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ABSTRACT.In [CON 06b] we introduced the algorithmSQEMA for computing first-order equiv-
alents and proving canonicity of modal formulae, and thus established a very general cor-
respondence and canonical completeness result.SQEMA is based on transformation rules,
the most important of which employs a modal version of a result by Ackermann that enables
elimination of an existentially quantified predicate variable in a formula, provided a certain
negative polarity condition on that variable is satisfied. In this paper we develop several exten-
sions ofSQEMA where that syntactic condition is replaced by a semantic one, viz. downward
monotonicity. For the first, and most general, extensionSemSQEMA we prove correctness
for a large class of modal formulae containing an extension of the Sahlqvist formulae, defined
by replacing polarity with monotonicity. By employing a special modal version of Lyndon’s
monotonicity theorem and imposing additional requirements on the Ackermann rule we obtain
restricted versions ofSemSQEMA which guarantee canonicity, too.

KEYWORDS:Modal correspondence and completeness, algorithmSQEMA, Sahlqvist formulae,
inductive formulae, Lyndon monotonicity, canonicity.

Dedicated to our teacher and collaborator Dimiter Vakarelov, on the occasion of
70th anniversary of his birthday.

Introduction

Every modal formula defines a second-order condition on Kripke frames. Yet, as
is well known, may modal formulae actually characterize first-order definable frame
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classes. We will call such formulaeelementary. Because of the great computational
and theoretical advantages of first-order over second-order logic it is desirable to iden-
tify as large as possible classes of elementary modal formulae. Unfortunately, by Cha-
grova’s Theorem ([CHA 91]), the elementarity problem for modal formulae is algo-
rithmically undecidable. Thus, if the classes of elementary formulae we are interested
in are to be decidable, we have to content ourselves with approximations.

Several such approximating classes are known from the literature. Membership is
often specified in terms of syntactic shape as, for example, in the case of the Sahlqvist
([SAH 75]) and inductive formulae ([GOR 06b]). Another approach to the determina-
tion of a classes of elementary formulae is algorithmic. Forexample, one can feed the
second-order translation of a modal-formula to a second-order quantifier elimination
algorithm like SCAN ( [GAB 92, GOR 03]) or DLS ([SZA 93, CON 06a]).

The most recent method for computing first-order frame correspondents for modal
formulae is based on the algorithmSQEMA, introduced in [CON 06b]. The name
SQEMA is an acronym forSecond-order Quantifier Elimination in Modal logic us-
ing Ackermann’s Lemma. This algorithm works directly with the modal syntax, thus
eliminating any translation into second order logic. It wasshown in [CON 06b] that
SQEMA successfully computes first-order frame equivalents for all Sahlqvist and in-
ductive formulae. Perhaps the most interesting feature ofSQEMA is the fact that it
is also anautomated completeness prover, since every formula on which it succeeds
is provably canonical. In [CON 06c]SQEMA was extended to polyadic and hybrid
languages.

The core of theSQEMA engine is a transformation rule based on a modal version
of Ackermann’s Lemma [ACK 35] stated further. In the currentpaper we consider
three extensions ofSQEMA based on a more general version of this lemma, where
the syntactic notion of negativity is replaced with its semantic correlate — monotonic-
ity. This, coupled with the fact that monotonicity is an effectively decidable property
of modal formulae, immediately yields a semantic versionSemSQEMA of SQEMA
with a significantly enlarged scope of applicability. In particular, we introduce a
new ‘semantic’ generalization of the Sahlqvist formulae and show thatSemSQEMA
successfully computes first-order equivalents for these formulae. However, we can-
not claim that the most general semantic versionSemSQEMA of SQEMA guaran-
tees canonicity, and in the rest of the paper we develop more involved variants of
SemSQEMA for which canonicity can be proved.

The paper is organized as follows. After providing some preliminaries, in section
2 we introduce the algorithmSemSQEMA based on the semantic version of Ack-
ermann’s Lemma and illustrate it with some examples. In section 3 we present the
general framework of the canonicity proof for theSQEMA-reducible formulae and
show why this proof fails forSemSQEMA. In section 4 we study the relationship
between the monotonicity and polarity of formulae in more detail, and prove ver-
sions of Lyndon’s monotonicity theorem which respect the specific syntactic shapes
of formulae needed to make the canonicity proof work. In section 5 we introduce and
study a modificationSemClsSQEMA of SemSQEMA in which the application of
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the rule based on Ackermann’s Lemma is slightly restricted.This restriction enables
us to prove that allSemClsSQEMA-formulae are canonical. We then show that
all semantic Sahlqvist formulae areSemClsSQEMA-reducible and hence canonical.
In section 6 we introduce another variant,SemRepSQEMA, which requires the ex-
plicit replacement of monotone formulae with positive onesand eventually guarantees
canonicity, too. In the last section we outline an algorithmfor more efficient computa-
tion of such positive equivalents working under some natural additional assumptions.
In a concluding section we discuss briefly some open questions related to the semantic
approach presented here.

1. Preliminaries

In this section we collect some basic definition and notations. Any undefined
terms are as in [BLA 01]. We assume countably infinite disjoint sets ofproposi-
tional variablesandnominalsPROP andNOM, respectively. The member ofAT :=
PROP ∪NOM will be referred to asatoms. The languageLnr is given by the abstract
syntaxϕ ::= ⊥ | p | i | ¬ϕ | ϕ ∨ ψ | 3ϕ | 3

−1ϕ for p ∈ PROP andi ∈ NOM.
The sublanguagesLr, Ln andL are obtained by omitting the clauses fori, 3−1, both,
respectively. The boolean connectives→, ∧ and↔ are defined as usual, and as usual
2ϕ := ¬3¬ϕ and2

−1ϕ := ¬3
−1¬ϕ. We writePROP(ϕ), NOM(ϕ), andAT(ϕ)

for the sets of propositional variables, nominals, and atoms, respectively, occurring
in ϕ. By writing ϕ(a) we mean thatAT(ϕ) ⊆ a, wherea is a vector (or vectors) of
atoms. Formulaϕ is pure if AT(ϕ) ⊆ NOM.

A formula is innegation normal formif it is written without the use of the con-
nectives→ and↔, and the negation sign appears only directly in front of atoms. An
occurrence of an atoma in a formulaϕ is positive(negative) if it is in the scope of an
even (odd) number of negations.ϕ is positive(negative) in a if all occurrences ofa in
ϕ are positive (negative).

A Kripke frameis a pairF = (W,R) with W a non-empty set andR ⊆ W 2

a binary relation onW . A Kripke modelbased on a frameF = (W,R) is a pair
M = (F, V ) with V a valuationassigning to everyp ∈ PROP a setV (p) ⊆ W
where it is true, and to everyi ∈ NOM a singleton subsetV (i) of W where it is
true. ModelsM = (W,R, VM ) andN = (W,R, VN ) based on the same frame
F = (W,R) are called p-variants, denotedM ∼p N , if VM (q) = VN (q) for all
q ∈ AT − {p}.

Thetruthof anLnr -formulaϕ at a pointm in a Kripke modelM, denoted(M,m) 


ϕ, is defined as usual. Particularly,(M,m) 
 3ϕ iff there is a pointn ∈W such that
Rmn and(M, n) 
 ϕ, and(M,m) 
 3

−1ϕ iff there is a pointn ∈ W such that
Rnm and(M, n) 
 ϕ.

Based on this truth definition a valuationV can be extended from atoms to all
formulae in a unique way. We will accordingly writeV (ϕ) for {m ∈ W | (M,m) 


ϕ} whenM = (W,R, V ) is understood. We writeM 
 ϕ if ϕ is true at every point
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in M. Similarly we write(F,m) 
 ϕ and sayϕ is valid atm in F if (M,m) 
 ϕ
for every modelM based onF, and writeF 
 ϕ, sayingϕ is valid on F, if M 
 ϕ
for all modelsM based onF. These notations are extended to sets of formulas in the
usual way.

Given a setΓ of formulas and a formulaϕ, we writeΓ 
 ϕ if ϕ is true at every
point in every model where all members ofΓ are true. We writeΓ 
mod ϕ if M 
 Γ
impliesM 
 ϕ for all modelsM.

Two modal formulaeϕ andψ aresemantically equivalent, denotedϕ ≡sem ψ,
if they are true at the same points in any Kripke model. Further, ϕ andψ aremodel
equivalent, denotedϕ ≡mod ψ, if M 
 ϕ iff M 
 ψ, for all modelsM.

DefineL0 to be the first-order language with=, a binary relation symbolR, and
disjoint sets of individual variablesVAR = {x0, x1, . . .} and{yi | i ∈ NOM}. Also,
letL1 be the extension ofL0 with a sets of unary predicates{P0, P1, . . .} correspond-
ing to the propositional variables inPROP. L-formulae are translated intoL1 by
means of the usualstandard translationfunction ST(·, ·). Recall thatST(ϕ, x) is
defined by induction onϕ. ParticularlyST(i, x) := yi = x for everyi ∈ NOM and
ST(3ϕ, x) := ∃y(Rxy∧ST(ϕ, y)), wherey is the first variable inVAR not appearing
in ST(ϕ, x).

Of course, a Kripke model is nothing but anL1-structure and a Kripke frame
nothing but anL0-structure. Indeed, we have for any modelM and any formula
ϕ ∈ Lnr , that (M,m) 
 ϕ iff M |= ST(ϕ, x)[x := m]. Similarly, any frameF,
(F,m) 
 ϕ iff F |= ∀P∀yST(ϕ, x)[x := m] whereP is the vector of all predicates
corresponding to propositional variables andy that of all variables corresponding to
nominals occurring inϕ.

A first-order formulaα(x) ∈ L0 with one free variable is alocal frame correspon-
dentfor a formulaϕ ∈ Lnr if, for any Kripke frameF and pointw in F, it holds that
(F, w) 
 ϕ iff F |= α[x := w].

A general frameg = (W,R,W) is the augmentation of a Kripke frameF =
(W,R) with an algebraW of subsets ofW (called admissible subsets) which is
closed under the boolean operations and under the operation〈R〉(X) = {y ∈ W |
Ryx for somex ∈ X}. Note that we donot require closure under〈R−1〉. A model
based on a general frameg = (W,R,W) is a model(W,R, V ) with V anadmissible
valuation, i.e.,V (a) ∈ W for all a ∈ AT. g♯ = (W,R) is theunderlying Kripke frame
of g = (W,R,W). A formula ispersistentwith respect to a classC of general frames
if for all g ∈ C, g 
 ϕ impliesg♯ 
 ϕ.

We will often identify Lnr -formulae and theoperatorsdefined by them on the
(powersets of) the domains of (general) frames. That is to say, for ϕ(a) ∈ Lnr ,
g = (W,R,W) a general frame, andX a tuple of subsets ofW we write ϕ(X)
for V (ϕ) in (g, V ) whereV is any (possibly non-admissible) valuation assigningX
to a.
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With every general frameg = (W,R,W) we associate the topological space
(W,T (g)) whereT (g) is the topology havingW as a basis of clopen sets. The set
of all closed sets (with respect toT (g)) is denoted byCls(g). We further writeSgl(g)
for the set{{w} | w ∈W} of all singleton subsets ofW .

DEFINITION 1. — A general frameg = (W,R,W) is said to be:

differentiated if for everyx, y ∈ W , x 6= y, there existsX ∈ W such thatx ∈ X
andy 6∈ X (equivalently, ifT (g) is Hausdorff);

tight if for all x, y ∈ W it is the case thatRxy iff x ∈
⋂

{〈R〉(Y ) | Y ∈ W andy ∈
Y } (equivalently, ifR is point-closed, i.e.,R({x}) = {y ∈ W | Rxy} is closed
in T (g) for everyx ∈ W );

compact if every family of admissible sets fromW with the finite intersection property
(FIP) has non empty intersection (equivalently, ifT (g) is compact). Recall that
a family of sets has FIP if any finite subfamily has non-empty intersection;

descriptive if it is differentiated, tight and compact.

The usual way of proving canonicity of a modal formula is to show that is persis-
tent with respect to the class of descriptive general frames, or d-persistent, for short.

2. Ackermann’s Lemma and a ‘semantic’ extension of SQEMA

The core result on which the originalSQEMA-algorithm [CON 06b], as well as
the extensions we introduce in this paper, are based, is a modal version of a lemma
by Ackermann (Lemma 3). In this section we show how the algorithmic potential of
this lemma can be better exploited than it has been in previous papers onSQEMA,
by noting that, in the formulation of the lemma, the syntactic notion ofnegativitycan
be replaced by the more generalsemanticnotion ofmonotonicity, and that this latter
semantic property is amenable to algorithmic treatment. This leads to a generalized
version ofSQEMA which we will introduce and callSemSQEMA. We will illus-
trateSemSQEMA with examples and by developing a new extension of the class of
Sahlqvist formulae, the members of which areSemSQEMA-reducible.

2.1. Ackermann’s Lemma

DEFINITION 2. — A formulaϕ ∈ Lnr is said to beupward monotone(respectively,
downward monotone) in a propositional variablep, if V (ϕ) ⊆ V ′(ϕ) wheneverM =
(W,R, V ) ∼p M′ = (M,R, V ′) andV (p) ⊆ V ′(p) (respectively,V ′(p) ⊆ V (p)).

ϕ ∈ Lnr is said to beglobally upward monotone(respectively,globally downward
monotone) in a propositional variablep, if M 
 ϕ impliesM′ 
 ϕ wheneverM =
(W,R, V ) ∼p M′ = (W,R, V ′) andV (p) ⊆ V ′(p) (respectively,V ′(p) ⊆ V (p)).
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It is easy to see (by induction onϕ) that the positivity (negativity) ofϕ in p is
sufficient, but not necessary, for its upward (downward) monotonicity in p. Further
monotonicity clearly implies global monotonicity, but notconversely. Indeed,(p ∧
2¬p) is globally upward monotone inp but not upward monotone inp.

The following, taken from [CON 06b], is a modal analogue of the lemma first
proved by Ackermann in [ACK 35]. For another version see [SZA93]. For conve-
nience of presentation this lemma is often formulated in a more restricted way, by
replacing downward monotonicity with negativity.

LEMMA 3 (MODAL ACKERMANN LEMMA ). — LetA,B(p) beLnr -formulae such
that the propositional variablep does not occur inA andB(p) is globally downward
monotone inp. Then for any modelM, it is the case thatM 
 B(A) iff M′ 
 (A→
p) ∧B(p) for someM′ ∼p M.

PROOF. — Let M = (W,R, V ). If M 
 B(A), thenM′ 
 (A → p) ∧ B(p)
for the model(W,R, V ′) = M′ ∼p M such thatV ′(p) = V (A). Conversely, if
M′ 
 (A→ p) ∧B(p) for some modelM′ ∼p M, thenM′ 
 B(A/p) sinceB(p)
is downwards monotone inp. Therefore,M 
 B(A/p). ■

The proof of the next lemma is straightforward.

LEMMA 4. — AnLnr -formulaϕ(p) is downwards monotone inp iff


 ϕ(p) → ϕ(p ∧ q)

whereq is any variable not occurring inϕ(p).

Hence, the question of the monotonicity of anLrn-formula in a propositional vari-
able can be effectively reduced to the question of the validity of a relatedLrn-formula,
a problem which is decidable and EXPTIME-complete (see [ARE00]). (By the way,
note that testing validity is effectively reducible to testing monotonicity: 
 ϕ iff
q → ϕ is upwards monotone inq, whereq is a variable not occurring inϕ.)

It follows, that the applicability of Lemma 3 can be effectively determined in EX-
PTIME. In this paper we explore some consequences of that simple insight. In par-
ticular we develop ‘semantic’ versions ofSQEMA. The wordsemanticindicates the
fact that we have exchanged the syntactic property of negative/positive polarity for its
semantic correlate — monotonicity.

2.2. The algorithm SemSQEMA

Some terminology — an expression of the formϕ ⇒ ψ with ϕ, ψ ∈ Lnr is called
a SQEMA-sequent1, with ϕ andψ the antecedentand consequentof the sequent,
respectively. A finite set ofSQEMA-sequents is called aSQEMA-system. We set
Form(ϕ⇒ ψ) := ¬ϕ ∨ ψ and, for a systemSys, we letForm(Sys) be the conjunc-
tion of all Form(ϕi ⇒ ψi) for all sequentsϕi ⇒ ψi ∈ Sys.

1. In [CON 06b] sequents are called ‘equations’ because of the analogy with solving systems
of linear equations.
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Table 1. SemSQEMA Transformation Rules
Rules for connectives

C ⇒ (A ∧B)

C ⇒ A,C ⇒ B
(∧-rule)

j ⇒ 3A

j ⇒ 3k, k ⇒ A
(3-rule∗)

C ⇒ (A ∨B)

(C ∧ ¬A) ⇒ B
(left-shift∨-rule)

(C ∧A) ⇒ B

C ⇒ (¬A ∨B)
(right-shift∨-rule)

A⇒ 2B

3−1A⇒ B
(2-rule)

3
−1A⇒ B

A⇒ 2B
(inverse3-rule)

∗wherek is a new nominal not occurring in the system.

Polarity switching rule

Substitute¬p for every occurrence ofp in the system.

(Semantic) Ackermann-rule

The system

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

A1 ⇒ p
...
An ⇒ p
B1(p)
...
Bm(p)
C

is replaced by

∥

∥

∥

∥

∥

∥

∥

∥

∥

B1((A1 ∨ . . . ∨An)/p)
...
Bm((A1 ∨ . . . ∨An)/p)
C

where:

1) p does not occur inA1, . . . , An orC;

2) Form(B1) ∧ · · · ∧ Form(Bm) is downwards monotone inp.

Given a formulaϕ ∈ L as input,SemSQEMA processes it in three phases, with
the goal to reduceϕ first to a suitably equivalent pure, and then first-order formula.

Phase 1 (preprocessing) —The negation ofϕ is converted into negation normal
form, and3 and∧ are distributed over∨ as much as possible, by applying the equiv-
alences3(ψ ∨ γ) ≡ 3ψ∨3γ andδ ∧ (ψ ∨ γ) ≡ (δ ∧ψ)∨ (δ ∧ γ). For each disjunct
of the resulting formula

∨

ϕ′
i a systemSysi is formed consisting of the single sequent
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i ⇒ ϕ′
i, wherei is a reserved nominal used to denote the state of evaluation in a model.

These are theinitial systemsin the execution.

Phase 2 (elimination) —The algorithm now proceed separately on each initial sys-
tem,Sysi, by applying to it the transformation rules listed in table 1. The aim is to
eliminate from the system all occurring propositional variables. If this is possible for
each system, we proceed to phase 3, else the algorithm reportfailure and terminates.
The rules in table 1 are to be read as rewrite rules, i.e., theyreplace sequents in sys-
tems with new sequents or, in the case of the semantic Ackermann-rule, systems with
new systems. Note that each actual elimination of a variableis achieved through an
application of the semantic Ackermann-rule while the otherrules are used to solve the
system for the variable to be eliminated, i.e., to bring the system into the right form
for the application of this rule. The applicability of the semantic Ackermann-rule can
be determined with the help of Lemma 4 and a suitable modal theorem prover.

We will call the sequents of the formj ⇒ 3k which are introduced by the3-rule
diamond-link sequents.

Phase 3 (translation) —This phase is reached only if all systems have been re-
duced to pure systems, i.e., systemsSysi with Form(Sysi) a pure formula. Let
Sys1, . . . ,Sysn be these systems. Recalling thatϕ was the input to the algorithm,
we will write pure(ϕ) for the formula(Form(Sys1)∨ · · · ∨Form(Sysn)). The algo-
rithm now computes and returns, as local frame correspondent for the input formula
ϕ, the formula∀y∃x0ST(¬pure(ϕ), x0) wherey is the tuple of all occurring variables
corresponding to nominals, but withyi (corresponding to the designated current state
nominali) left free, since a local correspondent is being computed.

A formula on whichSemSQEMA succeeds will be calledSemSQEMA-reducible,
or simplyreducible.

REMARK 5. — A few remarks are in order:

1) Notice the requirement in the Ackermann-rule that theconjunctionB1 ∧ · · · ∧
Bm, rather than the individual sequents be downwards monotone. Since monotonicity
as a property is generally not preserved under taking subformulae, this ensures a wider
applicability of the rule. We could of course further widen the scope of the rule by
requiring only global monotonicity.

2) By replacing the requirement of downward monotonicity inthe Ackermann-
rule by that of negativity, we obtain the originalSQEMA-algorithm.

3) Noting (2) and the relationship between monotonicity andpolarity discussed
above, it should be clear that allSQEMA-reducible formulae are alsoSemSQEMA-
reducible.

4) By adding further transformation rules facilitating some propositional reason-
ing (as is done in [CON 06b] and [GAB 06]) the algorithm can be strengthened.

2

The algorithm is best illustrated by an example:
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EXAMPLE 6. — Consider the input formulaϕ := 32p→ 3(32¬p ∧ 22p).

Phase 1 ofSemSQEMA negates this formula, produces a negation normal form,
distributes∧ and3 over∨, and produces the single initial system

‖i ⇒ 32p ∧ 2(23p ∨ 33¬p). (1)

Phase 2 now proceeds, and by applying the∧ and3-rules to (1), produces the system
∥

∥

∥

∥

∥

∥

i ⇒ 3j

j ⇒ 2p
i ⇒ 2(23p ∨ 33¬p)

. (2)

An application of the2-rule transforms (2) into
∥

∥

∥

∥

∥

∥

i ⇒ 3j

3
−1j ⇒ p

i ⇒ 2(23p ∨ 33¬p)
. (3)

System (3) is now ready for the application of the Ackermann rule, asi → 2(23p ∨
33¬p) is downward monotone inp. Indeed, as the reader can check, the consequent
of this formula is semantically equivalent to2(23⊤∨33¬p). The Ackermann-rule
is now applied producing the system:

∥

∥

∥

∥

i ⇒ 3j

i ⇒ 2(233
−1j ∨ 33¬3

−1j)
. (4)

The algorithm proceeds to phase 3, withpure(ϕ) equal to(¬i∨3j)∧(¬i∨2(233
−1j∨

33¬3
−1j)). Negatingpure(ϕ), translating and simplifying yields the first-order lo-

cal frame correspondent toϕ.

Let us note that the originalSQEMA-algorithm would fail on this input formula,
since it would not be able to separate the positive and negative occurrences ofp
(specifically those in the last sequent in (2)) required for the applicability of the syntax-
based Ackermann-rule. 2

The correctnessSemSQEMA can be proved in exactly the the same as that of
SQEMA ([CON 06b]), only the soundness of the sematic Ackermann-rule must be
justified by an appeal to Lemma 3 rather than to the usual syntax based version of that
lemma. Thus, we have:

THEOREM 7 (CORRECTNESS). — If SemSQEMA succeeds on a formulaϕ ∈ L
then the first-order formula returned is a local frame correspondent forϕ.

2.3. The semantic Sahlqvist formulae

In [CON 06b] it was proven thatSQEMA successfully computes first-order frame
correspondents for all Sahlqvist [SAH 75] and inductive [GOR 06b] formulae. We
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now define a generalization of the Sahlqvist class, the members of which are all
SemSQEMA-reducible, as will be seen.

DEFINITION 8. — A boxed atom is a propositional variable prefixed with finitely
many (possibly none)2’s. A downward (upward) monotone blockis a formula which
is downward (upward) monotone in all propositional variables occurring in it. A
semantic Sahlqvist antecedentis a formula built up from⊤, ⊥, boxed atoms, and
downward monotone blocks, using∧, ∨, and3. A semantic Sahlqvist implicationis
a formula of the formϕ → UpMon whereϕ is a semantic Sahlqvist antecedent and
UpMon is an upward monotone block. Asemantic Sahlqvist formulais built up from
semantic Sahlqvist implications by applying∧, ∨ and2.

Note that:

– Every (semantic) Sahlqvist implication is semantically equivalent to a negation
of a (semantic) Sahlqvist antecedent; consequently, every(semantic) Sahlqvist for-
mula is semantically equivalent to the negation of a (semantic) Sahlqvist antecedent.2

– Every Sahlqvist formula is a semantic Sahlqvist formula: to define the latter we
have simply replaced in the definition of the former ‘negative formulae’ with ‘down-
ward monotone blocks’ and ‘positive formulae’ with ‘upwardmonotone blocks’.

EXAMPLE 9. — The formula32p → 3(32¬p ∧ 22p) from Example 6 is a se-
mantic Sahlqvist implication: recall that3(32¬p ∧ 22p) is an upward monotone
block semantically equivalent to the positive formula3(32⊥∧ 22p).

Likewise, the formula3(2(23q ∨ 33¬q) ∧ p) ∨ 2q → 3(32¬p ∧ 22p) is a
semantic Sahlqvist implication, as the antecedent is builtfrom the boxed atomsp and
2q and the downward monotone block2(23q ∨ 33¬q) ≡sem 2(23⊤ ∨ 33¬q).

2

The following lemma will be useful, and can be proved along the same lines as
Lemma 5.1. in [CON 06b].

LEMMA 10. — Let ϕ be a semantic Sahlqvist formula, andϕ′ the formula ob-
tained from¬ϕ by importing the negation over all connectives. Thenϕ′ is a semantic
Sahlqvist antecedent.

Note that all semantic Sahlqvist formulae are inL. Let ageneralized monotone
blockbe anLnr -formula which is downward monotone in all occurring propositional
variables. The class ofgeneralized semantic Sahlqvist formulaeis obtained by replac-
ing everywhere in the definition of the semantic Sahlqvist formulae ‘monotone block’
with ‘generalized monotone block’.

LEMMA 11. — Let Sys be a system ofSemSQEMA sequents of the formj → β,
with j a nominal andβ a generalized semantic Sahlqvist antecedent built up with-
out using∨, except possibly inside monotone blocks. Letp be any propositional

2. This fact could be used to give a simplified, but semantically equivalent, definition of the
class of Sahlqvist formulae, see e.g., [CON 06b].
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variable occurring in a boxed atom inSys. ThenSys can be transformed, using
SemSQEMA-transformation rules, into a systemSys′, not containingp, and again
with all sequents of the formj → β.

PROOF. — In Sys all occurrences ofp which are not in monotone blocks are in
boxed atoms, and these last are at most in the scope of∧ and3. Thus, by applying
the∧ and3-rules one can transformSys into a system in which each sequent is of
the form either (i)j ⇒ β for some nominalj and some generalized semantic Sahlqvist
antecedentβ in which p occurs only in monotone blocks, or (ii)j ⇒ 2

np for some
nominalj andn ∈ N. The sequents of type (ii) can all by transformed into the form
(3−1)nj ⇒ p by applying the2-rule, and then the semantic Ackermann-rule can be
applied to eliminatep, yielding a system of the desired shape. (Note that the (gener-
alized) monotone blocks are still downward monotone in the remaining propositional
variables after the substitution prescribed by the semantic Ackermann-rule has been
done.) ■

THEOREM 12. — All semantic Sahlqvist-formulae areSemSQEMA-reducible, and
hence elementary.

PROOF. — Letϕ be any semantic Sahlqvist-formula, given as input toSemSQEMA.
In phase 1¬ϕ is transformed into a formula of the from

∨

ϕi by exhaustive distribu-
tion of∧ and3 over∨. Thus, eachϕi is a semantic Sahlqvist antecedent in which all
occurrences of∨ are within monotone blocks. For eachϕ the initial system‖i ⇒ ϕi
is formed. Since each such initial system is of the from required by Lemma 11, the
theorem now follows by induction on the number of propositional variables occurring
in eachϕi. ■

We note that this result is presented here mainly in order to demonstrate the scope
of applicability ofSemSQEMA; otherwise, it can be obtained directly from Sahlqvist’s
theorem by using the facts that every semantic Sahlqvist-formula is semantically equiv-
alent to a standard Sahlqvist-formula (this follows by the analogue of Lyndon’s The-
orem forL proven in [RIJ 97]), and that semantic equivalence preserves both local
first-order correspondence and d-persistence of formulae.

3. SemSQEMA and canonicity

Besides the first-order correspondence established bySQEMA, all SQEMA-reducible
L-formulae axiomatize complete modal logics. To be precise,for any setΣ of SQEMA-
reducibleL-formulae, the logicK⊕Σ is strongly sound and complete with respect to
its class of Kripke frames. In [CON 06b] this result was established by showing that
all SQEMA-reducibleL-formulae arecanonical, i.e., valid on their canonical frames.
In this section we outline, in a modular way, a general framework for proving canon-
icity for formulae reducible by an algorithm likeSemSQEMA. We will show why
SemSQEMA fails to fit into this framework.
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3.1. D-persistence and SQEMA

Here we will attempt to extend the framework for proving canonicity of SQEMA-
reducible formulae from [CON 06b] toSemSQEMA.

First, note that, althoughSemSQEMA-takes input fromL, its execution invari-
ably leads us into the richer languageLnr . To cope with the possible shortage of sin-
gletons when interpreting the nominals of the latter language over descriptive frames,
we make the following definition:

DEFINITION 13. — Anaugmented modelbased on a descriptive frameg = (W,R,W)
is any model(g, V ) such thatV send propositional variables to members ofW, as
usual, and nominals to arbitrary singletons subsets ofW .

DEFINITION 14. — Let M = (f, V ) andM′ = (f, V ′) be two models over the
same (Kripke or general) framef, and letAT0 ⊆ AT. We say thatM andM′ are
AT0-relatedif

1) V ′(p) = V (p) or V ′(p) = W − V (p) for all propositional variablep ∈ AT0,
and

2) V ′(j) = V (j) for all nominalsj ∈ AT0.

The next definition is intended to capture the type of equivalence which holds
between the successive systems of sequents obtained duringan execution ofSQEMA.
As will be illustrated later, we have not been able to guarantee that this is also the case
for systems obtained bySemSQEMA.

DEFINITION 15. — Formulaeϕ, ψ ∈ Lnr are transformation equivalent, denoted
ϕ ≡tr ψ, if, for every modelM = (F, V ) such thatM 
 ϕ there exists an(AT(ϕ) ∩
AT(ψ))-related modelM = (F, V ′) such thatM′ 
 ψ, and vice versa.

Formulaeϕ, ψ ∈ Lnr are transformation equivalent over descriptive frames, de-
notedϕ ≡dtr ϕ, if, for every augmented modelM = (g, V ) based on a descriptive
frameg, such thatM 
 ϕ there exists an(AT(ϕ)∩AT(ψ))-related augmented model
M = (g, V ′) based ong such thatM′ 
 ψ, and vice versa.

Let us call any algorithm aSemSQEMA versionif it is like SemSQEMA in all
respects except that it could have a possibly different set of transformation rules. Thus,
for example,SQEMA is aSemSQEMA version.

DEFINITION 16. — A SemSQEMA versionAlg is sound on descriptive framesif
for every system of sequentsSys and every systemSys′ obtained from it by the appli-
cationAlg-transformation rules,Form(Sys) ≡dtr Form(Sys′).

Similarly, aSemSQEMA versionAlg is sound on Kripke framesif for every sys-
tem of sequentsSys and every systemSys′ obtained from it by the applicationAlg-
transformation rules,Form(Sys) ≡tr Form(Sys′).

PROPOSITION17. — If a SemSQEMA versionAlg is sound on descriptive frames
and on Kripke frames, then allAlg-reducibleL-formulae are d-persistent.
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PROOF. — Suppose thatAlg succeeds onϕ ∈ L. Further, for simplicity and without
loss of generality, assume that the execution does not branch because of disjunctions.
We may make this assumption since any conjunction of d-persistent formulae is d-
persistent. LetSys1,Sys2, . . . ,Sysm be the sequence of systems produced during
the execution. HenceSys1 is the initial system‖i ⇒ ¬ϕ, andSysm is the final, pure
system andpure(ϕ) = Form(Sysm).

Let g = (W,R,W) be a descriptive frame andw ∈ W . Then(g, w) 
 ϕ iff there
is no augmented valuationV ong such thatV (i) = {w} and(g, V ) 
 ¬i ∨ ¬ϕ. But,
(sinceForm(Sys1) = ¬i ∨ ¬ϕ, andAlg is sound on descriptive frames) the latter
is the case iff there is no augmented valuationV on g such thatV (i) = {w} and
(g, V ) 
 pure(ϕ). Since nominals can range over all singletons, the later is the case
iff there is no valuationV on g♯ such thatV (i) = {w} and(g♯, V ) 
 pure(ϕ). By
soundness on Kripke frames this, in turn, is the case iff there is no valuationV on g♯
such thatV (i) = {w} and(g♯, V ) 
 ¬i ∨ ¬ϕ. This is the case iff(g♯, w) 
 ϕ. ■

In [CON 06b] it is shown that the original algorithmSQEMA is sound on both
descriptive and Kripke frames, and hence that allSQEMA-reducible formulae are
canonical. The main hurdle to be overcome there was to show that a suitable analogue
of Ackermann’s Lemma holds over descriptive frames. Indeed, the lemma does not
generalize to descriptive frames without adaptation, as isshown in example 20 be-
low. However, a restricted version does hold, the formulation of which requires the
following definition:

DEFINITION 18. — A formulaϕ ∈ Lnr is syntactically closed (open)if all occur-
rences of nominals and3−1 in ϕ are positive (negative), and all occurrences of2

−1

in ϕ are negative (positive) or, equivalently, when written in negation normal form,ϕ
is positive (negative) in all nominals and contains no occurrences of2−1 (3−1).

Clearly¬ maps syntactically open formulae to syntactically closed formulae, and
vice versa.

LEMMA 19 (ACKERMANN’ S LEMMA FOR DESCRIPTIVEFRAMES,[CON 06B]). —
SupposeA ∈ Lnr is a syntactically closed formula not containingp andB(p) ∈ Lnr is
a syntactically open formula which is negative inp. Then

((A→ p) ∧B(p)) ≡dtr B(A/p).

The following example shows that we cannot, in general, liftthe requirement in
Lemma 19 of syntactic closedness and openness ofA andB, respectively.

EXAMPLE 20. — Letg = (W,R,W) be the general frame with underlying Kripke
frame pictured in figure 1. Note thatω is reflexive while all other points are irreflexive.
Further, the only successor ofω+1 isω, while the relation in the submodel generated
by ω is transitive. LetW = {X1 ∪ X2 ∪ X3 | Xi ∈ Xi, i = 1, 2, 3}, whereX1

contains all finite (possibly empty) sets of natural numbers, X2 contains∅ and all sets
of the form{x ∈ W | n ≤ x ≤ ω} for all n ∈ ω, andX3 = {∅, {ω + 1}}. It is not
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ω + 1 ω 3 2 11 0

transitive

Figure 1. A descriptive frame

difficult to check thatg is descriptive. (This general frame is given in example 8.52in
[CHA 97].)

Note, that{ω + 1} is an admissible set, but that3
−1({ω + 1}) = {ω}, which

is not admissible. Hence the algebra of admissible sets is not closed under the3−1

operator.

Now, consider a modelM = (W,R, V ) based upon the general frameg and with
V (i) = {ω + 1}. Then, consider the formulaψ := (3−1i → p) ∧ (¬p ∨ 3

−1i).
Ackermann’s Lemma (Lemma 3) is applicable to this formula, with A = 3

−1i and
B = (¬p ∨ 3

−1i). Note that whileA is syntactically closed,B is not syntactically
open. Now applying the lemma transformsψ into the tautologyψ′ := ¬3

−1i∨3
−1i.

Even thoughM 
 ψ′, there exists nop-variantM′ (based upong) of M such that
M′ 
 ψ. Indeed, any suchp-variant would have to evaluatep to {ω} which is not an
admissible set ofg. 2

It is easy to prove that whenever the Ackermann-rule is applied during an execution
of SQEMA, the syntactic conditions of Lemma 19 are always met. This, however,
is not the case forSemSQEMA, as is illustrated in example 21 below. It is not
known at this stage whetherSemSQEMA is sound on descriptive frames or whether
SemSQEMA-reducible formulae are always canonical. In sections 5 and6 below, we
introduce two variants ofSemSQEMA for which weare able to prove soundness on
descriptive frames and hence also the canonicity of formulae reducible by them.

EXAMPLE 21. — Consider the formula

(2(23p ∨ 33¬p ∨ q) ∧ 2p) → 32¬q ∧ 22q.

As the reader can check,SQEMA will fail on this formula. Here is whatSemSQEMA
does with it. Applying the∧-rule to the resulting initial system we obtain:

∥

∥

∥

∥

∥

∥

i ⇒ 2(23p ∨ 33¬p ∨ q)
i ⇒ 2p
i ⇒ 23q ∨ 33¬q

.
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Note that this system cannot be solved forp, since neither the positive nor the negative
occurrence ofp in the first sequent can be isolated by the application of transformation
rules. However, the first sequent is downwards monotone inp. Indeed, as we have
noted earlier, the formula23p∨33¬p is semantically equivalent to23⊤∨33¬p.
Hence, if we apply the2-rule to obtain the system

∥

∥

∥

∥

∥

∥

i ⇒ 2(23p ∨ 33¬p ∨ q)
3

−1i ⇒ p
i ⇒ 23q ∨ 33¬q

,

we can apply the semantic Ackermann-rule to eliminatep:
∥

∥

∥

∥

i ⇒ 2(233
−1i ∨ 332

−1¬i ∨ q)
i ⇒ 23q ∨ 33¬q

.

Solving forq we obtain
∥

∥

∥

∥

3
−1i ∧ ¬(233

−1i ∨ 332
−1¬i) ⇒ q

i ⇒ 23q ∨ 33¬q
.

Now, recalling that23q ∨ 33¬q ≡sem 23⊤ ∨ 33¬q and applying the semantic
Ackermann-rule again we get a pure formula.

Notice, however, that in this application of the semantic Ackermann-rule the an-
tecedent of the first sequent (i.e., the formulaA in the Ackermann-equivalence(A →
p) ∧ B(p) ≡ B(A)) is not syntactically closed, since it contains both a negative oc-
currence of3−1 and a negative nominal occurrence. Attempting to first eliminate the
variableq would lead to the same problem. Therefore, we cannot claim d-persistence
of the input formula based on itsSemSQEMA-reduction.

2

4. Lyndon-type Theorems for syntactically closed and open formulae

In this section we show that syntactically closed upward monotone formulae al-
ways have syntactically closed positive equivalents. As a corollary, a similar result
holds for syntactically open downward monotone formulae. These theorems are ana-
logues ofLyndon’s monotonicity theoremfor first-order logic ([LYN 59]), and are
obtained by making use of a suitable variation of the notion of bisimulation which we
will call a syntactically closed simulation. These results and techniques will be essen-
tial for justifying the canonicity claims we make for the algorithmsSemClsSQEMA
andSemRepSQEMA presented in sections 5 and 6.

Let N
+ := N ∪ {∞}. As usual∞ + n = ∞− n = ∞ for anyn ∈ N.

DEFINITION 22. — Letρ ∈ N
+. A ρ-bisimulationrelating a pointed model(M,m)

to a pointed model(N , n) is any family{Zi}0≤i<ρ+1 of relationsZi ⊆WM ×WN ,
between the domains of the models, withZi ⊆ Zi+1, 0 ≤ i < ρ, satisfying the
following conditions:
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(Link) mZ0n.

(Local harmony) if (u, v) ∈
⋃

0≤i<ρ+1 Zi then(M, u) 
 a iff (N , v) 
 a for all
a ∈ AT.

(Forth) if uZiv, i < ρ, andRMuu′, thenRN vv′ for somev′ ∈ N such that
u′Zi+1v

′; similarly if uZiv andRMu′u, thenRN v′v for somev′ ∈ N such
thatu′Zi+1v

′.

(Back) a similar condition foruZiv, i < ρ, andRN vv′ / RN v′v.

We will use the notation(M,m) ⇄ρ (N , n) to indicate that there exists aρ-bisimulation
relating (M,m) to (N , n). We will writeZ : (M,m) ⇄ρ (N , n) if a particular ρ-
bisimulationZ is of importance.

It should be clear that an∞-bisimulation is just an ordinary bisimulation for the
langaugeLnr . Recall that the modal depth of anLnr -formulaϕ, denoteddepth(ϕ),
is the maximum depth of nesting of modal operators inϕ. It is well-known that for
all ϕ ∈ Lnr with depth(ϕ) ≤ ρ ∈ N

+ it holds that(M,m) 
 ϕ iff (N , n) 
 ϕ,
whenever(M,m) ⇄ρ (N , n).

The following bisimulation notion is designed to preserve syntactically closedLnr -
formulae which are positive (or upward monotone) in certainpropositional variables.

DEFINITION 23. — Let Θ ⊆ PROP be a possibly empty set of propositional vari-
ables andρ ∈ N

+. A syntactically closedΘ-ρ-simulationrelating a pointed model
(M,m) to a pointed model(N , n), is any family{Zi}0≤i<ρ+1 of relationsZi ⊆
WM ×WN , between the domains of the models, satisfying the following conditions:

(Link) mZ0n.

(Asymmetric local harmony for Θ) If (u, v) ∈
⋃

Zi andp ∈ Θ, then(M, u) 
 p
implies(N , v) 
 p.

(Asymmetric local harmony for nominals) if (u, v) ∈
⋃

Zi and i ∈ NOM, then
(M, u) 
 i implies(N , v) 
 i.

(Local harmony for propositional variables) if (u, v) ∈
⋃

Zi andp ∈ PROP−Θ,
then(M, u) 
 p iff (N , v) 
 p.

(Reversive Forth) if uZiv, i < ρ, andRMuu′, thenRN vv′ for somev′ ∈ N such
that u′Zi+1v

′; similarly if uZiv andRMu′u, thenRN v′v for somev′ ∈ N
such thatu′Zi+1v

′.

(Non-Reversive Back) if uZiv, i < ρ, andRN vv′, thenRMuu′ for someu′ ∈ M
such thatu′Zi+1v

′.
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We will use the notation(M,m) ⇉
ρ

SC(Θ) (N , n) to indicate that there exists a
syntactically closedΘ-ρ-simulation relating(M,m) to (N , n). We will writeZ :
(M,m) ⇉

ρ

SC(Θ) (N , n) if a particular Θ-ρ-simulationZ is of importance.

LEMMA 24. — Let Θ be a finite, possibly empty set of propositional variables, and
ρ ∈ N

+. Any syntactically closedLnr -formula ϕ of modal depth less thatρ + 1,
which is positive in the propositional variables fromΘ, is preserved under syntacti-
cally closedΘ-ρ-simulations.

PROOF. — By structural induction onϕ, written in negation normal form. ■

The next lemma strengthens Lemma 24, by replacingpositivitywith upward mono-
tonicity.

LEMMA 25. — Let Θ be a finite, possibly empty set of propositional variables, and
ρ ∈ N

+. Any syntactically closedLnr -formulaϕ of modal depth less thanρ + 1,
which is upwards monotone in the propositional variables fromΘ, is preserved under
syntactically closedΘ-ρ-simulations.

PROOF. — Letϕ satisfy the conditions of the lemma and let{Zi}0≤i<ρ+1 be a syn-
tactically closedΘ-ρ-simulation between the models(M,m) and(N , n). Suppose
that(M,m) 
 ϕ.

Let the modelM ⋉ N = (W⋉, R⋉, V ⋉) be defined as follows:W⋉ =
⋃

Zi;
R⋉(u, v)(u′, v′) iff RMuu′ andRNvv′; V ⋉(p) = {(u, v) ∈

⋃

Zi | u ∈ VM(p)}
for all propositional variablesp; andV ⋉(j) = {(u, v) ∈

⋃

Zi | u ∈ VM(j)} for
all nominalsj. Note that for every nominalj whose denotation inM is linked to
a point inN by

⋃

Zi, V ⋉(j) is a singleton due to the asymmetric local harmony
for nominals. All other nominals, however, are interpretedby V ⋉ as∅; to remedy this
defect we tacitly add toM⋉N a new point, unrelated to any other by the accessibility
relation, where we interpret all those nominals, as well as all propositional variables.
The following hold:

(i) (m,n) ∈ W⋉, by construction.

(ii) (M,m) ⇄ρ (M ⋉ N , (m,n)), by routine verification that{Z ′
i}0≤i<ρ+1 with

Z ′
i = {(u, (u, v)) | (u, v) ∈ Zi} satisfies definition 22.

(iii) Hence,(M ⋉ N , (m,n)) 
 ϕ.

(iv) Moreover, (M ⋉ N , (m,n)) ⇉
ρ

SC(Θ) (N , n), by routine verification that
Z ′′
i 0≤i<ρ+1 with Z ′′

i = {((u, v), v) | (u, v) ∈ Zi} satisfies definition 23.

LetM⋌N be obtained fromM⋉N by extending the valuations of the propositional
variables inp ∈ Θ as follows: for every point in(u, v) ∈ M⋌N , let (u, v) ∈ V ⋌(p)
iff v ∈ V N (p). Note thatV ⋉(p) ⊆ V ⋌(p). It follows from the upward monotonicity
of ϕ in the variables fromΘ that(M ⋌N , (m,n)) 
 ϕ. Finally, it is straightforward
to check that(M ⋌ N , (m,n)) ⇉

ρ

SC(∅) (N , n). Hence, by Lemma 24,(N , n) 
 ϕ.
■

Let us denote by(Lnr )ρ
SC(Θ) the set of all syntactically closedLnr -formulae, posi-

tive in all propositional variables isΘ and of modal depth less thatρ+1. We will write
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(M,m) ⇛
ρ

SC(Θ) (N , n) if (M,m) 
 ϕ implies(N , n) 
 ϕ for all ϕ ∈ (Lnr )ρ
SC(Θ).

Note, thatψ ∈ (Lnr )ρ
SC(Θ) iff 3ψ ∈ (Lnr )ρ+1

SC(Θ) iff 2ψ ∈ (Lnr )ρ+1
SC(Θ) iff 3

−1ψ ∈

(Lnr )ρ+1
SC(Θ).

REMARK 26. — (M,m) ⇛
ρ

SC(Θ) (N , n) iff (N , n) 
 ψ implies(M,m) 
 ψ for

all ψ such that¬ψ ∈ (Lρr)
k
SC(Θ), i.e., iff all syntactically open formulae, negative in

the propositional variables inΘ and of modal depth less thanρ + 1 are preserved in
passing from(N , n) to (M,m). 2

In what follows we will have to be more precise about the propositional vari-
ables and nominals that occur in the language. We will therefore denote byLnr (Φ,Ψ)
the languageLnr built over the propositional variables inΦ and the nominals inΨ.
(Lnr (Φ,Ψ))ρ

SC(Θ) is accordingly the restriction ofLnr (Φ,Ψ) to (Lnr )ρ
SC(Θ). The re-

lations⇉
ρ

SC(Θ)(Φ,Ψ) and⇛
ρ

SC(Θ)(Φ,Ψ) are similarly generalized from⇉ρ

SC(Θ) and

⇛
ρ

SC(Θ).

LEMMA 27. — For any pointed models(M,m) and (N , n), set of propositional
variablesΘ, finite setsΦ andΨ respectively of propositional variables and nominals,
andk ∈ N,

(M,m) ⇉
k
SC(Θ)(Φ,Ψ) (N , n) iff (M,m) ⇛

k
SC(Θ)(Φ,Ψ) (N , n).

PROOF. — The left-to-right direction is Lemma 24. In the rest of theproof we
suppress reference toΦ and Ψ — the only important fact about them is that they
are finite, and hence(Lnr )kSC(Θ)(Φ,Ψ) is finite, modulo equivalence. We prove the

right-to-left direction. Suppose that(M,m) ⇛k
SC(Θ) (N , n) and let

Zi = {(u, v) ∈WM ×WN | (M, u) ⇛
k−i
SC(Θ) (N , v)},

for all 0 ≤ i ≤ k. We will show that,{Zi}0≤i≤k is a syntactically closedΘ-
k-simulation linkingm andn. By construction,(m,n) ∈ Z0. It should also be
clear that the symmetric and asymmetric local harmony clauses are satisfied by any
(u, v) ∈

⋃

0≤i≤k Zi = Zk. Suppose that(u, v) ∈ Zi, for some0 ≤ i < k, i.e.,

(M, u) ⇛
k−i
SC(Θ) (N , v). We must show that(u, v) satisfies the back and forth-clauses

required by the definition.

To that end, suppose thatRMuu′. Let SC(Θ)k−i−1(u′) = {ψ ∈ (Lnr )k−i−1
SC(Θ) |

(M, u′) 
 ψ}, i.e. the set of all(Lnr )k−i−1
SC(Θ)-formulae true atu′. We may assume

thatSC(Θ)k−i−1(u′) is finite. Then3
∧

SC(Θ)k−i−1(u′) is an(Lnr )
k−i
SC(Θ)-formula,

such that(M, u) 
 3
∧

SC(Θ)k−i−1(u′). Hence,(N , v) 
 3
∧

SC(Θ)k−i−1(u′),
that is to say,v has aRN -successor, sayv′, such that(N , v′) 


∧

SC(Θ)k−i−1(u′).
It follows that(M, u′) ⇛

k−i−1
SC(Θ) (N , v′), and hence that(u′, v′) ∈ Zi+1. This proves

half of the reversive forth-clause. The other half is symmetric, using the formula
3

−1
∧

SC(Θ)k−i−1(u′) for u′ anRM-predecessor ofu.
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Now for the sake of the non-reversive back-clause, suppose that (u, v) ∈ Zi and
thatRN vv′. Let SO(Θ)k−i−1(v′) = {ψ | ¬ψ ∈ (Lnr )k−i−1

SC(Θ) & (N , v′) 
 ψ},
i.e. the set of all syntactically open formulae of modal depth at most(k − i − 1)
and negative in the propositional variables inΘ which are true atv′. Again, we may
assume thatSO(Θ)k−i−1(v′) is finite. Then3

∧

SO(Θ)k−i−1(v′) is a syntactically
open formula of modal depth at mostk − i, negative in the propositional variables
from Θ, and hence, by remark 26,(M, u) 
 3

∧

SO(Θ)k−i−1(v′). Hence, there is
a u′ such thatRMuu′ and(M, u′) 


∧

SO(Θ)k−i−1(v′). Again, by remark 26 it
follows that(M, u′) ⇛

k−i−1
SC(Θ) (N , v′) and hence that(u′, v′) ∈ Zi+1. Note, by the

way, that we would not be able to prove a reversive back-clause in a similar way, since
3

−1
∧

SO(Θ)k−i−1(v′) is not syntactically open. ■

LEMMA 28. — For any pointed modally saturated (see e.g. [GOR 06a]) models
(M,m) and(N , n), set of propositional variablesΘ, and setsΦ andΨ respectively
of propositional variables and nominals,

(M,m) ⇉
∞
SC(Θ)(Φ,Ψ) (N , n) iff (M,m) ⇛

∞
SC(Θ)(Φ,Ψ) (N , n).

PROOF. — The same as that of Lemma 27, except for the fact that, sincewe now have
to deal with essentially infinite sets of formulae, the modalsaturation of(M,m) and
(N , n) is needed to guarantee the existence of successors satisfyingSC(Θ)k−i−1(u′)
andSO(Θ)k−i−1(v′). ■

THEOREM 29 (LYNDON-TYPE MONOTONICITY THEOREM FOR SYNTACTICALLY

OPEN AND CLOSED FORMULAE). — A syntactically closed (open) formulaϕ ∈ Lnr
is upward (downward) monotone in the propositional variables in a setΘ if and only if
it is semantically equivalent to a syntactically closed (open) formulaϕ′ ∈ Lnr which is
positive (negative) in the propositional variables inΘ and such thatAT(ϕ′) ⊆ AT(ϕ)
anddepth(ϕ′) ≤ depth(ϕ).

PROOF. — The right-to-left direction of the bi-implication is immediate. So, as-
sume thatϕ ∈ Lnr is syntactically closed and upwards monotone in the propositional
variablesΘ, and suppose thatdepth(ϕ) = k. Let

CONS(ϕ) = {ψ ∈ (Lnr (PROP(ϕ),NOM(ϕ)))kSC(Θ) | 
 ϕ→ ψ}.

Note that, because of the boundk on modal depth and the fact thatPROP(ϕ) and
NOM(ϕ) are finite, CONS(ϕ) is a finite set, modulo semantic equivalence. The proof
is complete once we can show that CONS(ϕ) 
 ϕ, since we can then takeϕ′ to be
∧

CONS(ϕ). To this end, suppose that(N , n) 
 CONS(ϕ). Let

N = {ψ | ¬ψ ∈ (Lnr )kSC(Θ) & (N , n) 
 ψ}.

ThenN ∪ {ϕ} is satisfiable, for otherwiseN 
 ¬ϕ, i.e
∧

N 
 ¬ϕ. But then
ϕ 


∨

{¬ψ | ψ ∈ N} and
∨

{¬ψ | ψ ∈ N} ∈ CONS(ϕ) — a contradiction.

Let (M,m) 
 N ∪ {ϕ}. Then, by remark 26,(M,m) ⇛k
SC(Θ) (N , n), hence,

by Lemma 27 we have(M,m) ⇉k
SC(Θ) (N , n), and then by Lemma 25 it follows

that(N , n) 
 ϕ. ■
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5. SemSQEMA with syntactic restrictions

In this section we introduce and study the modified algorithmSemClsSQEMA.
This algorithm is obtained fromSemSQEMA by imposing a slight restriction on the
applicability of the Ackermann-rule, sufficient to enable us to prove that all
SemClsSQEMA-reducible formulae are canonical.

5.1. The algorithm SemClsSQEMA

The algorithmSemClsSQEMA is obtained fromSemSQEMA by replacing in
the latter the semantic Ackermann-rule with the following,restricted version, which
we will call thesemantic Ackermann-rule with test for syntactic closedness:

The system

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

A1 ⇒ p
...
An ⇒ p
B1(p)
...
Bm(p)
C

is replaced by

∥

∥

∥

∥

∥

∥

∥

∥

∥

B1((A1 ∨ . . . ∨An)/p)
...
Bm((A1 ∨ . . . ∨An)/p)
C

where:

1) p does not occur inA1, . . . , An orC;

2) All A1, . . . , An are syntactically closed;

3) Form(B1) ∧ · · · ∧ Form(Bm) is downwards monotone inp.

Thus, this rule is the same as the semantic Ackermann-rule, except for the restric-
tion thatA1, . . . , An are to be syntactically closed. Clearly, we have, as immediate
corollary of Theorem 7, the following

THEOREM30 (CORRECTNESS OFSEMCLSSQEMA). — If SemClsSQEMA suc-
ceeds on a formulaϕ ∈ L then the first-order formula returned is a local frame cor-
respondent forϕ.

5.2. The canonicity of SemClsSQEMA-reducible formulae

As indicated above, our motivation for restrictingSemSQEMA to obtain
SemClsSQEMA, is that we can obtain a canonicity result for the formulae reducible
by the latter. That canonicity result is to topic of this subsection. We will need some
preliminary notions:

We say a modelM = (W,R, V ) is connectedif between every two different
pointsu, v ∈ W there is a(R ∪ R−1)-path. For the rest of this section we will
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assume, without loss of generality, that all models are connected, since for the sake
of the canonicity proof it is sufficient to work with models generated from the point
of evaluation on the reserved nominali. Formulaeϕ, ψ ∈ Lnr arecm-equivalent(for
‘equivalent over connected models’) ifM 
 ϕ iff M 
 ψ, for all connected models
M.

DEFINITION 31. — Let Σ ⊆ Lnr and Θ ⊆ PROP. We say a formulaϕ ∈ Lnr
is sccm-Θ-reflected between models ofΣ (for ‘reflected by syntactically closedΘ-
simulations between connected models’) if for any two connected modelsM 
 Σ and
N 
 Σ, if M ⇉∞

SC(Θ) N andN 
 ϕ, thenM 
 ϕ.

LEMMA 32. — Any formulaϕ ∈ Lnr which is sccm-∅-reflected between models ofΣ,
and is globally downward monotone inΘ ⊆ PROP, is cm-equivalent on models ofΣ
to a syntactically open formula in the vocabulary ofϕ, which is negative inΘ.

PROOF. — Let ϕ be as in the formulation of the lemma. By a construction and
argument very similar to those used in the proof of Lemma 25, it can be seen that in
fact ϕ is sccm-Θ-reflected between models ofΣ. For the rest of the proof we will
write (Lnr )SC(Θ) for (Lnr (PROP(ϕ),NOM(ϕ))∞SC(Θ). Let

CONS(ϕ) := {ψ | ¬ψ ∈ (Lnr )SC(Θ) andΣ ∪ {ϕ} 

mod ψ},

i.e., CONS(ϕ) is the set of all syntactically open (global) consequences of ϕ over
models ofΣ in the vocabulary ofϕ which are negative inΘ. If we can show that
Σ ∪ CONS(ϕ) 
mod ϕ we can appeal to compactness and the proof is complete.
To that aim, letM 
 Σ ∪ CONS(ϕ) with M connected, arbitrarily. Pick any state
m ∈ M and letS := {γ ∈ (Lnr )SC(Θ) | (M, w) 
 γ}. Then there exists a model
N 
 Σ ∪ {ϕ} and pointn ∈ N such that(N , n) 
 S, for else there is a finite subset
{γ1, . . . , γn} ⊆ S such that¬γ1 ∨ · · · ∨ ¬γn ∈ CONS(ϕ), which is a contradiction.

Thus,(M,m) ⇛∞
SC(Θ) (N , n). We may assume, without loss of generality, that

bothM andN are modally saturated, since we know that every model is the bounded
morphic image of a modally saturated model (see e.g. [GOR 06a]). Hence by Lemma
28 there exists a syntactically closed simulationZ : (M,m) ⇉∞

SC(Θ) (N , n). Fur-
ther, by the definition of a syntactically closed simulationand the assumption thatM
is connected, it follows thatZ relates every point inM to some point inN . But then,
sinceϕ is sccm-Θ-reflected, we haveM 
 ϕ. ■

THEOREM33. — All SemClsSQEMA-reducible formulae are d-persistent and hence
canonical.

PROOF. — By Lemma 17 it is sufficient to show thatSemClsSQEMA is sound both
on Kripke and descriptive frames. For that we have to verify that every transforma-
tion rule SemClsSQEMA preserves transformation equivalence and transformation
equivalence on descriptive frames (definition 15). All cases except one are easy to ver-
ify — the only possibly problematic case is to show that the semantic Ackermann rule
with test for syntactic closedness preserves transformation equivalence on descriptive
frames. Note that for any diamond-link sequentj ⇒ 3k, Form(j ⇒ 3k) = ¬j∨3k
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is neither syntactically open nor closed. Given a system of sequentsSys, letDia(Sys)
denote the set of all diamond-link sequents appearing inSys, andSys − Dia(Sys)
the complement ofDia(Sys) in Sys.

CLAIM 1: Let Sysi be any system obtained during the (successful or unsuccess-
ful) execution ofSemClsSQEMA on an input formulaϕ ∈ L. Then the formula
Form(Sysi − Dia(Sysi)) is sccm-∅-reflected between all models.

PROOF OF CLAIM 1: We proceed by induction on the application of transforma-
tion rules. We can verify the base case by noting that each initial system is of the form
‖i ⇒ ϕi whereϕi ∈ L. Thus,Form(i ⇒ ϕi) = ¬i ∨ ϕi is a syntactically open
formula. Therefore, by Lemma 25 and remark 26Form(i ⇒ ϕi) is sccm-∅-reflected
between all models.

We may assume, without loss of generality, that all applications of the3-rule and
polarity switching rule take placebeforethe first application of the Ackermann-rule.
Moreover, for all systemsSys obtained before the first application of the Ackerman
rule, the formulaForm(Sys − Dia(Sys)) is syntactically open and hence, as in the
base case,Form(Sys − Dia(Sys)) satisfies the claim.

Now suppose thatSysi satisfies the claim. We have to verify that any systemSys′i
obtained fromSysi by the application of the∧, ∨, 2 or Ackermann-rules satisfies the
claim. Since the application of any of the first three of theserules in fact maintains
equivalence on models, those cases are immediate. For the case of the Ackermann-
ruleForm(Sysi−Dia(Sysi)) must be of the form(A→ p)∧B(p) wherep does not
occur inA,A is syntactically closed, andB(p) is downward monotone inp. (Actually,
according to the definition of the Ackermann-rule, there canbe an additional conjunct
C, not containingp. To keep notation simpler we will, however, writeB(p) forB(p)∧
C, as the latter formula will clearly also be downward monotone in p.) It follows
for the inductive hypothesis and Lemma 32 thatB(p) is cm-equivalent on models
of of (A → p) to a syntactically open formulaB′(p) which is negative inp. Now,
Form(Sys′i − Dia(Sys′i)) will be of the fromB(A). Suppose thatM andN are
connected models such thatN 
 B(A) and thatM ⇉∞

SC(∅) N . The proof of the
claim will be complete if we can show thatM 
 B(A). By Ackermann’s Lemma
(Lemma 3) there isN ′ ∼p N such thatN ′ ⊢ (A → p) ∧ B(p), and henceN ′ ⊢
(A → p) ∧ B′(p), henceN ′ ⊢ B′(A). SinceM ⇉∞

SC(∅)(PROP−{p},NOM) N ′, M is
connected, andB′(A) is syntactically open, we have by Lemma 25 thatM 
 B′(A).
Again by Ackermann’s Lemma we can findM′ ∼p M such thatM′ ⊢ (A →
p)∧B′(p), hence such thatM′ ⊢ (A→ p)∧B(p), and henceM′ ⊢ B(A). But since
M′ ∼p M andp 6∈ PROP(B(A)), we haveM ⊢ B(A). END PROOF OFCLAIM 1

We can now verify that the semantic Ackermann-rule with testfor syntactic closed-
ness preserves transformation equivalence on descriptiveframes. For that purpose
suppose thatForm(Sysi) is of the form(¬A ∨ p) ∧ B(p) ∧ Form(Dia(Sysi)) with
p not occurring inA, A syntactically closed, andB downward monotone inp. (As
before we will take the possible additional conjunctC as part ofB(p).) By claim 1,
(¬A ∨ p) ∧ B(p) is sccm-∅-reflected between all models, and henceB(p) is sccm-
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∅-reflected between models of(¬A ∨ p). By Lemma 32B(p) is cm-equivalent on
models of(¬A ∨ p) to a syntactically open formulaB′(p) which is negative inp. By
Lemma 19(¬A ∨ p) ∧ B′(p) ≡dtr B

′(A). SinceB(A) andB′(A) are cm-equivalent
on all models and cm-equivalence on all models implies transformation equivalence
on descriptive frames, we conclude that((¬A ∨ p) ∧ B(p)) ≡dtr B(p), and hence
((¬A ∨ p) ∧B(p)) ∧ Form(Dia(Sysi)) ≡

d
tr B(p) ∧ Form(Dia(Sysi)). ■

Armed with this result, we can now fully extend Sahlqvist’s Theorem [SAH 75]
to the semantic Sahlqvist formulae, by adding to the correspondence result (Theorem
12) also the accompanying canonicity result:

THEOREM 34. — All semantic Sahlqvist formulae are canonical.

PROOF. — By glancing at the proofs of Theorem 12 and Lemma 11, we see that,
whenSemSQEMA is run on a semantic Sahlqvist formula, the formulaA1∨· · ·∨An
substituted in the application of the semantic Ackermann-rule is always of the form
(3−1)m1j1 ∨ · · · ∨ (3−1)mnjn. Hence the semantic Ackermann-rule with test for
syntactic closedness is if fact applicable. Hence all semantic Sahlqvist formulae are
SemClsSQEMA-reducible. The result now follows by Theorem 33. ■

6. SemSQEMA with replacement

In the previous section we introduced and studied the algorithmSemClsSQEMA,
obtained fromSemSQEMA by imposing a slight restriction on the application of the
semantic Ackermann-rule. We were able to show thatSemClsSQEMA guarantees
the canonicity of formulae reducible by it. This was done by showing that, even
though the systems produced bySemClsSQEMA do not always satisfy the syntac-
tic conditions required by Lemma 19, they are in fact always suitably equivalentto
systems thatdosatisfy those requirements.

In this section we take another approach — we modifySemSQEMA in a way
that ensures that systems are always ‘syntactically correct’, and which requires no
restriction on the applicability of the semantic Ackermann-rule. The algorithm we
obtain will be calledSemRepSQEMA for ‘semanticSQEMA with replacement’.

6.1. The algorithm SemRepSQEMA

Theorem 29 guarantees the existence of negative, syntactically open equivalents
for formulae which are syntactically open and downward monotone in given proposi-
tional variables. As was illustrated in example 21, the syntactic openness of sequents
is lost through substitution into formulae which are not negative, effected by the appli-
cation of the semantic Ackermann rule. If we were thus to replace downward mono-
tone (conjunctions of) sequents with equivalent negative onesbeforewe applied the
Ackermann-rule, this situation would not arise.
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The algorithmSemRepSQEMA is obtained fromSemSQEMA by replacing in
it the semantic Ackerman-rule with the followingsemantic Ackermann-rule with re-
placement:

The system

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

A1 ⇒ p,
...
An ⇒ p,
B1(p),
...
Bm(p),
C

is replaced by

∥

∥

∥

∥

B′((A1 ∨ . . . ∨An)/p)
C

where:

1) p does not occur inA1, . . . , An orC,

2) Form(B1) ∧ · · · ∧ Form(Bm) is downwards monotone inp, and

3)B′(p) is a sequent such that

a) Form(B′(p)) ≡sem Form(B1) ∧ · · · ∧ Form(Bm),

b) Form(B′(p)) is negative inp and syntactically open.

Here is an example ofSemRepSQEMA at work:

EXAMPLE 35. — Consider the formula

¬(2((¬q ∨ ¬p ∨ 3p) ∧ 3¬r) ∧ 2(¬p ∨ 2r) ∧ 2q ∧ p).

SQEMA will fail on this input, as one can check. Let us see ifSemRepSQEMA fares
any better. After a few applications of the∧-rule the initial system is transformed into

∥

∥

∥

∥

∥

∥

∥

∥

i ⇒ 2((¬q ∨ ¬p ∨ 3p) ∧ 3¬r)
i ⇒ 2(¬p ∨ 2r)
i ⇒ 2q
i ⇒ p

.

(Strictly speaking, conjunction should be distributed over disjunction on the first se-
quent but, as this makes no difference to the rest of the execution, we keep the sequent
as it is for the sake of compactness of notation.) As the system stands,p cannot be
eliminated, butq andr can. Indeed, solving the system forq andr yields

∥

∥

∥

∥

∥

∥

∥

∥

i ⇒ 2((¬q ∨ ¬p ∨ 3p) ∧ 3¬r)
3

−1(3−1i ∧ ¬¬p) ⇒ r
3

−1i ⇒ q
i ⇒ p

,

which, after two applications of the Ackermann-rule, becomes
∥

∥

∥

∥

i ⇒ 2((2−1¬i ∨ ¬p ∨ 3p) ∧ 32
−1(2−1¬i ∨ ¬p))

i ⇒ p
.
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This is whereSQEMA would get stuck. However, the sequenti ⇒ 2((2−1¬i ∨
¬p ∨ 3p) ∧ 32

−1(2−1¬i ∨ ¬p)) is downward monotone inp, henceSemSQEMA
would succeed, but would not prove d-persistence. However,noticing that the formula
(2−1¬i∨¬p∨3p)∧32

−1(2−1¬i∨¬p) is semantically equivalent to32
−1(2−1¬i∨

¬p), enables us to apply the semantic Ackermann-rule with replacement, yielding

∥

∥ i ⇒ 2(32
−1(2−1¬i ∨ ¬i)) .

2

A simple induction, almost identical to that used to prove Lemma 4.13 in [CON 06b],
establishes the following lemma. Recall that diamond-linksequents were sequents of
the formj ⇒ 3k introduced by the3-rule.

LEMMA 36. — During the entire (successful or unsuccessful) execution of
SemRepSQEMA on anyL input formula, all antecedents of non-diamond-link se-
quents are syntactically closed formulae, while all consequents of non-diamond-link
sequents are syntactically open.

We now have:

THEOREM37. — All SemRepSQEMA-reducibleL-formulae are locally first-order
definable and locally d-persistent.

PROOF. — The correctness of the algorithm with respect to the first-order equiva-
lents returned follows in the same way as the correctness ofSemSQEMA (Theorem
7), as does the soundness on Kripke frames. The soundness on descriptive frames
of the transformation rules is also the same as in Theorem 33,except that now the
Ackermann-rule with replacement is justified by Lemmas 19 and 36. ■

REMARK 38. — We have proved that bothSemClsSQEMA andSemRepSQEMA
manage to guarantee canonicity by what may be seen as mitigations of the “seman-
tic thesis”. That is to say, both versions reimpose syntactic criteria on the semantic
Ackermann-rule which are sufficient to make the Ackermann Lemma for descriptive
frames applicable. This lemma requires the formula¬A ∧ B(p) in the usual Ack-
ermann equivalence to be syntactically open.SemClsSQEMA only requires thatA
must be syntactically closed (and hence that¬A is syntactically open), as we are able
to show that during the executionB is in fact always suitably equivalent to a syn-
tactically open formula negative inp. On the other hand,SemRepSQEMA ensures
that¬A ∧ B(p) will always be syntactically open withB(p) negative inp, by doing
suitable equivalence preserving replacements along the way during the execution.2

To demonstrate the strength ofSemRepSQEMA we will show that it succeeds on
all semantically inductive formulae— the semantic extension of the class of (monadic)
inductive formulae introduced in [GOR 06b], defined in the basic modal languageL
as follows.

DEFINITION 39. — Let # be a symbol not belonging toL. Then asemantically
box-form of# in L is defined recursively as follows:
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1) # is a semantically box-form of#;

2) If B(#) is a semantically box-form of# then2B(#) is a semantically box-
form of#;

3) If B(#) is a semantically box-form of# andA is an upward monotone formula
thenA→ B(#) is a semantically box-form of#.

Thus, semantically box-forms of# are, up to semantic equivalence, of the type
�(A1 → �(A2 → . . .�(An → #) . . .), whereA1, . . . , An are upward monotone
formulae inL.

DEFINITION 40. — Given a propositional variablep, a semantically box-formula of
p is the resultB(p) of substitution ofp for # in any semantically box-formB(#). The
last occurrence of the variablep is the head ofB(p) and every other occurrence of a
variable inB(p) is inessential there.

DEFINITION 41. — A semantically regular formulais any modal formula built from
upward monotone formulae and negations of semantically box-formulae by applying
∧,∨, and2.

DEFINITION 42. — Thedependency digraphof a setB = {B1(p1), . . . ,Bn(pn)} of
semantically box-formulae is the digraphG = 〈V,E〉 whereV = {p1, . . . , pn} is the
set of heads inB, andpiEpj iff pi occurs as an inessential variable in a semantically
box-formula fromB with a headpj . A digraph is calledacyclic if it does not contain
oriented cycles.

DEFINITION 43. — A semantically inductive formulais a semantically regular for-
mula with an acyclic dependency digraph of the set of all semantically box-formulae
occurring as subformulae in it.

We note that semantic Sahlqvist formulae are, up to semanticequivalence, pre-
cisely those semantically regular formulae in which the semantically box-formulae
are justboxed atoms, i.e., propositional variables prefixed by possibly empty strings
of boxes. Thus, all semantic Sahlqvist formulae belong to a simple particular case of
semantically inductive formulae, where the dependency digraph has no arcs at all.

An example of a semantically inductive formula which is not asemantic Sahlqvist
formula is¬p ∨ ¬�(3(32¬p ∧ 22p) → �q) ∨ 3��(23¬q ∨ 33q).

THEOREM44. — All semantically inductive formulae areSemRepSQEMA-reducible,
and hence locally first-order definable and locally d-persistent.

PROOF. — (Sketch) Any semantically inductive formulaϕ can be regarded as ob-
tained from an inductive formulaϕ′ by replacing some positive subformulae by up-
wards monotone ones. It has been proved in [CON 06b] thatSQEMA succeeds on
every inductive formula, by eliminating the variables in anorder extending the partial
ordering determined by the (acyclic) dependency graph of that formula. Now, given
a successful execution ofSQEMA onϕ′, it can be transformed to a successful exe-
cution ofSemRepSQEMA onϕ by applying Theorem 29, whenever necessary, with
every application of the semantic Ackermann-rule with replacement. It can be shown
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by induction on the number of eliminated variables that the conditions of that theorem,
guaranteeing the existence of a suitable replacement, are satisfied. ■

Again, this result can be obtained as direct consequence from the local first-order
definability and and d-persistence of inductive formulae proved in [GOR 06b]; but
here we show that all these formulae are within the range ofSemRepSQEMA.

6.2. Computing syntactically correct equivalents

The semantic Ackermann-rule with replacement requires negative syntactically
open equivalents for downward monotone syntactically openformulae. Theorem 29
guarantees the existence of such equivalents, but ifSemRepSQEMA is be called ‘al-
gorithm’ we need and effective way of computing such equivalents. Strictly speaking,
the proof of Theorem 29 does provide a procedure for obtaining such equivalents, al-
beit a ludicrously inefficient one. Indeed, we just have to note that in that proof, the set
CONS(ϕ) is finite, modulo equivalence, and that its members can be effectively com-
puted via an enumeration the members of(Lnr (PROP(ϕ),NOM(ϕ)))kSC(Θ) (again
there are finitely many modulo equivalence) and the use of a suitable theorem prover
for hybrid logic.

In this section we provide a more efficient algorithm for computing the desired
equivalents. This procedure will only work for a special type of monotone formulae
(the so-calledseparately monotone formulae), but is often sufficient and will moreover
save us the tedious technical detail of the general case.

In many of the examples above, the monotonicity of formulae involved in the
application of the Ackermann-rule did not depend on the proper interpretation of the
inverse modalities3−1 and2

−1 as inverses of3 and2. For example, the downwards
monotonicity of2−1¬i ∨ (32p ∧ 22¬p) in p can be detected by looking at22¬i ∨
(3121p∧2121¬p) where21 and22 are two independent modalities. Moreover, the
fact thati is a nominal is also irrelevant:22¬r ∨ (3121p ∧ 2121¬p) is downward
monotone inp for any propositional variabler.

With this observation in mind, we introduce the following terminology and def-
initions. We will refer to the bimodal language with two diamonds31 and32 as
L2.

DEFINITION 45. — Given a formulaϕ ∈ Lnr , theseparationof ϕ, denotedSep(ϕ),
is theL2-formula obtained by

1) replacing every occurrence of3 and2 in ϕ with 31 and21, respectively,

2) replacing every occurrence of3
−1 and2

−1 in ϕ with 32 and22, respectively,
and

3) uniformly substituting a fresh propositional variable for every nominal occur-
ring in ϕ.

For example,Sep(2−1¬i ∨ (32p ∧ 22¬p)) is 22¬r ∨ (3121p ∧ 2121¬p).



28 JANCL – 14/2004. Title of the Special Issue

DEFINITION 46. — A Lnr -formulaϕ is separately upward monotonein a proposi-
tional variablep if Sep(ϕ) is upwards monotone inp. The notion ofseparate down-
ward monotonicityis defined similarly.

Clearly separate monotonicity implies ordinary monotonicity. Recall that the mono-
tonicity and validity (and hence, satisfiability) problemsfor formulae are interre-
ducible. Now, the validity problem forLnr -formulae is EXPTIME-complete ([ARE 00]),
while that forL2 is PSPACE-complete ([HAL 92]). Hence, with the aim of minimiz-
ing computational cost, it might be wise to test formula for separate monotonicity first,
and only if that fails to test for ordinary monotonicity.

In the rest of this section we present a method for finding negative (positive) syn-
tactically open (closed) equivalents for separately downwards (upwards) monotone
formulae. The method will be based on an adaptation of the method ofbisimulation
quantifiers. The idea originates from the ‘Pitts quantifiers’ of [PIT 92]. Bisimula-
tion quantifiers have been used to prove uniform interpolation results for the modal
µ-calculus in [D’A 02] and for some modal logics in [VIS 96] and[GHI 95]. The
normal form used is inspired by that in [CAT 05] and related tothat introduced in
[JAN 95].

6.2.1. Disjunctive forms

If S is a finite (possibly empty) set ofL2-formulae, define∇S as shorthand for
∧

ϕ∈S

31ϕ ∧ 21

∨

ϕ∈S

ϕ,

and△S as shorthand for
∧

ϕ∈S

32ϕ.

Note the asymmetry between these definitions —∇S and△S are defined like this
because they will be used to write the separations of syntactically closed formulae. In
the case of singleton setsS, we will often write∇ϕ and△ϕ for ∇{ϕ} and△{ϕ},
respectively.

Some standard terminology —literals are propositional variables and their nega-
tions. For a propositional variablep, thep-literals arep and¬p; they are calledcom-
plementary literals. For a setΘ of propositional variables, aΘ-literal is anyp-literal
for somep ∈ Θ.

DEFINITION 47. — TheL2-formulae indisjunctive formare given recursively by

ϕ ::= ⊥ | ⊤ | χ ∧∇S ∧△S′ | ϕ ∨ ψ,

whereχ is a (possibly empty) conjunction of literalsS andS′ are (possibly empty)
sets of formulae in disjunctive form. As usual, we identify the empty conjunction with
⊤, and the empty disjunction with⊥. Note that the formsχ ∧ ∇S, ∇S ∧ △S′ and
∇S can be seen as special cases ofχ ∧ ∇S ∧ △S′ with respectivelyS′, χ, or both,
empty.
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We will call anL2-formula syntactically closedif it contains no positive occur-
rence of22. (Since we will always be careful to specify in which language we work,
this reuse of terminology should cause no confusion. Moreover, in terms of defini-
tion 18, allL2-formulae are syntactically closed, rendering that notionmeaningless
for such formulae.) Clearly the separation of any syntactically closedLnr -formula
will be a syntactically closedL2-formula. Next, we define a translation(·)⋆ into dis-
junctive form of syntactically closedL2-formulae written in negation normal form.
When reading this definition, it is useful to bear the following equivalences in mind:
∇∅ ≡sem 21⊥, ∇{ϕ,⊤} ≡sem 31ϕ∧31⊤∧21(ϕ∨⊤) ≡sem 31ϕ, ∇{⊤} ≡ 31⊤
andϕ ≡sem ((ϕ ∧ 31⊤) ∨ (ϕ ∧ 21⊥).

⊤⋆ = ⊤

⊥⋆ = ⊥

lit⋆ = (lit ∧∇∅) ∨ (lit ∧∇⊤) for any literallit

(ϕ ∨ ψ)⋆ = ϕ⋆ ∨ ψ⋆

(31ϕ)⋆ = ∇{ϕ⋆,⊤}

(32ϕ)⋆ = (∇∅ ∧△ϕ⋆) ∨ (∇⊤ ∧△ϕ⋆)

(21ϕ)⋆ = ∇∅ ∨∇ϕ⋆

The case for conjunction is more complicated. Consider a formula of the form
∧

S.
If S is such thatS = S′ ∪ {⊤}, S = S′ ∪ {⊥}, orS = S′ ∪ {ϕ ∨ ψ} we translate as
follows

(
∧

(S′ ∪ {⊤}))⋆ = (
∧

S′)⋆

(
∧

(S′ ∪ {⊥}))⋆ = ⊥

(
∧

(S′ ∪ {ϕ ∨ ψ}))⋆ = (
∧

(S′ ∪ {ϕ}))⋆ ∨ (
∧

(S′ ∪ {ψ}))⋆

Note that in the last case above we are in effect distributingthe conjunction over the
disjunction. IfS does not contain⊤, ⊥, or a disjunction, it means that every formula
in S is either a literal or a formula of the form31ψ, 21ψ, or32ψ. We now define the
following sets:

S31
= {ψ | 31ψ ∈ S}

S21
= {ψ | 21ψ ∈ S}

S32
= {ψ | 32ψ ∈ S}

Lastly, letSlit be the subset of all literals inS. If S31
6= ∅, then the intuition is that

any point satisfying
∧

S must satisfy each member ofSlit, every member ofS32
must

be satisfied at someR2-successor, and every member ofS31
must be satisfied at some

R1-successor which also satisfies all members ofS21
. We must also take into account
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the fact that there may beR1-successors not satisfying any member ofS31
, but which

still have to satisfy all members ofS21
. Hence, ifS31

6= ∅, we translate thus:

(
∧

S)⋆ =
∧

Slit ∧∇{(ϕ ∧
∧

S21
)⋆ | ϕ ∈ S31

∪ {⊤}} ∧ △{ψ⋆ | ψ ∈ S32
}.

If, on the other hand,S31
= ∅, points satisfying the formula can either have noR1-

successors, or haveR1-successors, each satisfying every member ofS21
. Hence, if

S31
= ∅, let

(
∧

S)⋆ = (
∧

Slit ∧∇∅ ∧△{ψ⋆ | ψ ∈ S32
})

∨(
∧

Slit ∧∇{(
∧

S21
)⋆} ∧△{ψ⋆ | ψ ∈ S32

}).

It should be clear thatϕ ≡sem ϕ⋆ for every syntactically closedL2-formulaϕ in
negation normal form. Here is an example:

EXAMPLE 48. — Consider the formular ∧ 31(3121¬p ∧ 2121p ∧ ¬q). Since it
contains no occurrences of32, we will omit the subscripts and simply write3 and2

for 31 and21, respectively. It is translated into disjunctive form as follows:

(r ∧ 3(32¬p ∧ 22p ∧ ¬q))⋆

=r ∧∇{(32¬p ∧ 22p ∧ ¬q)⋆,⊤}

=r ∧∇{¬q ∧∇{(2¬p ∧ 2p)⋆, (2p)⋆},⊤}

=r ∧∇{¬q ∧∇{∇∅ ∨ ∇{¬p ∧ p},∇∅ ∨∇{p}},⊤}

2

6.2.2. Simulation quantifiers and biased simulations

Via disjunctive forms and the following definition we will transform upward mono-
tone syntactically closed formulae into positive ones.

DEFINITION 49. — Let ϕ be anL2-formula in disjunctive form andp a vector of
propositional variables. We define∃+p.ϕ inductively as follows:

∃+p.⊥ = ⊥

∃+p.⊤ = ⊤

∃+p.(χ ∧∇S ∧△S′) = χ′ ∧∇{∃+p.ψ | ψ ∈ S} ∧ △{∃+p.ψ | ψ ∈ S′}

∃+p.(ϕ ∨ ψ) = ∃+p.ϕ ∨ ∃+p.ψ

whereχ′ is ⊥ whenχ is inconsistent (i.e. whenχ contains complementary literals),
or otherwise, ifχ is consistent,χ′ is obtained fromχ by removing (by simply deleting)
all occurrences of negativep-literals. ∃+p is called asimulation quantifier.

Note that∃+p.ϕ is positive in all variables inp. We want to show that∃+p.ϕ ≡sem

ϕ for all formulaeϕ that are upward monotone inp. To that aim the following defi-
nition, which is essentially a separated version of a syntactically closedΘ-simulation
(definition 23).
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DEFINITION 50. — LetM = (WM, RM
1 , RM

2 , VM) andN = (WN , RN
1 , R

N
2 , V

N )
beL2-models. LetΘ be a set of propositional variables. AΘ-biased simulationbe-
tweenM andN is a nonempty binary relationZ ⊆ WM ×WN satisfying, for all
(u, v) ∈ WM ×WN such thatuZv, the following conditions:

(local harmony) (M, u) 
 p iff (N , v) 
 p for all propositional variablesp 6∈ Θ,

(asymmetric local harmony) (M, u) 
 p only if (N , v) 
 p, for all propositional
variablesp ∈ Θ,

(symmetric forth) if RM
1 uu′ (respectively,RM

2 uu′) then there exists a pointv′ ∈
WN such thatu′Zv′ andRN

1 vv
′ (respectively,RN

2 vv
′), and

(asymmetric back) if RN
1 vv

′ then there exists a pointu′ ∈ WM such thatu′Zv′

andRN
1 uu

′.

We will writeM →֒Θ N if there exists aΘ-biased simulation between modelsM and
N , or (M,m) →֒Θ (N , n) if there is aΘ-biased simulation linkingm andn.

A straightforward adaptation of the proof of Lemma 25 establishes the next lemma.

LEMMA 51. — For all L2-models(M,m) and (N , n) such that(M,m) →֒Θ

(N , n), and all syntactically closedL2-formulaeϕ, which are upward monotone in
the variables inΘ, it holds that(M,m) 
 ϕ only if (N , n) 
 ϕ.

LEMMA 52. — Letϕ ∈ L2 be a syntactically closed formula in disjunctive from and
p a vector of propositional variables. Then,(M,m) 
 ϕ implies(M,m) 
 ∃+p.ϕ.

PROOF. — By induction onϕ. ■

The next theorem motivates why we call∃+p a ‘simulation quantifier’:

PROPOSITION 53. — Let ϕ ∈ L2 be a syntactically closed formula in disjunctive
from. Then, for any model(N , n) and any vector of propositional variablesp,

(N , n) 
 ∃+p.ϕ

if and only if there exists a model(M,m) such that

(M,m) 
 ϕ and (M,m) →֒p (N , n).

PROOF. — We proceed by induction onϕ. The base case for⊤ is trivial, as is the
inductive step forϕ of the formψ1 ∨ ψ2. We consider the case forϕ of the form
χ ∧∇S ∧△S′.

The bottom-to-top direction is easy. By Lemma 52,(M,m) 
 ϕ implies(M,m) 


∃+p.ϕ. Also note that∃+p.ϕ is positive in all propositional variables inp. We can
now appeal to Lemma 51, and conclude that(N , n) 
 ∃+p.ϕ.
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Conversely, suppose that(N , n) 
 ∃+p.ϕ. By the inductive hypothesis it follows
that, for each pair(ψ, s) such thatψ ∈ S, RN

1 ns and(N , s) 
 ∃+p.ψ, there exists a
pointed model(M(ψ,s),m(ψ,s)) such that(M(ψ,s),m(ψ,s)) 
 ψ and
(M(ψ,s),m(ψ,s)) →֒p (N , s). Moreover, since everyRN

1 -successors of n satisfies
∃+p.ψ for some formulaψ ∈ S, we have that(M(ψ,s),m(ψ,s)) →֒p (N , s) with
(M(ψ,s),m(ψ,s)) 
 ψ for someψ ∈ S.

Also by the inductive hypothesis, for everyψ ∈ S′ there exists a points ∈
WN and a pointed model(Mψ,mψ) such thatRN

2 ns, (Mψ ,mψ) →֒p (N , s) and
(Mψ,mψ) 
 ψ.

Now we construct the desired model(M,m) by first taking the disjoint union of
the models in the sets

{

(M(ψ,s),m(ψ,s)) | ψ ∈ S,RN
1 ns, (N , s) 
 ∃+p.ψ

}

and
{(Mψ,mψ) | ψ ∈ S′} .

To this disjoint union we add a new pointm and make it anR1-predecessor of each
m(ψ,s), and anR2-predecessor of eachmψ. To complete the model we make all
propositional variables occurring positively inχ true atmwhile all other propositional
variables are declared false there. By construction(M,m) 
 ϕ and(M,m) →֒p

(N , n). ■

THEOREM 54. — Letϕ ∈ L2 be a syntactically closed formula in disjunctive from
which is upward monotone inp. Thenϕ ≡sem ∃+p.ϕ.

PROOF. — As remarked before,
 ϕ → ∃+p.ϕ. Conversely, suppose that(N , n) 


∃+p.ϕ. By proposition 53 there exists a model(M,m) such that(M,m) 
 ϕ and
(M,m) →֒p (N , n). But, by Lemma 51,ϕ is preserved underp-biased simulations,
i.e.,(N , n) 
 ϕ. ■

Theorem 54 gives us a procedure to compute positive equivalents for upward
monotone syntactically closedL2-formulae, written in disjunctive form. This is easily
converted into a procedure for computing negative equivalents for separately down-
ward monotone syntactically openLnr -formulae. To be precise, suppose thatϕ ∈ Lnr
is syntactically open and separately downward monotone in the propositional variable
p. We compute the desired equivalent ofϕ as follows:

1. Negation: Negateϕ and apply the usual procedure to rewrite the¬ϕ in negation
normal form, obtainingϕ′. The formulaϕ′ is syntactically closed and separately
upward monotone inp.

2. Separation: Separateϕ′ by calculationSep(ϕ′). The formulaSep(ϕ′) will be a
syntactically closedL2-formula which is upward monotone inp.

3. Disjunctive form: TransformSep(ϕ′) into disjunctive form by applying the trans-
lation (·)⋆, i.e., by calculating(Sep(ϕ′))⋆.
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4. Elimination of negative p-occurrences: Calculate∃+p.(Sep(ϕ′))⋆. This formula
is positive inp.

5. Obtaining positive Lnr -equivalent: Reverse step 3 as far as possible by applying
the inverse of the translation function(·)⋆ and the definitions of∇S and△S′.
Lastly, obtain anLnr -formula by applying the inverse ofSep.

6. Second negation: Negate the resulting formula again to obtain a syntactically open
formula, negative inp, and semantically equivalent toϕ.

Let us illustrate this procedure with an example.

EXAMPLE 55. — In example 21 we used the fact that the formulaγ = ¬i ∨
2(23p ∨ 33¬p ∨ q) was downward monotone inp. Indeed, it is even separately
downward monotone inp, asSep(γ) = ¬r ∨ 2(23p ∨ 33¬p ∨ q) is downward
monotone inp. (Since there are no inverse modalities involved in this formula, we
can omit the subscripts in the separated from without risk ofconfusion.) Let us com-
pute a negative equivalent for this formula using the methodof simulation quanti-
fiers, described above. Negating and rewriting in negation normal form we obtain
r∧3(32¬p∧22p∧¬q). In example 48 this formula was translated into disjunctive
form, thus:

(r ∧ 3(32¬p ∧ 22p ∧ ¬q))⋆

= r ∧∇{¬q ∧∇{∇∅ ∨ ∇{¬p ∧ p},∇∅ ∨∇{p}},⊤}

Next, application of the simulation quantifier∃+p yields

∃+p.(r ∧∇{¬q ∧∇{∇∅ ∨ ∇{¬p ∧ p},∇∅ ∨∇{p}},⊤})

= r ∧∇{¬q ∧∇{∇∅ ∨∇{⊥},∇∅ ∨∇{p}},⊤}

Reversing the(·)⋆-translation step by step yields

r ∧∇{¬q ∧∇{∇∅ ∨ ∇{⊥},∇∅ ∨∇{p}},⊤}

= r ∧∇{¬q ∧∇{2⊥,2p},⊤}

= r ∧∇{¬q ∧ 32⊥ ∧ 32p ∧ 2(2⊥ ∨ 2p),⊤}

= r ∧ 3(¬q ∧ 32⊥ ∧ 32p ∧ 2(2⊥ ∨ 2p))

Lastly, undoing theSep-function and negating yields a syntactically open equivalent,
negative inp:

¬i ∨ 2(q ∨ 23⊤ ∨ 23¬p ∨ 3(3⊤∧ 3¬p))

Admittedly, this equivalent could be simpler. Indeed, as noted in example 21, it is in
fact equivalent to¬i ∨ 2(23⊤ ∨ 33¬p ∨ q). The introduction of the subformula
23¬p is worrying, as this quantifier pattern is often the cause ofSQEMA’s failure.
However, for the input formula in example 21 this causes no problem, as the reader
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can check. More sophisticated strategies for undoing(·)⋆ should be able to minimize
this problem since all that we are doing at the moment is applying the definition in
reverse. 2

EXAMPLE 56. — In example 35 the monotonicity of the formula

(2−1¬i ∨ ¬p ∨ 3p) ∧ 32
−1(2−1¬i ∨ ¬p)

was used in an application of the semantic Ackermann rule with replacement. As
this formula is not separately monotone, the method presented in this section will not
suffice to compute an equivalent negative inp in this case. Indeed,

(22¬t ∨ ¬p ∨ 31p) ∧ 3122(22¬t ∨ ¬p)

is not monotone inp. 2

In summary, monotone sequents inSemRepSQEMA-executions often satisfy the
stronger property of separated monotonicity. Syntactically correct equivalents of these
sequents can be computed by using the method of simulation quantifiers presented in
this section. However, as example 56 illustrates,SemRepSQEMA-executions may
give rise to sequents which are monotone but not separately monotone. To compute
syntactically correct equivalents for these, stronger methods will have to be consid-
ered.

7. Conclusion

In this paper we explored the application of the modal monotonicity-based ver-
sion of Ackermann’s Lemma to the computation of first-order frame equivalents for
modal formulae and to proving their canonicity. This was done through appropri-
ate modifications of the algorithmSQEMA. Specifically, we introduced three ex-
tensions ofSQEMA which employ the monotonicity-based (semantic) version ofthe
Ackermann-rule. Two of these extensions guarantee the canonicity of the formulae
on which they succeed, at the expense of either a restricted scope applicability (in the
case ofSemClsSQEMA) or of a possibly dramatic increase in the complexity (in the
case ofSemRepSQEMA). One of the most important open questions related to the
present study, is whetherSemSQEMA, being the most efficient and general of the
three extensions ofSQEMA proposed here, guarantees canonicity, too.

In any case, a natural question arising here is to estimate the complexities of each
of the proposed extensions ofSQEMA. We have not investigated this question in
any depth, as we do not expect the worst case complexities to be of good practical
value here, while computing the average case complexities would be a computational
challenge going beyond the scope and purpose of this paper.

Furthermore, whileSemSQEMA seems the version easiest to apply, it does not
necessarily have optimal scope of applicability. The reason for this is that direct appli-
cation of the semantic Ackermann-rule can produce syntactically bad-shaped sequents
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which could impede the successful termination of the algorithm. Thus, canonicity con-
siderations apart, the idea of replacing certain formulae by syntactically more suitable
ones before or during the applications of the Ackermann rule, remains quite relevant
for the sake of improving the chances of eventual success. However, the questions of
what replacements are eventually useful and how to compute them, still remain largely
unexplored.

Finally, we have not yet reached the limits of the semantic approach to computing
first-order frame equivalents (and proving canonicity) of modal formulae. In its pure
form this approach calls for a gradual elimination of any syntactic transformations
in favour of effectively executable semantic tests — possibly much more expensive
computationally, but further extending the scope of applicability of the method. Going
further along that way, however, we are bound to face the ubiquitous tradeoff between
the generality and efficiency of any algorithmic approach. We believe that the present
paper offers a good equilibrium between these.
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