work exposing the heuristics employed by NLI models 
[8]. The original ROBERTa-large-MNLI treats all mental states as factive, rendering it incapable 
to perform meaningful theory of mind inferences. Further finetuning efforts easily fix this bias. 
But instead of internalizing the F, NF and C principles that generate the bulk of our templates, the 
finetuned models employ simple heuristics that are consistent with the data in the finetuned set, but 
not with a general, recursive, understanding of these principles. 

6 Conclusion 

Theory of mind inferences constitute just a small fraction of all the inferences we expect an NLI 
model to perform, but—due to their role in cognitive science, semantics, and pragmatics—they are 
arguably an important fraction. In this project, we have focused on the limitations of one particular 
model on just a handful of theory of mind inferences related to knowledge and belief. One might 
argue that by finetuning only on a small subset of carefully picked examples, it is not surprising that 
the finetuned models fail to learn all templates. We note, however, that no set of examples is going to 
cover all the templates that can be generated by the principles F, NF, and C. It would be therefore an 
interesting challenge to try and develop, with the right training data, a robust NLI model for general 
theory of mind reasoning.
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