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Abstract

The previously introduced algorithm SQEMA computes first-order frame equivalents for modal formulae and
also proves their canonicity. Here we extend SQEMA with an additional rule based on a recursive version
of Ackermann’s lemma, which enables the algorithm to compute local frame equivalents of modal formulae
in the extension of first-order logic with monadic least fixed-points FOµ. This computation operates by
transforming input formulae into locally frame equivalent ones in the pure fragment of the hybrid mu-
calculus. In particular, we prove that the recursive extension of SQEMA succeeds on the class of ‘recursive
formulae’. We also show that a certain version of this algorithm guarantees the canonicity of the formulae
on which it succeeds.
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1 Introduction

Since the introduction of Kripke semantics in the early 60s and van Benthem’s
standard translation [31] of modal formulae into universal monadic second-order
(UMSO) formulae over Kripke frames in the mid 1970s, modal languages have come
to be seen as special fragments of UMSO logic with respect to frame validity.

Particular interest has developed since then in correspondence theory between
modal formulae and first-order (or elementary) formulae with respect to definability
of frame properties, classical accounts of which can be found in [31] and [32]. Some
of the highlights of that theory are the discoveries of the class of first-order definable
and canonical Sahlqvist formulae ([26]) on the one hand, and of some notable cases
of non first-order definability of important modal principles, such as the axioms of
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Gödel-Löb, McKinsey, and Segerberg, on the other hand. Via the standard frame
translation of modal formulae into UMSO, correspondence theory can be seen as an
instance of the second-order quantifier elimination problem, an up to date account
of which can be found in [16].

The part of correspondence theory dealing with first-order definability and canon-
icity of modal formulae has recently been advanced by the extension of the class of
Sahlqvist formulae to the class of inductive formulae in [20], [19], [21] and the de-
velopment of the algorithm SQEMA in [9], [10] for computing first-order equivalents
and proving canonicity of modal formulae.

Meanwhile, it has been observed in several recent publications including [24],
[21], [34], [33], [18], [30] that many naturally arising non-elementary modal formulae,
such as Gödel-Löb axiom GL and Segerberg’s induction axiom IND, define frame
conditions which are expressible in the extension of first-order logic with fixed-
points of monadic predicates FOµ — an important and well-behaved extension of
FO, with better understood semantics and model theory than the full (universal)
MSO [14], [23]. Thus, the trend to develop correspondence theory between modal
logic and FOµ emerges naturally. Some important recent contributions towards
such correspondence theory include:

� [24], where a recursive version of Ackermann’s lemma [1] was proved, and it
was shown how FOµ-equivalents of monadic second-order formulae may be obtained
through applications of that lemma. In particular, second-order translations of
various modal formulae, such as GL, can be reduced to FOµ in this way. To bring
formulae into the form which makes the lemma applicable, rules in the style of the
DLS-algorithm ([13]) are applied. More recently, an extension DLS* of the DLS-
algorithm was implemented, which computes FOµ-equivalents of monadic second-
order formulae.

� [33], where the class of ‘PIA’ (‘positive antecedent implies atom’) first-order
formulae was identified as precisely those (up to logical equivalence) first-order
formulae which have the ‘Intersection Property’ with respect to a given predicate
letter P , meaning that the set of interpretations of P satisfying the formula in a
given structure is closed under intersection, and consequently there is a minimal such
interpretation of P . A PIA formula φ(P (x),Q)→ P (x) essentially says that P is a
pre-fixed-point of the operator φ(P (x),Q), and therefore the minimal interpretation
of a predicate satisfying a PIA formula is a least fixed-point; in fact, the extension
of FO with iterated minimization over PIA-formulae in that extension is shown in
[33] to be expressively equivalent to FOµ. The theme of modal correspondence in
FOµ is carried further in [34] where a number of examples are considered and a
general result, similar to Theorem 3.5 in the present paper, is obtained.

� In [21] the class of so called ‘regular polyadic modal formulae’ 1 was intro-
duced. It was shown there that they all have local equivalents in FOµ. The regular
formulae include almost all well-known examples of FOµ-definable modal formulae.

The present paper develops a direct algorithmic method for computing FOµ-

1 Here, these formulae will be called more appropriately ‘recursive’.
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equivalents of modal formulae, and as such it is intended as a further contribution
towards the building of a correspondence theory between modal logic and FOµ.
This algorithmic method is based on extensions of the algorithm SQEMA, obtained
by employing a recursive version of the modal Ackermann lemma. It is similar, but
different, from the adaptation of Ackermann’s lemma used in [24]. In particular, we
show that the recursive extensions of SQEMA developed here are powerful enough
to compute FOµ-correspondents of all monadic regular formulae, mentioned above.

2 Preliminaries

Apart from the background presented in this section, we assume the reader’s famil-
iarity with the basic notions pertaining to the semantics and model theory of modal
logic (see e.g., [3] or [18]), the modal µ-calculus (see e.g., [6]), and with the core
algorithm SQEMA ([9]), described for the reader’s convenience in the Appendix.

2.1 First-order logic with monadic fixed-points

Here we will only consider the extension of first-order logic with monadic fixed-
points, i.e., where all predicates P to which the µ-operator is applied are unary.
Given a first-order language FO of any fixed signature τ , we define its extension
FOµ(τ) with monadic least fixed-point operators by adding to the inductive defini-
tion of FO-formulae the clause:

(MLFP) If ϕ(P, x,Q,y) is a formula positive in P , with free variables amongst x
and the tuple y, (monadic) predicate symbols amongst P and the tuple Q, then
µ(P, x).ϕ(P, x,Q,y)[u,y] is a formula.

The semantics of the formula µ(P, x).ϕ(P, x,Q,y)[u,y] is given by the least fixed-
point of the monotone set-operator defined by the formula ϕ [14], [23]. The dual,
greatest fixed-point operator, is defined as expected:

ν(P, x).ϕ(P, x,Q,y)[u,y] := ¬µ(P, x).¬ϕ(¬P/P, x,Q,y)[u,y]

While FOµ is a rather expressive extension of FO, it still shares some nice
properties with FO, e.g., the downward Löwenheim-Skolem theorem [15] and the
0-1 law (see [5]). For further background on FOµ see [14] and [23].

2.2 Hybrid modal logics and hybrid mu-calculus

Given a monadic multi-modal language ML(σ) of some modal signature σ, we as-
sociate with it a first-order language FO(σ) with a range of unary predicates cor-
responding to the propositional variables, and a range of binary relations corre-
sponding to the modal operators in ML(σ). By way of the well-known standard
translation ST (see e.g., [31], [3], [18])) every modal formula ϕ from ML(σ) is trans-
lated to a FO(σ)-formula ST(ϕ, x) of one free variable x. Hereafter, we will assume
a monadic multi-modal signature σ fixed and will omit it in the notation for the
various associated languages. We also consider the following extensions of ML:

• The hybrid extension HML with nominals (denoted by i, j,k, . . .), the universal
modality, and inverse modalities for all modal operators in the basic signature σ.
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The fragment of HML without the universal modality will be denoted by HMLl

(‘HML local’).
The standard translation for ML readily extends over HML by adding the

obvious clauses for the extra modalities and a clause for the nominals: ST(i, x) :=
(x = yi) where yi is a reserved variable associated with the nominal i.

The pure fragment of HML, denoted PHML, consists of all HML-formulae
containing no occurrences of propositional variables. PHMLl, the pure fragment
of HMLl, is defined likewise.

• The modal µ-calculus, MLµ, is obtained by adding a clause constructing the least
fixed-point µp.ϕ(p,q) 2 for every MLµ-formula ϕ(p,q) positive in the variable p.

The standard translation for ML extends over MLµ into FOµ, by adding a
clause for the µ-operator:

ST(µp.ϕ(p,q), x) := µ(P, z).ST(ϕ(p,q), z)[x],

where P is the unary predicate symbol in FOµ corresponding to the propositional
variable p.

• The hybrid µ-calculus language HMLµ is obtained by merging the languages HML
and MLµ; its standard translation to FOµ combines the standard translations of
these sublanguages. The fragment of HMLµ without the universal modality will
be denoted by HMLlµ.

The pure fragment of HMLµ, denoted PHMLµ, consists of all HMLµ-formulae
where all occurrences of propositional variables are bound by µ-operators. The
fragment of PHMLµ without the universal modality will be denoted by PHMLlµ.

The standard translation ST(ϕ, x) of a modal formula from any of the modal lan-
guages above relates the local truth of ϕ (at the state denoted by x) to the local
truth of ST(ϕ) in Kripke models. By universally quantifying ST(ϕ, x) over all unary
predicate symbols occurring in ST(ϕ, x) and not bound by fixed-point operators,
we obtain an MSO-formula ST(ϕ, x) that expresses the local validity (at the state
denoted by x of the Kripke frame) of ϕ.

The hybrid µ-calculus HMLµ was studied in [27], where it is proved that the
satisfiability problem for this logic is decidable in ExpTime. This result is important
for the purposes of the present paper, since the execution of the recursive SQEMA-
algorithm, introduced further, produces HMLµ-formulae which we need to formally
reason about. In fact, the output language of the recursive SQEMA-algorithm will
be the pure fragment PHMLµ of HMLµ.

3 Modal correspondence to FOµ

A formula ϕ from any of the modal languages introduced above is said to be locally
equivalent to a FOµ-formula θ(x) if for every Kripke frame F for the respective
signature and state w ∈ F, we have that F, w 
 ϕ iff F |= θ[x := w]. Similarly, ϕ is
globally equivalent to a FOµ-sentence θ if, for every Kripke frame F, we have that
F 
 ϕ iff F |= θ. A modal formula is locally (globally) FOµ-definable if it is locally

2 We use the same symbol, viz. µ, to denote least fixed-point operators in both FOµ and MLµ.
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(globally) equivalent to some FOµ-formula (FOµ-sentence). Clearly, local implies
global FOµ-definability, but the converse is false. Indeed, the formula 2322p →
3323p has ∀x∃yRxy as global frame correspondent. However, in [31] van Benthem
shows that this formula violates the Löwenheim-Skolem theorem, which, as was
mentioned above, holds for FOµ.

As already noted, some non-elementary modal formulae have (local) equivalents
in FOµ, while others do not (see examples in subsection 3.3). Thus, the prob-
lem of recognizing the modal formulae that are (locally) definable in FOµ arises 3 .
No explicit syntactic or model-theoretic criteria seem to be known as yet, and we
conjecture that FOµ-definability of ML(σ)-formulae is undecidable.

Here we will develop semi-algorithms which effectively compute FOµ-equivalents
for a fairly large class of modal formulae. In what follows we will work with (arbi-
trary) monadic multi-modal logics, but generalizations to polyadic modal languages
will be discussed briefly in the concluding section.

3.1 Recursive modal formulae

A large class of polyadic modal formulae was effectively defined in [20] under the
name ‘regular formulae’. Here we will consider the subclass of monadic multi-
modal regular formulae, explicitly defined first in [18], from where we import the
definitions below. For reasons that will become clear, hereafter we will call these
formulae ‘recursive’.

Definition 3.1 Let an arbitrary monadic multi-modal language ML(σ) be fixed
and let # be a symbol not belonging to ML(σ). Then a box-form of # in ML(σ) is
defined recursively as follows:

(i) # is a box-form of #;

(ii) If B(#) is a box-form of # and � is a box-modality in ML(σ) then �B(#) is
a box-form of #;

(iii) If B(#) is a box-form of # and A is a positive ML(σ)-formula then A→ B(#)
is a box-form of #.

Thus, box-forms of # are, up to semantic equivalence, of the type �1(A1 →
�2(A2 → . . .�n(An → #) . . .), where �1, . . . ,�n are (possibly empty) strings of
box-modalities and A1, . . . , An are positive formulae in ML(σ).

Definition 3.2 Given a propositional variable p, a box-formula of p is the result
B(p) of substitution of p for # in any box-form B(#). The rightmost occurrence
of the variable p is the head of B(p).

Definition 3.3 A (monadic) recursive formula in ML(σ) is any ML(σ)-formula
built from positive formulae and negations of box-formulae by applying conjunc-
tions, disjunctions, and boxes.

Example 3.4 Here are some examples, showing that, although the definition might
seem somewhat involved, recursive formulae are quite common.

3 The converse problem, of which FOµ-formulae are modally definable on Kripke frames, although not less
interesting, will not be discussed here.
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• The Gödel-Löb formula 2(2p → p) → 2p can be equivalently rewritten as a
recursive formula ¬2(2p→ p) ∨2p.

• The Sambin-Boolos formula 2(2p ↔ p) → 2p is an incomplete weakening of
the Gödel-Löb formula. It is equivalent to the recursive formula ¬2(2p → p) ∨
¬2(p→ 2p) ∨2p.

• Segerberg’s bimodal induction axiom IND = [2](q → [1]q) → (q → [2]q) is
equivalent to the recursive formula ¬[2](q → [1]q) ∨ ¬q ∨ [2]q.

• van Benthem’s ‘Cyclic return’ formula from [33]: (3p ∧ 2(p → 2p)) → p is not
a recursive formula, but becomes semantically equivalent to one after a polarity
change, i.e., substitution of ¬p for p:

(3¬p ∧2(¬p→ 2¬p))→ ¬p ≡ 2p ∨ ¬2(3p→ p) ∨ ¬p.

More examples will be considered later.

Theorem 3.5 ([21]) Every recursive formula has a local correspondent in FOµ,
which can be obtained effectively.

The key observation for the result above is that all recursive formulae have
minimal valuations that can be used to eliminate the propositional variables, which
are recursively defined and eventually expressible in FOµ.

We note that Theorem 3.5 subsumes and extends Theorem 4 in [34] and, es-
sentially, Theorem 8 in [33], because the syntax of recursive formulae allow for a
deeper nesting of PIA subformulae.

Furthermore, the class of recursive formulae contains all conjunctions of induc-
tive formulae studied in [20], [8], [21], which in turn strictly subsume all Sahlqvist
formulae, so Theorem 3.5 can be regarded as an extension of the definability part
of the Sahlqvist theorem. However, we see from the examples above that it cannot
match the canonicity part of it, because there are Kripke incomplete recursive for-
mulae. On the other hand, we believe that every modal formula which has a minimal
valuation expressible in FOµ is semantically equivalent to a recursive formula.

3.2 Definability of the pure hybrid modal mu-calculus in FOµ

Since the standard translation of any PHMLµ-formula in FOµ does not contain free
predicate symbols, the proof of the following proposition, which will be used further
in Section 5.3, is immediate.

Proposition 3.6 Every PHMLµ-formula has a local equivalent in FOµ.

As we will see further in some examples, a PHMLµ-formula can turn out to
be FO-definable if the successive unfoldings of the fixed-point operators stabilize
at a finite stage. If that unfolding is computed within PHMLµ, we can test for
stabilization at each stage in ExpTime, using the decidability of satisfiability in
HMLµ [27]. This procedure yields explicit definitions of such fixed-points in PHML
and hence PHML-equivalents for the PHMLµ-formulae involved.

It is, of course, also possible for a PHMLµ-formula to have an equivalent in
PHML despite its not having finitely-stabilizing fixed-points. Since the execution of
the recursive version of SQEMA (to be introduced further) applied to input formulae
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from HMLl remains within HMLlµ, it suffices to look for FO-equivalents of HMLlµ-
formulae. The question of whether a HMLlµ-formula has an equivalent in HMLl

was proved decidable in [12] via an adaptation of an argument in [25].

3.3 On non-definability of modal formulae in FOµ

Not all modal formulae have (local) equivalents in FOµ. For instance, McKinsey’s
formula McK = 23p → 32p does not have such an equivalent. Indeed, as noted
in [18], the proof of the Downward Löwenheim-Skolem theorem for FOµ in [15]
actually produces a countable elementary submodel of any infinite model satisfying
a given FOµ-sentence. On the other hand, van Benthem has constructed in [31]
an uncountable frame in which McK is valid, while it is not valid in any countable
subframe of it. This argument should likewise apply to other modal reduction
principles which are not FO-definable.

Another method for obtaining examples of non FOµ-definable modal formulae,
partly noted in [33], too, is based on the following: it was proved in [5] that all
FOµ-formulae satisfy the so called ‘transfer theorem’ stating that asymptotically
almost sure validity in finite frames implies validity in the countable random frame
(also known as the Rado graph), and consequently they satisfy the Zero-One law.
On the other hand, both the Zero-One law [22] and the transfer property [17] fail
in modal logic. The simplest known example of a modal formula which cannot be
FOµ-definable because of failing the transfer property is ¬22(p ↔ 3¬p); for a
more general description of such formulae see [17].

4 Recursive extensions of SQEMA

In this section we introduce extensions of the algorithm SQEMA that compute local
FOµ-equivalents of monadic multi-modal formulae. 4 After giving examples of the
execution of these extensions, we will prove their correctness with respect to local
FOµ-equivalence, and also the completeness of the basic extension SQEMArec with
respect to the class of recursive formulae. The exposition will assume familiarity
with the basic SQEMA-algorithm, the details of which are recalled in the appendix
for the reader’s convenience.

4.1 Recursive Modal Ackermann Lemma

Given a tuple of propositional variables p, we say that two models M and M′ are
p-variants of each other, denoted M ∼p M′, if they are based on the same frame
and differ from each other at most in the valuation of the variables in p.

Consider a list of operators A1(X1, . . . , Xn), . . . , An(X1, . . . , Xn), where each
Ai : (P(W ))n → P(W ), for i = 1, . . . , n, is monotone in all arguments. Then the
vector operator 〈A1, . . . , An〉 : (P(W ))n → (P(W ))n given by

〈A1, . . . , An〉(X1, . . . , Xn) 7→ 〈A1(X1, . . . , Xn), . . . , An(X1, . . . , Xn)〉

4 Polyadic extensions are briefly discussed in Section 6.
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has a least fixed-point µ〈X1, . . . , Xn〉.〈A1(X1, . . . , Xn), . . . , A1(X1, . . . , Xn)〉, which
by Bekič’s lemma (see e.g., [2]) can be computed coordinate-wise, too.

The following is a recursive extension of the modal version of Ackermann’s lemma
[9].

Lemma 4.1 (Recursive Ackermann Lemma) Let p = (p1, . . . , pn) and let A1(p),
. . . , An(p), B(p) be HMLµ-formulae, with A1(p), . . . , An(p) positive and B(p) neg-
ative in each of the variables p1, . . . , pn. Let also B[µp.〈A1(p), . . . , An(p)〉/p] be
the result of the component-wise substitution of the tuple µp.〈A1(p), . . . , An(p)〉 for
p in B. Then for every Kripke model M the following holds:

M 
 B[µp.〈A1(p), . . . , An(p)〉/p]
iff there is a model M′ ∼pM such that

M′ 
 (A1(p)→ p1) ∧ · · · ∧ (An(p)→ pn) ∧B(p).

Proof. To avoid the technical overhead, we will do the proof for the case n = 2;
the proof of the general case is a relatively straightforward generalization. To
simplify the argument a little we will use Bekič’s lemma [2], according to which
µ〈p1, p2〉.〈A1(p1, p2), A2(p1, p2)〉 = 〈µp1.A1(p1, µp2.A2(p1, p2)), µp2.A2(µp1.A1(p1, p2), p2)〉.

First, let M = (W,R, V ) 
 B[µp.〈A1(p), A2(p)〉/p] and let us put
V ′(p1) = V (µp1.A1(p1, µp2.A2(p1, p2))), V ′(p2) = V (µp2.A2(µp1.A1(p1, p2), p2)).

Then V ′(B(p)) = V (B[µp.〈A1(p), A2(p)〉/p]), hence M′ = (W,R, V ′) 
 B(p).
Moreover, M′ 
 A1(p1, p2)→ p1, since

V ′(A1(p1, p2)) = V (A1(µp1.A1(p1, µp2.A2(p1, p2)), µp2.A2(µp1.A1(p1, p2), p2))) =
V (µp1.A1(p1, µp2.A2(p1, p2))) = V ′(p1).

Likewise, M′ 
 A2(p1, p2)→ p2.

Conversely, let for some p-variant M′ = (W,R, V ′) of M:

M′ 
 (A1(p1, p2)→ p1) ∧ (A2(p1, p2)→ p2) ∧B(p1, p2).

Then 〈V ′(p1), V ′(p2)〉 is a pre-fixed-point of 〈A1(p1, p2), A2(p1, p2)〉 in M′, hence
V ′(µp1.A1(p1, µp2.A2(p1, p2))) ⊆ V ′(p1) and V ′(µp2.A2(µp1.A1(p1, p2), p2)) ⊆ V ′(p2)
since µ〈p1, p2〉.〈A1(p1, p2), A2(p1, p2)〉 is the least among all such pre-fixed-points.

Hence, by the downward monotonicity of B(p), M′ 
 B[µp.〈A1(p), A2(p)〉/p].
Since M ∼p M′ and p1, p2 do not occur free in B[µp.〈A1(p), A2(p)〉/p], we

then have M 
 B[µp.〈A1(p), A2(p)〉/p]. 2

Another recursive version of Ackermann Lemma and some generalizations for-
mulated in an algebraic form was introduced in [29] and [30].

4.2 Recursive versions of the Ackermann Rule

Based upon Lemma 4.1 we can now formulate the following transformation rule:

Recursive Ackermann rule (RAR):
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∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

A1(p1, . . . , pn)⇒ p1,

· · ·

An(p1, . . . , pn)⇒ pn

B1(p1, . . . , pn)

· · ·

Bm(p1, . . . , pn)

C1

· · ·

Ck

is replaced with

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

B1[µp.〈A1(p), . . . , An(p)〉/p],

· · ·

Bm[µp.〈A1(p), . . . , An(p)〉/p],

C1

· · ·

Ck

where:

• p1, . . . , pn are different variables and p = (p1, . . . , pn).
• A1, . . . , An are positive formulae in each of p1, . . . , pn,
• B1, . . . , Bm are negative formulae in each of p1, . . . , pn, and
• C1, . . . , Ck are formulae not containing any of p1, . . . , pn.

The variables p1, . . . , pn above can be assumed different, since sequents A′ ⇒ p and
A′′ ⇒ p can be combined into one A′ ∨ A′′ ⇒ p. Likewise, for the purposes of the
rule, all formulae C1, . . . , Ck can be assumed to be combined conjunctively into one.

Note that the rule RAR acts on the entire system. The simplest, and most
commonly used form of the rule RAR, involves only one fixed-point. All examples
given further will only involve this case.

4.3 Versions of the Recursive SQEMA

By adding the recursive Ackerman-rule (RAR) one can obtain different recursive
extensions of the basic SQEMA-algorithm. These versions differ in their strategies
regarding the computation of the fixed-point operators introduced by RAR.

4.3.1 The standard recursive SQEMA

The Recursive SQEMA, denoted SQEMArec, is obtained from SQEMA (see Ap-
pendix) by adding RAR as a transformation rule. If phase 2 of SQEMArec completes
successfully, then the formula pure(φ) is in PHMLµ. Accordingly, the translation
step of SQEMArec yields a formula in FOµ, and no attempt is made to reduce this
result to FO by eliminating the fix point operators. Of course, it is also possible,
depending on the user’s preference, to obtain an output in PHMLµ by terminating
the algorithm before the translation is done. We note that SQEMArec can just as
well work on any HMLµ-formulae as input.

4.3.2 The Eager Recursive SQEMA

This version of SQEMArec works as follows. At every application of the recursive
Ackermann Rule, the algorithm runs a procedure attempting to compute the least

9
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fixed-point µp.A(p) substituted by the rule, by computing the successive iterations
symbolically, starting with ⊥, within the hybrid modal µ-calculus HMLµ to which
all formulae of the current SQEMA-system belong, and testing at every stage if the
computation has stabilized, by testing an equivalence of the type An(⊥) ≡ An+1(⊥)
– which is decidable in ExpTime [27]. If the equivalence holds at some stage, the
fixed-point is computed and it is a formula in HML, which the Ackermann Rule
substitutes instead of the µp.A(p).

We call this version of SQEMArec the Recursive SQEMA with eager computation
of the fixed-points, or the Eager Recursive SQEMA for short, denoted SQEMAeagrec.
It can be used to compute FO-equivalents of modal formulae in some cases when the
basic SQEMA fails, thus extending and strengthening the correspondence part of the
basic SQEMA. In fact the canonicity results for SQEMA also extend to SQEMAeagrec,
as will be shown in Section 5.2.

4.4 Examples

We now present some examples illustrating the execution of SQEMArec and SQEMAeagrec

on different input formulae.

Example 4.2 [Gödel-Löb formula] Given the Gödel-Löb formula �(�p→ p)→ �p
as an input, the first phase of the algorithm preprocesses it to �(3¬p ∨ p) ∧3¬p.

In phase 2 one initial system is produced, namely

(a) ‖ i⇒ �(3¬p ∨ p) ∧3¬p.

By applying the ∧ and then the 2-rule, this is transformed into

(b)

∥∥∥∥∥∥3−1i⇒ 3¬p ∨ p

i⇒ 3¬p
.

Applying the left-shift-∨-rule transforms (b) in (c). The RAR is now applicable,
yielding (d).

(c)

∥∥∥∥∥∥3−1i ∧�p⇒ p

i⇒ 3¬p
(d)

∥∥i⇒ 3¬µp.(3−1i ∧�p)

Note that SQEMA would get stuck at system (c), as the standard Ackermann rule
cannot be applied since the positive and negative occurrences of p in the first sequent
cannot be separated.

Translating and negating (phase 3), we get (with a slight abuse of notation)

∃x0(x0 = i ∧ ∀y(Rx0y → µ(P, x).(Rx0x ∧ ∀z(Rxz → P (z)))[y])).

Simplifying, we eventually obtain the local equivalent:

∀y(Riy → µ(P, x).(Rix ∧ ∀z(Rxz → P (z)))[y]).

10
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This is the semantic condition locally corresponding to the Gödel-Löb formula, viz.
local transitivity plus inverse well-foundedness. Since this condition is not first-order
definable, SQEMAeagrec will fail on it.

Example 4.3 [Modified version of the Gödel-Löb axiom] Consider the following mod-
ified version of the Gödel-Löb axiom given by φ2 := 2(2p∧22⊥ → p)→ 2p. Note
that φ2 is a recursive formula. From φ2 we obtain one initial system namely:

(a) ‖ i⇒ 2(3¬p ∨33> ∨ p) ∧3¬p.

Applying the ∧-, 2-, and left-shift-∨-rules transforms this into (b) below, which
in turn is transformed into (c) through the application of the recursive Ackermann
rule:

(b)

∥∥∥∥∥∥3−1i ∧2p ∧22⊥ ⇒ p

i⇒ 3¬p
(c)
∥∥i⇒ 3¬µp.(3−1i ∧2p ∧22⊥)

The rest is routine.
After applying the recursive Ackermann rule, in parallel with the standard ex-

ecution of SQEMArec we can attempt to run the Eager Recursive SQEMA, by un-
folding the fixed-point µp.Φ(p) with Φ(p) = 3−1i ∧ 2p ∧ 22⊥. We find that
Φn(⊥) = (

∧n−1
i=0 2i3−1i) ∧ 22⊥ ∧ 2n⊥ ∧ 2n+1⊥, for n ≥ 2. But then for all n ≥ 2

we have Φn(⊥) ≡ 3−1i∧23−1i∧22⊥. Thus, SQEMAeagrec detects that the fixed-
point stabilizes at stage 2. The pure system obtained will thus have the form

(d) ‖i⇒ 3¬(3−1i ∧23−1i ∧22⊥ ∧22⊥ ∧23⊥).

In stage 3 we find that ∀y∃xST(¬pure(φ2), x) = ∃xST(i∧2(3−1i∧23−1i∧22⊥∧
22⊥∧23⊥), x), which simplifies to ∀z(R2yiz → Ryiz)∧¬∃uR3yiu. This corresponds
to local transitivity of the current state and non-existence of successors more than
2 steps away.

Example 4.4 [Van Benthem’s incomplete formula] Van Benthem’s formula φvB =
23> → 2(2(2p → p) → p) is locally equivalent on frames to 23> → 2⊥, and
axiomatizes an incomplete modal logic ([31]). By simple equivalent transformations
(replacing some implications with disjunctions) it is transformed into the recursive
formula

¬23> ∨2(¬2(2p→ p) ∨ p).

In phase 1 φvB is preprocessed to become 23> ∧3(2(3¬p ∨ p) ∧ ¬p). In phase 2
a single initial system is constructed:

(a) ‖ i⇒ 23> ∧3(2(3¬p ∨ p) ∧ ¬p).

Through applications of the ∧ and 3-rules, it is transformed into (b) below, and

11
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then, by the application of the 2 and left-shift-∨-rules, into (c):

(b)

∥∥∥∥∥∥∥∥∥∥∥∥

i⇒ 23>

i⇒ 3k

k⇒ ¬p

k⇒ 2(3¬p ∨ p)

(c)

∥∥∥∥∥∥∥∥∥∥∥∥

i⇒ 23>

i⇒ 3k

k⇒ ¬p

3−1k ∧2p⇒ p

It should be clear that SQEMA would fail on this formula, since there is no possibility
of separating the negative and positive occurrences of p in the last sequent. Indeed,
it must fail, because SQEMA succeeds only on canonical formulae. However, the
recursive Ackermann-rule can be applied to (c) to obtain:

(d)

∥∥∥∥∥∥∥∥∥
i⇒ 23>

i⇒ 3k

k⇒ ¬µp.(3−1k ∧2p)

The algorithm now performs phase 3 and returns a local FOµ frame equivalent for
φvB.

By using some ad hoc reasoning we can derive from (d) the local condition
23> → 2⊥ mentioned above. It suffices to show that k → ¬µp.(3−1k ∧ 2p)
is a validity, and hence can be omitted from the system, thus producing from
the resulting reduced system the pure formula i → (23> ∧ 3k) which is eas-
ily seen to yield the desired local condition. Equivalently, we must show that
¬(k → ¬µp.(3−1k ∧ 2p)) ≡ k ∧ µp.(3−1k ∧ 2p) is not satisfiable. For that,
we will show that in any Kripke model the state sk where k is evaluated cannot
belong to the extension of µp.(3−1k ∧ 2p). Indeed, by transfinite induction we
will prove that sk /∈ Φα(∅) for any ordinal α, where Φ(Z) = 3−1sk ∩ 2Z. The
case of α a limit ordinal is straightforward, because then Φα(∅) =

⋃
β<α Φβ(∅). For

the case of α = β + 1, let X = Φβ(∅). We will show, by contraposition, that if
sk ∈ Φα(∅) = Φ(Φα(∅)) = Φ(X) then sk ∈ X. Indeed, if sk ∈ 3−1sk ∩ 2X then
sk ∈ 3−1sk hence sk is reflexive. Therefore, sk ∈ 2X implies sk ∈ X.

Note, however, that SQEMAeagrec will fail to compute a first-order condition for
φvB, since the fixed-point µp.Φ(p) does not stabilize in the finite. Thus, in order to
succeed on φvB, the algorithm SQEMArec must be extended with a mechanism that
would detect the redundancy of the valid 3rd sequent in the system (d).

Example 4.5 [Grzegorczyk formula] Grzegorczyk’s formula (also known as ‘Dum-
mett’s axiom’ in [31]) Grz(p) := 2(2(p → 2p) → p) → p is a well known formula
in modal logic, often related to the Gödel-Löb formula. We have seen that SQEMA
succeeds on the Gödel-Löb formula, but, as we will show now, SQEMArec fails on
Grz(p).

Preprocessing yields 2(3(p ∧3¬p) ∨ p) ∧ ¬p. The initial system is thus ‖ i ⇒
2(3(p∧3¬p)∨ p)∧¬p, which the application of the ∧ and 2-rules can transforms
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into ∥∥∥∥∥∥3−1i⇒ 3(p ∧3¬p) ∨ p

i⇒ ¬p
.

This system cannot be brought into the shape which makes even the monotonicity-
based recursive Ackermann-rule (see section 6.2) applicable, since the negative and
positive occurrences in the first sequent cannot be separated. The algorithm thus
reports failure and terminates.

This failure does not imply that Grz(p) does not have a local condition in FOµ. In
fact, one local condition for this formula is proposed in [31], p.48. It is a conjunction
GRZ(x)′ of the following three formulae:

Ref(x) Rxx — local reflexivity at x,

Tr(x) ∀y∀z(Rxy ∧Ryz → Rxz) — local transitivity at x, and

Rchain′(x) there is no R-chain x = x0Rx1 . . . Rxn . . . such that xi 6= xi+1 for every
i = 0, 1, . . ..

The following structure, however, provides a counterexample to the local frame
equivalence of Grz(p) and this condition at x0. Let
W = {x0, x1, x2, x3} and letR = {(x0, x0), (x0, x1), (x0, x2), (x0, x3), (x1, x2), (x2, x3), (x3, x1)}.

It is easy to see thatR satisfies the conditions Ref(x0), Tr(x0) but not Rchain′(x0).
Yet, Grz(p) is locally valid at x0.

Instead of the condition Rchain′(x) consider the slightly modified condition:

Rchain(x) there is no R-chain x = x0Rx1 . . . Rxn . . . such that x2i 6= x2j+1 for every
i, j = 0, 1, . . ..

Now let GRZ(x) be the conjunction of Ref(x), Tr(x) and Rchain(x). Then it is not
difficult to see that in any frame (W,R) and x ∈ W , Grz(p) is locally valid at x iff
GRZ(x) holds.

The proof from right to left goes as follows. Suppose that Grz(p) is not true at
x. Then one can construct by induction an infinite R-chain x = x0Rx1 . . . Rxn . . .

such that x2i 6= x2j+1 for every i, j = 0, 1, . . ., contradicting in this way condition
Rchain(x).

For the direction from left to right we can reason by contraposition.
Case 1. Suppose that ¬Rxx. Define the valuation V (p) = W − {x}. This

valuation falsifies Grz(p) at x.
Case 2. Suppose ¬Tr(x). Then there exist x1, x2 ∈W such that Rxx1, Rx1x2,

but ¬Rxx2. Then x 6= x1 6= x2. Define the valuation V (p) = W − {x, x2}, and
hence x1 ∈ V (p). This valuation falsifies Grz(p) at x.

Case 3. Suppose that ¬Rchain(x). Then there exists anR-chain x = x0Rx1 . . . Rxn . . .

such that x2i 6= x2j+1 for every i, j = 0, 1, . . .. Define the valuation V (p) = W−{x2i |
i = 0, 1, . . .}. Then we have that x2j+1 ∈ V (p) for j = 0, 1, . . .. This valuation fal-
sifies Grz(p) at x, which completes the proof.

Let us note that the global condition (∀x)GRZ′(x) is a global equivalent of Grz(p),
as it was noted in [3], page 137. This condition is expressible in FOµ by the
following formula: ∀x(xRx∧∀y, z(xRy∧ yRz → yRz)∧¬ν(P, z).Φ(P, z)[x]), where
Φ(P, z) = ∃w(zRw ∧ z 6= w ∧ P (w)). To verify that this formula indeed defines
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condition (∀x)GRZ′(x) it suffices to check that, for any frame F = (W,R) and
w ∈ W , if there is an infinite R-path zw1w2 . . . starting from z with z 6= w1 and
wi 6= wi+1 for all i then F |= ν(P, z).Φ(P, z)[z := w]. Indeed, we have

Φn(W ) = {z ∈W | ∃w1, . . . , wn(Rzw1∧
∧

1≤i<n
Rwiwi+1∧z 6= w1∧

∧
1≤i<n

wi 6= wi+1)},

and hence that

Φω(W ) =
⋂
i∈ω

Φi(W, z) = {z ∈W | ∃w1, . . . (Rzw1∧
∧
1≤i

Rwiwi+1∧z 6= w1∧
∧
1≤i

wi 6= wi+1)}.

Clearly Φω+1(W ) = Φ(Φω(W )) = Φω(W ), i.e., the fixed-point stabilizes at ω + 1.
The desired result follows.

As far as local correspondence with FOµ is concerned, we have no proof yet that
the local condition GRZ(x) of Grz(p) is expressible in FOµ, so we leave that as an
open question.

5 Correctness, canonicity and scope of SQEMArec

In this section we will establish three results. Firstly, we will prove that SQEMArec is
correct in the sense that the returned FOµ-formula is always a local frame equivalent
for the input. Secondly, we will show that all ML-formulae on which the eager
version of SQEMArec succeeds are canonical and hence axiomatize complete modal
logics. Thirdly, we will prove that SQEMArec successfully computes FOµ-equivalents
for all recursive formulae. For the sake of the correctness and canonicity results we
will need the following notions.

We begin by noting that, although SQEMArec takes input from ML, its execution
invariably leads into the richer languages of HML and HMLµ. To cope with the
possible shortage of singleton sets when interpreting the nominals of the latter
language over descriptive frames, we define the following.

Definition 5.1 An augmented model based on a descriptive frame g = (W,R,W)
is any model (g, V ) such that V send propositional variables to members of W, as
usual, and nominals to arbitrary singletons subsets of W .

Definition 5.2 Let M = (f, V ) and M′ = (f, V ′) be two models over the same
(Kripke or general) frame f, and let AT be a set of atoms (i.e., of propositional
variables and/or nominals). We say that M and M′ are AT-related if

(i) V ′(p) = V (p) or V ′(p) = W − V (p) for all propositional variables p ∈ AT, and

(ii) V ′(j) = V (j) for all nominals j ∈ AT.

The next definition is intended to capture two types of equivalence that can
hold between the successive systems of sequents obtained during an execution of
SQEMArec. Hereafter, we denote the set of atoms occurring in a formula φ by
AT(φ).
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Definition 5.3 Formulae φ, ψ ∈ HMLµ are transformation equivalent, denoted
φ ≡tr ψ, if for every model M = (F, V ) such that M 
 φ there exists an (AT(φ) ∩
AT(ψ))-related model M′ = (F, V ′) such that M′ 
 ψ, and vice versa.

Formulae φ, ψ ∈ HMLµ are transformation equivalent over descriptive frames,
denoted φ ≡dtr φ, if for every augmented model M = (g, V ) based on a descriptive
frame g, such thatM 
 φ there exists an (AT(φ)∩AT(ψ))-related augmented model
M′ = (g, V ′) based on g such that M′ 
 ψ, and vice versa.

Definition 5.4 An execution of SQEMArec is sound on descriptive frames if for ev-
ery system of sequents Sys obtained during that execution and every system Sys′ ob-
tained from Sys by the application transformation rules, Form(Sys) ≡dtr Form(Sys′).

Similarly, an execution of SQEMArec is sound on Kripke frames if for every
system of sequents Sys obtained and every system Sys′ obtained from it by the
application transformation rules, Form(Sys) ≡tr Form(Sys′).

5.1 Correctness

We will now establish the correctness of the algorithm in terms of local equivalence
of the input modal formula to the returned FOµ-formula. The key to this result is
the following lemma:

Lemma 5.5 Every execution of SQEMArec is sound on Kripke frames.

Proof. It is sufficient to show that whenever a system Sys′ results from a system
Sys through the application of a SQEMArec transformation rule, it is the case that
Form(Sys) ≡tr Form(Sys′). The case of the recursive Ackermann-rule is justified by
Lemma 4.1; the cases for all other transformation rules are the same as in [9]. 2

The proof of the following theorem is, modulo reference to Lemma 5.5, essentially
the same as that of the correctness part of Theorem 4.15 in [9], or as Theorem 4.3
in [10]:

Theorem 5.6 (Correctness of SQEMArec) If SQEMArec succeeds on a formula
φ ∈ ML then the FOµ-formula returned is a local frame correspondent of φ.

5.2 Canonicity of SQEMAeagrec-reducible ML-formulae

In [9] it was shown that all SQEMA-reducible formulae are canonical and hence
axiomatize complete logics. In contrast, as we saw in example 4.2, SQEMArec suc-
cessfully terminates on some formulae, such as the Löb axiom, which are known to
be non-canonical. Even worse, SQEMArec succeeds on van Benthem’s incomplete
formula (example 4.4). It follows that no canonicity results are to be expected for
the basic version of this algorithm. However, if we restrict our attention to the
eager version, SQEMAeagrec, we can indeed obtain a canonicity result.

Proposition 5.7 If SQEMArec succeeds on a ML-formula φ in such a way that the
execution is sound both on descriptive and Kripke frames, then φ is d-persistent.

Proof. Suppose SQEMArec succeeds on φ ∈ ML in such a way that the execution is
sound both on descriptive and Kripke frames. Further, for simplicity and without
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loss of generality, assume that the execution does not branch because of disjunctions.
We may make this assumption since any conjunction of d-persistent formulae is d-
persistent. Let Sys1,Sys2, . . . ,Sysm be the sequence of systems produced during the
execution. Hence Sys1 is the initial system ‖i ⇒ ¬φ, and Sysm is the final, pure
system and pure(φ) = Form(Sysm).

Let g = (W,R,W) be a descriptive frame and w ∈W . Then (g, w) 
 φ iff there
is no augmented valuation V on g such that V (i) = {w} and (g, V ) 
 ¬i∨¬φ. But,
(since Form(Sys1) = ¬i∨¬φ, and the execution is sound on descriptive frames) the
latter is the case iff there is no augmented valuation V on g such that V (i) = {w}
and (g, V ) 
 pure(φ). Since nominals can range over all singletons, the latter is the
case iff there is no valuation V on the underlying Kripke frame g] of g, such that
V (i) = {w} and (g], V ) 
 pure(φ). By soundness on Kripke frames this, in turn, is
the case iff there is no valuation V on g] such that V (i) = {w} and (g], V ) 
 ¬i∨¬φ.
This is the case iff (g], w) 
 φ. 2

In [9] it is shown that the original algorithm SQEMA is sound on both descrip-
tive and Kripke frames. The main hurdle to be overcome there was to show that a
suitable analogue of Ackermann’s Lemma holds over descriptive frames. Indeed, the
lemma does not generalize to descriptive frames without adaptation. However, a re-
stricted version does hold, the formulation of which requires the following definition:

Definition 5.8 A formula φ ∈ HML is syntactically closed (open) if all occurrences
of nominals and 3−1 in φ are positive (negative), and all occurrences of 2−1 in φ

are negative (positive) or, equivalently, when written in negation normal form, φ is
positive (negative) in all nominals and contains no occurrences of 2−1 (3−1).

Clearly ¬ maps syntactically open formulae to syntactically closed formulae, and
vice versa.

Lemma 5.9 (Ackermann’s Lemma for Descriptive Frames [9]) Suppose A ∈
HML is a syntactically closed formula not containing p and B(p) ∈ HML is a syn-
tactically open formula which is negative in p. Then

((A→ p) ∧B(p)) ≡dtr B(A/p).

We are now ready to prove the main theorem of this subsection.

Theorem 5.10 All SQEMAeagrec-reducible ML-formulae are canonical.

Proof. We begin by noting that no fixed-point operator is ever introduced during
the execution of SQEMAeagrec. Indeed, the only rule that could introduce such a
operator is RAR. However, in SQEMAeagrec the expression µp.A is replaced in the
substitution by an equivalent one, obtained as some finite unfolding of the fixed-
point. Hence the entire execution of SQEMAeagrec on a ML-input formula proceeds
in the fragment HML.

Let us call sequents of the form j⇒ 3k introduced by the 3-rule diamond-link
sequents. An easy induction on the application of transformation rules shows that,
apart from diamond-link sequents, all sequents α⇒ β obtained during the execution
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of SQEMAeagrec are always such that α is syntactically closed and β is syntactically
open. Also note that, because they are pure, diamond-link sequents can never be
involved in the substitutions performed during any application of RAR.

Combining these observations with Lemma 5.9 we find that any application of
RAR by SQEMAeagrec preserves transformation equivalence over descriptive frames.
That it also preserves transformation equivalence on Kripke frames follows by
Lemma 4.1. From this and the easily verifiable fact that all other rules also preserve
these equivalences, it follows that all executions of SQEMAeagrec are sound on both
descriptive and Kripke frames. The theorem now follows by Proposition 5.7. 2

Example 5.11 We saw in example 4.3 that SQEMAeagrec successfully computes a
local frame equivalent for the modified Gödel-Löb formula 2(2p∧22⊥ → p)→ 2p.
By Theorem 5.10 we can now also conclude that this formula is canonical.

5.3 Completeness of SQEMArec for all recursive formulae

The following theorem illustrates the scope of the SQEMArec-algorithm.

Theorem 5.12 SQEMArec succeeds on all recursive formulae.

Proof. First, note that the negation of any recursive formula is built, up to seman-
tic equivalence, from conjunctions, disjunctions, and diamonds applied to negative
formulae and box-formulae. Preprocessing transforms such a formula into a disjunc-
tion of formulae built from negative formulae and box-formulae using conjunctions
and diamonds. By successive application of the ∧-rule and 3-rule, SQEMArec will
strip off all diamonds and conjunctions and will produce a system of equations of 3
types:

(i) j⇒ 3k,

(ii) j⇒ β, where β is a negative formula,

(iii) j⇒ α, where α is a box-formula (rewritten in negation normal form).

Now, it suffices to process every formula of the third type by applying successively,
on the construction of the respective box-formula, the 2-rule and the left-shift ∨-
rule (after replacing all implications by disjunctions), until the respective sequent
reaches the shape POS ⇒ p, where p is the head of the processed box-formula and
POS is a positive formula. Indeed, all formulae that go to the left-hand side in that
process are antecedents of implications used in the construction of the box-formula,
to which inverse diamonds then get applied.
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After every sequent of type 3 has been processed, the system becomes:∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

A1(p1, . . . , pn)⇒ p1

· · ·

An(p1, . . . , pn)⇒ pn

B1(p1, . . . , pn)

· · ·

Bm(p1, . . . , pn)

C1

· · ·

Ck

where

(i) p1, . . . , pn are variables, that can be assumed different,

(ii) A1, . . . , An are positive formulae over p1, . . . , pn,

(iii) B1, . . . , Bm are negative formulae over p1, . . . , pn, and

(iv) C1, . . . , Ck are pure hybrid formulae.

Now, all variables can be eliminated from such system by applying RAR, thus com-
pleting the execution of SQEMArec. 2

6 Further extensions of the algorithm

SQEMArec is amenable to various extensions and variations, of which we will briefly
present three.

6.1 Polyadic extensions of SQEMArec

The polyadic version of the recursive formulae was defined in [21], where it was
shown that all polyadic recursive formulae (there called ‘regular formulae’) are lo-
cally FOµ-definable. A simple example of a polyadic recursive formula which is not
inductive is [ι2](¬[2](p, p), 〈2〉(p, p)). It defines the following non-elementary frame
condition on frames with one ternary relation R: “For every x the binary relation
Rx on the remaining two variables y and z has an unoriented cycle of odd length.”

The polyadic SQEMA was developed in [10]. The recursive extension of the
Ackermann rule for the polyadic SQEMA is essentially analogous to the monadic
case, and most of the results presented here generalize without any essential diffi-
culty beyond the technical overhead of considering polyadic languages. It must be
noted, however, that the proof of the canonicity result for polyadic SQEMA is sig-
nificantly more involved than in the monadic case. Accordingly it is to be expected
that a proof that all formulae reducible by the polyadic version of SQEMAeagrec are
canonical would involve similar complications.
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6.2 Semantic extensions

An obvious generalization of the (ordinary) modal version of Ackermann’s lemma
(see e.g. [9]) replaces the requirements of positivity and negativity on the formu-
lae involved with their semantic correlates, namely upward and downward mono-
tonicity, respectively. Different ‘semantic’ versions of SQEMA which arise from the
replacement of the ordinary Ackermann-rule with a monotonicity based version,
justified by this generalization of the Ackermann lemma, have been developed in
[7].

If one is willing to extend the syntax of HMLµ to allow for fixed-point operators
over upward monotone formulae, one can obtain a similar generalization of the re-
cursive Ackermann rule RAR to a monotonicity based version MRAR. Let us call the
extension of SQEMArec with this rule SQEMAmonrec. Of course, for a rule like MRAR
to be of any practical use one will have to be able to effectively test HMLµ-formulae
for monotonicity. By the following lemma, the proof of which is almost immediate,
one may effectively reduce testing for monotonicity to testing satisfiability.

Lemma 6.1 An HMLµ-formula φ(p) is downwards monotone in p iff 
 φ(p) →
φ(p ∧ q) where q is any variable not occurring in φ(p).

Using the decidability of the satisfiability for HMLµ from [27], the applicability
of MRAR may be effectively tested, and moreover our extension of HMLµ allowing
fixed-point operators over monotone formulae is justified in the sense that the syntax
would remain decidable.

As far as the canonicity result for SQEMAeagrec is concerned we recall that the
proof of this result depended on the syntactic shape (viz. syntactic openness and
closedness) of formulae involved in the application of RAR. After one application of
MRAR this shape of the remaining sequents may be spoiled, and hence subsequent
applications of MRAR may not fall under Lemma 5.9. It is not clear at present if and
how this difficulty can be circumvented and hence we leave it as an open question
whether all formulae on which the semantic version of SQEMAeagrec succeeds are
canonical. In [7] some restrictions and modifications of the semantic algorithm which
would guarantee canonicity were proposed. It should be possible to obtain a similar
effect by making analogous modifications to a semantic version of SQEMAeagrec.

6.3 Recursive extensions of SQEMA with substitutions

In the recent work [11], SQEMA was extended with a mechanism for computing and
applying suitable substitutions that transform an input formula into an inductive
one, and thus enable the algorithm to successfully complete its FO-equivalent. In
particular, the so extended algorithm succeeds on all ‘complex formulae’, introduced
in [28].

Likewise, there are many non-recursive modal formulae that can be transformed
by means of substitutions to ones amenable to applying the recursive Ackermann
rule. That idea can be seamlessly incorporated into the recursive extensions of
SQEMA, thus expanding their scope further and, in particular, enabling them to
deal with ‘complex recursive formulae’ [11]. The following is an interesting example
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of a complex recursive formula which is not a recursive one (see [30]): 〈U〉(¬p ∧ ¬q) ∧ 〈U〉(¬p ∧ q) ∧ 〈U〉(p ∧ ¬q) ∧ 〈U〉(p ∧ q)

∧[U ](3(p ∨ q)→ (p ∨ q)) ∧ [U ](3p→ (p ∨ ¬q)) ∧ [U ](3(p ∧ q)→ (¬p ∨ q))

 → ⊥
The above formula has a local equivalent in FOµ, which in symmetric Kripke frames
(W,R) (considered as graphs) with [U ] interpreted as the universal modality and
〈U〉 as the corresponding diamond modality, has the following global equivalent
(C3) which says that the graph (W,R) has at most three connected components:

(∀x0, x1, x2, x3)(∃k ≥ 0)(∃i, j)(0 ≤ i < j ≤ 3)(xiRkxj) (C3)

For instance, the connectedness of a symmetric frame (W,R) can be expressed by
the following condition (expressible also in FOµ)

(∀x, y)(∃k)(xRky) (C1)

(C1) is modally definable (in symmetric frames) by the following recursive formula

〈U〉¬p ∧ 〈U〉p ∧ [U ](♦p⇒ p)⇒ ⊥.

7 Conclusion

We have developed extensions of the algorithm SQEMA employing a recursive ver-
sion of the Ackermann-rule, that can be used for computing FOµ-equivalents of
modal formulae, thus proposing an algorithmic approach to the correspondence
theory between modal logic and FOµ. We have demonstrated the applicability of
the proposed method on a number of well known and new modal formulae defining
non-elementary frame conditions. A number of problems and directions for further
investigation remain open. Perhaps the most intriguing of them is if the notion of
canonicity can be appropriately relaxed so that a suitable version of SQEMArec can
not only compute FOµ-correspondents of input formulae, but also establish (non-
canonical) completeness of the modal logics axiomatized by those input formulae
on which it succeeds.
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Appendix: The basic algorithm SQEMA

Here we present very briefly the basic algorithm SQEMA for the reader’s conve-
nience; for more detail, see [9].
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First, some terminology — an expression of the form φ ⇒ ψ with φ, ψ ∈ Lnr
is called a SQEMA-sequent 5 , with φ and ψ the antecedent and consequent of the
sequent, respectively. A finite set of SQEMA-sequents is called a SQEMA-system.
We set Form(φ ⇒ ψ) := ¬φ ∨ ψ and, for a system Sys, we let Form(Sys) be the
conjunction of all Form(φi ⇒ ψi) for all sequents φi ⇒ ψi ∈ Sys.

Given a formula φ ∈ L as input, SQEMA processes it in three phases, with the
goal to reduce φ first to a suitably equivalent pure, and then first-order formula.

Phase 1 (preprocessing) — The negation of φ is converted into negation normal
form, and 3 and ∧ are distributed over ∨ as much as possible, by applying the
equivalences 3(ψ ∨ γ) ≡ 3ψ ∨ 3γ and δ ∧ (ψ ∨ γ) ≡ (δ ∧ ψ) ∨ (δ ∧ γ). For each
disjunct of the resulting formula

∨
φ′i a system Sysi is formed consisting of the single

sequent i⇒ φ′i, where i is a reserved nominal used to denote the state of evaluation
in a model, and not allowed to occur in the input formula φ. These are the initial
systems in the execution.

Phase 2 (elimination) — The algorithm now proceed separately on each initial
system, Sysi, by applying to it the transformation rules listed in table 1. The
aim is to eliminate from the system all occurring propositional variables. If this is
possible for each system, we proceed to phase 3, else the algorithm report failure
and terminates. The rules in table 1 are to be read as rewrite rules, i.e., they
replace sequents in systems with new sequents or, in the case of the Ackermann-
rule, systems with new systems. Note that each actual elimination of a variable
is achieved through an application of the Ackermann-rule while the other rules
are used to solve the system for the variable to be eliminated, i.e., to bring the
system into the right form for the application of this rule. The applicability of
the Ackermann-rule can be determined with the help of a suitable modal theorem
prover.

We will call the sequents of the form j⇒ 3k which are introduced by the 3-rule
diamond-link sequents.

Phase 3 (translation) — This phase is reached only if all systems have been
reduced to pure systems, i.e., systems Sysi with Form(Sysi) a pure formula. Let
Sys1, . . . ,Sysn be these systems. Recalling that φ was the input to the algorithm,
we will write pure(φ) for the formula (Form(Sys1)∨· · ·∨Form(Sysn)). The algorithm
now computes and returns, as local frame correspondent for the input formula φ,
the formula ∀y∃x0ST(¬pure(φ), x0) where y is the tuple of all occurring variables
corresponding to nominals, but with yi (corresponding to the designated current
state nominal i) left free, since a local correspondent is being computed.

A formula on which SQEMA succeeds will be called SQEMA-reducible, or simply
reducible.

Finally, to note that the algorithm can be strengthened further by adding more
transformation rules facilitating some propositional reasoning, see [9].

5 In [9] sequents are called ‘equations’ because of the analogy with solving systems of linear equations.
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Table 1
SQEMA Transformation Rules

Rules for connectives

C ⇒ (A ∧B)
C ⇒ A,C ⇒ B

(∧-rule)
A⇒ C,B ⇒ C

A ∨B ⇒ C
(∨-rule)

C ⇒ (A ∨B)
(C ∧ ¬A)⇒ B

(left-shift ∨-rule)
(C ∧A)⇒ B

C ⇒ (¬A ∨B) (right-shift ∨-rule)

A⇒ 2B

3−1A⇒ B
(2-rule)

3−1A⇒ B

A⇒ 2B
(inverse 3-rule)

j⇒ 3A

j⇒ 3k, k⇒ A
(3-rule∗)

∗where k is a new nominal
not occurring in the sys-
tem.

Polarity switching rule

Substitute ¬p for every occurrence of p in the system.

Ackermann-rule

The system

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

A⇒ p

B1(p)

· · ·

Bm(p)

C1

· · ·

Ck

is replaced by

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

B1(A/p)
...

Bm(A/p)

C1

· · ·

Ck

where:

(i) p does not occur in A,C1, . . . , Ck;

(ii) Form(B1) ∧ · · · ∧ Form(Bm) is negative in p.

(We have added the ∨-rule to the system in order to simplify the Ackermann rule
from [9] by enabling all sequents of the type A⇒ p to be put together.)
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