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Abstract
We introduce and discuss a knowledge-driven distillation approach to explaining black-box models by
means of two kinds of interpretable models. The first is perceptron (or threshold) connectives, which
enrich knowledge representation languages such as Description Logics with linear operators that serve
as a bridge between statistical learning and logical reasoning. The second is Trepan Reloaded, an ap-
proach that builds post-hoc explanations of black-box classifiers in the form of decision trees enhanced
by domain knowledge. Our aim is, firstly, to target a model-agnostic distillation approach exemplified
with these two frameworks, secondly, to study how these two frameworks interact on a theoretical level,
and, thirdly, to investigate use-cases in ML and AI in a comparative manner. Specifically, we envision
that user-studies will help determine human understandability of explanations generated using these
two frameworks.
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1. Introduction

Since the development of expert systems in the mid-1980s [1], explainable Artificial Intelligence
(xAI) has been promoting decision models that are transparent, i.e., that are able to explain why
and how decisions are being made. More recent successes in machine learning technology, to-
gether with episodes of unfair and discriminating decisions taken by black-box models, have
brought explainability back into the focus [2]. This has led to a plethora of new approaches for
explanations of black-box models [3], aiming to achieve explainability without sacrificing sys-
tem performance, and approaches to knowledge discovery in databases [4], aiming to combine
Semantic Web data with the data mining and knowledge discovery process.

Two of the most important problems that the two areas above have tried to address, and that
are currently of great practical and theoretical interest are those of:
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Figure 1: Our proposed workflow. A learning algorithm (L.A.) extracts from the ABox component of a
knowledge base () and/or from data of a database (DB) a model (M). This model is then distilled to
an intepretable proxy (IP) which may be added to the knowledge base’s TBox.

• InterpretableMachine Learning [5, 6]: often, it is not sufficient for a model to perform
accurate predictions. We also want our model to be interpretable, that is, to provide a
simple, human-understandable explanation of why it makes its predictions.

• Integration of Prior Domain Knowledge [7, 8]: classification or regression tasks may
not exist in a vacuum, but rather they may concern (and often, do concern) topics for
which there exists a considerable amount of domain knowledge of the kind that is easily
represented in terms of logical knowledge bases. This information may be of use both to
direct the learning algorithm and to reformulate or generalize its conclusions.

Nonetheless, the interplay between these two problems has remained mostly unexplored.
Only a few of these approaches have considered how to integrate and use domain knowledge
to foster interpretable machine learning, and to drive the explanation process (e.g., [9]). Fur-
thermore, very few approaches have addressed explanations from a user point of view [10],
in particular, analysing what makes for a good explanation [11], how these are perceived and
understood by humans, and how to use these findings to measure the understandability of
explanations of black-box models.

We propose to address these problems with an approach that may be seen as an instance of
knowledge distillation [12]. As shown in Figure 1, we propose to first train a (non-necessarily
human-interpretable) model on data, and then attempt to approximate the resulting model by
reducing it to an interpretable proxy. Depending on the nature of the model first trained and of
the proxy, this may be trivial (for example if the model first trained is simple and interpretable
enough to serve as its own proxy), rather less so (e.g., if the trained model is a multi-layer neural
network and we wish for our interpretable proxy to be a linear model), or perhaps considerably
difficult (e.g., if the trained model is a complex ensemble model). In general, then, the best
way forward will be a modular, possibly model-agnostic, distillation approach through which
an interpretable proxy is extracted by evaluating that model on arbitrary inputs and learning
adaptively a simpler model that best imitates it. We envision that this ‘knowledge distillation’
procedure could be done by following at least two different approaches to approximate the
original machine learning model. On one hand, we could use threshold (or “Tooth”) expressions,
which extend knowledge representation models by means of linear classifiers [13]. On the
other hand, we could use TrepanReloaded, a model-agnostic approach that provides symbolic
explanations, under the form of decision trees, of a black-box model [14, 15].

Since distillation will make use of the knowledge base as well as of the machine learning



model, the resulting interpretable proxy will integrate the model and the logical information
of the knowledge base to which it will be possibly added later, closing in this way a symbolic
integration cycle. The cycle will foster knowledge reuse and sharing.

As pointed out above, another important aspect, which has been nevertheless almost over-
looked, is the evaluation of human-understandability of explanations [10, 15]. Research in the
social sciences has extensively studied what stands for human-understandable explanations,
and how humans conceive and share explanations [10]. Other works studied and proposed
how the understandability of explanations can be measured [16]. We will use these works
as a basis to design experiments aiming to compare the explanations distilled using threshold
expressions and Trepan Reloaded.

2. Explanations via Weighted Threshold Operators

Weighted Threshold Operators are 𝑛-ary logical operators which compute a weighted sum of
their arguments and verify whether it reaches a certain threshold. These operators have been
extensively studied in the context of circuit complexity theory, and they are also known in
the neural network community under the alternative name of perceptrons. In [13], threshold
operators were studied in the context of Knowledge Representation, focusing in particular on
Description Logics (DLs). In brief, if 𝐶1…𝐶𝑛 are concept expressions, 𝑤1…𝑤𝑛 ∈ ℝ are weights,
and 𝑡 ∈ ℝ is a threshold, we can introduce a new concept ∇∇ 𝑡 (𝐶1 ∶ 𝑤1…𝐶𝑛 ∶ 𝑤𝑛) to designate
those individuals 𝑑 such that ∑{𝑤𝑖 ∶ 𝐶𝑖 applies to 𝑑} ≥ 𝑡 .

In the context of DL and concept representation, such threshold expressions are natural and
useful, as they provide a simple way to describe the class of the individuals that satisfy ‘enough’
of a certain set of desiderata. For example, let us consider the Felony Score Sheet used in the State
of Florida1, in which various aspects of a crime are assigned points, and a threshold must be
reached to decide compulsory imprisonment. For example, possession of cocaine corresponds
to 16 points if it is the primary offense and to 2.4 points otherwise, a victim injury describable as
“moderate” corresponds to 18 points, and a failure to appear for a criminal proceeding results in
4 points. Imprisonment is compulsory if the total is greater than 44 points and not compulsory
otherwise. A knowledge base describing the laws of Florida would need to represent this score
sheet as part of its definition of its CompulsoryImprisonment concept, for instance as

∇∇ 44(CocainePrimary ∶ 16,ModerateInjuries ∶ 18, …).

While it would be possible to also describe it (or any other Boolean function) in terms of more
ordinary logical connectives (e.g., by a DNF expression), a definition in terms of threshold
expressions is far simpler and more readable. As such, the definition is more transparent and
more explainable.

We refer the interested reader to [13, 17] for a more in-depth analysis of the properties of this
operator. Having threshold expressions in a language of knowledge representation has notable
advantages. First, in psychology and cognitive science, the combination of two or more con-
cepts has a more subtle semantics than set theoretic operations. As shown in [18], threshold

1http://www.dc.state.fl.us/pub/scoresheet/cpc_manual.pdf (accessed: 13 July 2021)
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operators can represent complex concepts more faithfully regarding the way in which hu-
mans think of them. For this reason, explanations provided using threshold expressions are
in principle more accessible to human agents. Second, as illustrated in [17], since a threshold
expression is a linear classification model, it is possible to use standard linear classification
algorithms (such as the Perceptron Algorithm, Logistic Regression, or Linear SVM) to learn its
weights and its threshold given a set of assertions about individuals (that is, given an ABox).

Extensions of Description Logic involving threshold operators have also been discussed in
[19, 20]. The approaches presented in these two papers are, however, very different from the
one summarised above: the former paper, indeed, changes the semantics of DL by associating
graded membership functions to models and requiring them for the interpretation of expres-
sions, while the latter one extends the semantics of the DL  by means of weighted alter-
nating parity tree automata. The approach described above is, in comparison, more direct: no
changes are made to the definitions of the models of the DL(s) to which threshold operators
are added, and the language is merely extended by means of the above-described operators.
Provided that the language of the original DL contains the ordinary Boolean operators, adding
the threshold operators to it does no increase the expressive power (as already noted in [13]),
but does not increase the complexity of reasoning either [21].

3. Explanations via Decision Trees

In the ML literature, techniques for explaining black-box models are typically classified as local
and global methods [3]. Whilst local methods take into account specific examples and provide
local explanations, global methods aim to provide an overall approximation of the behavior
of the black-box model. Global explanations are usually preferable over local explanations,
because they provide a more general view about the decision making process of a black-box.
An attempt to aggregate local explanations into global one was proposed in [22].

A seminal explanation method to explaining black-box classifiers is Trepan [23]. Trepan
is a tree induction algorithm that recursively extracts decision trees from oracles, in particular
from feed-forward neural networks. The algorithm is model-agnostic, and it can in principle
be applied to explain any black-box classifier (e.g., Random Forest).
Trepan combines the learning of the decision tree with a trained machine learning classifier

(the oracle). At each learning step, the oracle’s predicted labels are used instead of known
real labels. The use of this oracle serves two purposes: first, it helps to prevent the tree from
overfitting to outliers in the training data. Second, and more importantly, it helps to build more
accurate trees.

To produce enough examples to reliably generate test conditions on lower branches of the
tree, Trepan draws extra artificial query instances that are submitted to the neural network as
if they were real data. The features of these query instances are based on the distribution of
the underlying data. Both the query instances and the original data are submitted to the neural
network ‘oracle’, and its outputs are used to build the tree.

An extension of the Trepan algorithm, called Trepan Reloaded, was proposed to take into
account explicit knowledge, modeled by means of ontologies, in [14]. Trepan Reloaded uses
a modified information gain that, in the creation of split nodes, gives priority to features asso-



ciated with more general concepts defined in a domain ontology. This was achieved by means
of an information content measures defined using refinement operators [24]. Linking expla-
nations to structured knowledge in the form of ontologies, brings multiple advantages. It does
not only enrich explanations (or the elements therein) with semantic information—thus facili-
tating effective knowledge transmission to users—but it also creates a potential for supporting
the customisation of explanations to specific user profiles [25].

To measure the effects of the ontology on the understandability of explanations with human
users an on-line user study was conducted. The study showed that decision trees generated by
Trepan Reloaded, thus taking domain knowledge into account, were more understandable
than those generated without the use of domain knowledge [14, 15].

4. Evaluating Human Understandability of Explanations

Decision trees and threshold expressions appear to have complementary pros and cons as ex-
planatory tools for black-box classifiers. Decision trees have the advantage of having clear
visual representations. A human user can easily follow them to understand what factors lead
the classifier to reach which conclusion in which circumstances; but on the other hand, espe-
cially in the case of very large trees, it can be difficult for a user to follow the overall structure of
the decision tree or use it to engage in counterfactual reasoning (e.g., “would the final decision
of the classifier have been YES rather than NO if feature C1 had been different?”). Threshold
expressions, on the other hand, are arguably of less immediate interpretability for a user; but
have the advantage of specifying clearly which factors influence positively or negatively the
decision of the classifier, and up to which (comparative) degree, thus making it easier for a user
to evaluate the effect that changing certain specific input features would have on the outcome.

Previous work attempting to measure the understandability of symbolic decision models,
and decision trees in particular [26, 27], proposed syntactic complexity measures based on the
model’s structure. The syntactic complexity of an explanation can be measured, for instance, in
the case of decision trees, by counting the number of internal nodes or leaves, or in the case of
logical formulas, by counting the number of symbols adopted. Having a measure like syntactic
complexity, that can be easily computed, is useful from an application perspective. E.g., it may
be used to prevent excessive complexity in building decision trees and threshold expressions
when explaining a black-box. On the other hand, the syntactic complexity does not necessar-
ily capture precisely the understandability of explanations by users. A direct measure of user
understandability is how accurately a user can employ a given explanation to perform a deci-
sion. Another measure of cognitive difficulty is the reaction time (RT) or response latency [28].
RT is a standard measure used by cognitive psychologists and has become a staple measure of
complexity in the domain of design and user interfaces [29]. Understandability depends on the
cognitive load experienced by users, e.g., in using the decision model to classify instances and
in understanding the features in the model itself. However, for practical processing human
understandability needs to be approximated by an objective measure.

We will compare two characterisations of the understandability of explanations: (i) Under-
standability based on the syntactic complexity of an explanation (number of internal nodes,
leaves, symbols used in a weighted formulas, etc.), and (ii) Understandability based on users’
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Figure 2: Our eventual aim. From the black-box model (M), learned from a database (DB) and/or from
the ABox of a knowledge base () we distil, via the knowledge base 𝐵, a library of interpretable
models IP1, IP2, . . .with different advantages and disadvantages. A recommender system (Rec) then
chooses among these models the one to present to the user (Usr) in form of a narrative generated by a
textual translator (Txt). The user in turn interacts with the recommender system.

performances and subjective ratings, reflecting, for instance, the cognitive load by users in
carrying out tasks using a given explanation format.

We aim at conducting a user study to measure and compare the understandability of expla-
nations given in the form of decision trees and threshold expressions with human users. This
can be done in domains where explanations are critical, e.g., justice, finance or medicine. Con-
ducting and analysing such experiments can provide useful insights under which conditions
and tasks one representation is deemed more understandable than the other one by users.

5. Outlook to Future Work

In this work we briefly introduced two novel and promising approaches to distilling black-box
models into explainable models while making use of domain knowledge. As discussed in the
previous section, the natural next step consists in investigating experimentally the respective
advantages and disadvantages of these two approaches, with an eye towards a characterisation
of the scenarios in which either provides models that are more understandable and/or closer
to the black box model than the other.

Much besides that of course remains to be done. For instance, to further improve understand-
ability, an ulterior processing step translating either kind of model into a textual description
might be worth implementing, e.g., using narratives [30], as well as a way to use background
knowledge to adjust the explanatory model to the needs of different stakeholders [25].

Ultimately, we aim to integrate these two approaches (or more) into a unified meta-approach
that can use multiple modes of explanation for different aspects of a black-box model, automat-
ically choosing among the available options the ones that are best suited to provide a faithful
and understandable representation to that specific aspect of the model. This is an ambitious
endeavour, which would culminate in the automated distillation of a single black-box model
into a library of explainable models, different both in kind and in complexity (e.g., number of
decision nodes, weights), whose availability to the user is mediated by a recommender system
and a textual translator.
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