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ABSTRACTINn [CON 06b] we introduced the algorithQEMA for computing first-order equiv-
alents and proving canonicity of modal formulae, and thuslgished a very general cor-
respondence and canonical completeness ressQEMA is based on transformation rules,
the most important of which employs a modal version of a tésulAckermann that enables
elimination of an existentially quantified predicate vénfi@ in a formula, provided a certain
negative polarity condition on that variable is satisfied.this paper we develop several exten-
sions ofSQEMA where that syntactic condition is replaced by a semantic wize downward
monotonicity. For the first, and most general, extenss@mSQEMA we prove correctness
for a large class of modal formulae containing an extensibthe Sahlqvist formulae, defined
by replacing polarity with monotonicity. By employing a sipé modal version of Lyndon’s
monotonicity theorem and imposing additional requirersemt the Ackermann rule we obtain
restricted versions dbemSQEMA which guarantee canonicity, too.

KEYworDSModal correspondence and completeness, algori@®EMA, Sahlgvist formulae,
inductive formulae, Lyndon monotonicity, canonicity.

Dedicated to our teacher and collaborator Dimiter Vakarelov, on the occasion of
70th anniversary of his birthday.

Introduction

Every modal formula defines a second-order condition onk€rijpames. Yet, as
is well known, may modal formulae actually characterize-ingler definable frame
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classes. We will call such formulatementary Because of the great computational
and theoretical advantages of first-order over secondrtorgie it is desirable to iden-
tify as large as possible classes of elementary modal faewnfortunately, by Cha-
grova’s Theorem ([CHA 91]), the elementarity problem fordabformulae is algo-
rithmically undecidable. Thus, if the classes of elemgnfarmulae we are interested
in are to be decidable, we have to content ourselves withoappations.

Several such approximating classes are known from thefitex. Membership is
often specified in terms of syntactic shape as, for examplég case of the Sahlqvist
([SAH 75]) and inductive formulae ([GOR 06b]). Another apach to the determina-
tion of a classes of elementary formulae is algorithmic.&@mple, one can feed the
second-order translation of a modal-formula to a second@raquantifier elimination
algorithm like SCAN ([GAB 92, GOR 03]) or DLS ([SZA 93, CON 0pa

The most recent method for computing first-order frame apoadents for modal
formulae is based on the algorithBQEMA, introduced in [CON 06b]. The name
SQEMA is an acronym foSecond-order Quantifier Elimination in Modal logic us-
ing Ackermann’s Lemmar his algorithm works directly with the modal syntax, thus
eliminating any translation into second order logic. It waswn in [CON 06b] that
SQEMA successfully computes first-order frame equivalents idsahlqvist and in-
ductive formulae. Perhaps the most interesting featul®@EMA is the fact that it
is also anautomated completeness proysince every formula on which it succeeds
is provably canonical. In [CON 06 GQEMA was extended to polyadic and hybrid
languages.

The core of theSQEMA engine is a transformation rule based on a modal version
of Ackermann’s Lemma [ACK 35] stated further. In the curreaper we consider
three extensions dBQEMA based on a more general version of this lemma, where
the syntactic notion of negativity is replaced with its setiacorrelate — monotonic-
ity. This, coupled with the fact that monotonicity is an etieely decidable property
of modal formulae, immediately yields a semantic versemSQEMA of SQEMA
with a significantly enlarged scope of applicability. In fi@rlar, we introduce a
new ‘semantic’ generalization of the Sahlqvist formulad ahow thaSemSQEMA
successfully computes first-order equivalents for thesmdtae. However, we can-
not claim that the most general semantic verss@mSQEMA of SQEMA guaran-
tees canonicity, and in the rest of the paper we develop nmwahvied variants of
SemSQEMA for which canonicity can be proved.

The paper is organized as follows. After providing someipniglaries, in section

2 we introduce the algorith'BemSQEMA based on the semantic version of Ack-
ermann’s Lemma and illustrate it with some examples. Iniege@& we present the
general framework of the canonicity proof for t8EMA-reducible formulae and
show why this proof fails folSemSQEMA. In section 4 we study the relationship
between the monotonicity and polarity of formulae in mor¢éadeand prove ver-
sions of Lyndon’s monotonicity theorem which respect thecHjc syntactic shapes
of formulae needed to make the canonicity proof work. Inieadd we introduce and
study a modificatior5emCIsSQEMA of SemSQEMA in which the application of
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the rule based on Ackermann’s Lemma is slightly restricus restriction enables
us to prove that alsemCIsSQEMA-formulae are canonical. We then show that
all semantic Sahlqvist formulae aB&mCIsSQEMA-reducible and hence canonical.
In section 6 we introduce another variaBeEmRepSQEMA, which requires the ex-
plicit replacement of monotone formulae with positive oard eventually guarantees
canonicity, too. In the last section we outline an algorifiemmore efficient computa-
tion of such positive equivalents working under some ndaagditional assumptions.
In a concluding section we discuss briefly some open questilated to the semantic
approach presented here.

1. Preliminaries

In this section we collect some basic definition and notatioAny undefined
terms are as in [BLA 01]. We assume countably infinite didjciets ofproposi-
tional variablesandnominalsPROP andNOM, respectively. The member 8f :=
PROP UNOM will be referred to astoms The language&?’ is given by the abstract
syntaxp == L | p|i| ~p |V | Op| Oty for p € PROP andi € NOM.
The sublanguages,, £ and£ are obtained by omitting the clauses fp©>~!, both,
respectively. The boolean connectives A and« are defined as usual, and as usual
Oy := ~O=p andO~Lp := =0~ 1=p. We write PROP(p), NOM(y), andAT (y)
for the sets of propositional variables, nominals, and atamspectively, occurring
in . By writing ¢(a) we mean thafAT(y) C a, wherea is a vector (or vectors) of
atoms. Formulg is pureif AT(¢) € NOM.

A formula is innegation normal fornif it is written without the use of the con-
nectives— and«, and the negation sign appears only directly in front of &oAn
occurrence of an atomin a formulay is positive(negativ¢ if it is in the scope of an
even (odd) number of negationsis positive(negative in « if all occurrences of. in
 are positive (negative).

A Kripke frameis a pairg = (W, R) with W a non-empty set an& C W?
a binary relation ori¥. A Kripke modelbased on a fram& = (W, R) is a pair
M = (§,V) with V avaluationassigning to everp € PROP a setV(p) C W
where it is true, and to everly ¢ NOM a singleton subsél’ (i) of W where it is
true. ModelsM = (W, R,Vy) and N = (W, R,Vy) based on the same frame
§ = (W, R) are called p-variants, denotedl ~, N, if Vas(q) = Vn(q) for all
q € AT — {p}.

Thetruth of anL?-formulay at a pointn in a Kripke modelM, denoted M, m) IF
o, is defined as usual. Particulari, m) I O iff there is a point: € W such that
Rmn and(M,n) I ¢, and(M,m) |- O~y iff there is a pointn € W such that
Rnm and(M,n) I ¢.

Based on this truth definition a valuatidn can be extended from atoms to all
formulae in a unique way. We will accordingly writé(y) for {m € W | (M, m) I+
v} whenM = (W, R, V) is understood. We writd1 IF ¢ if o is true at every point
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in M. Similarly we write(§, m) I+ ¢ and sayy is valid atm in § if (M, m) IF ¢

for every modelM based orf, and writeF I+ ¢, sayingy is valid onF, if M IF ¢

for all modelsM based orf. These notations are extended to sets of formulas in the
usual way.

Given a sefl” of formulas and a formule, we writeT" I ¢ if ¢ is true at every
point in every model where all memberslofire true. We writd - o if M IF T
implies M I ¢ for all modelsM.

Two modal formulaepy andvy aresemantically equivalentienotedy =g¢,, ¥,
if they are true at the same points in any Kripke model. Furtheand« aremodel
equivalentdenotedp =,,,0q ¥, if M IF ¢ iff M I 4, for all modelsM.

Define L to be the first-order language with, a binary relation symbak, and
disjoint sets of individual variable¢AR = {x¢,z1,...} and{y; | i € NOM}. Also,
let L, be the extension af, with a sets of unary predicat¢#, P, ...} correspond-
ing to the propositional variables IRROP. L-formulae are translated intb, by
means of the usuatandard translatiorfunction ST(-,-). Recall thatST(p, z) is
defined by induction op. ParticularlyST (i, z) := y; = x for everyi € NOM and
ST (G, x) := Jy(RxyAST (¢, y)), wherey is the first variable i'VAR not appearing
in ST (g, x).

Of course, a Kripke model is nothing but dn-structure and a Kripke frame
nothing but anL-structure. Indeed, we have for any modet and any formula
p € LM that(M,m) Ik ¢ iff M = ST(p,z)[z := m]. Similarly, any frameg,
(F,m) IF ¢ iff § = VPYgST(p,x)[z := m] whereP is the vector of all predicates
corresponding to propositional variables gnthat of all variables corresponding to
nominals occurring irp.

A first-order formulaa(z) € Ly with one free variable is bcal frame correspon-
dentfor a formulap € L} if, for any Kripke frameg and pointw in F, it holds that

(F,w) IF piff § = alz = w).

A general frameg = (W, R, W) is the augmentation of a Kripke franfe =
(W, R) with an algebraW of subsets ofi¥ (called admissible subsétavhich is
closed under the boolean operations and under the opefd@diX ) = {y € W |
Ryx for somer € X}. Note that we daot require closure undegiz~!). A model
based on a general frame= (W, R, W) is a modeW, R, V') with V anadmissible
valuation i.e.,V(a) € Wforall a € AT. gy = (W, R) is theunderlying Kripke frame
of g = (W, R, W). A formula ispersistenwith respect to a class of general frames
if forall g € €, g IF p impliesg; I ¢.

We will often identify £7*-formulae and theoperatorsdefined by them on the
(powersets of) the domains of (general) frames. That is yo & p(a) € L7,
g = (W,R,W) a general frame, and a tuple of subsets of’ we write p(X)
for V() in (g, V) whereV is any (possibly non-admissible) valuation assigning
toa.
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With every general framg = (W, R, W) we associate the topological space
(W, T(g)) whereT'(g) is the topology havingV as a basis of clopen sets. The set
of all closed sets (with respect(g)) is denoted byCls(g). We further writeSgl(g)
for the set{{w} | w € W} of all singleton subsets d¥.

DEFINITION 1. — A general framgy = (W, R, W) is said to be:

differentiated if for everyx,y € W, x # y, there existsX € W such thatr € X
andy ¢ X (equivalently, ifl'(g) is Hausdorff);

tight if for all z,y € W itis the case thaRzy iff z € N{(R)(Y) | Y € W andy €
Y’} (equivalently, ifR is point-closed, i.eR({z}) = {y € W | Rzy} is closed
in T'(g) for everyz € W);

compact if every family of admissible sets frd#i with the finite intersection property
(FIP) has non empty intersection (equivalentlyI'ifg) is compact). Recall that
a family of sets has FIP if any finite subfamily has non-empsgrsection;

descriptive if it is differentiated, tight and compact.

The usual way of proving canonicity of a modal formula is towtthat is persis-
tent with respect to the class of descriptive general frawreds-persistentfor short.

2. Ackermann’sLemma and a‘semantic’ extension of SQEMA

The core result on which the origin8QEMA-algorithm [CON 06b], as well as
the extensions we introduce in this paper, are based, is @almetsion of a lemma
by Ackermann (Lemma 3). In this section we show how the atboric potential of
this lemma can be better exploited than it has been in prevpapers oISQEMA,
by noting that, in the formulation of the lemma, the syntaotition ofnegativitycan
be replaced by the more geneseimanticnotion of monotonicity and that this latter
semantic property is amenable to algorithmic treatmenis Teads to a generalized
version of SQEMA which we will introduce and calsemSQEMA. We will illus-
trate SemSQEMA with examples and by developing a new extension of the class o
Sahlgvist formulae, the members of which SEmSQEMA-reducible.

2.1. Ackermann’sLemma

DEFINITION 2. — A formulay € L7 is said to beupward monotonérespectively,
downward monotorjen a propositional variable, if V(¢) C V'(¢) wheneveM =
(W,R,V) ~p M'=(M,R,V")andV (p) C V'(p) (respectively}’(p) C V(p)).

p € L7 is said to beglobally upward monotongespectivelyglobally downward
monotongin a propositional variablep, if M I ¢ impliesM’ I+ ¢ wheneverM =
(W,R,V) ~p M' = (W,R,V')andV (p) C V'(p) (respectivelyy’(p) C V(p)).
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It is easy to see (by induction op) that the positivity (negativity) ofp in p is
sufficient, but not necessary, for its upward (downward) atonicity in p. Further
monotonicity clearly implies global monotonicity, but netnversely. Indeedp A
O-p) is globally upward monotone imbut not upward monotone im

The following, taken from [CON 06b], is a modal analogue of femma first
proved by Ackermann in [ACK 35]. For another version see [S2A For conve-
nience of presentation this lemma is often formulated in aemestricted way, by
replacing downward monotonicity with negativity.

LEMMA 3 (MODAL ACKERMANN LEMMA). — Let A, B(p) be £"-formulae such
that the propositional variable does not occur il and B(p) is globally downward
monotone irp. Then for any modeM, it is the case thatt I+ B(A) iff M’ I+ (A —
p) A B(p) for someM’ ~,, M.

PROOF. — Let M = (W,R,V). If M It B(A), thenM' I+ (A — p) A B(p)
for the model(W, R, V') = M’ ~, M such thatV’(p) = V(A). Conversely, if
M’ IF (A — p) A B(p) for some modeM’ ~, M, then M’ I B(A/p) sinceB(p)
is downwards monotone im Therefore M I+ B(A/p). [

The proof of the next lemma is straightforward.

LEMMA 4. — An L*-formulay(p) is downwards monotone niff

I o(p) = ¢(p A aq)
whereq is any variable not occurring ip(p).

Hence, the question of the monotonicity of f)-formula in a propositional vari-
able can be effectively reduced to the question of the \glifia related’;, -formula,
a problem which is decidable and EXPTIME-complete (see [ARB. (By the way,
note that testing validity is effectively reducible to fagt monotonicity: I+ ¢ iff
q —  is upwards monotone i, wheregq is a variable not occurring ip.)

It follows, that the applicability of Lemma 3 can be effeetiy determined in EX-
PTIME. In this paper we explore some consequences of thaglsimsight. In par-
ticular we develop ‘semantic’ versions SQEMA. The wordsemantidndicates the
fact that we have exchanged the syntactic property of negfptisitive polarity for its
semantic correlate — monotonicity.

2.2. Thealgorithm SemSQEMA

Some terminology — an expression of the fagm=- ¢ with ¢, € L7 is called
a SQEMA-sequentt, with ¢ and+ the antecedentind consequenbf the sequent,
respectively. A finite set 08QEMA-sequents is called SQEMA-system We set
Form(y = v) := —p V ¢ and, for a systen®ys, we letForm(Sys) be the conjunc-
tion of all Form(y; = ;) for all sequents; = v; € Sys.

1. In[CON 06b] sequents are called ‘equations’ becauseeoatialogy with solving systems
of linear equations.
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Table 1. SemSQEMA Transformation Rules
| Rules for connectivels

= (AnB) o _A=04 e
C=AC=B (hrule) ek k= A (©-ruler)
O=(AVB) o hitvraley CAA=B L hiftvorul
(Ch-4) = B (left-shift v-rule) C= (=AVB) (right-shiftv-rule)
A=>0B e OA= B o
>-1A—= B (C-rule)  ——a5 (inverse&-rule)

xwherek is a new nominal not occurring in the system.
‘ Polarity switching rulé
Substitute-p for every occurrence gf in the system.
| (Semantic) Ackermann-rule

A =p
. Bl((Al\/...\/An)/p)
A,=0p .
The system || Bi(p) is replaced by
Bn((A1V...V An)/p)
: C
Bm(p)
C
where:
1) p does not occur iy, ..., A, orC;

2) Form(By) A - -- A Form(B,,,) is downwards monotone in

Given a formulap € £ as input,SemSQEMA processes it in three phases, with
the goal to reduce first to a suitably equivalent pure, and then first-order figlam

Phase 1 (preprocessing) Fhe negation ofp is converted into negation normal
form, and< andA are distributed ovey as much as possible, by applying the equiv-
alencesO(yp V) = Oy v Oyandd A (v Vy) = (§AY) V(6 Ay). For each disjunct
of the resulting formuld/ ¢, a systenBys, is formed consisting of the single sequent
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i = ¢}, whereiis a reserved nominal used to denote the state of evaluatiomodel.
These are thinitial systemsn the execution.

Phase 2 (elimination) —Fhe algorithm now proceed separately on each initial sys-
tem, Sys,, by applying to it the transformation rules listed in tableThe aim is to
eliminate from the system all occurring propositional gates. If this is possible for
each system, we proceed to phase 3, else the algorithm fajporé and terminates.
The rules in table 1 are to be read as rewrite rules, i.e., tghace sequents in sys-
tems with new sequents or, in the case of the semantic Ackermae, systems with
new systems. Note that each actual elimination of a varisbdehieved through an
application of the semantic Ackermann-rule while the otldgs are used to solve the
system for the variable to be eliminated, i.e., to bring th&temm into the right form
for the application of this rule. The applicability of thensantic Ackermann-rule can
be determined with the help of Lemma 4 and a suitable modatéme prover.

We will call the sequents of the forjn=- ¢k which are introduced by thé-rule
diamond-link sequents

Phase 3 (translation) —Fhis phase is reached only if all systems have been re-
duced to pure systems, i.e., systeBys, with Form(Sys,) a pure formula. Let
Sys,,...,Sys,, be these systems. Recalling thatwvas the input to the algorithm,
we will write pure(yp) for the formula(Form(Sys,) v - - - V Form(Sys,,)). The algo-
rithm now computes and returns, as local frame correspdridethe input formula
v, the formulavy3xo ST (—pure(y), z¢) wherey is the tuple of all occurring variables
corresponding to nominals, but with (corresponding to the designated current state
nominali) left free, since a local correspondent is being computed.

A formula on whichSemSQEMA succeeds will be calleBemSQEMA-reducible
or simplyreducible.

REMARK 5. — A few remarks are in order:

1) Notice the requirement in the Ackermann-rule thatdbrjunctionB; A - - - A
B, rather than the individual sequents be downwards monotinee monotonicity
as a property is generally not preserved under taking sohftare, this ensures a wider
applicability of the rule. We could of course further widdretscope of the rule by
requiring only global monotonicity.

2) By replacing the requirement of downward monotonicitythie Ackermann-
rule by that of negativity, we obtain the origifaQEMA-algorithm.

3) Noting (2) and the relationship between monotonicity aothrity discussed
above, it should be clear that 8QEMA-reducible formulae are als®emSQEMA-
reducible.

4) By adding further transformation rules facilitating sepropositional reason-
ing (as is done in [CON 06b] and [GAB 06]) the algorithm can tsersgthened.

The algorithm is best illustrated by an example:
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ExAMPLE 6. — Consider the input formula := ¢Op — <&(<GO-p A OOp).

Phase 1 o65emSQEMA negates this formula, produces a negation normal form,
distributesn and<> overv, and produces the single initial system

i= <OpAD@OpV OO—p). Q)
Phase 2 now proceeds, and by applyingAhend<-rules to (1), produces the system
i= 0Oj
j="0p - )
i=0@0pVoO—p)
An application of thea-rule transforms (2) into
i=90j
o lj=p : ®)
i=0@0pVoOO—p)

System (3) is now ready for the application of the Ackermarie,rasi — O(OCp Vv
&O-p) is downward monotone ip. Indeed, as the reader can check, the consequent
of this formula is semantically equivalentit{ OO T vV ©C—p). The Ackermann-rule

is now applied producing the system:

i=<0j @)
i= 0@o01jvoo-otj) -

The algorithm proceeds to phase 3, withe(y) equal to(—iVOj) A(=ivO(OOO iV
©O=071j)). Negatingpure(yp), translating and simplifying yields the first-order lo-
cal frame correspondentia

Let us note that the origin@QEMA-algorithm would fail on this input formula,
since it would not be able to separate the positive and negaticurrences op
(specifically those in the last sequentin (2)) requiredtierdpplicability of the syntax-
based Ackermann-rule. O

The correctnesSemSQEMA can be proved in exactly the the same as that of
SQEMA ([CON 06b]), only the soundness of the sematic Ackerman@-must be
justified by an appeal to Lemma 3 rather than to the usual syoatsed version of that
lemma. Thus, we have:

THEOREM 7 (CORRECTNESS. — If SemSQEMA succeeds on a formula € £
then the first-order formula returned is a local frame copeadent forp.
2.3. The semantic Sahlqvist formulae

In [CON 06b] it was proven tha8QEMA successfully computes first-order frame
correspondents for all Sahlqvist [SAH 75] and inductive [&@6b] formulae. We
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now define a generalization of the Sahlqvist class, the mesnéiewhich are all
SemSQEMA-reducible, as will be seen.

DEFINITION 8. — A boxed atom is a propositional variable prefixed with finitel
many (possibly non&)’s. A downward (upward) monotone blogka formula which

is downward (upward) monotone in all propositional variabloccurring in it. A
semantic Sahlqgvist antecedesta formula built up fromT, 1, boxed atoms, and
downward monotone blocks, using Vv, and<. A semantic Sahlgvist implicatiois

a formula of the formp — UpMon wherey is a semantic Sahlgvist antecedent and
UpMon is an upward monotone block. emantic Sahlqvist formula built up from
semantic Sahlqvist implications by applyingv andC.

Note that:

— Every (semantic) Sahlqgvist implication is semanticatjyigalent to a negation
of a (semantic) Sahlqgvist antecedent; consequently, ggemantic) Sahlqgvist for-
mula is semantically equivalent to the negation of a (seimpBahlqvist antecedent.

— Every Sahlqvist formula is a semantic Sahlqvist formutedefine the latter we
have simply replaced in the definition of the former ‘negafiermulae’ with ‘down-
ward monotone blocks’ and ‘positive formulae’ with ‘upwarghnotone blocks'.

ExAMPLE 9. — The formula®Op — <(OO-p A OOp) from Example 6 is a se-
mantic Sahlqvist implication: recall th&t(<O-p A OOp) is an upward monotone
block semantically equivalent to the positive formgié>O L A OOp).

Likewise, the formula®>(O(OCg V OC—q) Ap) V Og — <(CO-p ADOOp) is a
semantic Sahlqvist implication, as the antecedent is froith the boxed atomg and
Og and the downward monotone bloEKO g V OO—q) =se, O(OCT V OO—g).

O

The following lemma will be useful, and can be proved along $hme lines as
Lemma5.1. in [CON 06b].

LEMMA 10. — Let ¢ be a semantic Sahlgvist formula, agd the formula ob-
tained from—¢ by importing the negation over all connectives. Théis a semantic
Sahlqvist antecedent.

Note that all semantic Sahlqvist formulae aredin Let ageneralized monotone
blockbe an,}-formula which is downward monotone in all occurring proitiosal
variables. The class gfeneralized semantic Sahlgvist formuis@btained by replac-
ing everywhere in the definition of the semantic Sahlqvistfiolae ‘monotone block’
with ‘generalized monotone block’.

LEMMA 11. — LetSys be a system ddemSQEMA sequents of the forjn— S,
with j a nominal andg a generalized semantic Sahlqvist antecedent built up with-
out usingV, except possibly inside monotone blocks. héie any propositional

2. This fact could be used to give a simplified, but semani@juivalent, definition of the
class of Sahlqvist formulae, see e.g., [CON 06b].
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variable occurring in a boxed atom i8ys. ThenSys can be transformed, using
SemSQEMA-transformation rules, into a systeBys’, not containingp, and again
with all sequents of the forfh— 3.

PROOF. — In Sys all occurrences op which are not in monotone blocks are in
boxed atoms, and these last are at most in the scopeanid <. Thus, by applying
the A and <-rules one can transfori@ys into a system in which each sequent is of
the form either (i)j =  for some nominaj and some generalized semantic Sahlgvist
antecedeng in which p occurs only in monotone blocks, or ()= O"p for some
nominalj andn € N. The sequents of type (ii) can all by transformed into thenfor
(©~1)"j = p by applying thed-rule, and then the semantic Ackermann-rule can be
applied to eliminate, yielding a system of the desired shape. (Note that the ¢gene
alized) monotone blocks are still downward monotone in #meaining propositional
variables after the substitution prescribed by the semakxtkermann-rule has been
done.) [ ]

THEOREM 12. — All semantic Sahlqgvist-formulae aBemSQEMA-reducible, and
hence elementary.

PROOF. — Lety be any semantic Sahlqgvist-formula, given as inplB¢mSQEMA.

In phase 1~y is transformed into a formula of the frolf ; by exhaustive distribu-
tion of A and< overV. Thus, eachp; is a semantic Sahlgvist antecedent in which all
occurrences of are within monotone blocks. For eagtthe initial system|i = ¢;

is formed. Since each such initial system is of the from neflby Lemma 11, the
theorem now follows by induction on the number of propositibvariables occurring
in eachyp;. n

We note that this result is presented here mainly in ordeetoahstrate the scope
of applicability of SemSQEMA, otherwise, it can be obtained directly from Sahlqvist’s
theorem by using the facts that every semantic Sahlgvistita is semantically equiv-
alent to a standard Sahlgvist-formula (this follows by thalague of Lyndon’s The-
orem for £ proven in [RIJ 97]), and that semantic equivalence presepeth local
first-order correspondence and d-persistence of formulae.

3. SemSQEMA and canonicity

Besides the first-order correspondence establish&fisMA, all SQEMA-reducible
L-formulae axiomatize complete modal logics. To be preéisany set: of SQEMA-
reducibleZ-formulae, the logid ¢ ¥ is strongly sound and complete with respect to
its class of Kripke frames. In [CON 06b] this result was elshled by showing that
all SQEMA-reducible£-formulae arecanonical i.e., valid on their canonical frames.
In this section we outline, in a modular way, a general fragr&for proving canon-
icity for formulae reducible by an algorithm likBemSQEMA. We will show why
SemSQEMA fails to fit into this framework.
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3.1. D-persistence and SQEMA

Here we will attempt to extend the framework for proving caicdy of SQEMA-
reducible formulae from [CON 06b] t8emSQEMA.

First, note that, althougBemSQEMA-takes input fromZ, its execution invari-
ably leads us into the richer languagg. To cope with the possible shortage of sin-
gletons when interpreting the nominals of the latter lamgguaver descriptive frames,
we make the following definition:

DEFINITION 13. — Anaugmented modélased on a descriptive franpe= (W, R, W)
is any model(g, V) such thatV send propositional variables to membersWf as
usual, and nominals to arbitrary singletons subset8iaf

DEFINITION 14. — Let M = (f,V) and M’ = (f,V’) be two models over the
same (Kripke or general) framg and letAT, C AT. We say thaiM and M’ are
AT-relatedif

1 V'(p) =V(p) or V'(p) = W — V(p) for all propositional variablep € AT,
and

2) V'(j) = V(j) for all nominalsj € AT,.

The next definition is intended to capture the type of eqeive¢ which holds
between the successive systems of sequents obtained daréxgcution 05QEMA.
As will be illustrated later, we have not been able to guagatitat this is also the case
for systems obtained blyemSQEMA.

DEFINITION 15. — Formulaeyp,v € L' are transformation equivalentienoted
© =4 1, if, for every modeM = (F, V') such thatM IF ¢ there exists afAT () N
AT (v))-related modeM = (§F, V') such thatM’ I- ¢, and vice versa.

Formulaep, € L' are transformation equivalent over descriptive framds-
notedy =2 o, if, for every augmented modatt = (g, V) based on a descriptive
frameg, such thatM I ¢ there exists aifAT (¢) N AT (z)))-related augmented model
M = (g, V') based org such thatM’ I ¢, and vice versa.

Let us call any algorithm &emSQEMA versionif it is like SemSQEMA in all
respects except that it could have a possibly differentfdedinsformation rules. Thus,
for example SQEMA is aSemSQEMA version.

DEFINITION 16. — A SemSQEMA versionAlg is sound on descriptive framéfs
for every system of sequeBgs and every systetBys’ obtained from it by the appli-
cationAlg-transformation rulesForm(Sys) =% Form(Sys’).

Similarly, aSemSQEMA versionAlg is sound on Kripke framei$ for every sys-
tem of sequentSys and every systerBys’ obtained from it by the applicatioAlg-
transformation rulesForm(Sys) =, Form(Sys').

PROPOSITION17. — If a SemSQEMA versionAlg is sound on descriptive frames
and on Kripke frames, then allig-reducible£-formulae are d-persistent.
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PROOF. — Suppose thalg succeeds op € L. Further, for simplicity and without
loss of generality, assume that the execution does not bitaecause of disjunctions.
We may make this assumption since any conjunction of d-gtersi formulae is d-
persistent. LeBys,,Sys,,...,Sys,, be the sequence of systems produced during
the execution. HencBys, is the initial system|i = -, andSys,, is the final, pure
system angbure(yp) = Form(Sys,,,).

Letg = (W, R, W) be a descriptive frame and € W. Then(g, w) I ¢ iff there
is no augmented valuatidri on g such that’ (i) = {w} and(g, V) IF i V —¢. But,
(sinceForm(Sys,) = —i V —p, andAlg is sound on descriptive frames) the latter
is the case iff there is no augmented valuatiéron g such thatV (i) = {w} and
(g, V) IF pure(yp). Since nominals can range over all singletons, the latdresase
iff there is no valuatiorV” on g; such thatV’ (i) = {w} and(gs, V') IF pure(yp). By
soundness on Kripke frames this, in turn, is the case iffeti®no valuatiort” on gy
such thal/ (i) = {w} and(gy, V) IF —i V —¢. This is the case iffgy, w) IF . =

In [CON 06b] it is shown that the original algorith®QEMA is sound on both
descriptive and Kripke frames, and hence thatS{IEMA-reducible formulae are
canonical. The main hurdle to be overcome there was to shavatsuitable analogue
of Ackermann’s Lemma holds over descriptive frames. Indéeel lemma does not
generalize to descriptive frames without adaptation, ahavn in example 20 be-
low. However, a restricted version does hold, the formatatf which requires the
following definition:

DEFINITION 18. — A formulay € L is syntactically closed (operif) all occur-
rences of nominals an¢ ! in ¢ are positive (negative), and all occurrencesof!
in  are negative (positive) or, equivalently, when written @gation normal formy
is positive (negative) in all nominals and contains no ocences of 1! (¢1),

Clearly = maps syntactically open formulae to syntactically closadnulae, and
vice versa.

LEMMA 19 (ACKERMANN’S LEMMA FOR DESCRIPTIVEFRAMES,[CON 068]). —
Supposed € L7 is a syntactically closed formula not containip@nd B(p) € L is
a syntactically open formula which is negativepinThen

((A— p) A B(p)) ={. B(A/p).

The following example shows that we cannot, in generalthi& requirement in
Lemma 19 of syntactic closedness and opennessarfd B, respectively.

ExAamPLE 20. — Letg = (W, R, W) be the general frame with underlying Kripke
frame pictured in figure 1. Note thatis reflexive while all other points are irreflexive.
Further, the only successor©ft 1 is w, while the relation in the submodel generated
by w is transitive. LetW = {X; U X, U X3 | X; € X;,¢ = 1,2,3}, whereX;
contains all finite (possibly empty) sets of natural numpksscontaing) and all sets
of the form{zx € W | n < z < w} foralln € w, andX; = {0, {w + 1}}. Itis not
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transitive

w+1

Figure 1. A descriptive frame

difficult to check thaty is descriptive. (This general frame is given in example &52
[CHA 97].)

Note, that{w + 1} is an admissible set, but thét ! ({w + 1}) = {w}, which
is not admissible. Hence the algebra of admissible setstislased under the> !
operator.

Now, consider a modeM = (W, R, V') based upon the general fragand with
V(i) = {w + 1}. Then, consider the formula := (¢~ — p) A (—p vV O~ ).
Ackermann’s Lemma (Lemma 3) is applicable to this formulahwd = <~'i and
B = (-p Vv ©71i). Note that whileA is syntactically closedB is not syntactically
open. Now applying the lemma transformsnto the tautology)’ := - ~tiv oL,
Even thoughM I+ ¢, there exists n@-variant M’ (based upory) of M such that
M’ I 4. Indeed, any such-variant would have to evaluateto {w} which is not an
admissible set of. O

Itis easy to prove that whenever the Ackermann-rule is agmluring an execution
of SQEMA, the syntactic conditions of Lemma 19 are always met. Thosyever,
is not the case foISemSQEMA, as is illustrated in example 21 below. It is not
known at this stage wheth€&emSQEMA is sound on descriptive frames or whether
SemSQEMA-reducible formulae are always canonical. In sections Saamelow, we
introduce two variants dbemSQEMA for which weare able to prove soundness on
descriptive frames and hence also the canonicity of forewdducible by them.

EXAMPLE 21. — Consider the formula
(O(BCp vV OO-p V g) AOp) — &O-g A O0Og.

As the reader can checBQEMA will fail on this formula. Here is whasemSQEMA
does with it. Applying thea-rule to the resulting initial system we obtain:

i=0@0pVOO-pVq)
i=Op



SemantiSQEMA 15

Note that this system cannot be solvedgpsince neither the positive nor the negative
occurrence op in the first sequent can be isolated by the application osfamation
rules. However, the first sequent is downwards monotone imdeed, as we have
noted earlier, the formula<p v OO—p is semantically equivalent o T v OO—p.
Hence, if we apply thé&-rule to obtain the system

i=0@0pVOO—pVyg)
O7li=p ,

we can apply the semantic Ackermann-rule to eliminate

Solving forg we obtain

Now, recalling thai<Cq V OO—q =4, OCT V OO—g and applying the semantic
Ackermann-rule again we get a pure formula.

i=0@00 v oont-ivyg)
i=00qV O0—g

O A (00O V OO0 1+i) = ¢

Notice, however, that in this application of the semantikérecnann-rule the an-
tecedent of the first sequent (i.e., the formdlan the Ackermann-equivalen¢el —
p) A B(p) = B(A)) is not syntactically closed, since it contains both a niegatc-
currence of>~! and a negative nominal occurrence. Attempting to first elate the
variableq would lead to the same problem. Therefore, we cannot clapardistence
of the input formula based on iBemSQEMA-reduction.

a

4. Lyndon-type Theoremsfor syntactically closed and open formulae

In this section we show that syntactically closed upward otone formulae al-
ways have syntactically closed positive equivalents. Asmltary, a similar result
holds for syntactically open downward monotone formuldeese theorems are ana-
logues ofLyndon’s monotonicity theoreffor first-order logic ([LYN 59]), and are
obtained by making use of a suitable variation of the notifdsisimulation which we
will call a syntactically closed simulatioThese results and techniques will be essen-
tial for justifying the canonicity claims we make for the atghmsSemCIsSQEMA
andSemRepSQEMA presented in sections 5 and 6.

LetN*t := NU {oo}. As usuabo + n = oo — n = oo for anyn € N.

DEFINITION 22. — Letp € N*. A p-bisimulationrelating a pointed modglM, m)
to a pointed modeV, n) is any family{ Z; } y<;<,+1 Of relationsZ; C WM x WN,
between the domains of the models, withC 7,1, 0 < i < p, satisfying the
following conditions:
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(Link) mZyn.

(Local harmony) if (u,v) € Uy<;c .1 Zi then(M,u) I a iff (N, v) I a for all
a € AT. -

(Forth) if uZv, i < p, and RMuu/, then RN v’ for somev’ € N such that
u' Zi v’ similarly if uZ;v and RMu/u, then RN v'v for somev’ € A such
thatu’ i+1v’.

(Back) a similar condition foruZv, i < p, andRNvv’ | RN v'v.

We will use the notatiofM, m) = (N, n) to indicate that there existsabisimulation
relating (M, m) to (M, n). We will write Z : (M, m) = (N,n) if a particular p-
bisimulationZ is of importance.

It should be clear that amo-bisimulation is just an ordinary bisimulation for the
langaugel”. Recall that the modal depth of aif’-formula p, denoteddepth(yp),
is the maximum depth of nesting of modal operatorginit is well-known that for
all o € L7 with depth(p) < p € Nt it holds that(M,m) I+ ¢ iff (N,n) IF ¢,
wheneve(M,m) 2 (N, n).

The following bisimulation notion is designed to preseryetactically closed -
formulae which are positive (or upward monotone) in cerpaimpositional variables.

DEFINITION 23. — Let©® C PROP be a possibly empty set of propositional vari-
ables andp € NT. A syntactically closed®-p-simulationrelating a pointed model
(M, m) to a pointed mode{N,n), is any family{Z;}o<;<,+1 of relationsZ; C
WM x WV, between the domains of the models, satisfying the folpadmditions:

(Link) mZgyn.

(Asymmetric local harmony for ©) If (u,v) € |JZ; andp € ©, then(M,u) I p
implies(N, v) IF p.

(Asymmetric local harmony for nominals) if (u,v) € |JZ; andi € NOM, then
(M, u) I iimplies(NV, v) IF i.

(Local harmony for propositional variables) if (u,v) € |J Z; andp € PROP — ©,
then(M, u) I piff (M, v) I p.

(ReversiveForth) if uZv, i < p, and RMuw/, then RN vv’ for somev’ € N such
that v/ Z; . 1v'; similarly if uwZ;v and RMu/u, then RN v'v for somev’ € N
such that'Z;, 1v'.

(Non-Reversive Back) if uZ;v, i < p, and RN v/, thenRMuu’ for someu’ € M
such thaw'Z; 0.
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We will use the notatiof M, m) :;’;C(@) (N,n) to indicate that there exists a

syntactically closed-p-simulation relating(M, m) to (N, n). We will write Z :
(M,m) :gc(@) (N, n) if a particular ©-p-simulationZ is of importance.

LEMMA 24. — Let© be a finite, possibly empty set of propositional variables] a
p € NT. Any syntactically closed”-formula » of modal depth less that + 1,
which is positive in the propositional variables froly is preserved under syntacti-
cally closedd-p-simulations.

PROOF. — By structural induction orp, written in negation normal form. ]

The next lemma strengthens Lemma 24, by replapositivitywith upward mono-
tonicity.

LEMMA 25. — Let© be a finite, possibly empty set of propositional variables] a
p € NT. Any syntactically closed-formula ¢ of modal depth less thap + 1,
which is upwards monotone in the propositional variablesf©, is preserved under
syntactically close®-p-simulations.

PROOF. — Let satisfy the conditions of the lemma and {&f; }o<;<,+1 be a syn-
tactically closedd-p-simulation between the modedA,m) and (N, n). Suppose
that(M,m) IF .

Let the modelM x N = (W™, R*, V™) be defined as followsiW™ = |J Z;
R (u,v)(u/,v") iff RMuw’ andRNvv'; V¥(p) = {(u,v) € UZi | u € VM(p)}
for all propositional variableg; andV*(j) = {(u,v) € UZ; | u € VM(j)} for
all nominalsj. Note that for every nomingl whose denotation io\ is linked to
a point inN by U Z;, V*(j) is a singleton due to the asymmetric local harmony
for nominals. All other nominals, however, are interpretgd”* as(; to remedy this
defect we tacitly add tdf x N a new point, unrelated to any other by the accessibility
relation, where we interpret all those nominals, as welllggrapositional variables.
The following hold:

(i) (m,n) € W¥, by construction.
(i) (M, m) = (M x N, (m,n)), by routine verification thaf Z/ }o<;<,+1 With
Z! =A{(u, (u,v)) | (u,v) € Z;} satisfies definition 22.
(i) Hence,(M x N, (m,n)) I .
(iv) Moreover, (M x N, (m,n)) :;’;C(@) (N,n), by routine verification that

Z{ o<icpir With Zi7 = {((u,v),v) | (u,v) € Z;} satisfies definition 23.

Let M AN be obtained from\t x N by extending the valuations of the propositional
variables inp € © as follows: for every pointirfu, v) € M AN, let (u,v) € V<(p)
iff v € VN (p). Note thatV* (p) € V~(p). It follows from the upward monotonicity
of ¢ in the variables fron® that(M <N/, (m, n)) IF ¢. Finally, it is straightforward
to check that M A N, (m,n)) :;’;C(@) (N,n). Hence, by Lemma 24N, n) I .

|

Let us denote byL")? i the set of all syntactically close€*-formulae, posi-

. i 5¢(©) 7 L
tive in all propositional variables i® and of modal depth less that 1. We will write
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(M, m) 2506y N.n) if (M, m) I ¢ implies (N, n) I- pforall g € (L)5 o)
Note, that) € (L])oq ) iff O € (L)t iff OV € (L7)55e, if O710 €

n 1
(L7 )%(@)
REMARK 26. — (M, m) S5, (N,n) iff (V,n) Ik 1 implies (M, m) I 4 for
all ¢ such that-y) € (L‘ﬁ)’gc(@), i.e., iff all syntactically open formulae, negative in
the propositional variables i® and of modal depth less thant+ 1 are preserved in
passing from(\, n) to (M, m). O

In what follows we will have to be more precise about the psijanal vari-
ables and nominals that occur in the language. We will theeadenote by.” (@, )
the languageC? built over the propositional variables i and the nominals inb.
(LMD, \IJ))gc(e) is accordingly the restriction of”(®, ¥) to (ﬁﬁ)gc(e). The re-
Iations:;gc(e)@&) and 3%0(@)(@,\11) are similarly generalized frongc(@) and
3%0(@)-

LEMMA 27. — For any pointed modeléM, m) and (N, n), set of propositional

variablesO, finite setsb and ¥ respectively of propositional variables and nominals,
andk € N,

(M, m) jgc(@)(@,xp) (N, n) iff (M, m) 3@0(@)(@,@) (N, n).

PROOF. — The left-to-right direction is Lemma 24. In the rest of theof we
suppress reference tb and ¥ — the only important fact about them is that they
are finite, and henceC?)’gc(@)(cb, ) is finite, modulo equivalence. We prove the

right-to-left direction. Suppose that, m) 9’;0(@) (N, n) and let
Z; = {(u,v) € WM x WwN | (M, u) égai(@) (N, v)},

forall 0 < i < k. We will show that,{Z;}o<;<; iS a syntactically close®-
k-simulation linkingm andn. By construction,(m,n) € Z,. It should also be
clear that the symmetric and asymmetric local harmony elaase satisfied by any
(u,v) € Up<icr Zi = Zk. Suppose thatu,v) € Z;, for some0 < i < k, i.e.,
(M, u) 9’;@1@ (N, v). We must show thatu, v) satisfies the back and forth-clauses
required by t e definition.

To that end, suppose th&"!uu’. Let SC(0)" "1 (u') = {¢ € (L})§c(o) |

(M, ) IF 9}, i.e. the set of all(ﬁn)’gczol) -formulae true at.’. We may assume

thatSC(0)*~i=1(u') is finite. Theno A SC(©)F~i=1(u')is an(ﬁn)sc () formula,
such that M, u) I- & A\ SC(©) =1 (/). Hence (N, v) IF & A\ SC(O©)k—=1(u/),
that is to sayp has aR" -successor, say, such tha{\V, ') I- A SC(©)*~— (/).
It follows that (M, u') 3’;0101 (N, v"), and hence thatu', v') € Z; 1. This proves
half of the reversive forth- clause The other half is synmingusing the formula

O~L A\ SC(©)F =1 () for v’ an RM-predecessor af.
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Now for the sake of the non-reversive back-clause, suppagéd, v) € Z; and
that RN vo’. Let SO(©)F (') = {¢ | = € (L})5cie) & W,0') IF ¥},
i.e. the set of all syntactically open formulae of modal thegt most(k — ¢ — 1)
and negative in the propositional variablesdrwhich are true at’. Again, we may
assume thas§O(0)*~i~1(v/) is finite. Then® A SO(©)*~i~1(v') is a syntactically
open formula of modal depth at mast— ¢, negative in the propositional variables
from ©, and hence, by remark 26M, u) I- & A\ SO(©)F~~1(v'). Hence, there is
awv’ such thatRMuu' and (M, ') IF \ SO(©)F~1(v). Again, by remark 26 it
follows that(M, u') =% o) (V,v') and hence thatw,v') € Zi;1. Note, by the
way, that we would not be able to prove a reversive back-elaua similar way, since
O~ A SO(©)F~i=1(v') is not syntactically open. (]

LEMMA 28. — For any pointed modally saturated (see e.g. [GOR 06a]) model
(M, m) and (N, n), set of propositional variable®, and setsp and ¥ respectively
of propositional variables and nominals,

(M, m) =3 o) @,0) N, 1) iff (M,m) =50 ey@,0) N, n).

PROOF. — The same as that of Lemma 27, except for the fact that, sirgew have
to deal with essentially infinite sets of formulae, the ma#guration of M, m) and
(N, n) is needed to guarantee the existence of successors s@istyi(©)~*— 1 (u')
andSO(0)F~=1(v"). [

THEOREM 29 (LYNDON-TYPE MONOTONICITY THEOREM FOR SYNTACTICALLY
OPEN AND CLOSED FORMULAB. — A syntactically closed (open) formulac L7
is upward (downward) monotone in the propositional varesgih a se® if and only if
it is semantically equivalent to a syntactically closeddopformulay’ € £ which is
positive (negative) in the propositional variablesdnand such thaT (¢') C AT (p)
anddepth(¢’) < depth(yp).

PROOF. — The right-to-left direction of the bi-implication is imadiate. So, as-
sume thatp € L7 is syntactically closed and upwards monotone in the praoiposil
variableso, and suppose thaepth(p) = k. Let

CONS(p) = {¢ € (L} (PROP (1), NOM(¢))) ¢ e) | IF ¥ — ¥}

Note that, because of the bouhtdn modal depth and the fact thBROP () and
NOM(yp) are finite, CONp) is a finite set, modulo semantic equivalence. The proof
is complete once we can show that CONM$ IF ¢, since we can then takg to be

/\ CONS¢p). To this end, suppose thg¥/, n) I CONSy). Let

N={¢ |~ € (LD50e) & Vn) kv
Then N U {} is satisfiable, for otherwis@& I —¢p, i.e AN IF —p. But then
el \V{-¢|¢¥ e N}and\/{—¢ | ¢ € N} € CONSp)— a contradiction.
Let (M, m) IF N U {p}. Then, by remark 26,M,m) =%,y (N, n), hence,
by Lemma 27 we havéM, m) :;’;C(@) (N, n), and then by Lemma 25 it follows
that(NV,n) IF . [
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5. SemSQEMA with syntactic restrictions

In this section we introduce and study the modified algoriBemCIsSQEMA.
This algorithm is obtained frorBemSQEMA by imposing a slight restriction on the
applicability of the Ackermann-rule, sufficient to enabketa prove that all
SemCIsSQEMA-reducible formulae are canonical.

5.1. Thealgorithm SemCISSQEMA
The algorithmSemCISSQEMA is obtained fronSemSQEMA by replacing in

the latter the semantic Ackermann-rule with the followinggtricted version, which
we will call thesemantic Ackermann-rule with test for syntactic closesines

Ay =p
Ap=p .

The system || Bi(p) is replaced by

B,.((A1 V...V A,)/p)
. C
B, (p)
C
where:
1) p does not occur iy, ..., A, orC;

2) All A4,..., A, are syntactically closed;
3) Form(By) A - - - A Form(B,,) is downwards monotone in

Thus, this rule is the same as the semantic Ackermann-nabepé for the restric-
tion thatA, ..., A, are to be syntactically closed. Clearly, we have, as imntedia
corollary of Theorem 7, the following

THEOREM30 (CORRECTNESS OFSEMCLSSQEMA). — If SemCIsSQEMA suc-
ceeds on a formulg € L then the first-order formula returned is a local frame cor-
respondent forp.

5.2. The canonicity of SemCIsSQEMA -reducible formulae

As indicated above, our motivation for restrictiSgmSQEMA to obtain
SemCIsSQEMA, is that we can obtain a canonicity result for the formulakicgble
by the latter. That canonicity result is to topic of this sedtson. We will need some
preliminary notions:

We say a modeM = (W, R, V) is connectedf between every two different
pointsu,v € W there is a(R U R~!)-path. For the rest of this section we will
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assume, without loss of generality, that all models are eotad, since for the sake
of the canonicity proof it is sufficient to work with modelsrg@ated from the point
of evaluation on the reserved nomiiaFormulaep, v € L' arecm-equivalentfor
‘equivalent over connected models )M I+ ¢ iff M IF ¢, for all connected models
M.

DEFINITION 31. — LetX C £ and©® C PROP. We say a formulgp € L
is sccmO-reflected between models &f (for ‘reflected by syntactically close@-
simulations between connected models’) if for any two cogemodels\t I+ X and
NIFX, if M =3c(e) N and\ I ¢, thenM |- o.

LEMMA 32. — Any formulay € £ which is sccnf}-reflected between modelsXf
and is globally downward monotone @ C PROP, is cm-equivalent on models Bf
to a syntactically open formula in the vocabularygfwhich is negative if®.

PROOF. — Let ¢ be as in the formulation of the lemma. By a construction and
argument very similar to those used in the proof of Lemmat&am be seen that in
fact ¢ is sccm®©-reflected between models &f For the rest of the proof we will
write (£7') sc(e) for (L1 (PROP(¢), NOM(¢))3¢ (e - Let

CONS(¢) := {v | = € (£})sc(e) and U {p} ™4 ),

i.e., CONS(yp) is the set of all syntactically open (global) consequendes over
models of¥ in the vocabulary ofp which are negative i®. If we can show that

Y U CONS(p) IFm? » we can appeal to compactness and the proof is complete.
To that aim, letM |- X U CON S(p) with M connected, arbitrarily. Pick any state
m € M andletS := {y € (L})sco) | (M,w) I- v}. Then there exists a model
N IF X U {¢} and pointn € N such tha{ N\, n) I- S, for else there is a finite subset
{71,.--y7m} € Ssuchthat+y; V-V -y, € CONS(p), which is a contradiction.

Thus,(M,m) =3¢ (N,n). We may assume, without loss of generality, that
both M and\ are modaliy saturated, since we know that every model isdbaded
morphic image of a modally saturated model (see e.g. [GOR.O8ance by Lemma
28 there exists a syntactically closed simulation (M, m) =55, (N,n). Fur-
ther, by the definition of a syntactically closed simulatéord the assumption thay

is connected, it follows thaf relates every point icM to some point in\/. But then,
sinceyp is sccmO-reflected, we havaA |- o. [ ]

THEOREM33. — All SemCIsSQEMA-reducible formulae are d-persistent and hence
canonical.

PROOF. — By Lemma 17 itis sufficient to show th&@emCIsSQEMA is sound both

on Kripke and descriptive frames. For that we have to vehbt every transforma-
tion rule SemCISSQEMA preserves transformation equivalence and transformation
equivalence on descriptive frames (definition 15). All caecept one are easy to ver-
ify — the only possibly problematic case is to show that theaetic Ackermann rule
with test for syntactic closedness preserves transfoomaijuivalence on descriptive
frames. Note that for any diamond-link sequgrt Ok, Form(j = k) = —j Vv Ok
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is neither syntactically open nor closed. Given a systeregfisntSys, let Dia(Sys)
denote the set of all diamond-link sequents appearir8ys andSys — Dia(Sys)
the complement oDia(Sys) in Sys.

CLAIM 1: LetSys, be any system obtained during the (successful or unsuccess-
ful) execution ofSemCIsSQEMA on an input formulap € £. Then the formula
Form(Sys, — Dia(Sys,)) is sccmé-reflected between all models.

PROOF OF cLAIM 1: We proceed by induction on the application of transforma-
tion rules. We can verify the base case by noting that eatihlisystem is of the form
i = ¢; wherep; € L. Thus,Form(i = ¢;) = —iV ¢; is a syntactically open
formula. Therefore, by Lemma 25 and remarkRR8m(i = ;) is sccmé-reflected
between all models.

We may assume, without loss of generality, that all appbeatof the<-rule and
polarity switching rule take placeeforethe first application of the Ackermann-rule.
Moreover, for all systemSys obtained before the first application of the Ackerman
rule, the formulaForm(Sys — Dia(Sys)) is syntactically open and hence, as in the
base casdsorm(Sys — Dia(Sys)) satisfies the claim.

Now suppose thaiys, satisfies the claim. We have to verify that any sysg&ys;
obtained fromSys, by the application of the,, v, O or Ackermann-rules satisfies the
claim. Since the application of any of the first three of thaedes in fact maintains
equivalence on models, those cases are immediate. Forgbeo€she Ackermann-
rule Form(Sys; — Dia(Sys,)) must be of the forniA — p) A B(p) wherep does not
occurinA, Ais syntactically closed, anBl(p) is downward monotone ip. (Actually,
according to the definition of the Ackermann-rule, thereloamn additional conjunct
C, not containing. To keep notation simpler we will, however, wrilyp) for B(p) A
C, as the latter formula will clearly also be downward monetémp.) It follows
for the inductive hypothesis and Lemma 32 tlitp) is cm-equivalent on models
of of (A — p) to a syntactically open formul®’(p) which is negative irp. Now,
Form(Sys, — Dia(Sys;)) will be of the from B(A). Suppose that\t and A are
connected models such thaf I- B(A) and thatM =g, . The proof of the
claim will be complete if we can show that I B(A). By Ackermann’s Lemma
(Lemma 3) there is\V’ ~, A such that\’ = (A — p) A B(p), and henceV’ +
(A — p) A B'(p), henceN” = B'(A). SinceM =37 gy prop - (p).nomy N M is
connected, and’(A) is syntactically open, we have by Lemma 25 thdtl- B'(A).
Again by Ackermann’'s Lemma we can fintt’ ~, M such thatM’ - (A —
p) AB’(p), hence such thavt’ - (A — p) A B(p), and hence\’ - B(A). But since
M’ ~, M andp ¢ PROP(B(A)), we haveM  B(A). END PROOF OFCLAIM 1

We can now verify that the semantic Ackermann-rule withfigssyntactic closed-
ness preserves transformation equivalence on descrijptivees. For that purpose
suppose thatorm(Sys;) is of the form(—A Vv p) A B(p) A Form(Dia(Sys;)) with
p hot occurring in4, A syntactically closed, an® downward monotone ip. (As
before we will take the possible additional conjuitas part ofB(p).) By claim 1,
(—A V p) A B(p) is sccmi-reflected between all models, and hed®) is sccm-
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()-reflected between models 6fA V p). By Lemma 32B(p) is cm-equivalent on
models of(—A V p) to a syntactically open formulB’(p) which is negative irp. By

Lemma 19(—A V p) A B'(p) =¢. B'(A). SinceB(A) andB’(A) are cm-equivalent
on all models and cm-equivalence on all models implies foangation equivalence
on descriptive frames, we conclude thfétA Vv p) A B(p)) =¢. B(p), and hence

—tr

(A V p) A B(p)) A Form(Dia(Sys,)) =¢. B(p) A Form(Dia(Sys;)). [

Armed with this result, we can now fully extend Sahlqvistisebrem [SAH 75]
to the semantic Sahlqgvist formulae, by adding to the comedpnce result (Theorem
12) also the accompanying canonicity result;

THEOREM 34. — All semantic Sahlqvist formulae are canonical.

PROOF. — By glancing at the proofs of Theorem 12 and Lemma 11, we lsag t
whenSemSQEMA is run on a semantic Sahlqvist formula, the formdlav - - -V 4,
substituted in the application of the semantic Ackermaule-is always of the form
(O7)ymjy v v (O7H)mnj,. Hence the semantic Ackermann-rule with test for
syntactic closedness is if fact applicable. Hence all seim&ahlqvist formulae are
SemCIsSQEMA-reducible. The result now follows by Theorem 33. ]

6. SemSQEMA with replacement

In the previous section we introduced and studied the algni$emCIsSQEMA,
obtained frorSemSQEMA by imposing a slight restriction on the application of the
semantic Ackermann-rule. We were able to show 8@ CISSQEMA guarantees
the canonicity of formulae reducible by it. This was done hgwing that, even
though the systems produced 8gmCISSQEMA do not always satisfy the syntac-
tic conditions required by Lemma 19, they are in fact alwayisably equivalentto
systems thatlo satisfy those requirements.

In this section we take another approach — we mo&i§mMSQEMA in a way
that ensures that systems are always ‘syntactically cori@ed which requires no
restriction on the applicability of the semantic Ackermante. The algorithm we
obtain will be calledSemRepSQEMA for ‘semanticSQEMA with replacemerit

6.1. Thealgorithm SemRepSQEMA

Theorem 29 guarantees the existence of negative, syratgtipen equivalents
for formulae which are syntactically open and downward ntone in given proposi-
tional variables. As was illustrated in example 21, the agtit openness of sequents
is lost through substitution into formulae which are notatdge, effected by the appli-
cation of the semantic Ackermann rule. If we were thus toaepldownward mono-
tone (conjunctions of) sequents with equivalent negativesbeforewe applied the
Ackermann-rule, this situation would not arise.
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The algorithmSemRepSQEMA is obtained fron5emSQEMA by replacing in
it the semantic Ackerman-rule with the followirsgmantic Ackermann-rule with re-
placement

A1 = p,
A, =p, ,
The system || Bi(p), is replaced by H g (A1 V...V A,)/p)
Bm(p),
C

where:

1) p does not occur iy, ..., A, orC,
2) Form(By) A - - - A Form(B,,) is downwards monotone in and
3) B’(p) is a sequent such that

a) Form(B’(p)) =sem FOrm(B1) A --- AForm(B,,),
b) Form(B’(p)) is negative irp and syntactically open.
Here is an example @emRepSQEMA at work:

ExXAMPLE 35. — Consider the formula
=(O((~g V —pV Op) AO=r) AO(=pV Or) AOg A p).

SQEMA will fail on this input, as one can check. Let us se8émRepSQEMA fares
any better. After a few applications of therule the initial system is transformed into

i=0((—gV-pV Oop)AOar)

i= 0O(-pVv0Or)

i= Oq

i=p
(Strictly speaking, conjunction should be distributedradisjunction on the first se-
quent but, as this makes no difference to the rest of the ¢necwe keep the sequent
as it is for the sake of compactness of notation.) As the systandsp cannot be
eliminated, buy; andr can. Indeed, solving the system fpandr yields

i=0((—gV-pVOop)AOar)
OTHOTHA —p) =7

O li=g

i=p

which, after two applications of the Ackermann-rule, beesm

i= 00 =iV -pVOop) Ao HO =iV —p))
i=p
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This is whereSQEMA would get stuck. However, the sequént O((O~1=i Vv
—pV Op) A OO~ (O~ 1=i v —p)) is downward monotone ip, henceSemSQEMA
would succeed, but would not prove d-persistence. Howae#iging that the formula
(O~ 1=iv—pVvOp)ACO 1O~ -iv—p) is semantically equivalent o0~ (O~ 1—iv
—p), enables us to apply the semantic Ackermann-rule with oepfeent, yielding

| i= 0(Co YO =iV ~i))
O

A simple induction, almost identical to that used to proveinea 4.13 in [CON 06b],
establishes the following lemma. Recall that diamond-fie§uents were sequents of
the formj = <k introduced by the>-rule.

LEMMA 36. — During the entire (successful or unsuccessful) execution o
SemRepSQEMA on any/£ input formula, all antecedents of non-diamond-link se-
quents are syntactically closed formulae, while all conssds of non-diamond-link
sequents are syntactically open.

We now have:

THEOREM37. — All SemRepSQEMA-reducibleL-formulae are locally first-order
definable and locally d-persistent.

PROOF. — The correctness of the algorithm with respect to the &rder equiva-
lents returned follows in the same way as the correctneSemfSQEMA (Theorem
7), as does the soundness on Kripke frames. The soundnessoriptive frames
of the transformation rules is also the same as in Theorenex@®pt that now the
Ackermann-rule with replacement is justified by Lemmas 18 36. ]

REMARK 38. — We have proved that bo8emCIsSQEMA andSemRepSQEMA
manage to guarantee canonicity by what may be seen as noitigatf the “seman-
tic thesis”. That is to say, both versions reimpose syrtamiteria on the semantic
Ackermann-rule which are sufficient to make the Ackermanmire for descriptive
frames applicable. This lemma requires the formula A B(p) in the usual Ack-
ermann equivalence to be syntactically op8emCIsSQEMA only requires thatd
must be syntactically closed (and hence thdtis syntactically open), as we are able
to show that during the executidB is in fact always suitably equivalent to a syn-
tactically open formula negative jim On the other handsemRepSQEMA ensures
that—A A B(p) will always be syntactically open witlB(p) negative inp, by doing
suitable equivalence preserving replacements along tielwdng the execution.O

To demonstrate the strength®mRepSQEMA we will show that it succeeds on
all semantically inductive formulae- the semantic extension of the class of (monadic)
inductive formulae introduced in [GOR 06b], defined in thesibanodal languag€
as follows.

DEFINITION 39. — Let # be a symbol not belonging t6. Then asemantically
box-form of # in L is defined recursively as follows:
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1) # is a semantically box-form &#;

2) If B(#) is a semantically box-form of thenOB(#) is a semantically box-
form of#;

3) If B(#) is a semantically box-form gt and A is an upward monotone formula
thenA — B(#) is a semantically box-form gt.

Thus, semantically box-forms @t are, up to semantic equivalence, of the type
04, — O(A2 — ...0(A, — #)...), whereA,,..., A, are upward monotone
formulae inL.

DEFINITION 40. — Given a propositional variablg, a semantically box-formula of
pis the resulB(p) of substitution op for # in any semantically box-forB(#). The
last occurrence of the variableis the head oB(p) and every other occurrence of a
variable inB(p) is inessential there.

DEFINITION 41. — A semantically regular formulis any modal formula built from
upward monotone formulae and negations of semanticallyfoorulae by applying
A, V, andO.

DEFINITION 42. — Thedependency digrapdf a set3 = {B1(p1), ..., B, (pn)} of
semantically box-formulae is the digragh= (V, E) whereV = {p1,...,p,} is the
set of heads itB, andp; E'p; iff p; occurs as an inessential variable in a semantically
box-formula from3 with a headp;. A digraph is calledacyclicif it does not contain
oriented cycles.

DEFINITION 43. — A semantically inductive formules a semantically regular for-
mula with an acyclic dependency digraph of the set of all sgially box-formulae
occurring as subformulae in it.

We note that semantic Sahlqvist formulae are, up to semaqtitvalence, pre-
cisely those semantically regular formulae in which the aetically box-formulae
are justboxed atomsi.e., propositional variables prefixed by possibly emptings
of boxes. Thus, all semantic Sahlqgvist formulae belong tionple particular case of
semantically inductive formulae, where the dependencsagig has no arcs at alll.

An example of a semantically inductive formula which is ngemantic Sahlqvist
formula is—p vV —=0(<O(OO-p A OOp) — Og) vV OOO(OOC—g V OOq).

THEOREM44. — All semantically inductive formulae aBemRepSQEMA-reducible,
and hence locally first-order definable and locally d-petesis.

PrRoOOF. — (Sketch) Any semantically inductive formujacan be regarded as ob-
tained from an inductive formul@’ by replacing some positive subformulae by up-
wards monotone ones. It has been proved in [CON 06b]$IGEMA succeeds on
every inductive formula, by eliminating the variables inader extending the partial
ordering determined by the (acyclic) dependency graphatffdrmula. Now, given

a successful execution &QEMA on ¢/, it can be transformed to a successful exe-
cution ofSemRepSQEMA on ¢ by applying Theorem 29, whenever necessary, with
every application of the semantic Ackermann-rule with agpiment. It can be shown
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by induction on the number of eliminated variables that thaditions of that theorem,
guaranteeing the existence of a suitable replacementatiséied. ]

Again, this result can be obtained as direct consequenoetfre local first-order
definability and and d-persistence of inductive formulaevpd in [GOR 06b]; but
here we show that all these formulae are within the ranggeniRepSQEMA.

6.2. Computing syntactically correct equivalents

The semantic Ackermann-rule with replacement requirestieg syntactically
open equivalents for downward monotone syntactically dpemulae. Theorem 29
guarantees the existence of such equivalents, [BaniRepSQEMA is be called ‘al-
gorithm’ we need and effective way of computing such eqeintd. Strictly speaking,
the proof of Theorem 29 does provide a procedure for obtgisirth equivalents, al-
beit a ludicrously inefficient one. Indeed, we just have tteribat in that proof, the set
CON S(y) is finite, modulo equivalence, and that its members can leetfely com-
puted via an enumeration the memberg 6f (PROP (), NOM(@)))@C(@) (again
there are finitely many modulo equivalence) and the use oftatde theorem prover
for hybrid logic.

In this section we provide a more efficient algorithm for caripg the desired
equivalents. This procedure will only work for a specialéygf monotone formulae
(the so-calledeparately monotone formulpéut is often sufficient and will moreover
save us the tedious technical detail of the general case.

In many of the examples above, the monotonicity of formutamlved in the
application of the Ackermann-rule did not depend on the prapterpretation of the
inverse modalitie®~! andO~! as inverses of andO. For example, the downwards
monotonicity of 0~ 1—i v (¢Op A OO-p) in p can be detected by looking @, —i Vv
(¢101pA0O;0;-p) whered; andO, are two independent modalities. Moreover, the
fact thati is a nominal is also irrelevantiy—r Vv (¢101p A 0,04 —p) is downward
monotone irp for any propositional variable.

With this observation in mind, we introduce the followingrenology and def-
initions. We will refer to the bimodal language with two diamds<; and <, as
Lo.

DEFINITION 45. — Given a formulap € L7, theseparatiorof ¢, denotedbep(y),
is the Lo-formula obtained by
1) replacing every occurrence ¢f andO in ¢ with &1 anddy, respectively,

2) replacing every occurrence ¢f—! andO~! in ¢ with &, andOs, respectively,
and

3) uniformly substituting a fresh propositional variabta fevery nominal occur-
ring in .

For exampleSep(0~1—i v (OOp A OO=p)) is Oy V (O101p A 0101 -p).
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DEFINITION 46. — A L}-formulay is separately upward monotoirea proposi-
tional variablep if Sep(y) is upwards monotone ip. The notion ofseparate down-
ward monotonicitys defined similarly.

Clearly separate monotonicity implies ordinary monotdyidkecall that the mono-
tonicity and validity (and hence, satisfiability) problerfs formulae are interre-
ducible. Now, the validity problem fof-formulae is EXPTIME-complete ([ARE 00]),
while that for £, is PSPACE-complete ([HAL 92]). Hence, with the aim of minani
ing computational cost, it might be wise to test formula feparate monotonicity first,
and only if that fails to test for ordinary monotonicity.

In the rest of this section we present a method for finding teggoositive) syn-
tactically open (closed) equivalents for separately doanis (upwards) monotone
formulae. The method will be based on an adaptation of th&éoaedfbisimulation
quantifiers The idea originates from théitts quantifiersof [PIT 92]. Bisimula-
tion quantifiers have been used to prove uniform interpmtatesults for the modal
p-calculus in [D’A 02] and for some modal logics in [VIS 96] af@HI 95]. The
normal form used is inspired by that in [CAT 05] and relatedhat introduced in
[JAN 95].

6.2.1. Disjunctive forms
If S'is a finite (possibly empty) set @f;-formulae, definév S as shorthand for

A\ Grenon V¢,

peS peSs

/\ <>2§0

peS
Note the asymmetry between these definitions\ss and AS are defined like this
because they will be used to write the separations of syinédigtclosed formulae. In
the case of singleton sefs we will often write Vi and Ay for V{¢} and A{¢},
respectively.

andAS as shorthand for

Some standard terminology 4iterals are propositional variables and their nega-
tions. For a propositional variabje thep-literals arep and—p; they are calledom-
plementary literals For a se®© of propositional variables, @-literal is anyp-literal
for somep € ©.

DEFINITION 47. — TheLs-formulae indisjunctive formare given recursively by
pu=L1|T|xAVSAAS | oV,

wherey is a (possibly empty) conjunction of literatsand S” are (possibly empty)
sets of formulae in disjunctive form. As usual, we identiygmpty conjunction with
T, and the empty disjunction with. Note that the formg A V.S, VS A AS’ and
VS can be seen as special casesof VS A AS’ with respectivelys’, x, or both,
empty.
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We will call an £,-formula syntactically closedf it contains no positive occur-
rence ofd,. (Since we will always be careful to specify in which langaage work,
this reuse of terminology should cause no confusion. Maggaw terms of defini-
tion 18, all £o-formulae are syntactically closed, rendering that notimeaningless
for such formulae.) Clearly the separation of any syntadiicclosed £)*-formula
will be a syntactically closed,-formula. Next, we define a translatign* into dis-
junctive form of syntactically closed,-formulae written in negation normal form.
When reading this definition, it is useful to bear the follogriequivalences in mind:
v =sem 11, V{ﬁp, T} =sem <>190/\<>1T/\ Dl(@\/—r) =sem <>1<Py V{T} =0T
and(ﬁ =sem (((,0 A <>1T) \ (90 A DlJ—)'

T =T
1*=1
lit* = (lit AVD) Vv (lit ANVT) forany literallit
(P V) =" VT

(C19)" = V{p", T}

(Ca)* = (VOA L")V (VT AAY)

(O1p)* = VOV Vp*

The case for conjunction is more complicated. Consider mdita of the form/ S.

If SissuchthatS =S"U{T},S=SU{L}, orS =5 U{pV}wetranslate as
follows

(A UL = (A\S)
(A" U{L)) =1
(A" VLoV = (A" U{eh) v IAS Uh)

Note that in the last case above we are in effect distributiegconjunction over the
disjunction. IfS does not contaif, L, or a disjunction, it means that every formula
in S is either a literal or a formula of the forf, ¢, Oy, or G210, We now define the
following sets:

So, ={¢ | 19 € S}

S‘:‘l ={¢|Dl¢€5}
So, ={th | C2tp € S}

Lastly, letS;; be the subset of all literals ifi. If S, # 0, then the intuition is that
any point satisfying\ .S must satisfy each member 6f;;, every member of,, must
be satisfied at somB,-successor, and every memberSaf, must be satisfied at some
R;-successor which also satisfies all memberSf. We must also take into account
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the fact that there may i, -successors not satisfying any membef§ef, but which
still have to satisfy all members &f, . Hence, ifSo, # ), we translate thus:

(A" = A\ St AV{(e A \So)" |9 €So, U{TIH ALY |9 € So,).

If, on the other handS., = (), points satisfying the formula can either have Rp
successors, or have,-successors, each satisfying every membe$®@f. Hence, if
S<>1 =0, let

(AS)* = (NSt AVOAAY* | ¥ € So,})
V(A Siie A V(N So,)* A A{Y* [ € So,}).

It should be clear thap =..., ¢* for every syntactically closed,-formulay in
negation normal form. Here is an example:

ExXAMPLE 48. — Consider the formulan <1 (<¢10;-p A O;0:p A —g). Since it
contains no occurrences 0%, we will omit the subscripts and simply write andC
for &1 andOy, respectively. It is translated into disjunctive form adas:

(r A O(GTO=p A OOp A —q))*
=r AV{(CO-pAOOpA—q)*, T}
=r A V{=g A V{(O-p A Op)*, (Op)*}, T}
=r AV{=~g AV{VOVV{-pAp}, VOV V{p}}, T}

6.2.2. Simulation quantifiers and biased simulations

Via disjunctive forms and the following definition we wilnsform upward mono-
tone syntactically closed formulae into positive ones.

DEFINITION 49. — Letp be anLs-formula in disjunctive form ang a vector of
propositional variables. We defirg 5. inductively as follows:
Ipl = L
IpT = T
FP.(XAVSAAS) = XAV{EDY | eSIAA{T DY | eS8’}
Ip(eve) = I'BeVvITPY

wherey’ is 1. wheny is inconsistent (i.e. wheg contains complementary literals),
or otherwise, ify is consistenty’ is obtained fromy by removing (by simply deleting)
all occurrences of negativeliterals. 3*p is called asimulation quantifier

Note thatd*p.¢ is positive in all variables ip. We want to show that™p.¢ =
o for all formulaey that are upward monotone jn To that aim the following defi-
nition, which is essentially a separated version of a syitity closed©-simulation
(definition 23).
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DEFINITION 50. — LetM = (WM, RM, RM, VM)yandN = (WN, RV, RY ,VV)
be £>-models. Le® be a set of propositional variables. @-biased simulatiotbe-

tweenM and\ is a nonempty binary relatio € WM x W satisfying, for all

(u,v) € WM x W such thatuZv, the following conditions:

(local harmony) (M, w) IF piff (A, v) I p for all propositional variableg ¢ ©,

(asymmetriclocal harmony) (M, u) I p only if (M, v) IF p, for all propositional
variablesp € ©,

(symmetricforth) if R{Muu’ (respectively,R) uu’) then there exists a point €
WH such thatu' Zv' and RY vo’ (respectivelyR) vv’), and

(asymmetric back) if RYvv’ then there exists a point’ € WM such thatu’ Zv'
and Ry uu'.

We will write M —¢g N if there exists @-biased simulation between modgls and
N, or (M, m) —g (N,n) if there is a®-biased simulation linking: andn.
A straightforward adaptation of the proof of Lemma 25 essdials the nextlemma.

LEMMA 51. — For all £3-models(M,m) and (N, n) such that(M,m) —e
(N, n), and all syntactically closed»-formulaey, which are upward monotone in
the variables ir©, it holds that(M, m) I ¢ only if (M, n) IF ¢.

LEMMA 52. — Lety € L, be a syntactically closed formula in disjunctive from and
p a vector of propositional variables. TheM, m) IF ¢ implies(M, m) I- Ip.o.

PROOF. — By induction onp. [ ]
The next theorem motivates why we caftp a ‘simulation quantifier’:

PROPOSITIONS3. — Lety € L, be a syntactically closed formula in disjunctive
from. Then, for any modélV, n) and any vector of propositional variablgs

(N, n) IF 3D
if and only if there exists a modéM, m) such that

(M,m) - and (M, m) —z (N,n).

PROOF. — We proceed by induction op. The base case for is trivial, as is the
inductive step forp of the forme; Vv ¢,. We consider the case fagr of the form
X AVSANAS.

The bottom-to-top direction is easy. By Lemma&®4, m) IF ¢ implies(M,m) |-
I*p.p. Also note thab™p.p is positive in all propositional variables jin We can
now appeal to Lemma 51, and conclude tht ) IF 3T p..
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Conversely, suppose thgV/, n) I 37p.. By the inductive hypothesis it follows
that, for each paiti, s) such thaty € S, RYns and(N, s) IF 31p.1), there exists a
pointed mode(M 5y, My, s)) SUCh thal My, 5y, m(y ) IF ¢ and
(Mp,s), M(yp,5)) —p (N, s). Moreover, since every) -successos of n satisfies
3*p.¢p for some formulay € S, we have thal My, o), m(y,5) —5 (N, s) with
(Mp,s), M(y,s)) I ¢ for somey € S.

Also by the inductive hypothesis, for evety € S’ there exists a point €
W and a pointed modélM.,,, my) such thatR) ns, (M, my) —5 (N, s) and
(My,myp) IF 4.

Now we construct the desired modeWt, m) by first taking the disjoint union of
the models in the sets

{Mp.5), M) | ¥ €S, Rins, (N, s) IF Ipu}

and
{My,my) | €S}

To this disjoint union we add a new point and make it am?; -predecessor of each
m(y,s), and anRy-predecessor of each,. To complete the model we make all
propositional variables occurring positivelyjirtrue atm while all other propositional
variables are declared false there. By constructidf, m) I- ¢ and (M, m) —;
(N, n). [

THEOREM54. — Lety € L5 be a syntactically closed formula in disjunctive from
which is upward monotone it Theny =..., 37 p.¢.

PrOOF. — As remarked beforet; » — 31p.. Conversely, suppose th@t/, n) I+
Itp.p. By proposition 53 there exists a mode\t, m) such that M, m) IF ¢ and
(M, m) —5 (N,n). But, by Lemma 51¢ is preserved undgr-biased simulations,
i.e., (N,n) . [

Theorem 54 gives us a procedure to compute positive equigafer upward
monotone syntactically closeth-formulae, written in disjunctive form. This is easily
converted into a procedure for computing negative equitalér separately down-
ward monotone syntactically opelf’-formulae. To be precise, suppose that L
is syntactically open and separately downward monotortesiptopositional variable
p. We compute the desired equivalentoés follows:

1. Negation: Negatep and apply the usual procedure to rewrite the in negation
normal form, obtaining’. The formulay’ is syntactically closed and separately
upward monotone ip.

2. Separation: Separatey’ by calculationSep(y’). The formulaSep(¢’) will be a
syntactically closed’>-formula which is upward monotone in

3. Disunctiveform: TransformSep(¢’) into disjunctive form by applying the trans-
lation (-)*, i.e., by calculatingSep(¢’))*.
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4. Elimination of negative p-occurrences. Calculated™ p.(Sep(¢’))*. This formula
is positive inp.

5. Obtaining positive £-equivalent: Reverse step 3 as far as possible by applying
the inverse of the translation functign* and the definitions o¥.S and AS".
Lastly, obtain anC*-formula by applying the inverse &kp.

6. Second negation: Negate the resulting formula again to obtain a syntacticgden
formula, negative ip, and semantically equivalent {a

Let us illustrate this procedure with an example.

ExamMPLE 55. — In example 21 we used the fact that the formyla= —-i Vv
O(00p v OO—p V q) was downward monotone in Indeed, it is even separately
downward monotone ip, asSep(y) = —r vV O(OCp V OO—p V q) is downward
monotone inp. (Since there are no inverse modalities involved in thisnfidla, we
can omit the subscripts in the separated from without riskooffusion.) Let us com-
pute a negative equivalent for this formula using the metbbdimulation quanti-
fiers, described above. Negating and rewriting in negatmmal form we obtain
rAC(CO-pAOOpA—q). In example 48 this formula was translated into disjunctive
form, thus:

(r AO(CO-p A OOp A —g))*
= rAV{gAV{VOV V{-pAp}, VOV V{p}}, T}

Next, application of the simulation quantifigr p yields

I p.(r AV{=g AV{VOV V{-pAp}, VOV V{p}},T})
= rAV{qgAV{VOVV{L},VOVV{p}},T}

Reversing the-)*-translation step by step yields

r AV{=g AV{VOV V{L}, VOV V{p}}, T}
= rAV{-¢AV{OL Op}, T}
= rAV{~gAOOLASOpADO(OLYV Op), T}
= rAO(—gAOOLAOCOp AD(OL VYV Op))
Lastly, undoing th&ep-function and negating yields a syntactically open eqengl

negative inp:
—iV O(gV OOT vV OO—p V O(OT A O-p))

Admittedly, this equivalent could be simpler. Indeed, akedan example 21, it is in
fact equivalent to-i v O(OOGT v &O=p V q). The introduction of the subformula
O<$—p is worrying, as this quantifier pattern is often the causEQEMA'’s failure.
However, for the input formula in example 21 this causes mblem, as the reader
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can check. More sophisticated strategies for undéijtgshould be able to minimize
this problem since all that we are doing at the moment is apglthe definition in
reverse. O

ExXAMPLE 56. — In example 35 the monotonicity of the formula
(O =iv-pVvop)AoOHO iV —p)

was used in an application of the semantic Ackermann rulb véplacement. As
this formula is not separately monotone, the method presdentthis section will not
suffice to compute an equivalent negativeyiim this case. Indeed,

(O2=t V =pV O1p) A O102(B2—t V —p)

is not monotone im. O

In summary, monotone sequentsSeamRepSQEMA-executions often satisfy the
stronger property of separated monotonicity. Syntadsicalrrect equivalents of these
sequents can be computed by using the method of simulatiantifjers presented in
this section. However, as example 56 illustra@smRepSQEMA-executions may
give rise to sequents which are monotone but not separathptone. To compute
syntactically correct equivalents for these, strongermoes will have to be consid-
ered.

7. Conclusion

In this paper we explored the application of the modal monictty-based ver-
sion of Ackermann’s Lemma to the computation of first-ordanfe equivalents for
modal formulae and to proving their canonicity. This was el®mrough appropri-
ate modifications of the algorithBQEMA. Specifically, we introduced three ex-
tensions oSQEMA which employ the monotonicity-based (semantic) versiotinef
Ackermann-rule. Two of these extensions guarantee thenigiboof the formulae
on which they succeed, at the expense of either a restrictgmbsapplicability (in the
case ofSemCIsSQEMA) or of a possibly dramatic increase in the complexity (in the
case ofSemRepSQEMA). One of the most important open questions related to the
present study, is wheth&emSQEMA, being the most efficient and general of the
three extensions @QEMA proposed here, guarantees canonicity, too.

In any case, a natural question arising here is to estimatedmplexities of each
of the proposed extensions 8QEMA. We have not investigated this question in
any depth, as we do not expect the worst case complexities tf good practical
value here, while computing the average case complexitiesd\be a computational
challenge going beyond the scope and purpose of this paper.

Furthermore, whilsSemSQEMA seems the version easiest to apply, it does not
necessarily have optimal scope of applicability. The radsothis is that direct appli-
cation of the semantic Ackermann-rule can produce symtbtibad-shaped sequents
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which could impede the successful termination of the atgori Thus, canonicity con-
siderations apart, the idea of replacing certain formujesyimtactically more suitable
ones before or during the applications of the Ackermann mel@ains quite relevant
for the sake of improving the chances of eventual succeswelier, the questions of
what replacements are eventually useful and how to compaie,tstill remain largely
unexplored.

Finally, we have not yet reached the limits of the semantragch to computing
first-order frame equivalents (and proving canonicity) afdal formulae. In its pure
form this approach calls for a gradual elimination of anytagtic transformations
in favour of effectively executable semantic tests — pdgsituch more expensive
computationally, but further extending the scope of agtiility of the method. Going
further along that way, however, we are bound to face theuitaigs tradeoff between
the generality and efficiency of any algorithmic approacle. Wlieve that the present
paper offers a good equilibrium between these.
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