
ORIGINAL PAPER
Gravity Theory www.ann-phys.org

Is Teleparallel Gravity Really Equivalent to General
Relativity?
Luciano Combi* and Gustavo E. Romero

An axiomatization of the so-called Teleparallel Equivalent to General Relativity
is presented. A set of formal and semantic postulates are elaborated from
where the physical meaning of various key concepts of the theory are clarified.
These concepts include those of inertia, Lorentz and diffeomorphism
invariance, and reference frame. It is shown that Teleparallel Gravity admits a
wider representation of space-time than General Relativity, allowing to define
properties of the gravitational field such as energy and momentum that are
usually considered problematic. In this sense, although the dynamical
equations of both theories are equivalent, their inequivalence from a physical
point of view is demonstrated. Finally, the axiomatic formulation is used to
compare Teleparallel Gravity with other theories of gravity based on absolute
parallelism such as non-local and f(T) gravity.

1. Introduction

In 1928, Einstein attempted to formulate a unified theory of
gravity and electromagnetism[1] using the geometrical notion of
teleparallelism (called Fernaparallelismus, in German), a concept
developed independently by Cartan a few years before. In this
new theory, the metric is replaced by the tetrad field eaμ, a 16-
component object whichwould encode the 10 degrees of freedom
of themetric and the 6 degrees of freedom of the electromagnetic
field. Even though Einstein was not able to find consistent field
equations for his theory, the idea of an alternative representation
for the gravitational interaction using torsion instead of curvature
was introduced. This theory, with field equations equivalent to
those of General Relativity (GR) and a different geometrical back-
ground, is now called the Teleparallel Equivalent to General Rel-
ativity or the Teleparallel Framework of General Relativity (GR||).
GR|| admits a well-behaved (though gauge dependent) energy-

momentum tensor for gravity.[2] Adopting the usual interpreta-
tion of tetrad fields as reference frames, Maluf and collabora-
tors have shown that the concept of gravitational energy in GR||
is consistent in many physical situations (see Ref. [3], [4] and
[5]). Moreover, this approach has been used by Mashhoon to for-
mulate a non-local gravity theory.[6] Despite all these interesting
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developments, a thorough comparison of
GR and GR|| has not been made. In this
paper, we have constructed an axiom-
atization for GR|| with the aim of im-
plementing a rigorous comparison be-
tween both theories. We have analyzed
and compared all key physical concepts
in GR and GR|| in a rigorous and system-
atic way. We have then analyzed the phys-
ical interpretation of alternative telepar-
allel theories, such as f (T) gravity, that
are currently under investigation. We
have restricted ourselves to the so-called
pure tetrad approach to GR|| where we
assume a preferred frame to construct
the teleparallel geometry. However, there
is an alternative approach based in the
translation gauge interpretation,[7] where

the local Lorentz invariance is maintained (see Ref. [8] and [9]). A
thorough discussion of the differences between both approaches
is outside the scope of this paper and will be treated elsewhere
Our paper is organized as follows. Firstly we present GR|| in a

heuristic way in Section 2. Thenwe proceed to develop the axiom-
atization of the theory in Section 3. Section 4 includes a detailed
comparison of both theories. We also include an exhaustive char-
acterization of the teleparallel energy-momentum tensor and a
comparison between GR|| and other teleparallel theories. Finally,
we present our conclusions in Section 5.

2. Teleparallel Gravity

Webegin this section revising the geometrical framework ofGR||:
the affine Weitzenböck geometry. Then, we move to describe the
main features of the field formulation of the theory. From all
these elements, we will construct a rigorous axiomatization.

2.1. Geometrical Background

The dynamical object of GR|| is the tetrad, or vierbein. Given a
pseudo-Riemannian manifoldM, a tetrad is an orthonormal ba-
sis field ea = eμ

a ∂μ (a = 0, .., 3) of the tangent bundle TM. The
co-frame is denoted as ea , holding

eaμe
μ

b = δab . (1)

The tetrad encodes the metric structure of the manifold as

gμν = eaμe
b
νηab, (2)
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where ηab = diag(−1, 1, 1, 1) is the Minkowski metric in Carte-
sian coordinates. We adopt the distinction between Greek letters
μ, ν, .. for space-time coordinate indices, and Latin letters a, b, ..
for Lorentzian tangent-space indices.
If the manifold admits a global smooth frame, then it is called

parallelizable. The transformation group of the tetrad that pre-
serves orthonormality is SO(1, 3). In general, these transforma-
tions �a

b′ (x) are point-dependent:

eb′ (x) = � a
b′ (x)ea(x). (3)

A useful characterization of the tetrad field is given by the Lie
bracket:

[ea, eb ] = �c
abec , (4)

where �c
ab ≡ eμ

a e
ν
b∂[νe

c
μ] are the structural or anholonomy coeffi-

cients. The importance of these coefficients lays on the Frobenius
theorem[10]: iff these coefficients are null for a smooth tetrad eaμ,
there exists a coordinate system {xμ} such that

eaμ = δaμ. (5)

In order to formulate the dynamics of the theory we need to
introduce an affine structure in the manifold. For instance, GR
is formulated with the only connection that is uniquely fix by the
metric, the Levi-Civita connection:

�ρ
μν :=

1
2
g ρσ

(
∂μgνσ + ∂νgσμ − ∂σ gμν

)
. (6)

As it is well known, this connection is metric-compatible
and torsion-free. In this way, the field equations for GR are
constructed from the Riemann curvature, which represents the
presence of gravitational interaction. On the other hand, given
a smooth tetrad field ea , we can induce on the manifold the
Weitzenböck connection:

∗�ρ
μν := eρ

a ∂νeaμ. (7)

It can be checked that (7) is ametric-compatible and curvature-
free connection. The absence of curvature indicates the presence
of absolute parallelism on the manifold; this means that two vec-
tors in different tangent spaces are parallel if their projections on
the tetrad are proportional, regardless the path connecting both
spaces. The covariant derivative of a vector can be written as:

∗∇νVλ := ∂νVλ +∗ �λ
μνV

μ = eλ
a∂ν (eaμV

μ) = eλ
a∂νVa, (8)

i.e, Vλ is parallel transported if Va is constant[12]. From (8) we
also get that the tetrad is trivially parallel-transported:

∗∇νeλ
a = 0. (9)

The fundamental tensor of the Weitzenböck geometry is the
torsion tensor:

Tρ
μν := 2 ∗�λ

[μν] ≡ eρ
a

(
∂νeaμ − ∂μeaν

) = g ρσTσμν, (10)

which is antisymmetric in the last two indices. The Weiztenböck
connection is linked with the usual metric Levi-Civita connection
by the so-called contorsion tensor

∗�ρ
μν = �ρ

μν + K ρ
μν, (11)

related to the torsion tensor as:

K ρ
μν = 1

2
g ρσ

(
Tνσμ + Tμσν − Tσμν

) = g ρσ Kσμν, (12)

and then

Uμ∇μUρ = 0 → Uμ ∗∇μUρ = K ρ
σνU

σUν . (13)

Let us note that the affine geometry induced on themanifold is
an independent concept of the metric structure (a fact first noted
by Cartan[13]). In other words, given a metric field, we can build
several connections over it. This is a relevant issue for the proper
representation of what we call space-time (see Section 4).
The teleparallel condition, encoded in (9), is established for

a certain preferred tetrad ea(p). If we perform a local Lorentz
transformation�a

b′ (p) of the frame, we preserve themetric struc-
ture but the Weitzenböck parallelism is broken [14]. This leads to
non covariant transformations of allWeitzenböck tensors such as
torsion:

Tμ
νρ [ea ] = Tμ

νρ [eb′ ]+ eμ
a e

b
ρω

a
νb − ebνe

μ
a ωa

ρb, (14)

where ωa
νb := �a

c ∂ν�
c
b is known as the flat Lorentz connec-

tion. The invariance of the Weitzenböck geometry under global
Lorentz transformation —but not under local ones— entails a
precise physical meaning once we assume that the tetrad frame
represents a reference system (see Section 4.2). In the following,
we review how to achieve a geometrized theory of gravity based
on a teleparallel geometry.

2.2. Dynamics

Analogous to curvature in the Riemannian geometry of GR, in
teleparallel theories, the Weitzenböck torsion is used to build
the Lagrangian and to obtain the field equations for the tetrad
frame. Let us begin with a general Lagrangian constructed with
quadratic Weitzenböck scalars:

L = κ
(
a1Tρ

μνT
μν
ρ + a2Tρ

μνT
μν
ρ + a3Tρ

μρT
νμ
ν

)
. (15)

being Tμ
σρ = gνσTμν

ρ = gμαgβσ gνρT μν
α . This general teleparallel

Lagrangian was first studied by Hayashi et al.,[15] who explored
a set of theories called New General Relativity. If we choose the
constants as a1 = 1/4, a2 = 1/2 and a3 = −1, we obtain the La-
grangian LT of GR||. This Lagrangian can be casted as:

LT ≡ κT = κ�ρμνTρμν, (16)

where T := 1
4T

ρ
μνT

μν
ρ + 1

2T
ρ
μνT

μν
ρ − Tρ

μρT
νμ
ν is the torsion

scalar and

�ρμν := 1
2

(
K μνρ − g ρνTσμ

σ + g ρμT σν
σ

)
, (17)
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is the superpotential. This particular choice of coefficients allows
the following noteworthy decomposition[14]:

T ≡ −R − 2∇μT ν
μν, (18)

where R is the Riemannian Ricci scalar. Since both scalars differ
by a boundary term, the dynamic equations of GR|| are equivalent
to Einstein equations. The complete action of GR|| is then:

S[ea ] = −κ

∫
T

√−g d4x + SM. (19)

Whereas the Ricci scalar has second-order derivatives on the
metric, the teleparallel Lagrangian has first derivatives on the
tetrad field. This allows to use the Euler-Lagrange equations:

∂L
∂eaρ

− ∂σ

∂L
∂(∂σ eaρ )

= δLM

δeaρ
, (20)

from which we get the Yang-Mill type equations

∂ν

(√−g �aλν
) =

√−g
4k

(
tλa + �λa) , (21)

where we use

∂L
∂(∂σ eaλ)

= −4κ√−g �aλσ , (22)

− √−g tλa := ∂L
∂eaλ

= −κ
√−g eaμ

(
4�bcλT μ

bc − g λμ�bcd Tbcd
)
,

(23)

being δLM/δeaρ := √−g eaν�
ν
ρ the matter energy- momentum

tensor and tλμ = tλaeμ
a the gravity energy-momentum tensor. Be-

cause of the local Lorentz invariance of the field equations, there
is a six-fold degeneracy in the theory given by the six param-
eters of the local Lorentz transformation (rotations and boosts
in tangent space). In other words, the theory only fix the metric
structure.
From the teleparallel field equations (21), considering the

asymmetry of the superpotential in the last two indices, we ob-
tain the conservation law:

∂μ

[√−g (tμa + �μa)
]

= 0. (24)

This is a regular conservation law—not a local covariant one—
from which we can define conserved charges associated with
gravity plus matter:

Pa =
∫
D
(tλa + �λa)dDλ ≡ 4κ

∮
∂D

�aλσdSλσ . (25)

Here,D is a 3-dimensional hypersurface and ∂D is its 2 dimen-
sional boundary; we have used Stoke’s theorem in the last step.
The a = (0) component, the projection of the energy-momentum
onto the time-like component of the tetrad, is the total energy:

E = P (0) =
∫
D
(tλμ + �λμ) e (0)μ dDλ. (26)

The teleparallel gravitational energy has been much investi-
gated in recent years, being a simpler and more straightforward
approach than other geometric quasi-local treatments of the grav-
itational energy.[16] The physical interpretation of the energy con-
cept in GR|| depends on the role of the tetrad in the theory (see
Ref. [5] and Ref. [17] for two different approaches). This is also a
relevant issue for understanding the alternative theories of grav-
ity that rely on the concept of absolute parallelism, such as f (T)
and non-local gravity.
In the next section, we present an axiomatic formulation of

GR||. We will then use this axiomatization for comparing the
teleparallel formalism with General Relativity and proving the
physical inequivalence between both theories.

3. Axiomatics

Besides a formal set up, a physical theory is endowed with se-
mantic assumptions that establish its physical content. These as-
sumptions, however, are usually presented in heuristic manner.
If we wish to investigate the key concepts of a theory, the ax-
iomatic format is convenient (see Ref. [18]). The dual axiomatic
method exactifies and systematizes the physical and formal con-
tent in an axiomatic basis.[19] The axiomatic basis can be written
as

A = AF ∧ AS ∧ AP ,

where AF are the formal axioms—of purely mathematical
content— AS are the semantic axioms—relating mathemati-
cal constructs with factual objects— and AP are the physical
axioms— expressing relations among constructs that represent
physical entities, e.g. the dynamical equations of the theory. All
theories also assume a formal and ontological background on
which they are based.
A physical theory T is then a set of statements s closed under

logic implication from the axiomatic basis A, i.e,

T =
{
s : A → s

}
. (27)

The referents of the theory should be explicitly stated in the ax-
ioms. In this sense, we can build different theories, or interpreta-
tions of a theory, holding the formal apparatus and changing the
semantic postulates.
In the case of GR||, a different formalism from GR is used.

Since the dynamical equations are equivalent to Einstein’s equa-
tions, it is assumed that both theories are equivalent. However,
if the alternative formalism introduces new semantical axioms,
novel aspects of the physical system may appear that will only
be represented in the new theory. A strict equivalence between
two theories would hold iff all axioms in each theory are obtained
from the other, i.e.A(GR||) ←→ A(GR). The purpose of the next
sections is to verify whether this is true for GR and GR||. Also, we
will use our axiomatization to show the scope and relevance of the
tetrad formalism in GR|| and other teleparallel theories.
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3.1. GR|| Axiomatized

In order to formulate a realistic axiomatization of GR||, we will
first make explicit the background concepts. Then we will estab-
lish the generating basis from which we will construct the ax-
iomatic formulation of the theory.

Background

The formal background of the theory includes first order logic,
mathematical analysis, and differential geometry. Let us note that
space-time theories like GR are more fundamental than other
field theories since all matter fields ’live’ onto space-time, i.e.
most physical theories assume a background space-time in its
foundations. In this sense, a dynamical theory of space-time is
more closely related to an ontological theory.[20]

Generating Basis and Definitions

The generating basis of GR|| is constructed with 10 elements

B = {ST , �, K,M, {g}, {ea}, {�}, {φ}, {�a′
b }, κ}. (28)

The meaning of these symbols will be given in the axiomatic
basis. First, we set out the main definitions of Weitzenböck ten-
sors used in the theory:

D1Tρ
μν := eρ

a (∂νeaμ − ∂μeaν ) is the torsion tensor
D2K ρ

μν := 1
2 g

ρσ (Tνρμ + Tμσν − Tσμν ) is the contorsion tensor.
D3�

ρμν := 1
2 (K

μνρ − g ρνTσμ
σ + g ρμTσν

σ ) is the superpotencial.
D4tλμ := κ(4�bcλT μ

bc − g λμ�bcd Tbcd ) is the energy-momentum
tensor of space-time.

Axiomatic Basis

The axiomatic basis is given by A(GR||) =
16∧
i
Ai . We present the

axioms divided in four groups. The axioms are formal (FA), se-
mantical (SA), or physical (PA)1

Axioms

Group I: Space-time

A1 (FA)M is a Hausdorff para-compact,C∞, 4-dimensional, real
and pseudo-Riemannian manifold.

A2 (FA) {g} is a family of rank-2 metric tensors, symmetric, and
+2 signature. All minor principals of the metric tensor gμν are
negative.

A3 (FA) {φ} is a family of isometries: φ∗g = g.

1 For other theories presented in a similar way see Refs. [21], [22], and
[23].

A4 (SA) Space-time ST is the physical system represented by the
equivalence class of isometric diffeomorphism of a given met-
ric, i.e. ST =̂ (M, g) 2

Group II: Matter

A5 (FA) � is a non-empty set of objects σ ∈ �.
A6 (SA) There is an element � ∈ � which denote the absence of
physical system. For all σ ∈ � other than �, σ denotes a phys-
ical system different from space-time.

A7 (FA) For each σ ∈ � there is a symmetric 2-rank tensor field
�. In particular, there is a one-to-one correspondance between
� ∈ � and the null tensor field � = 0

A8 (SA) � represents the energy-momentum tensor of the phys-
ical system σ .

Gruop III: Reference system

A9 (FA) The tetrad {ea(x)} is an orthonormal basis of TpM in each
point of the manifold: eaμ(x)e

x
ν (x)ηab = gμν (x).

A10 (FA) K ⊂ � is a non empty family of objects K ∈ K. We call
frames the elements of K.

A11 (SA) A reference frame K is represented by a time-like con-
gruence C and a tetrad field {ea(p), p ∈ C} where eq(0) ≡ Uq is
the tangent vector of the curve γq ⊂ C, i.e 〈C, ea〉 =̂ K .

A12 (FA) {�b′
a (x)} is a family of point-dependent Lorentz transfor-

mations.
A13 (SA) ∀ K , K

′ ∈ K, ∃ �b′
a (x) such that if 〈C ′, ea′ 〉=̂K ′ and

〈C, ea〉 =̂ K then �b′
a (x) eb′ = ea , ∀p ∈ C ∩ C ′.

A14 (SA) Let x a physical system and Px a given property of x.
If Px is represented with a tensor field P=̂Px, the values of this
property in a reference frame K are obtained from the projected
tensor on the tetrad field, P · e =̂ Px(K ).

Group IV: Dynamics

A15 (SA) κ ∈ R, where [κ ] = L M T 2.
A16 (PA) A reference frame K is constrained by the Einstein
Teleparallel equations:

∂ν

(√−g �aλν
) =

√−g
4k

eaμ
(
tλμ + �λμ

)
.

4. Discussion

The axiomatic system constructed above for GR|| will allow us
to analyze three relevant topics: (i) the physical meaning of the
teleparallel structure of the theory and its equivalence to GR,
(ii) the role of the tetrad field in characterizing a local energy-
momentum tensor for gravity, and finally (iii) the main differ-
ences betweenGR|| and other teleparallel theories.We begin with
the referents of the theory, i.e. what kind of physical systems the
theory describes.

2 The symbol =̂ is used for the relation of representation. See Ref. [11]
for details.
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4.1. Reference Class

The reference class of an axiomatized theory is closed.[11] In the
case of GR||, the class is formed by space-time and ordinary
matter:

R
(

15∧
i

Ai

)
=

15∧
i

R (Ai ) = {�,ST }. (29)

We stress that in our axiomatic formulation, space-time is a
physical entity endowed with properties. These properties are
associated with the topological character of the manifold (e.g.
compactness), with the metric, or with a mix of both (e.g. time-
orientability). Space-time is connected with the dynamical object
of GR|| in two ways: the tetrad field is defined over the mani-
fold M and is related to the metric by the orthonormal relation
(A8). The latter implies that the dynamical equations of the theory
impose restrictions to the metric properties of space-time, and
these restrictions are equivalent to Einstein’s equations. A more
elegant way to show the association among frames, the Lorentz
group, and the manifold, is through the fibre bundle framework
of space-time, a path we will not follow in this work.[24]

Matter enters in the theory represented by the energy-
momentum tensor and also in the characterization of the refer-
ence frame (A8 and A10). The dynamics of fields and particles
must be supplemented by other theories, while GR|| (and GR) is
only concerned with their energy-momentum distribution.

Remark 1. A reference system is not another kind of matter in our ax-
iomatization. Group III of axioms only implies that local properties of
physical systems are relative to other physical systems. We followed the
approach where the reference frame is represented by an orthonormal
basis field and not by a coordinate system.[25] What kind of physical
objects are convenient to be adopted as a reference frame is a question
that requires further analysis.

From axiomatization of GR (seeA(GR) in Appendix A), we im-
mediately verify that both GR and GR|| share the same referents.
It is then appropriate a thorough comparison of both theories
since they have identical domain.

4.2. Recovering General Relativity

While the metric field characterizes space-time, the tetrad field
establishes how local properties behave. Both are linked by

gμν = eaμe
b
νηab . (30)

which means that a given space-time allows infinite reference
frames related by local Lorentz transformation. Conversely to all
other teleparallel theories, GR|| equations are local Lorentz invari-
ant, equivalent to Einstein’s equations.

Theorem 1. GR|| equations for ea are equivalent to GR equations for
gμν .

An sketch of the proof is given in Ref. [14] and also in Ref. [3].
The equivalence of (21) to Einstein’s equations gives the follow-
ing corollary

Corollary 1. GR|| equations are diffeomorfic and local Lorentz in-
variant.

These two types of invariance have very different physical
meanings.

� Diffeomorfism invariance is associated with the nature of
space-time. Conversely to Newtonian theories, space-time
should not be regarded as an absolute stage where other phys-
ical fields live. Instead, in GR, space-time is the equivalence
class of the pair (M, gμν ) under active diffeomorphisms. One
should be careful to assign physical meaning to points p ∈ M
or coordinates, since only their relation to gμν is meaning-
ful3. As a consequence, the field equations of the theory are
coordinate-invariant.

� Local Lorentz invariance (LLI) becomes apparent only after we
introduce the tetrad field in our theory. Taking into account
axioms A13,A14, and Corollary 1, LLI means that space-time
fixes all possible physical frames, i.e. all physical observers
’perceives’ the same underlying space-time. Axioms A13 and
A14 and their consistency with the field equations via LLI is
known as the Hypothesis of Locality. In words of Mashhoon,
this hypothesis states that ’an accelerated observer is point-
wise inertial’, no matter the history of the observer [27]. If we
consider a space-time theory with no LLI field equations for ea ,
then either Group I or Group III of axioms must be revised.
We will return to this point in the last section.

We have shown that a tetrad field associated with a reference
system that is solution of eqs. (21) fixes the metric and therefore
space-time. Given the equivalence of A16 to Einstein’s equations,
all dynamical features of GR might be derived from GR||

Theorem 2. GR|| implies GR; A(GR||) ⇒ A(GR).

Now, we move on to analyze the new features that the tetrad
field introduces in GR|| and their relation to the teleparallel
geometry.

4.3. Change and Geometry

The concept of change is intimately associated with the nature
of space-time. In order to formulate general relativistic laws de-
scribing changes in physical properties wemust take into account
that (i) the laws must be consistent with the adopted space-time
representation and the hypothesis of locality and (ii) these laws
should characterize changes over space-time. The first require-
ment states that the laws of physics should be diffeomorfic and
local Lorentz invariant. The second condition, related to the first
one, imposes that these changes ought to be formulated in amet-
ric way (space-time is represented solely by the metric and the
manifold in our axiomatization (Group I)); a natural procedure
to do this is introducing a metric covariant derivative ∇, i.e. the
Levi-Civita connection �. Other non-metrical derivatives could

3 As Rovelli states in Ref. [26], in the general relativistic point of view we
only have ‘fields over fields’. However, it seems to us that space-time
has very distinctive features from other matter fields. Because of this,
we have chosen the term ‘space-time’ and not ‘gravitational field’ to
denote ST . We say then ‘fields over space-time’
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introduce additional degrees of freedom (e.g. Einstein-Cartan
connections) or lack sufficient structure (e.g. Lie derivatives).
A reference frame system may be then analyzed by its covari-

ant derivative ∇νeaμ, which characterize how it behaves with re-
spect to space-time. Let us consider the directional derivatives of
ea in the direction of another tetrad ec , which can be written as:

eν
c ∇νeaμ = K a

bc e
c
μ, (31)

where K a
bc are the projected components of the contortion

tensor.[28] Thus, the contortion tensor can be identified with the
Ricci rotation coefficients, usually used in the 1+ 3 orthonormal
frame approach to characterize the kinematical properties of the
tetrad field.[25] The change of the tetrad over its time-like velocity
component e(0) ≡ U is

Uν∇νeaμ = K a
b(0)e

b
μ = φa

b e
b
μ, (32)

being φab := Kab(0) the antisymmetric acceleration tensor. In
analogy to Faraday’s electromagnetic tensor, we can decomposed
φab in a translational part a(i ) := φ(0)(i ) and a rotational part
φ(i )( j ) = εi j k�

k . If we take the dynamics of a free particle, say, from
a variational principle, it is well known that it would follow the
Riemannian geodesic equation

Uν∇νUμ = 0. (33)

This means that if the translational part of the acceleration a(i )
tensor vanishes, the reference frame is in free fall: the congru-
ence is composed of geodesics of the Riemann geometry. Further-
more, if the rotational part is null, the reference frame system is
not rotating (with respect to a Fermi-Walker transported frame).
Thus we adopt the following definition

Definition 1. If the acceleration tensor φab is null over the congru-
ence C, the reference system frame is a pseudo inertial reference frame
(PIRF).

Remark 2. The acceleration tensor is not covariant under local
Lorentz transformations, as it is easily seen from their relation to the
non-covariant torsion tensor.[5] Hence, when we perform a general lo-
cal Lorentz transformation onto a frame, all inertial properties change
unless the Lorentz transformation is global. Nevertheless, the relation
of a physical quantity from any reference system to another, e.g. from
an inertial one to one that is accelerated, is strictly local, consistent
with the hypothesis of locality.

The Weitzenböck connection ∗�, on the other hand, defines a
covariant derivative that quantifies how a given tensor P changes
with respect to a preferred tetrad frame. If this quantity P is
fixed on the tetrad, (i.e. if P · ea is constant) then its Weitzenböck
derivative is zero nomatter the path chosen. This connection also
defines an alternative concept of acceleration; for instance, a free
falling path is, in general, accelerated in the Weitzenböck geom-
etry (see equation (34) below). The teleparallel force equation for
a free falling particle with velocityUμ is

Uν ∗∇νUμ = Fμ

T , Fμ

T := K μ
νρU

νUρ. (34)

Note that the term FT is a pseudo-force, i.e. frame-dependent.
For instance, if we choose a free falling frame comoving with

the particle, from (32) we obtain Uν ∗∇νUμ = 0; this means that
the weak equivalence principle is still satisfied in GR||. On the
other hand, real interaction terms, such as the Lorentz force
FL := FμνUμ, are always frame-independent and imprint an ab-
solute (Levi-Civita’s) acceleration to the system.
At this point, it is useful to introduce the following definition

Definition 2. A tensor field P associated with a physical system S is
an intrinsic property of S iff P[ea ] = P[eb

′
], for any tetrad field.

Note that even if P is an intrinsic property, we can obtain the
values of this property in a given frame by projecting the tensor
field onto the tetrads (A14). However, the relation between frames
of an intrinsic property is covariant and local. This is not the case
of the Weitzenböck torsion tensor, which is frame-dependent.
The Riemann curvature tensor, on the contrary, is an intrinsic
property of space-time. For instance, if the curvature tensor is
zero in one frame, it is zero for all observers. Torsion, however,
might be non zero even in Minkwoski space-time, if we choose
an anholonomous tetrad, e.g. one representing an accelerating
observer. We conclude that torsion is not a proper quantity to
represent the gravitational interaction in GR||; it characterizes
kinematic properties of reference frames (see Eq. 12) and it is
constrained over a congruence by the field equations (29), i.e.
constrained by the underlying space-time.

4.4. Locality of the Energy-Momentum Tensor for Gravity

We have seen in the previous sections how the tetrad field and
the teleparallel geometry of GR|| encode a broader representation
than the metric field. Let us return now to the dynamics of the
theory. The essential feature of GR|| field equations is the pos-
sibility of deriving an energy-momentum conservation law for
matter+gravity that is not attainable in GR:
Theorem 3. Giving a tetrad field eμ

a , the teleparallel equations admit
a conservation equation for each a component:

∂λ∂ν

(√−g �aλν
) = 0 → ∇λ(tλa + �λa) = 0.

In this equation, we associate tλa to the energy-momentum
tensor of space-time, consistent with its Lagrangian definition
(23). This teleparallel energy-momentum tensor has been studied
by several authors (see Ref. [29]). Our intention here is to charac-
terize tμν under our axiomatic formulation. The usual approach
to define pseudotensors in GR is similar to the teleparallel case:
the Ricci scalar is decomposed in a linear-derivative part L̃ and a
total divergence,

R = L̃ + ∇μW̃μ,

to obtain a superpotential equation similar to (21):

∂σ (
√−g Sμρσ ) = √−g (τμρ + �μρ ). (35)

The main difference between these approaches and GR|| is
that tλa is a well-behaved tensor under coordinate transforma-
tions. This is true because GR|| has a first-order diffeomorphic-
invariant Lagrangian. In this sense, GR|| is a better theory
to formulate an energy-momentum tensor. Even though the
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teleparallel energy definition (26) is consistent in many phys-
ical scenarios, the local behavior of the teleparallel energy-
momentum tensor remains unclear for two reasons: (i) the gauge
freedom for choosing a tetrad field (non-covariance under LLT)
and (ii) its compatibility with the equivalence principle, that is,
that gravity does not manifest locally in a free-falling frame, for
which local approaches to define an energy-momentum density
are usually discarded.
In contrast to the matter energy-momentum �μν , the space-

time energy-momentum tensor tμa is not an intrinsic property,
in the sense of Definition 2. This feature is expected, because en-
ergy and momentum are frame-dependent properties and frame
properties are ultimately determined by space-time itself. The
lack of a preferred reference frame in curved space-time makes
the energy-momentum tensor extremely degenerated as we will
show below. Thus, in the context of GR||, to characterize the ten-
sor4 tμν we must first completely characterize the frame (i.e. the
tetrad field, see Group III).
It is often stated in the literature that a frame can be fixed if its

kinematical properties encoded in the acceleration tensor φab are
fixed [3]. However, this is not entirely correct since the full kine-
matics of a frame is contained in K a

bc rather than φab . For exam-
ple, the contortion tensor contain the expansion θab and vorticity
ωab of the congruence,

ωab := K (0)(ab), θab := K (0)[ab], (36)

as well as the spatial motion of the frame K (i )( j )(k). In other words,
we should take into account the whole congruence C and not just
a path in order to describe properties of extended objects as fields.
In order to illustrate the importance of this observation in the
teleparallel framework, it would be useful to introduce the dis-
tinction made in Ref. [30] between Local Reference Frame and
the Pseudo Inertial Reference Frame of Def. 1:

Definition 3. Given a congruence C with an associated tetrad field ea
and a timelike geodesic γ ⊂ C, the reference frame K is a local inertial
reference frame (LIRF), associated with γ if

ea |γ = ∂μ̂ |γ , (37)

where {xμ̂} are Fermi coordinates,

g μ̂ν̂ |γ = ημ̂ν̂ |γ , ∂ρ̂g μ̂ν̂ |γ = 0. (38)

Thus, the congruence of a LIRF has zero torsion T μ̂

ν̂ρ̂ |γ = 0 be-
cause the frame is holonomous over the geodesic (this is true
in all coordinate system). Outside this path however, torsion is
non-zero. We can prove in addition that this LIRF is composed
of accelerated curves outside γ , whose acceleration tensor is re-
lated directly to the Riemann curvature[31]. Even though a LIRF
and a PIRF can contain a same geodesic observer moving over a
path γ , we obtain in general:

tμν

PIRF |γ = 0, tμν

LIRF |γ �= 0. (39)

4 Note that tμν is not the pseudotensor obtained writing the field equa-
tion as equation (35). In the notation used in Ref. [29], our tμν corre-
sponds the contravariant version of hμ

a j aν

This fact shows that even though the energy-momentum ten-
sors are evaluated on the same non-rotating geodesic path, they
depend on the kinematic properties of the whole congruence en-
coded in the contorsion tensor, and not only in its acceleration.
We illustrate this in a concrete example on a Schwarzchild space-
time in Appendix B.
A LIRF is a special kind of frame where all accelerations and

kinematical properties of the congruence are related only to the
curvature tensor. This frame seems to behave appropriately since
(i) it is zero on a given geodesic, according to the equivalence
principle, and (ii) is related to the Bel-Robinson tensor at second
order (see Ref. [32]). Even though we have used a LIRF to show
and compare the local properties of the energy-momentum, this
frame is only useful to integrate physical quantities over a small
region around the geodesic. If we want to obtain the total energy
of space-time over a time slice, we need to use a general frame
such as a PIRF. In these type of frames there are inertial contri-
butions to the total energy. These contributions are represented
in the contortion tensor, which is ultimately constrained by the
underlying space-time—in our example in Ap. B, the frame K ′

has non-null shear components. In short, if we want to study the
energy of space-time measured by an observer in some state of
inertia, we still have infinite ways to choose this observer in an
extended region. This sort of degeneracy of tμν disappears if the
theory fixes completely the tetrad field or if a physical criterion
for choosing the frame is founded.

4.5. Inequivalence Between GR and GR||

Now, we summarize the two main points made so far in this
work:

� GR|| has a dynamical object that encodes a broader represen-
tation than the metric, i.e. the tetrad field representing a refer-
ence frame.

� GR|| dynamical equations allow to derive an energy-
momentum conservation law for matter plus gravity. The
gauge freedom in the election of the energy-momentum
tensor for gravity and its non covariant character can be
interpreted as the free choice of a reference frame system.

In General Relativity, reference frames are absent from the
core of theory and, for this reason, a well-defined conservation
of energy-momentum cannot be provided. We conclude:

Theorem 4. Not all the axioms of GR|| can be derived from the ax-
ioms of General Relativity, A(GR) � A(GR||). Therefore, the theo-
ries are physically inequivalent.

GR and GR|| are both theories of space-time and matter. GR is
only concerned with intrinsic properties of space-time, whereas
GR|| includes the notion of the reference frame in the basis of the
theory.
Our discussion was centered around the metric formulation

of GR. However, there are several fundamental tetrad formula-
tions of GR (that is, with Riemannian geometry and Einstein’s
equations), for instance, those ofNewman-Penrose (NP), Geroch-
Held-Penrose (GHP), and the so-called 1+3 orthonormal ap-
proach. A straightforward reconstruction of GR adopting one
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of these formulations is not directly equivalent to the axiomatic
scheme presented in Sect. 3 because in most cases the physi-
cal interpretation of the tetrads is different. For instance, in the
NP and in the GHP formalisms null tetrads are used, and hence
they cannot be interpreted as reference frames as we did through
Group 3 of axioms. Even though the Einstein’s equations are in-
cluded in the dynamics of these theories, in all these cases there
are more degrees of freedom than ordinary metric GR. The key
point for our analysis here is whether the new formalism intro-
duces new physical features in the basis of the theory.
In the case of GR||, the redundancy of the tetrad field is used

to interpret these dynamical objects as reference frames. To-
gether with the teleparallel field equations, this interpretation is
used to account for the conservation of the gravitational energy-
momentum tensor, that holds for each frame (in a non covari-
ant way). On the other hand, in the 1+3 approach, the reference
frame interpretation of tetrads may hold, but the geometrical set
up differs from GR||. In this way, the construction of a gravita-
tional energy-momentum tensor of this sort cannot be achieved
in these formulations.

5. On Other Teleparallel Theories

In recent years there has been an increasing interest in telepar-
allel theories. Two of the theories that have atracted attention are
the so-called f (T) [12] and non-local gravity.[6]

In f (T) theories, the teleparallel Lagrangian of GR|| is modi-
fied analogously to f (R) theories. The resulting teleparallel equa-
tions are of second order, contrary to the fourth order equations
of f (R)

∂σ

(√−g�aλσ f ′(T)
)

=
√−g
4κ

(
T λa + �λa

)
, (40)

where T λμ := κ(4 f ′(T)�bcλT μ

bc − g λμ f (T)) is the modified
energy-momentum tensor. This theory has been widely applied
to cosmology, where the observed acceleration of the universe is
explained without introducing dark energy. Contrary to GR||, the
theory lacks local Lorentz invariance,[28] which means that differ-
ent tetrads, related by local Lorentz transformations, have differ-
ent motion equations. In this sense, f (T) has more degrees of
freedom than GR||.
It is an interesting question whether the tetrad field in this

theory can represent a reference frame in the same way as it was
constructed in our axiomatization of GR||. The main difference
with GR|| is that each kind of observer would ’sense’ a different
underlying space-time since each tetrad field fixes a differentmet-
ric. The transformation laws between frames as well as the rep-
resentation of space-time should be modified to encompass this
interpretation. In the current state of the theory, the tetrad field
is only used to obtain solutions of the field equations from which
a metric field is obtained. The notion of the tetrad field as deno-
tating a reference frame has not been studied yet.
On the other hand, non-local gravity is more connected with

the GR|| approach[6]. The axioms of GR|| imply that frames are
related in a local way, meaning that an accelerated observer is
pointwise inertial. Mashhoon has argued (following Bohr and
Rosenfeld[33]) that in classical field theories, a property of a given

field, e.g. the Faraday tensor Fμν , cannot be measured in a point-
wise manner and an averaging procedure over the history of the
observer is needed. Hence the laws of physics must be rendered
non-local (history-dependent).
Following what was made in non-local electrodynamics,

and using the close analogy between GR|| and Maxwell equa-
tions, the non-local gravity equations are obtained changing the
superpotential:

�μνρ → Hμνρ := �μνρ + Nμνρ, (41)

where Nμνρ is an antisymmetric tensor involving the past history
of the field. As an interesting consequence of non-local gravity, it
is possible to show that observational data associated with dark
matter might be explained as a non local effect.
In the teleparallel framework for gravitational theories, it is not

clear whether we should hold the metric representation of space-
time ST . Instead, it seems more appropriate a tetrad-only form
given by ST T = (M, ea). Recently, it is was argued by Schuck-
ing [34] that this tetrad-only representation, together with the el-
ements of teleparallel geometry, imply Einstein first equivalence
principle: the equivalence between acceleration and gravitation.
For Schucking, this is explicit in the relation between the contor-
sion (i.e. the Ricci coefficients) and torsion (which represents, in
this view, the gravitational interaction)
However, in GR|| a pure tetrad representation of space-time is

inadequate. Indeed, a frame-independent (metric-Riemannian)
structure is always present in the theory constraining the accel-
eration fields K a

bc . Nevertheless, it is an interesting subject to ex-
plore to what degree we can mimic curvature choosing specific
frames, say, in flat space-time, and what is the role of torsion. It is
possible to show that the geodesic deviation equation in a general
frame is written as:

ξ̈a = (−R(0)a(0)b + C [ea ]ab) ξ b (42)

where C [ea ]ab is zero for LIRF.[25] Thus, in a general frame over
flat space-time we would still measure geodesic deviation for
some specific frames.

6. Conclusions

Using our axiomatic formulation, we have shown that

(1) GR|| is not fully equivalent to GR. Whereas all features of
GR can be obtained from GR||, the opposite is not true. The
tetrad formalism is used to introduce the reference frame in
the foundations of GR||, allowing a consistent definition of a
gravitational energy-momentum tensor and its conservation
that are not attainable in GR. This energy-momentum tensor
depends on the kinematic properties of the reference frame
encoded in the contorsion tensor.

(2) Both theories adopt a metric representation of space-time.
In GR, the same metric is the dynamical object of the the-
ory; however, GR|| this part is played by the tetrad field.
The Levi-Civita connection is the right formal tool to quan-
tify changes over space-time, while the Weitzenboök connec-
tion measures how a given tensor changes with respect to a
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preferred frame. This might not be true in other alternative
space-time theories, where the role of the tetrad field is differ-
ent. For example, it is not clear whether f (T) gravity shares
the same physical interpretation of the tetrad as in GR||. Fur-
ther developments in such direction are needed.

Our axiomatization allowed us to explore some of the key
physical concepts of GR|| and compare them with GR and other
teleparallel theories in a systematic way. Summing up, we found
that is possible to construct two self-consistent theories describ-
ing the same physical entities, with equivalent dynamics, but
with a different representation power.
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Appendix A

Axiomatization of General Relativity

Here, we provide an axiomatization of GR to compare with the
axiomatic formulation of GR|| in Section 3.

Generating Basis and Definitions

The generating basis of GR is constructed with fewer elements
than GR||:

B′ = {ST , �,M, {g}, {�}, {φ}, κ, }. (43)

The meaning of these symbols will be given in the axiomatic
basis. First, we set out the main definitions of Weitzenböck ten-
sors used in the theory:

D’1R
ρ

μλν := ∂λ�
ρ
μν − ∂ν�

ρ

μλ + �
ρ

σλ�
σ
μν − �ρ

σν�
σ
μλ is the Riemann

tensor.
D’2Rμν := Rρ

μρν is the Ricci tensor.
D’3R := Rμ

μ is the Ricci scalar.
Gμν := Rμν − 1

2 gμνR is the Einstein tensor.

Axiomatic Basis

The axiomatic basis is given by A(GR) =
10∧
i
Ai . We present the

axioms divided in three groups. Note that Group I and II of ax-
ioms are exactly the same as in GR|| but the reference system
axiom group is absent. See Refs. [[20]], [[23]], and [[18]] for similar
axiomatizations of GR.

Axioms

Group I: Space-time

A1 (FA)M is a Hausdorff para-compact,C∞, 4-dimensional, real
and pseudo-Riemannian manifold.

A2 (FA) {g} is a family of rank-2 metric tensors, symmetric, and
+2 signature. All minor principals of the metric tensor gμν are
negative.

A3 (FA) {φ} is a family of isometries: φ∗g = g.
A4 (SA) Space-time ST is the physical system represented by the
equivalence class of isometric diffeomorphism of a given met-
ric, i.e. ST =̂ (M, g).

Grop II: Matter

A5 (FA) � is a non-empty set of objects σ ∈ �.
A6 (SA) There is an element � ∈ � which denote the absence of
physical system. For all σ ∈ � other than �, σ denotes a phys-
ical system different from space-time.

A7 (FA) For each σ ∈ � there is a symmetric 2-rank tensor field
�. In particular, there is a one-to-one correspondance between
� ∈ � and the null tensor field � = 0

A8 (SA) � represents the energy-momentum tensor of the phys-
ical system σ .

Group III: Dynamics

A9 (SA) κ ∈ R, where [κ ] = L M T 2.
A10 (PA) Space-time is constrained by the Einstein’s equations:

Gμν = 1
2κ

�μν.

The direct inclusion of axiom Group III in GR|| results in
a redundancy given the Riemannian structure Einstein’s equa-
tions (see A10) and our previous analysis in Section 4. However,
it might be necessary to include them if we want to analyze a
quantum field theory in curved space-time. A group of axioms in-
troducing tetrad field can be non-trivial if we change the axioms
in Group III or the space-time representation. As was discussed
before, some tetrad formulations are very useful to find exact so-
lutions or deal with cosmological problems.

Appendix B

Energy-Momentum Tensor for a LIRF and a PIRF

Let us consider a Schwarzchild space-time and an arbitrary radial
geodesic γ∗ on it. Over γ∗ we build two frames, a LIRF K , as in
Definition 3, and a PIRF K ′, which congruence C ′ is composed of
radial non-rotating geodesic, φa′b′ (p) = 0 for all p ∈ M. We use
an explicit realization of K ′ presented in Ref. [5] as:

eμ

(0) =

⎛⎜⎜⎜⎝
α(r )

−β(r )

0

0

⎞⎟⎟⎟⎠ , eμ

(1) =

⎛⎜⎜⎜⎝
α(r )β(r ) cos(φ) sin(θ )

cos(φ) sin(θ )

cos(θ ) cos(φ)/r

−csc(θ ) sin(φ)/r

⎞⎟⎟⎟⎠ ,
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eμ

(2) =

⎛⎜⎜⎜⎝
α(r )β(r ) sin(θ ) sin(φ)

sin(θ ) sin(φ)

cos(θ ) sin(φ)/r

cos(φ)csc(θ )/r

⎞⎟⎟⎟⎠ , eμ

(3) =

⎛⎜⎜⎜⎝
α(r )β(r ) cos(θ )

cos(θ )

− sin(θ )/r

0,

⎞⎟⎟⎟⎠ ,

with α(r ) := 1/(1− 2M/r ) y β(r ) := √
2M/r . We can easily

check that this free falling frame possess non-zero Weitzenböck
torsion. Its kinematical properties are encoded in the contortion
tensor, whose non-null components represent the expansion of
the congruence:

K (0)(1)(1) =
√

M
2r 3

, K (0)(2)(2) = K (0)(3)(3) = −
√
2M
r 3

.

The teleparallel energy-momentum tensor can be calculated
from definition D4. After some straightforward algebraic steps
we obtain:

tμν

PIRF=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− M2

2πr 2(−2M + r )2
−

(
M
r

)3/2
2
√
2π (2M − r )r

0 0

−
(
M
r

)3/2
2
√
2π (2M − r )r

− M
4πr 3

0 0

0 0
M

8πr 5
0

0 0 0
M

8πr 5

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

The energy-momentum tensor is then symmetric, isotropic,
and obviously non-zero through a radial geodesic γ∗ ⊂ C ′. On the
other hand, in a LIRF K , the energy-momentum tensor is zero
on the radial geodesic γ∗

tμν

LIRF |γ∗= 0 (44)

since we have zero torsion on γ∗ (note that equation (44) is valid
in all coordinate system). We conclude that over the same radial
geodesic path γ∗, the energy-momentum of gravity is zero in K
but non zero in K ′.
Since it is always possible to construct a LIRF, on any geodesic

path, the field equations of the theory can be written as:

∂ν

(√−g �aλν
) |γ =

√−g
4k

(
�λa) |γ , (45)

where tλμ |γ = 0. This means that the matter energy-momentum
is truly conserved over γ ,

∂λ�
λa |γ = 0 (46)

and there is no interaction between gravity and matter in this
frame. The equivalence principle in GR|| can be stated as the
following: There is always a reference system KF that contains
a geodesic path γ over which the energy-momentum of gravity
vanishes.
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