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a b s t r a c t

Courtesy of its free energy formulation, the hierarchical predictive processing theory of the brain (PTB) is
often claimed to be a grand unifying theory. To test this claim, we examine a central case: activity of
mesocorticolimbic dopaminergic (DA) systems. After reviewing the three most prominent hypotheses
of DA activity—the anhedonia, incentive salience, and reward prediction error hypotheses—we conclude
that the evidence currently vindicates explanatory pluralism. This vindication implies that the grand uni-
fying claims of advocates of PTB are unwarranted. More generally, we suggest that the form of scientific
progress in the cognitive sciences is unlikely to be a single overarching grand unifying theory.

! 2016 Elsevier Inc. All rights reserved.

1. Introduction

The hierarchical predictive processing theory of the brain (PTB)
claims that brains are homeostatic prediction-testing mechanisms,
which function to minimize the errors of their predictions about
the sensory data they receive from their local environment. The
mechanistic function of minimizing prediction error is constituted
by various monitoring- and manipulation-operations on hierarchi-
cal, dynamic models of the causal structure of the world within a
bidirectional cascade of cortical processing.

The least generic (and arguably most interesting) formulation of
PTB currently available is the free energy formulation, which names
the thesis that any self-organizing system—not just brains—must act
to minimize differences between the ways it predicts the world as
being, and the way the world actually is, i.e., must act to minimize
prediction error.1 Central to the free-energy formulation of PTB is
the free energy principle, which claims that biological, self-organizing

systems must act to minimize their long-term average free energy
(Friston, 2010: 127), where free energy refers to an information-
theoretic measure that bounds the negative log probability of sam-
pling some data given a model of how those data are generated.

Advocates of PTB are enthusiastic about the expected payoffs of
their theory. In Friston’s words, ‘if one looks at the brain as imple-
menting this scheme [i.e., free-energy minimization], nearly every
aspect of its anatomy and physiology starts to make sense’ (2009:
293). Dehaene agrees: ‘[m]ost other models, including mine, are
just models of one small aspect of the brain, very limited in their
scope. [PTB] falls much closer to a grand theory’ (quoted in
Huang, 2008: 33). PTB is said to offer ‘a deeply unified theory of
perception, cognition, and action’ (Clark, 2013a: 186), and even
to acquire ‘maximal explanatory scope’ (Hohwy, 2013: 242). Over
time, this enthusiasm has given way to unbridled confidence,
where PTB is said to ‘offer a unified approach to mental function’
(Hohwy, 2014: 146) and to ‘explain everything about the mind’
(Hohwy, 2015: 1), and to have ‘the shape of a fundamental and
unified science of the embodied mind’ (Clark, 2015a: 16). Others
have suggested that PTB is so powerful that even partial fulfillment
of these expected payoffs would radically alter the course of cogni-
tive science (Gładziejewski, 2016).
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Rather than chalking up this language to rhetorical posturing,
we begin—as a measure of interpretive charity—by taking these
authors at their word. So, let us call the idea that PTB is maximally
explanatory, deeply unifying, and in some sense singularly funda-
mental—i.e., that it has the shape a so-called grand unifying theory
(GUT)—the GUT intuition of advocates of PTB (cf. Anderson &
Chemero, 2013). Since it is an open empirical question whether,
and how, PTB relates to other theories and hypotheses, this ques-
tion should be answered on case-by-case grounds in light of both
precise explications of concepts like UNIFICATION, REDUCTION, and EXPLA-

NATION, as well as actual scientific practice. Consequently, this paper
evaluates advocates’ GUT intuition via examination of a central
case: activity of mesocorticolimbic dopaminergic (DA) systems.
We argue for two interrelated conclusions: first, that several cur-
rent hypotheses of DA are mature, competitively successful alter-
natives in a pluralism of explanatory resources, and second, that
the explanatory pluralism vindicated by these hypotheses is incon-
sistent with advocates’ GUT intuition.

Explanatory pluralism enjoys several characterizations. What
they all share is a commitment to denying that ‘the ultimate aim
of science is to establish a single, complete, and comprehensive
account of the natural world (or the part of the world investigated
by the science) based on a single set of fundamental principles’
(Kellert, Longino, & Waters, 2006: x). In the case of DA activity,
we argue that the GUT intuition shared by advocates of PTB is cur-
rently unwarranted. Our argument has the form of an abductive
inference: if pluralism were correct, then the scientific investiga-
tion of DA activity would demand multiple, diverse epistemic tools
without a requirement to collapse into a fundamental theory of
how brains work. As this multiplicity and diversity are just what
is observed in current scientific practice, pluralism is vindicated.
Since explanatory pluralism is inconsistent with the reductive
and monistic claims of free energy theorists, our argument calls
into the status of PTB as a grand unifying theory.

In Sections 2 and 3, we rehearse several constructs central to
PTB and articulate the conditions under which PTB would count
as a grand unifying theory. We highlight three prominent hypothe-
ses of DA in Section 4, and explain in Section 5 why current scien-
tific practice supports more explanatory pluralism than the GUT
intuitions of advocates of PTB. In Section 6, we conclude.

2. PTB: nuts and bolts

Although the general insight that brains perform predictions
has a long and heterogeneous tradition, PTB is associated with
recent work by Friston and Stephan (2007), Friston (2009),
Friston (2010), Hohwy (2013), and Clark (2013a), Clark (2013b,
Clark (2015b). While their respective formulations are inequivalent
and have different consequences, advocates have converged on
several basic commitments and a fixed stock of theoretical terms.2

Two of these commitments are, firstly, that brains are prediction-
testing mechanisms, and secondly, that brains produce psychological
phenomena by constantly attempting to minimize prediction errors.

To articulate these commitments, several terms require clarifi-
cation—foremost being prediction, which is understood as a
(homonymous) technical term with no semantic relation to its
ordinary sense. PTB defines prediction (or expectation) within the
context of probability theory and statistics as the weighted mean
of a random variable, which is a magnitude posited to be transmit-
ted downwards as a driving signal by the neurons comprising pair-
wise levels in the cortical hierarchy.

The term prediction error refers to magnitudes of the discrepan-
cies between predictions about the value of a certain variable and

its observed value (Niv & Schoenbaum, 2008). In PTB, prediction
errors quantify mismatches between expected and actual sensory
data (or sensory input), as the brain putatively encodes probabilis-
tic models of the world’s causal structure in order to predict its
sensory data. If predictions about sensory data are not met, then
prediction errors are generated so as to tune brains’ probabilistic
models, and to reduce discrepancies between what was expected
and what actually obtained.

In information theory, entropy refers to a measure of the uncer-
tainty of random quantities. That a probability distribution (or a
statistical model) has low entropy implies that data sampled from
that distribution are relatively predictable. If probability distribu-
tions are used to describe all possible sensory states that an adap-
tive agent could instantiate, then the claim that adaptive agents
must resist a tendency to disorder can be reconceived as the claim
that the distributions of their sensory states should have low
entropy. If probability distributions of the possible sensory states
of adaptive agents have low entropy, those agents will occupy pre-
dictable states.

The term predictable state concerns the amount of surprisal
associated with that state, which quantifies howmuch information
it carries for a system. Surprisal refers to the negative log probabil-
ity of an outcome, and, like entropy, is a measure relative to prob-
ability distributions (or statistical models). When applied to
adaptive agents, entropy (or average surprisal) is construed as a
function of the sensory data they receive and of their internal mod-
els of the environmental causes of that data.

Computationally-bounded agents, however, can only minimize
surprisal indirectly by minimizing free energy. Given how many
variables (and their possible values) can be associated with agents’
sensory states, minimizing surprisal directly is intractable.
Computationally-bounded agents are instead said to minimize sur-
prisal indirectly by minimizing free energy. Free energy is an
information-theoretic quantity that can be directly evaluated and
minimized, and ‘that bounds or limits (by being greater than) the
surprisal on sampling some data given a generative model’
(Friston, 2010: 127).

A generative model is a statistical model of how data are gener-
ated, which, in PTB, consists of prior distributions over the environ-
mental causes of agents’ sensory data and generative distributions
(or likelihoods) of agents’ sensory data given their environmental
causes. By providing a bound on surprisal, minimizing free energy
minimizes the probability that agents instantiate surprising states.
Since agents’ free energy depends only on their sensory data and
on their internal models of the causes of their sensory data,
computationally-bounded adaptive agents can avoid surprising
states (and, presumably, live longer) by directly minimizing their
free energy.

The free energy principle is said to logically entail other princi-
ples incorporated within PTB—namely, the so-called Bayesian brain
hypothesis and principles of predictive coding (Friston, 2013: 213).
For its part, the Bayesian brain hypothesis was motivated by the
increased use and promise of Bayesian modeling to successfully
answer questions about biological perception. ‘One striking obser-
vation from this work is the myriad ways in which human obser-
vers behave as optimal Bayesian observers’ (Knill & Pouget, 2004:
712). A fundamental implication for neuroscience is that ‘the brain
represents information probabilistically, by coding and computing
with probability density functions or approximations to probabil-
ity density functions’ (Knill & Pouget, 2004: 713; Colombo &
Seriès, 2012).

Predictive coding names an encoding strategy in signal process-
ing, whereby expected features of an input signal are suppressed
and only unexpected features are signaled. Hierarchical predictive
coding adds to this strategy the assumption of a hierarchy of
processing stages. By implication, PTB maintains that brains are

2 We leave it open as to whether our argument applies to formulations that are not
committed to the free-energy principle.
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hierarchically organized such that the activity of every layer in
the cortical hierarchy predicts the activity in the adjacent layer
immediately below it.

Perception, action, and cognition are thus said to be produced
by the same kind of process, viz. by the interplay between
downward-flowing predictions and upward-flowing sensory sig-
nals in the cortical hierarchy. At each stage, inputs from the previ-
ous stage are processed as degree of deviation from expected
features, and only unexpected features are signaled to the next
stage. Applied iteratively in hierarchically organized neural net-
works, this compact processing scheme leads to bidirectional pro-
cessing, where feed-forward connections convey information
about the difference between what was expected and what actu-
ally obtained—i.e., prediction error—while feedback connections
convey predictions from higher processing stages to suppress pre-
diction errors at lower levels. So, processing at each stage signals
difference between expected and actual features to the next stage
up the hierarchy; and each stage sends back to the one below it the
expected features.

This signal-processing strategy was originally invoked in neuro-
science to explain extra-classical receptive-field effects of neurons
in primary visual cortex and beyond (Lee & Mumford, 2003; Rao &
Ballard, 1999). Hierarchical predictive coding provides for a model
of the functional asymmetry of inter-regional visual cortical con-
nections, where forward connections run from lower to higher lay-
ers, driving neural responses, and where backward connections
run from higher to lower layers, playing a modulatory role. Accord-
ing to this model, expectations about the causal structure of local
environments are encoded in the backward connections, while for-
ward connections provide feedback by transmitting sensory
prediction-error up to higher levels.

In hierarchical architectures, under restrictive (Gaussian)
assumptions, the relative influence of bottom-up prediction errors
and top-down predictions is controlled by precision, which, in a sta-
tistical context, is defined as the reciprocal of the variance of a distri-
bution. Precision can be operationalized as ameasure of uncertainty
of the data due to noise or randomfluctuations. In the context of PTB,
precisionmodulates the amplitude of prediction errors. Amore pre-
cise prediction errorwill havemoreweight onupdating the system’s
models of the world. Precision-weighting on prediction errors
allows brains to tip the balance between sensory input and prior
expectations at different spatial and temporal levels in the process-
ing hierarchy, in a way that is context- and task-sensitive.

3. PTB as a grand unifying theory?

In Section 1, we observed that its advocates intuit that PTB is a
grand unifying theory, and then articulated that theory’s basic con-
structs in Section 2. Unfortunately, evaluating their GUT intuition
is difficult. Advocates of PTB have left unspecified the conditions
under which they would take their assertion that PTB is a grand
unifying theory to be true. While this lack of detail makes it hard
to know what they have in mind (for a related worry see
Rasmussen & Eliasmith, 2013), a curious aspect of the literature
is that advocates are perfectly sanguine about broaching tradi-
tional and well-characterized topics in philosophy of science, such
as unification or the nature of inter- and intratheoretical relation-
ships; but when called to elaborate and justify their claims about
such relations, they seek shelter in a dark room.

Fortunately, these terms and concepts have precise characteri-
zations and long-standing analyses. So, before turning to the
details of our test case in Section 4, we remedy this situation by
drawing on the relevant literature in philosophy of science to char-
acterize the main conditions under which advocates’ GUT intuition
would be satisfied.

3.1. Unification, monism, reductionism

For those who have it, the GUT intuition runs deep. For exam-
ple, Friston and Stephan (2007: 418) asserted, ‘[t]he payoff for
adopting [PTB] is that many apparently diverse aspects of the
brain’s structure and function can be understood in terms of one
simple principle’. Friston, Daunizeau, Kilner and Kiebel (2010:
255) asserted that the free energy principle is a ‘unifying approach
to perception and action’, which enjoys a simple and biologically
plausible implementation. Clark (2013: 242) re-asserted the point,
claiming that ‘[PTB] is a deeply unified theory of perception, cogni-
tion, and action’; likewise, Hohwy (2014: 146) claimed that PTB
has maximal explanatory scope’ and is ‘a unified approach to men-
tal function [tout court]’. Hohwy (2014: 146) also asserted that ‘
[PTB] is the only theory that can really make inroads on the prob-
lem of perception (or the problem of content)’ and has the advan-
tage of either ‘having no clear alternative’ or having as its
alternative the ‘conjunction of all theories of particular aspects of
mental life’. More recently, Hohwy (2015: 8–9) added that the the-
ory is not only unifying and singularly fundamental, but also
reductionist in at least two senses: ‘this [i.e., PTB] is all extremely
reductionist, in the unificatory sense, since it leaves no other job
for the brain to do than minimize free energy so that everything
mental must come down to this principle. It is also reductionist
in the metaphysical sense, since it means that other types of
descriptions of mental processes must all come down to the way
neurons manage to slow sensory input’.3

To summarize, the free energy formulation of PTB is grounded
in ‘one simple principle’, having a ‘simple and biologically plausible
implementation’; PTB affords a ‘unified’ and ‘reductionist’ ‘theory
of perception, cognition, and action’, with ‘maximal explanatory
scope’, whose only ‘alternative is the conjunction of all theories
of mental [phenomena]’. So, with Hohwy, Clark, Friston, and
others, let T be a grand unifying theory only if T entails explanatory
unificationism, monism, and reductionism. Unificationism names
the thesis that explanations are derivations that unify as many
descriptions of target phenomena to be explained, u1, . . ., un, from
as few stringent argument patterns as possible (Kitcher, 1989; see
Colombo & Hartmann, 2015 for an assessment of the idea that
Bayesian modeling unifies cognitive science). Monism names the
thesis that any given u will always have exactly one adequate
explanation based on a single set of fundamental principles. Clo-
sely related to the idea of explanatory unificationism and monism
is the third thesis, reductionism, elaborated in detail in the next
subsection.

For now, the general point is that each thesis is an individually
necessary condition on a theory T satisfying advocates’ GUT intu-
ition, which can be made precise by drawing on the well-
established literature in philosophy of science. A theory failing to
unify descriptions of u1, . . ., un would not then be a unifying the-
ory; a theory requiring other theories to do so would not be monis-
tic; and a theory that was not reductively more basic than the
descriptions so unified could not be a grand unifying theory in
advocates’ intended sense.

3.2. Epistemic reductionism

To make the case for PTB being a single unifying and reduction-
ist brain theory, Friston (2009, 2010) discusses the free energy for-
mulation of PTB in relation to several principles, hypotheses, and

3 Hohwy categorizes the first sense as ‘a kind of theory reduction’ and ‘explanatory
unification’ (2015: 2). Immediately following this conflation of reductionist and
unificationist theses is a confusion of functional decomposition for ontological
reduction, and then a second conflation of ontological reduction and reductive
explanation (Hohwy, 2015).
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theories: e.g., the Bayesian brain hypothesis, infomax and the the-
ory of efficient coding, the Hebbian cell assembly and correlation
theory, neural Darwinism and value learning, and optimal control
theory and game theory. But what ‘relation’ is that, exactly? Friston
doesn’t say.

Ontological reduction, which is a relation between posited
entity types and tokens (whether objects, properties, states, etc.),
is one answer. But the question, as suggested by Friston’s discus-
sion, concerns relations between theories. So, a better answer is
epistemic reduction, which concerns how the concepts, explana-
tions, or bodies of knowledge pertaining to one scientific domain
are related to the concepts, explanations or bodies of knowledge
pertaining to another scientific domain.

Approaches to epistemic reduction are normally grouped into
two basic (non-exclusive) categories: theory reduction and reduc-
tive explanation (see, e.g., Brigandt & Love, 2012: Section 3). Theory
reductions specify how pairwise theories will comport with one
another after the fact of maturity and development. Reductive
explanation is a kind of explanation, where fragments of a theory,
generalizations of varying scope, or mechanisms or phenomena
described in a higher-level vocabulary are explained by appeal to
lower-level theories, concepts, principles, or mechanisms. With
this distinction, advocates of PTB can plausibly either lay claim to
reductive explanations of various neurobiological and psychologi-
cal phenomena, or else to reducing higher-level theories of them.
Let us clarify each in turn.

Contemporary models of theory reduction take reduction to be
an indirect relation between a reducing theory TB and a corrected
analogue TR⁄ of a theory TR, specified within the framework of TB.
TR⁄ is derived from TB. The strength of the analogical mapping
between TR⁄ and TR is associated with a space of theory-relations
ranging from ‘perfectly smooth’ to ‘bumpy’ reductions. Where TR⁄

is a perfectly equipotent isomorphic image of TR, we have cases
of ‘perfectly smooth’ reductions. Where the relationship between
TR⁄ and TR is poorly analogous, we have ‘bumpy’ reductions. Unlike
‘bumpy’ reductions, which involve the replacement of the reduced
theory TR with the reducing theory TB, ‘perfectly smooth’ reduc-
tions retain the reduced theory TR since TB and TR are believed to
characterize the exact same kinds of entities or properties, albeit
with different concepts (Bickle, 1998; Bickle, 2003; Endicott,
1998; McCauley, 1986; McCauley, 1996; Wright, 2000).

According to what is arguably the most prominent version of
reductive explanation, higher-level explanations in psychology
only play a heuristic role in developing lower-level explanations
in cellular and molecular neuroscience and are inevitably aban-
doned once lower-level explanations obtain: ‘there is no need to
evoke psychological causal explanations, and in fact scientists stop
evoking and developing them, once real neurobiological explana-
tions are on offer’ (Bickle, 2003: 110; Kaiser, 2015). Hence, in the
context of reductive explanation, higher-level explanations are
(eventually) extinguished (Wright, 2007). This is unlike the context
of theory reduction, where cases falling toward the retentive end of
the inter-theoretic reductive spectrum do not extinguish the
reduced theory TR so much as they vindicate and preserve it.

3.3. Initial conceptual difficulties

Friston’s (2009, 2010) remarks that the free energy principle is
related to several theories—to optimal control theory and game
theory, to the Bayesian brain ‘hypothesis’, to infomax and the the-
ory of efficient coding, to the Hebbian cell assembly and correlation
theory, and to neural Darwinism and the theory of value learning—
suggest that several theories in cognitive neuroscience may be
derived from PTB. However, even if PTB can serve as a basis for the-
ory reduction, it is important to clarify that the reduction of one
theory to another does not entail a commitment to reductive

explanation. As reductionists themselves acknowledge, ‘one can
predict an intertheoretic reduction without tying one’s method-
ological practices to reductive explanations. An intertheoretic
reductionist can agree wholeheartedly with this methodological
point. He need have no commitment to the exclusive use of reduc-
tive explanation’ (Bickle, 1998: 153–4). Hence, nothing about PTB’s
being a reducing theory TB rules out the reliance on numerous,
diverse kinds of epistemic and explanatory tools that are not tied
all together into one single fundamental principle.

The logical independence of theory reduction and reductive
explanation is important because it allows advocates to maintain
that PTB reduces other theories, and that the intended form of
explanation afforded by PTB is mechanistic rather than reduction-
istic. Indeed, Hohwy states that ‘one of the great attractions of the
[prediction error] scheme is that it lends itself to a very mechanis-
tic approach’ (2013: 8).

The difference is subtle but important: mechanistic explanation
proceeds using not only reductive explanatory strategies like
decomposition and localization, but also anti-reductive strategies
like composition and contextualization (Bechtel & Wright, 2009;
Wright, 2007). For example, attempts to explain an activity or
function at one hierarchical level in terms of the orchestrated oper-
ations of component parts at lower levels sometimes runs
aground; for mechanists, explanatory success may come from
reconstructing a given decomposable higher-level activity as a
lower-level operation that instead composes a mechanistic activity
at a higher-level of description and analysis. That is, explanatory
success sometimes comes, not from trying to reduce it to some
set of organized components operating at increasingly lower-
levels, but instead situating it as a component operating in the con-
text of some higher-level activity or function.

The mechanistic aims of PTB—coupled with logical indepen-
dence of theory reduction and reductive explanation—implies that
the epistemic reductionism inherent in advocates’ GUT intuition is
best understood in terms of theory reduction rather than reductive
explanation. And it is here that PTB currently falls short of making
its case; for it is not enough that PTB enjoys a mathematical formu-
lation and ‘relates’ to other theories. Also necessary is an exact for-
mulation in the relevant idiom of the reduced and reducing
theories—for example, in terms of sets of models, with reduction
and replacement defined in terms of empirical base sets, blurs
and other set-theoretic relations, and ‘homogenous’ or ‘heteroge-
neous ontological reductive links’ between members (for further
details, see Bickle, 1998). Minimally, this exact formulation
involves the laborious fivefold task of (i) reconstructing PTB as a
base theory TB, (ii) reformulating various reduced theories TR1,
. . ., TRn, (iii) constructing and correcting analogues TR1⁄ , . . ., TRn⁄,
(iv) demonstrating the derivations of TR1⁄ , . . ., TRn⁄ from within
PTB, and then (v) demonstrating the mappings from TR1⁄ , . . ., TRn⁄

to TR1, . . ., TRn.
Because advocates have never articulated this formulation or

attempted this fivefold task, and only allude to it if at all, assessing
whether PTB in fact reduces any other higher-level theories is not
yet possible. Of course, this is not yet to say that it cannot be done.
But until advocates do the work necessary to demonstrate genuine
intertheoretic reductions, rather than just suggestively assert
them, their GUT intuition is unwarranted. A detailed examination
of the case of dopamine function in Sections 4 and 5 will substan-
tiate this assessment.

3.4. Explanatory pluralism

Opposed to explanatory monism is explanatory pluralism, which
denies that for any phenomenon there will always be exactly one
single, complete, comprehensive explanation based on a single
set of fundamental principles. As Looren de Jong characterized it,
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[explanatory pluralism] holds that theories at different levels of
description, like psychology and neuroscience, can co-evolve,
and mutually influence each other, without the higher-level
theory being replaced by, or reduced to, the lower-level one.
[. . .] Explanatory pluralism thus recognizes that various inter-
esting interlevel relations can exist beyond reduction and elim-
ination (2001: 731–732).

Similarly, Van Bouwel et al. write,

‘[e]xplanatory pluralism consists in the [two] claims that the
best form (and level) of explanation depends on the kind of
question one is willing to answer by the explanation, and that
in order to answer all explanation-seeking questions in the best
way possible we will need more than one form (and level) of
explanation (2011: 36).

What these and other formulations have in common is what
they imply: rather than a grand unifying theory that fits all
explanatory interests and purposes, for a great many phenomena,
there are multiple adequate explanations or models that are differ-
entially assessed according to different norms of assessment with-
out the requirement that they all tie into some fundamental
principle or norm of assessment (Kellert et al., 2006; Wright,
2002). Underlying each unique explanation or model are different
vocabularies that create and expand new ways of conceptualizing
phenomena, and additional conceptualizations invite theoretical
competition. For the explanatory pluralist, this kind of multidirec-
tional selection pressure on scientific practice can be exerted only
with the simultaneous pursuit of different kinds of explanations of
a given phenomenon at multiple levels, in different domains or
fields, using a variety of techniques and methods of interpreting
evidence; and it is precisely this competition and selection pres-
sure that is essential for scientific progress. Thus, plurality of expla-
nation constitutes not a deficiency to be overcome by unification,
but a patchwork of explanations whose unification would incur
significant loss of content and inhibit scientific progress.

Like reductionism, explanatory pluralism is often justified by
appeal to actual scientific practice. For examples, McCauley and
Bechtel (2001) detailed research on visual processing at different
levels of explanation to show how it productively stimulated
increasingly-sophisticated and empirically-testable psychoneural
claims. Bechtel and Wright (2009) show that explanatory monism
misdescribes the psychological sciences, while Dale, Dietrich, and
Chemero (2009) remind us that cognitive science, by its multidis-
ciplinary nature, generates explanations that are inherently plural-
istic. Brigandt (2010) observes that, in evolutionary developmental
biology, whether the various relations of reduction, integration,
unification, synthesis, etc. serve as a regulative ideal or scientific
aim varies with the problem investigated. So, following this stan-
dard justificatory strategy of examining actual scientific practice,
we turn to a central empirical test case: the mechanistic activity
of the mesocorticolimbic system, sometimes referred to as brain
reward function.

This case is ideal for testing the GUT intuitions of advocates of
PTB and for contrasting them with explanatory pluralism,
because—as we will see—there are several distinct, apparently
competing, mature models of dopaminergic activity. Indeed, advo-
cates of PTB have recently put forward a model of dopaminergic
activity too. According to their model, ‘dopamine may have a sin-
gular mechanism of action and computational function’ (Friston
et al., 2012: 14). This function is to control ‘the precision or sal-
ience of (external or internal) cues that engender action’ (Friston,
Shiner, et al., 2012: 1). By associating dopamine with ‘precision
or salience,’ PTB is said to ‘absorb’ alternative models associating
dopamine with reward prediction error, and to ‘connect to’ other

models in psychiatry and psychology positing that dopamine reg-
ulates incentive salience and anhedonia.

Examining the relationship between PTB and these alternative
models allows us to evaluate the GUT intuition in the light of actual
scientific practice. After reviewing some aspects of the dopaminer-
gic system in Section 4, we show that the case of dopamine exem-
plifies how actual scientific practice vindicates explanatory
pluralism, and of how PTB is not the grand unifying theory it is
too often said to be.

4. Dopaminergic operations in brain reward function

Dopamine (DA) is a catecholaminergic neurotransmitter
released by DA neurons, which are phylogenetically old—found in
all mammals, birds, reptiles, and insects, and so primarily located
in evolutionarily older parts of the brains, particularly in two nuclei
of the midbrain: the ventral tegmental area (VTA) and substantia
nigra pars compacta (SNc).

Anatomically, the axons of DA neurons project to numerous cor-
tical and subcortical areas. One of these is the nigrostriatal path-
way. It links the SNc with the striatum, which is the largest
nucleus of the basal ganglia in the forebrain and which has two
components: the putamen and the caudate nucleus (CN). The CN,
in particular, has the highest concentration of DA of any neural
substructure. Another pathway is the mesolimbic, which links
the VTA to the nucleus accumbens (NAc) and other structures in
the forebrain, external to the basal ganglia, such as the amygdala
and prefrontal cortex (PFC). Approximately 85% of the mesolimbic
pathway connecting the VTA and NAc is composed of DA neurons.

Electrophysiologically, DA neurons show two patterns of firing
activity—tonic and phasic—that modulate levels of extracellular
DA. Tonic activity consists of regular firing patterns of !1–6 Hz
that maintain a slowly-changing, extracellular, base-level of extra-
cellular DA in afferent brain structures. Phasic activity consists of a
sudden change in the firing rate of DA neurons, which can increase
up to !20 Hz and cause transient increases in extracellular DA
concentrations.

DA-specific receptors control neural signaling in the targets ofDA
neurons. There are at least five receptor subtypes—DA1 and DA2

being the most important—grouped into several families. Each has
different biophysical and functional properties that affect many
aspects of cognition andbehavior, includingmotor control, learning,
attention, motivation, decision-making, and mood regulation.

DA neurons are crucial components of the mesolimbic and
nigrostriatal systems, which generally yoke the directive and hedo-
nic capacities of motivation and pleasure to motor abilities for
ascertainment behavior. Around 80% of DA neurons are synchron-
ically activated in mechanisms producing reward (Schultz, 1998),
and pharmacological blockade with DA antagonists induces
impairments in reward functionality. DA also has been implicated
in various pathologies: e.g., Parkinson’s disease, major depressive
disorder, schizophrenia, attention-deficit hyperactivity disorder,
and addiction.

Since the 1950s, several specific hypotheses have been
advanced about the function of DA neurons. Of the major compet-
ing hypotheses, three are currently prominent: the anhedonia
(HED), incentive salience (IS), and reward-prediction error (RPE)
hypotheses.

4.1. Anhedonia (HED)

In his Varieties, James characterized anhedonia as ‘melancholy in
the sense of incapacity of joyous feeling’ (1902: 147). More
recently, the term has been used within psychiatry to denote a
degraded capacity to experience pleasure; so following James,
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anhedonic individuals are described as exhibiting a lack of enjoy-
ment from, engagement in, or energy for life’s experiences’ and
‘deficits in the capacity to feel pleasure and take interest in things’
(DSM-V: 817).

While early work in functional neuroanatomy and electrophys-
iology promoted the idea of ‘pleasure centers’ (Olds, 1956), further
pharmacological and neuroimaging studies failed to provide telling
evidence for a positive and direct causal contribution of DA to the
capacity to experience subjective, conscious pleasure (Berridge &
Robinson, 1998; Salamone, Cousins, & Snyder, 1997; Wise, 2008).
Yet, recent advances have shown that hedonic ‘hotspots’ are local-
ized in the VP and rostromedial shell of the NAc, and that brains’
ability to process pleasure implicate a complex interaction
between DA operations and opioid systems (Peciña & Berridge,
2005). So, DA’s role in pleasure-processing is probably indirect
and modulatory.

Literature reviews (e.g., Gaillard, Gourion, & Llorca, 2013;
Salamone et al., 1997) have not supported the simple hypothesis
that anhedonia is robustly correlated with diminished gratification
or behavioral reactions to pleasurable stimuli. This outcome has
led some to argue that the very concept ANHEDONIA should be re-
conceptualized as a complex and disjunctive concept of ‘dimin-
ished capacities to experience, pursue, and/or learn about pleasure’
(Rømer-Thomsen, Whybrow, & Kringelbach, 2015). Such proposals,
if they do not simply conflate what was previously distinct
(Berridge & Robinson, 2003), might be understood as a form of
‘conceptual re-engineering’ that resurrects the explanatory power
of HED by increasing its construct validity and scope, and decreas-
ing reliance on traditional self-report measures as its evidential
basis.

Either way, the thought that abnormal mesocorticolimbic DA
operations are casually relevant to negative changes in the subjec-
tive pleasure associated with, or devaluation of, rewarding stimuli
is only one lesser aspect of HED. In addition to impairments in
hedonic experience, anhedonic states also involve motivational
impairments. HED implies that normal levels of DA in these cir-
cuits are causally relevant to normal motivation, as motivational
mechanisms are constituted by mesolimbic DA circuits and their
projections to prefrontal areas (Der-Avakian & Markou, 2012).
More regimented formulations of HED have focused on DA’s rela-
tionship to selective attenuation of ‘goal-directed’ or motivational
arousal and positive reinforcement (Wise, 1982, 2008).

HED has also helped explain DA’s role in a constellation of psy-
chopathological deficits, clinical symptoms, and psychotic disor-
ders—notably, major depressive disorder and schizophrenia.
Impairments in mesocortical DA circuits in patients with these dis-
orders are specifically associated with the motivational deficits in
anhedonia (Horan, Kring, & Blanchard, 2006; Howes & Kapur,
2009; Treadway & Zald, 2011). In patients with major depressive
disorder, quantitative measures of anhedonia severity are nega-
tively correlated with the response magnitude in the ventral stria-
tum to pleasant stimuli, and positively correlated with the
magnitude of activity in the ventromedial PFc (Gaillard et al.,
2013; Keedwell, Andrew, Williams, Brammer, & Phillips, 2005). In
patients with schizophrenia, regions in the right ventral striatum
and left putamen show reduced responses to pleasant stimuli,
and higher anhedonia scores are associated with reduced activa-
tion to positive versus negative stimuli in the amygdala and right
ventral striatum (Dowd & Barch, 2010).

In summary, HED states that DA function consists in regulating
motivation, arousal, and hedonic responses. Abnormal DA activi-
ties in mesolimbic and prefrontal circuits—particularly in the ven-
tral striatum, NAc, and CP—are casually relevant factors in the
motivational deficits observed in anhedonic patients (DSM-V
2013). These deficits are explained in terms of lower response acti-
vations in DA pathways and lower volume of specific DA circuits.

4.2. Incentive salience (IS)

The IS hypothesis states that afferent DA release by mesen-
cephalic structures like the VTA encodes ‘incentive’ value to objects
or events (Berridge & Robinson, 2003; Berridge, 2007). It relates
patterns of DA activations to a complex psychological property
called incentive salience, which is an attractive, ‘magnet-like’ prop-
erty conferred on internal representations of external stimuli that
make those stimuli appear more salient or ‘attention-grabbing’,
and more likely to be wanted, approached, or consumed. Attribu-
tion of incentive salience to stimuli that predict rewards make both
the stimuli and rewards ‘wanted’ (Berridge & Robinson, 1998).
Because incentive salience attributions need not be conscious or
involve feelings of pleasure, explanations of DA function in terms
of incentive salience and of anhedonia are distinct.

In the late 1980s and 1990s, IS was offered to explain the differ-
ential effects on ‘liking’ (i.e., subpersonal states of pleasure or
hedonic impact) and ‘wanting’ (i.e., incentive salience) of pharma-
cological manipulations of DA in rats during taste-reactivity tasks
(Berridge, Venier, & Robinson, 1989). Subsequently, IS has been
invoked to explain results from electrophysiological and pharma-
cological experiments that manipulated DA activity in mesocorti-
colimbic areas of rats performing Pavlovian or instrumental
conditioning tasks (Berridge & Robinson, 1998; Robinson,
Sandstrom, Denenberg, & Palmiter, 2005). Further, increasing DA
concentrations appears to change neural firing for signals that
encode maximal incentive salience, but not maximal prediction
(Tindell, Berridge, Zhang, Peciña, & Aldridge, 2005).

Incentive salience has also helped explain phenomena observed
in addiction and Parkinson’s disease (O’Sullivan et al., 2011;
Robinson & Berridge, 2008). Substance abuse, addiction, and com-
pulsive behavior are hypothesized to be caused by over-attribution
of incentive salience to drug rewards and their cues in mesocortical
DA projections, due to hypersensitivity or sensitization, which
refers to increases in drug effects caused by repeated drug admin-
istration. Sensitized DA systems would then cause pathological
craving for drugs or other stimuli.

In summary, IS claims that ‘DA mediates only a ‘wanting’ com-
ponent, by mediating the dynamic attribution of incentive salience
to reward-related stimuli, causing them and their associated
reward to become motivationally ‘wanted” (Berridge, 2007: 408).
Specifically, the IS hypothesis states that DA function consists in
the attribution of a subpersonal psychological property to stimuli
or behavior, i.e., incentive salience. Abnormal attributions of incen-
tive salience to stimuli or behavior are underlain by abnormal DA
activity in mesocorticolimbic mechanisms and are causally rele-
vant to addiction and compulsive behavior.

4.3. Reward prediction error (RPE)

The reward prediction error (RPE) hypothesis states that phasic
firing of DA neurons in the VTA and SNc encodes reward-prediction
errors (Montague, Dayan, & Sejnowski, 1996). It relates patterns of
DA activation to a computational signal called reward prediction
error, which indicates differences between the expected and actual
experienced magnitudes of reward and drives decision-formation
and learning for different families of reinforcement-learning algo-
rithms (Sutton & Barto, 1998).

RPE states that DA neurons are sensitive to the expected and
actual experienced magnitudes of rewards, and also to the precise
temporal relationships between occurrences of both reward-
predictors and actual rewards. This latter aspect connects a specific
reinforcement-learning algorithm, temporal difference (TD), with
the patterns of phasic activity of DA neurons recorded in the VTA
and SNc (e.g., of awake monkeys while performing instrumental or
Pavlovian conditioning tasks; seeSchultz, Dayan,&Montague, 1997).
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TD-learning algorithms are driven by differences between tem-
porally successive estimates (or predictions) of a certain quantity—
e.g., the total amount of reward expected over the future. At partic-
ular time steps, estimates of this quantity are updated to conform
to estimates at the next time step. The TD-learning algorithm out-
puts predictions about future values, and then compares them
with actual values. If the prediction is wrong, the difference
between predicted and actual value is used to learn.

RPE fits many neurobiological results in learning and decision-
making tasks (Niv, 2009; Colombo, 2014; Glimcher, 2011). If cor-
rect, then neurocomputational mechanisms—partially constituted
by phasic operations of midbrain DA neurons—execute the task
of learning what to do when faced with expected rewards and pun-
ishments, generating decisions accordingly. DA would then play a
causal role in signaling reward prediction errors and selecting
actions to increase reward.

In summary, RPE posits ‘a particular relationship between the
causes and effects of mesencephalic dopaminergic output on learn-
ing and behavioral control’ (Montague et al., 1996: 1944). RPE
states that the function of DA in the VTA and SNc during reward-
based learning and decision-making consists in computing reward
prediction errors.

5. Pluralism vindicated

5.1. Three hypotheses

The HED, IS, and RPE hypotheses advance inequivalent claims—
each with different implications—regarding the causal and func-
tional profile of DA operations.While each hypothesis has been par-
tially corroborated by an array of different kinds of evidence from
humans and other animals, none provide a comprehensive explana-
tion of DA complexities based on a single set of fundamental princi-
ples. Instead, each one provides a partial model of DA, and different
scientific communities rely on these different models of DA for dif-
ferent explanatorypurposes; aswe shall show,none canbe interthe-
oretically reduced or ‘absorbed’ into PTB without explanatory loss.

HED makes general claims about relations between anhedonic
symptoms and the disruption of DA signaling in limbic and pre-
frontal circuits, and draws much of its evidential base from quali-
tative models and experimental designs used to investigate
psychiatric disorders. Psychiatry relies on ANHEDONIA for characteriz-
ing and diagnosing two widespread mental disorders—e.g.,
schizophrenia and depression—and cannot exchange this partially
qualitative construct with either INCENTIVE SALIENCE or REWARD PREDICTION

ERROR without thereby suffering decreases in explanatory power.
The IS hypothesis makes stronger claims than HED. It denies

DA’s regulatory role and impact in anhedonic symptomology. It
is also at odds with RPE, and so is not easily integrated into either
competitor: ‘to say dopamine acts as a prediction error to cause
new learning may be to make a causal mistake about dopamine’s
role in learning: it might [. . .] be called a ‘dopamine prediction
error” (Berridge, 2007: 399). Like HED, the IS hypothesis is
under-constrained in several ways: it has not localized the mech-
anistic componency of incentive salience attribution, and is
uncommitted as to possible different roles of phasic and tonic
dopaminergic signaling. Finally, it is not formalized by a single
model that yields quantitative predictions. And yet, affective psy-
chology and neuroscience have adopted incentive salience as help-
ful for marking a distinction between subdoxastic states of liking
and wanting, and has helped clarify the role of DA operations in
the NAc shell as well as helped explain drug addiction, changes
in conative and motivational states, and eating disorders.

The RPE hypothesis is quantitatively and computationally more
exacting, borrowing concepts like REWARD PREDICTION ERROR from

reinforcement learning. As formulated by Montague et al. (1996),
its scope is qualified: it concerns phasic VTA DA activity, and does
not claim that all DA neurons encode only (or in all circumstances)
reward prediction errors. Neither does it claim that prediction
errors can only be computed by DA operations, nor that all learning
and action selection is executed using reward prediction errors or
is dependent on DA activity. Given these caveats, RPE, which is
arguably a major success story of computational neuroscience
(Colombo, 2014), may be reducible to PTB only insofar as DA oper-
ations other than encoding reward prediction errors are neglected.
But what does PTB claim, exactly, about DA?

5.2. PTB, dopamine, and precision

Advocates of PTB intuit that their theory is a foundational base
theory TB that can intertheoretically reduce and unify the three
previously mentioned DA hypotheses (and many others besides).
This ‘absorption’ occurs in two main steps. First, PTB is said to
explain away posits like REWARD and COST FUNCTION (Friston,
Samothrakis, & Montague, 2012). Second, the diverse roles of DA
are said to be fully explained by a single mechanism that neither
computes cost functions nor represents value (Friston, Shiner,
et al., 2012; Friston et al., 2014).

In order to demonstrate these two steps, Friston, Samothrakis,
et al. (2012) construe decision-making under uncertainty as a par-
tially observable Markov decision process (POMDP), where agents’
tasks are to make optimal decisions in uncertain, dynamic environ-
ments. Typically, task solutions consist in finding optimal policies
for agents, which maximize some cumulative function of the
rewards received in different environments, and then in specifying
which action agents will choose as a function of the environment
they find themselves. Because task solutions need not involve
rewards or cost functions—optimal policies are in principle
replaceable by expectations about state transitions—Friston,
Samothrakis, et al. (2012) attempt to demonstrate mathematically
how optimal decisions in POMDP can be made. Basically, instead of
maximizing expected reward, agents make optimal decisions by
minimizing a free energy bound on the marginal likelihood of
observed states. Their perception and action minimize the sur-
prisal associated with their sensory input: perception minimizes
exteroceptive prediction error, while action minimizes propriocep-
tive prediction error. To the extent that prediction error (or sur-
prisal) is minimized, agents act to fulfill prior ‘beliefs’ about
transitions among states of the world. By fulfilling prior beliefs
about state transitions, agents avoid surprising exchanges with the
environment that can disrupt their physiological and ethological
homeostasis. Optimal decision-makingwould thus consist in ‘fulfill-
ing prior beliefs about exchanges with the world [. . . while] cost
functions are replaced (or absorbed into) prior beliefs about state
transitions’ (Friston, Samothrakis, et al., 2012). In other words, Fris-
ton et al. contend that control problems associatedwith POMDP can
be formulatedasproblemsofBayesian inference.Action aimsat pro-
ducing themost likely sensory data given ‘beliefs’ about state transi-
tions, instead of producing valuable outcomes.

If theoretical terms like reward and value are eliminated via
mathematical ‘absorption’ in favor of prior belief, then RPE—which
implies that behavior is optimal relative to some reward or cost
function—is disqualified as an adequate representation of the func-
tion of DA. Indeed, pace PTB, DA release must exclusively encode
the precision of representations of bottom-up sensory input. Specif-
ically, changes in DA levels in subcortical circuits will produce
changes in the synaptic gain of their principal cells, leading to
changes in the representational precision encoded by those cells.
The hypothesis that DA encodes precision or salience as post-
synaptic gain is said not only to explain all aspects of DA opera-
tions, but to afford a single mechanism that ‘provides a unifying
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perspective on many existing theories about dopamine’ (Friston,
Shiner, et al., 2012).

PTB’s unifying perspective on existing theories of DA has vari-
ous consequences for the three hypotheses described in Section 4.
(For a more general critical assessment see Gershman & Daw,
2012.) By ‘absorbing’ the semantics of reward and value into prior
belief, PTB reconceptualizes reward as ‘just familiar sensory states’
(Friston, Shiner, et al., 2012: 2). Although several kinds of ‘familiar
sensory states’ are not rewarding, this move would at least par-
tially reduce or eliminate the RPE model of DA, while attempting
to ‘explain why dopaminergic responses do not behave as reward
prediction errors generally’ (Friston, Shiner, et al., 2012: 17).

Where reward gets replaced by prior belief, PTB associates the
concept of precision with that of salience, which suggests that it
‘can also connect to constructs like incentive salience in psychology
and aberrant salience in psychopathology’ (Friston, Shiner, et al.,
2012: 2). But connect how? Firstly, observe that (Friston, Shiner,
et al., 2012, 2012: 2) understand salience as ‘an attribute of (prob-
abilistic) representations that determines the confidence or cer-
tainty about what is represented’. That is, within PTB, salience
and precision are construed synonymously: both refer to measures
of certainty about hidden states. Within IS, however, incentive
salience is characterized as a ‘magnet-like’ property that makes
these external stimuli or internal representation more attention-
grabbing and more likely to be wanted and approached. Hence,
incentive salience is semantically inequivalent with salience or
precision; and without explication of whether and in which sense
incentive salience and precision are co-referential, the bridge princi-
ples needed to effect a reduction are not in the offing. Secondly, the
kinds of phenomena referred to by incentive salience in psychology
and psychiatry concern motivation and addiction, and the methods
typically used to test IS include behavioral Pavlovian and instru-
mental conditioning tasks with human and nonhuman partici-
pants. By contrast, the kinds of phenomena targeted by precision
concern attention and visual search, whereas the methods typi-
cally used to test the precision hypothesis involve theoretical work
and simulations of saccadic movement and motor behavior (e.g.,
Friston, Shiner, et al., 2012). Altogether, these disanalogies make
it unclear whether and how PTB ‘connects’ to the psychological
phenomena picked out by IS, much less in the way required to
establish the explanatory unificationist, monist, and reductionist
theses.

The content and explanatory power of HED should also be
reconsidered under the pressure of PTB. Recent research by
Rutledge, Skandali, Dayan, and Dolan (2015) suggests that L-DOPA
boosts the effects of rewards on happiness and that DA plays a
subtle role in both decision-making under uncertainty and the
subjective feelings of happiness related to receipt of reward. Not
only do their experiments exemplify the co-evolutionary dynamics
between these three hypotheses (RPE, IS, HED), which is predicted
by explanatory pluralism, but because PTB lacks resources to
explain the impact of DA manipulation on subjective feelings of
happiness, it is unclear how PTB could accommodate their data.
Indeed, within PTB, the perceived hedonic value of certain stimuli
along with the phenomenology of motivation plays no reducibly
causal roles in behavior; consequently, psychiatric categories
grounded in the construct ANHEDONIA would then be ill-fitted to reli-
ably inform diagnoses and treatments of mental disease. So, either
the theories and explanations in which they factor ought to be
scheduled for elimination—going the way of constructs like
MIASMA—or else will fail to be reduced by PTB. But which? Since
advocates of PTB have no demonstration to offer, and since con-
structs like ANHEDONIA, similarly to the construct REWARD, continue
to factor in serious scientific explanations, we should infer that
PTB is currently in no position to explain them away.

5.3. Higher-level help

Not infrequently, neurobiologists working on DA eschew
explanatory unificationism, monism, and reductionism, and
instead ‘look up’ levels to the psychological sciences for further evi-
dence and constraints, such as clinical data or functional neu-
roimaging results to help situate large-scale task-relevant
information-processing operations (Wright, 2007: 265).

For instance, Robbins and Everitt concluded that, ‘even leaving
aside the complications of the subjective aspects of motivation
and reward, it is probable that further advances in characterizing
the neural mechanisms underlying these processes will depend
on a better understanding of the psychological basis of goal-
directed or instrumental behavior’ (1996: 228). Likewise, Berridge
and Robinson suggested, ‘further advances will require equal
sophistication in parsing reward into its specific psychological
components. [. . .] Neuroscientists will find it useful to distinguish
the psychological components of reward because understanding
the role of brain molecules, neurons, and circuits requires under-
standing what brains really do—which is to mediate specific
behavioral and psychological functions’ (2003: 507). Interestingly,
Berridge also averred that further scientific breakthroughs will
require development, not of lower level concepts like FREE ENERGY,
but of higher-level concepts like MOTIVATION:

[m]otivational concepts are becoming widely recognized as
needed to help neuroscience models explain more than mere
fragments of behavior. Yet, if our motivational concepts are
seriously wrong, our quest for closer approximation to brain-
behavior truths will be obstructed as much as if we had no con-
cepts at all. We need motivational concepts, and we need the
right ones, to properly understand how real brains generate real
behavior (2004: 180).

These calls for increasingly sophisticated higher-level
resources—a common refrain in neurobiology—are inconsistent
with reductionism, and thus with PTB’s drive to be a grand unifying
theory. Inter alia, DA1- and DA2-like molecules perform numerous
signaling and neuromodulatory operations, which are not fully
described by any of RPE, IS, or HED; these hypotheses provide
explanations for different aspects of DA operations in highly com-
plex multi-level mechanistic explanations of brain reward function
(Colombo, 2014; Wright, 2007).

5.4. Pluralism and co-evolution

All three DA models surveyed are incomplete and gappy. Yet, as
explanatory pluralists predict, these lacunæ have competitively
stimulated numerous extensions and refinements; in doing so,
they illustrate a so-called co-evolutionary research ideology, where
hypotheses evolve over time by borrowing from the other two or
by drawing from conceptual advancements and findings in neigh-
boring fields of inquiry (McCauley, 1996).

Consider proposals about how the neurocomputational
resources of reinforcement learning (Sutton & Barto, 1998) help
to formally capture the concept INCENTIVE SALIENCE and relate it more
exactly to the concept REWARD PREDICTION ERROR. According to
McClure, Daw, and Montague (2003), INCENTIVE SALIENCE should be for-
malized as expected future reward; for then some of IS’s expla-
nanda, such as the dissociation between states of wanting and
liking, are explained by appealing to the role of DA in biasing action
selection (coherently with RPE) in a reinforcement-learning algo-
rithm. Their proposal is that DA release assigns incentive salience
to stimuli or actions by increasing the likelihood of choosing
actions that lead to rewards. Accordingly, DA receptor antagonism
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reduces the probability of selecting any action, because estimated
values for each available option would also decrease.

Whether McClure & colleagues’ proposal correctly construes
incentive salience (see Zhang, Berridge, Tindell, Smith, &
Aldridge, 2009 for an alternative), they have initiated some co-
evolution between the RPE and IS hypotheses. Specifically, the
use of computational methods from reinforcement learning—in-
formed and constrained by experimental paradigms and evidence
from affective psychology and neuroscience—has helped empha-
size the deep entanglement of dynamic DA operations once
thought to be neatly isolable.

Dayan and Berridge (2014) drew on computational and psycho-
logical results about the interactions of Pavlovian and
instrumental-learning mechanisms, traditionally associated with
model-free and model-based reinforcement-learning computing,
to conclude that Pavlovian learning involves its own form of
model-based computations. While this conclusion blurs the dis-
tinction between Pavlovian model-free mechanism and instru-
mental model-based mechanism, it also calls for a re-
examination of ‘the role of dopamine brain systems in reward
learning and motivation’ (Dayan & Berridge, 2014). In keeping with
a pluralist, opportunistic approach, this re-examination may focus
researchers’ attention on the roles of DA operations in ‘tipping the
balance between model-based and model-free Pavlovian predic-
tions,’ which may be experimentally studied ‘using manipulations
such as the reversible pre- and infralimbic lesions or dorsomedial
and dorsolateral neostriatal manipulations [. . .] that have been so
revealing for instrumental conditioning’ (Dayan & Berridge, 2014).

So, after a period of competition and individual success, distinct
models of DA are drawing on one another’s conceptual resources
and tools. The precision and flexibility of the reinforcement-
learning framework, along with well-understood experimental
paradigms from affective neuroscience and psychology, is leading
toward theoretical and experimental integration.

These circumstances are what one would expect if explanatory
pluralism were true. Again, explanatory pluralists contend that—in
interlevel contexts—sets of pairwise scientific theories co-evolve
and mutually influence each other without higher-level theories
and hypotheses being supplanted by lower-level theories. The
co-evolution of scientific research typically proceeds in ways that
mutually enhance both theories, and sometimes vindicates TR,
given the fragmentary connections between theoretical projects
at different levels (Dale et al., 2009; McCauley, 1986; McCauley,
1996; McCauley & Bechtel, 2001). Neuroscientists are therefore
led to ask different questions about DA, and to formulate different
predictions that are subsequently tested and assessed in a variety
of ways (Wright, 2002).

6. Conclusion: against grand unifying theories

Neuroscientific inquiry into DA’s functional profile fits well with
explanatory pluralism. To arrive at this conclusion, we argued that
the GUT intuitions of advocates of PTB are not satisfied; for PTB is a
grand unifying theory only if PTB satisfies explanatory unification-
ism, monism, and reductionismwith respect to central cases. In the
central case of the role of DA operations in brain reward function,
HED, IS, and RPE are mature, competing hypotheses; each is suc-
cessful in various ways, although they are themselves not unified
and none is reducible to the other. HED entails that DA operations
are directly involved in motivational impairments and indirectly
involved in the dysregulation of hedonic experience. IS entails that
DA operations are directly involved in attributing attractiveness to
representations, and in wanting and incentivizing—but not liking—
rewards. And RPE entails that DA encodes the magnitude of the dif-
ference between experienced vs. actual reward. Since HED, IS, and

RPE are neither unified nor reducible either to each other or to the
free energy formulation of PTB without loss of explanatory content,
it follows that PTB is not a grand unifying theory.

The conclusion that PTB is not the grand unifying theory its
advocates make it out to be, by itself, falls short of supporting
explanatory pluralism. But if explanatory pluralism about DA were
true, there would exist a multiplicity of mature, competitive, and
successful explanations about the DA operations that contribute
to brain reward function. Since several mature, competitively suc-
cessful explanations about DA operations do exist, the best expla-
nation for this multiplicity is that explanatory pluralism is true.

This abductive argument comports well with the larger history
of research in neuroscience, where the construction of grand unify-
ing theories has proven unrewarding. In their literature review on
the DA hypothesis of schizophrenia (DHS), Kendler and Schaffner
arrive at a similar lesson: ‘science works best when diverse theo-
ries with distinct predictions compete with one another. [I]t has
been common in the history of science in general and the medical
and social sciences in particular for theories to be defended with a
fervor that cannot be justified by the available evidence. [. . .]
Although very tempting, it will likely be more realistic and produc-
tive for us to focus on smaller questions, and to settle for ‘bit-by-
bit’ progress as we clarify, in a piecemeal manner, the immensely
complex web of causes that contribute to [the phenomenon to be
explained]’ (2011: 59). While we neglected DHS, we emphasize
the same lesson. Progress in neuroscience is ill-served by fervently
advancing a single grand unifying theory of mind/brain that
attempts to solve all problems. Rather, it is more productive to
focus experimental and theoretical research on some problems,
and to generate a plurality of solutions that compete as local expla-
nations and narrowly-conceived hypotheses.
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