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1. Clifford Algebraic Analysis

Let us state  a proper definition of the 3-D space Clifford (geometric) algebra 
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It is an associative algebra generated by three vectors 
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That is,
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Let a and b be two vectors spanned by the three unit  spatial vectors in 
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. By the orthonormality relation  the product of these two vectors is given by the well known  identity:  
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is a Clifford Algebra representation of an imaginary number   that commutes with vectors.

To give proof, let us follow the  approach  that, starting with 1981, was developed by  Y. Ilamed and N. Salingaros [1].

Let us consider  three abstract basic elements, 
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, with 
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, and let us  admit the following two assumptions:

a) it exists the scalar square for each basic element:
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In particular we have also the unit element , 
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, such that that 
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b) The basic elements 
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 are anticommuting elements, that is to say:
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 It is 
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Consider the general multiplication of the three basic  elements 
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pertaining to some field:
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Let us introduce left and right alternation: for any 
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(1.5)

Using the (1.3) in the (1.5) it is obtained that 
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(1.6)

From the (1.6), using the assumption (b), we obtain that
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By the principle of identity , we have that it must be 
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and 
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The (1.9) is an homogeneous algebraic system admitting non trivial solutions since its determinant 
[image: image52.wmf]0

=

L

, and  the following set of solutions is given:


[image: image53.wmf],

3

2

1

w

g

-

=

k

 
[image: image54.wmf]3

1

2

w

l

-

=

k

 ,
[image: image55.wmf]2

1

3

g

l

-

=

k

                                   




(1.10).

Admitting 
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In this manner, using the (1.2) and the (1.3), as a theorem,  the existence of such algebra is proven. The basic features of this algebra  are given in the  following manner


[image: image58.wmf]1

2

3

2

2

2

1

=

=

=

e

e

e

 ; 
[image: image59.wmf]3

1

2

2

1

ie

e

e

e

e

=

-

=

 ; 
[image: image60.wmf]1

2

3

3

2

ie

e

e

e

e

=

-

=

; 
[image: image61.wmf]2

3

1

1

3

ie

e

e

e

e

=

-

=

 ;
[image: image62.wmf]3

2

1

e

e

e

i

=

                          
                                                                                                                                  (1.12).

The content of this statement  is thus established: given three abstract basic elements as defined in (a) and (b), an algebraic structure is established as in (1.12) with four generators (
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The previous Clifford (geometric) algebra 
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admits idempotents. Let us consider two of such idempotents:
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It is easy to verify that 
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 Let us examine now the following algebraic relations:
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Similar relations hold in the case of 
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 +1 , from the  (1.12) we have that
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with three new basic elements (
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In other terms, in the case 
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, a new algebraic structure arises with new generators whose rules are given in (1.16) instead of in (1.11). Therefore, the arising central problem is to proof the real existence of such new algebraic structure. Note that, in the case of the starting algebraic structure ,we showed that it exists in the following manner
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In the present case , (
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, we have to show that it exists in the following manner
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In this manner we arrive to proof a  theorem that ,  given the algebraic structure A, fixed as in the (1.17), under the condition, 
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(generators) given in (1.18). To proof,  rewrite  the (1.4) in our case ,  and performing calculations we arrive to the solutions of the corresponding homogeneous algebraic system  that  in this new case are given in the following manner:
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where this time it must be 
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and the proof is given. 

The theorem  also holds in the case in which we relate  to 
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The solutions of the (1.19) are given in this case by 
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 In a similar way it is obtained the proof when considering the cases of 
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Of course , the Clifford algebra given in the (1.18) and in the (1.21) are well known . They are the dihedral Clifford algebra 
[image: image132.wmf]i

N

(for details, see ref.2 page 2093 Table II).

In conclusion, the basic statement of this paper is that  when we relate 
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2.The Possible Implications for Quantum Mechanics.

For the problem under consideration, we  consider the representation, called the density operator formulation, in which a quantum system is represented by a positive definite Hermitean operator of unit trace known as the density operator. 

The density operator
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in some particular basis 
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 . In this basis, it is immediately evident that the eigenstates of
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To sketch the problem. Consider the most general form of the state vector of an arbitrary two state quantum system
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where, without  loss of generality , 
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are considered here to be all real. The density operator of this system is 
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 There is no nontrivial choice of 
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[image: image151.wmf]d

is completely undetermined, and that we must therefore average over all possible values of 
[image: image152.wmf]d

. By this requirement , the averaging turns the complex exponential to zero, giving  a diagonal matrix. However, there is no way to accurately specify 
[image: image153.wmf]d

as a completely undetermined quantity in a manner that allows for rigorous calculations.

Consider a two state quantum system S with connected quantum observable 
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and
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We  suggest the use of the extended representation with the use of the 2x2 minimal ideals. We have 
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and   represent the state of such system by a density matrix 
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  noting the idempotents 
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and the nilpotents
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Then
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are the 4-normalized combinations of the spinor’s outer products. It is 
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that is to say


[image: image172.wmf])

)(

(

2

2

1

1

2

2

1

1

f

f

f

f

r

*

*

+

+

=

c

c

c

c

                              (1,32)

and
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that we write
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It is 
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that is 
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where in matrix notation, 
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Of course , the (1.36) is an element of the Clifford algebra as given in the (1.17). As Clifford algebraic element the (1.36) satisfies the requirement to be 
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 (null norm of (1.36) algebraic element) as shown in detail in [2]. In the algebraic  framework previously outlined, let us admit that we relate 
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assumes the value –1). As previously shown , the algebra given in (1.18) and the (1.21)will now hold, respectively. To examine the consequences , starting with the  algebraic element (1.36) , write the two equivalent algebraic forms
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and
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Let us consider  now when  we relate 
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. The (1.18) now hold  in the (1.39) that becomes
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Let us consider now when we relate 
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being 
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the unity matrix.

The quantum interference terms now disappear. J. Keller performed several studies on deriving quantum mechanics by using quadratic forms in  (1+4) dimensions  [3].

3. Note added to the proof.

According to M. Lachièze-Rey [4] and E. Capelas de Olivera and W. A. Rodrigues Jr[5]., 
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[image: image217.wmf]Such elements constitute the so called 
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